1
|
Fekete M, Lehoczki A, Szappanos Á, Toth A, Mahdi M, Sótonyi P, Benyó Z, Yabluchanskiy A, Tarantini S, Ungvari Z. Cerebromicrovascular mechanisms contributing to long COVID: implications for neurocognitive health. GeroScience 2025:10.1007/s11357-024-01487-4. [PMID: 39777702 DOI: 10.1007/s11357-024-01487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Long COVID (also known as post-acute sequelae of SARS-CoV-2 infection [PASC] or post-COVID syndrome) is characterized by persistent symptoms that extend beyond the acute phase of SARS-CoV-2 infection, affecting approximately 10% to over 30% of those infected. It presents a significant clinical challenge, notably due to pronounced neurocognitive symptoms such as brain fog. The mechanisms underlying these effects are multifactorial, with mounting evidence pointing to a central role of cerebromicrovascular dysfunction. This review investigates key pathophysiological mechanisms contributing to cerebrovascular dysfunction in long COVID and their impacts on brain health. We discuss how endothelial tropism of SARS-CoV-2 and direct vascular infection trigger endothelial dysfunction, impaired neurovascular coupling, and blood-brain barrier disruption, resulting in compromised cerebral perfusion. Furthermore, the infection appears to induce mitochondrial dysfunction, enhancing oxidative stress and inflammation within cerebral endothelial cells. Autoantibody formation following infection also potentially exacerbates neurovascular injury, contributing to chronic vascular inflammation and ongoing blood-brain barrier compromise. These factors collectively contribute to the emergence of white matter hyperintensities, promote amyloid pathology, and may accelerate neurodegenerative processes, including Alzheimer's disease. This review also emphasizes the critical role of advanced imaging techniques in assessing cerebromicrovascular health and the need for targeted interventions to address these cerebrovascular complications. A deeper understanding of the cerebrovascular mechanisms of long COVID is essential to advance targeted treatments and mitigate its long-term neurocognitive consequences.
Collapse
Affiliation(s)
- Monika Fekete
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Andrea Lehoczki
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary.
| | - Ágnes Szappanos
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, 4032, Debrecen, Hungary
- Infectology Clinic, University of Debrecen Clinical Centre, 4031, Debrecen, Hungary
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN , Semmelweis University, 1094, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
2
|
Rescher L, Singh S, Zahn I, Paulsen F, Schicht M. Effect of Metformin on Meibomian Gland Epithelial Cells: Implications in Aging and Diabetic Dry Eye Disease. Life (Basel) 2024; 14:1682. [PMID: 39768389 PMCID: PMC11679316 DOI: 10.3390/life14121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Metformin, a commonly prescribed medication for managing diabetes, has garnered increasing interest as a potential therapeutic option for combating cancer and aging. METHODS The current study investigated the effects of metformin treatment on human meibomian gland epithelial cells (hMGECs) at morphological, molecular, and electron microscopy levels. HMGECs were stimulated in vitro with 1 mM, 5 mM, and 10 mM metformin for 24, 48, and 72 h. The assessed outcomes were cell proliferation assays, lipid production, ultrastructural changes, levels of IGF-1, Nrf2, HO-1, apoptosis-inducing factor 1 (AIF1) at the protein level, and the expression of oxidative stress factors (matrix metallopeptidase 9, activating transcription factor 3, CYBB, or NADPH oxidase 2, xanthine dehydrogenase). RESULTS Morphological studies showed increased lipid production, the differentiation of hMGECs after stimulation with metformin, and the differentiation effects of undifferentiated hMGECs. Proliferation tests showed a reduction in cell proliferation with increasing concentrations over time. AIF1 apoptosis levels were not significantly regulated, but morphologically, the dying cells at a higher concentration of 5-10 mM showed a rupture and permeabilization of the plasma membrane, a swelling of the cytoplasm, and vacuolization after more than 48 h. The IGF-1 ELISA showed an irregular expression, which mostly decreased over time. Only at 72 h and 10 mM did we have a significant increase. Mitochondrial metabolic markers such as Nrf2 significantly increased over time, while HO-1 decreased partially. The RT-PCR showed a significant increase in MMP9, CYBB, XDH, and ATF with increasing time and metformin concentrations, indicating cell stress. CONCLUSIONS Our results using a cell line suggest that metformin affects the cellular physiology of meibomian gland epithelial cells and induces cell stress in a dose- and duration-dependent manner, causing changes in their morphology and ultrastructure.
Collapse
Affiliation(s)
- Leon Rescher
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.R.); (S.S.); (I.Z.); (F.P.)
| | - Swati Singh
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.R.); (S.S.); (I.Z.); (F.P.)
- Centre for Ocular Regeneration, L.V. Prasad Eye Institute, Hyderabad 500034, India
| | - Ingrid Zahn
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.R.); (S.S.); (I.Z.); (F.P.)
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.R.); (S.S.); (I.Z.); (F.P.)
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.R.); (S.S.); (I.Z.); (F.P.)
| |
Collapse
|
3
|
Lee YT, Senturk M, Guan Y, Wang MC. Bacteria-organelle communication in physiology and disease. J Cell Biol 2024; 223:e202310134. [PMID: 38748249 PMCID: PMC11096858 DOI: 10.1083/jcb.202310134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/03/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Bacteria, omnipresent in our environment and coexisting within our body, exert dual beneficial and pathogenic influences. These microorganisms engage in intricate interactions with the human body, impacting both human health and disease. Simultaneously, certain organelles within our cells share an evolutionary relationship with bacteria, particularly mitochondria, best known for their energy production role and their dynamic interaction with each other and other organelles. In recent years, communication between bacteria and mitochondria has emerged as a new mechanism for regulating the host's physiology and pathology. In this review, we delve into the dynamic communications between bacteria and host mitochondria, shedding light on their collaborative regulation of host immune response, metabolism, aging, and longevity. Additionally, we discuss bacterial interactions with other organelles, including chloroplasts, lysosomes, and the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Yi-Tang Lee
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Integrative Program of Molecular and Biochemical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Mumine Senturk
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Youchen Guan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Meng C. Wang
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
4
|
Mukherjee A, Ghosh KK, Chakrabortty S, Gulyás B, Padmanabhan P, Ball WB. Mitochondrial Reactive Oxygen Species in Infection and Immunity. Biomolecules 2024; 14:670. [PMID: 38927073 PMCID: PMC11202257 DOI: 10.3390/biom14060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Reactive oxygen species (ROS) contain at least one oxygen atom and one or more unpaired electrons and include singlet oxygen, superoxide anion radical, hydroxyl radical, hydroperoxyl radical, and free nitrogen radicals. Intracellular ROS can be formed as a consequence of several factors, including ultra-violet (UV) radiation, electron leakage during aerobic respiration, inflammatory responses mediated by macrophages, and other external stimuli or stress. The enhanced production of ROS is termed oxidative stress and this leads to cellular damage, such as protein carbonylation, lipid peroxidation, deoxyribonucleic acid (DNA) damage, and base modifications. This damage may manifest in various pathological states, including ageing, cancer, neurological diseases, and metabolic disorders like diabetes. On the other hand, the optimum levels of ROS have been implicated in the regulation of many important physiological processes. For example, the ROS generated in the mitochondria (mitochondrial ROS or mt-ROS), as a byproduct of the electron transport chain (ETC), participate in a plethora of physiological functions, which include ageing, cell growth, cell proliferation, and immune response and regulation. In this current review, we will focus on the mechanisms by which mt-ROS regulate different pathways of host immune responses in the context of infection by bacteria, protozoan parasites, viruses, and fungi. We will also discuss how these pathogens, in turn, modulate mt-ROS to evade host immunity. We will conclude by briefly giving an overview of the potential therapeutic approaches involving mt-ROS in infectious diseases.
Collapse
Affiliation(s)
- Arunima Mukherjee
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
| | - Sabyasachi Chakrabortty
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
| | - Writoban Basu Ball
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| |
Collapse
|
5
|
Zaparina O, Kovner A, Petrova V, Kolosova N, Mordvinov V, Pakharukova M. Plastoquinone-Derivative SkQ1 Improved the Biliary Intraepithelial Neoplasia during Liver Fluke Infection. Curr Issues Mol Biol 2024; 46:1593-1606. [PMID: 38392221 PMCID: PMC10887543 DOI: 10.3390/cimb46020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Carcinogenic food-borne liver fluke infections are a serious epidemiological threat worldwide. The major complications of Opisthorchis felineus infection are chronic inflammation and biliary intraepithelial neoplasia. Although evidence has accumulated that increased reactive oxygen species production is observed in liver fluke infection, a direct relationship between the oxidative stress and biliary intraepithelial neoplasia has not been shown. Quinones and SkQ1, a derivative of plastoquinone, have been demonstrated to be cytoprotective in numerous liver injuries due to their potent antioxidant properties. This study is aimed to assess the level of biliary intraepithelial neoplasia in O. felineus-infected hamsters after treatment with mitochondria-targeted SkQ1. SkQ1 significantly reduced the biliary intraepithelial neoplasia, which was accompanied by a decrease in lipid and DNA oxidation byproducts, mRNA expression and level of proteins associated with inflammation (TNF-α, CD68) and fibrogenesis (CK7, αSMA), and was also associated with an activation of the Keap1-Nrf2 pathway. Thus, a direct relationship was found between oxidative stress and the severity of biliary intraepithelial neoplasia in O. felineus-infected hamsters. The hepatoprotective effect of plastoquinone-derivative SkQ1 was established; therefore, this compound is a promising agent in complex therapy in the treatment of opisthorchiasis.
Collapse
Affiliation(s)
- Oxana Zaparina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Anna Kovner
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Viktoria Petrova
- Department of Biology, Cherepovets State University, 5, St. Lunacharsky, Cherepovets 162600, Russia
| | - Nataliya Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Viatcheslav Mordvinov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maria Pakharukova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Schicht M, Farger J, Wedel S, Sisignano M, Scholich K, Geisslinger G, Perumal N, Grus FH, Singh S, Sahin A, Paulsen F, Lütjen-Drecoll E. Ocular surface changes in mice with streptozotocin-induced diabetes and diabetic polyneuropathy. Ocul Surf 2024; 31:43-55. [PMID: 38141818 DOI: 10.1016/j.jtos.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
PURPOSE Diabetes mellitus (DM) is a leading risk factor for corneal neuropathy and dry eye disease (DED). Another common consequence of DM is diabetic peripheral polyneuropathy (DPN). Both complications affect around 50 % of the DM patients but the relationship between DM, DED and DPN remains unclear. METHODS In this study, we examined mice with early onset of DM and PN after streptozotocin (STZ)-induced diabetes (DPN). We compared the early morphological changes of the sciatic nerve, dorsal root and trigeminal ganglia with the changes in the ocular surface, including tear proteomic and we also investigated respective changes in the gene expressions and morphological alterations in the eye tissues involved in tear production. RESULTS The lacrimal gland, conjunctival goblet cells and cornea showed morphological changes along with alterations in tear proteins without any obvious signs of ocular surface inflammation. The gene expression for respectively altered tear proteins i.e., of Clusterin in cornea, Car6, Adh3a1, and Eef1a1 in eyelids, and Pigr in the lacrimal gland also showed significant changes compared to control mice. In the trigeminal ganglia like in the dorsal root ganglia neuronal cells showed swollen mitochondria and, in the latter, there was a significant increase of NADPH oxidases and MMP9 suggestive of oxidative and neuronal stress. In the dorsal root ganglia and the sciatic nerve, there was an upregulation of a number of pro-inflammatory cytokines and pain-mediating chemokines. CONCLUSION The early ocular changes in DM Mice only affect the lacrimal gland. Which, is reflected in the tear film composition of DPN mice. Due to the high protein concentration in tear fluid in humans, proteomic analysis in addition to noninvasive investigation of goblet cells and cornea can serve as a tools for the early diagnosis of DPN, DED in clinical practice. Early treatment could delay or even prevent the ocular complications of DM such as DED and PN.
Collapse
Affiliation(s)
- Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Jessica Farger
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Saskia Wedel
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Department of Experimental and Translational Ophthalmology, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Department of Experimental and Translational Ophthalmology, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Department of Experimental and Translational Ophthalmology, Germany
| | - Natarajan Perumal
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Franz H Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Swati Singh
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Afsun Sahin
- Department of Ophthalmology, Koc University Medical School, Istanbul, Turkey
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Elke Lütjen-Drecoll
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Egorov ES, Kondratenko ND, Averina OA, Permyakov OA, Emelyanova MA, Prikhodko AS, Zinovkina LA, Sergiev PV, Zinovkin RA. A New Mouse Strain with a Mutation in the NFE2L2 (NRF2) Gene. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1987-1996. [PMID: 38462445 DOI: 10.1134/s0006297923120039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 03/12/2024]
Abstract
Transcription factor NRF2 is involved in inflammatory reactions, maintenance of redox balance, metabolism of xenobiotics, and is of particular interest for studying aging. In the present work, the CRISPR/Cas9 genome editing technology was used to generate the NRF2ΔNeh2 mice containing a substitution of eight amino acid residues at the N-terminus of the NRF2 protein, upstream of the functional Neh2 domain, which ensures binding of NRF2 to its inhibitor KEAP1. Heterozygote NRF2wt/ΔNeh2 mice gave birth to homozygous mice with lower than expected frequency, accompanied by their increased embryonic lethality and visual signs of anemia. Mouse embryonic fibroblasts (MEFs) from the NRF2ΔNeh2/ΔNeh2 homozygotes showed impaired resistance to oxidative stress compared to the wild-type MEFs. The tissues of homozygous NRF2ΔNeh2/ΔNeh2 animals had a decreased expression of the NRF2 target genes: NAD(P)H:Quinone oxidoreductase-1 (Nqo1); aldehyde oxidase-1 (Aox1); glutathione-S-transferase A4 (Gsta4); while relative mRNA levels of the monocyte chemoattractant protein 1 (Ccl2), vascular cell adhesion molecule 1 (Vcam1), and chemokine Cxcl8 was increased. Thus, the resulting mutation in the Nfe2l2 gene coding for NRF2, partially impaired function of this transcription factor, expanding our insights into the functional role of the unstructured N-terminus of NRF2. The obtained NRF2ΔNeh2 mouse line can be used as a model object for studying various pathologies associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Evgeniy S Egorov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Natalia D Kondratenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Russian Clinical Research Center for Gerontology, Ministry of Health of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, 129226, Russia
| | - Olga A Averina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Oleg A Permyakov
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria A Emelyanova
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anastasia S Prikhodko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ludmila A Zinovkina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Petr V Sergiev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Roman A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- HSE University, Moscow, 101000, Russia
| |
Collapse
|
8
|
Pandics T, Major D, Fazekas-Pongor V, Szarvas Z, Peterfi A, Mukli P, Gulej R, Ungvari A, Fekete M, Tompa A, Tarantini S, Yabluchanskiy A, Conley S, Csiszar A, Tabak AG, Benyo Z, Adany R, Ungvari Z. Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures. GeroScience 2023; 45:3381-3408. [PMID: 37688657 PMCID: PMC10643494 DOI: 10.1007/s11357-023-00913-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023] Open
Abstract
The aging population worldwide is facing a significant increase in age-related non-communicable diseases, including cardiovascular and brain pathologies. This comprehensive review paper delves into the impact of the exposome, which encompasses the totality of environmental exposures, on unhealthy aging. It explores how environmental factors contribute to the acceleration of aging processes, increase biological age, and facilitate the development and progression of a wide range of age-associated diseases. The impact of environmental factors on cognitive health and the development of chronic age-related diseases affecting the cardiovascular system and central nervous system is discussed, with a specific focus on Alzheimer's disease, Parkinson's disease, stroke, small vessel disease, and vascular cognitive impairment (VCI). Aging is a major risk factor for these diseases. Their pathogenesis involves cellular and molecular mechanisms of aging such as increased oxidative stress, impaired mitochondrial function, DNA damage, and inflammation and is influenced by environmental factors. Environmental toxicants, including ambient particulate matter, pesticides, heavy metals, and organic solvents, have been identified as significant contributors to cardiovascular and brain aging disorders. These toxicants can inflict both macro- and microvascular damage and many of them can also cross the blood-brain barrier, inducing neurotoxic effects, neuroinflammation, and neuronal dysfunction. In conclusion, environmental factors play a critical role in modulating cardiovascular and brain aging. A deeper understanding of how environmental toxicants exacerbate aging processes and contribute to the pathogenesis of neurodegenerative diseases, VCI, and dementia is crucial for the development of preventive strategies and interventions to promote cardiovascular, cerebrovascular, and brain health. By mitigating exposure to harmful environmental factors and promoting healthy aging, we can strive to reduce the burden of age-related cardiovascular and brain pathologies in the aging population.
Collapse
Affiliation(s)
- Tamas Pandics
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Public Health Laboratory, National Public Health Centre, Budapest, Hungary
- Department of Public Health Siences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsofia Szarvas
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Peterfi
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Tompa
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adam G Tabak
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- UCL Brain Sciences, University College London, London, UK
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, H-1052, Hungary
| | - Roza Adany
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
- Epidemiology and Surveillance Centre, Semmelweis University, 1085, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
9
|
Alexa AI, Zamfir CL, Bogdănici CM, Oancea A, Maștaleru A, Abdulan IM, Brănișteanu DC, Ciobîcă A, Balmuș M, Stratulat-Alexa T, Ciuntu RE, Severin F, Mocanu M, Leon MM. The Impact of Chronic Stress on Behavior and Body Mass in New Animal Models. Brain Sci 2023; 13:1492. [PMID: 37891859 PMCID: PMC10605805 DOI: 10.3390/brainsci13101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Exposure to different sources of stress can have a significant effect on both psychological and physical processes. (2) Methods: The study took place over a period of 34 days and included a total of 40 animals. Regarding the exposure to chronic stressors, we opted for physiological, non-invasive stressors, e.g., running, swimming, and changes in the intensity of light. An unforeseen stress batch was also created that alternated all these stress factors. The animals were divided into five experimental groups, each consisting of eight individuals. In the context of conducting the open field test for behavioral assessment before and after stress exposure, we aimed to investigate the impact of stress exposure on the affective traits of the animals. We also monitored body mass every two days. (3) Results: The control group exhibited an average increase in weight of approximately 30%. The groups exposed to stress factors showed slower growth rates, the lowest being the running group, recording a rate of 20.55%, and the unpredictable stress group at 24.02%. The anxious behavior intensified in the group with unforeseen stress, in the one with light variations, and in the running group. (4) Conclusions: Our research validates the animal model of intermittent light exposure during the dark phase as a novel method of inducing stress. The modification of some anxiety parameters was observed; they vary according to the type of stress. Body mass was found to increase in all groups, especially in the sedentary groups, likely due to the absence of cognitive, spatial, and social stimuli except for cohabitation.
Collapse
Affiliation(s)
- Anisia Iuliana Alexa
- Department of Surgery II, Discipline of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.I.A.); (C.M.B.); (D.C.B.); (R.E.C.)
| | - Carmen Lăcrămioara Zamfir
- Department of Morpho-Funcțional Sciences I, Discipline of Histology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Camelia Margareta Bogdănici
- Department of Surgery II, Discipline of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.I.A.); (C.M.B.); (D.C.B.); (R.E.C.)
| | - Andra Oancea
- Department of Medical Specialties I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.M.); (I.M.A.); (M.M.L.)
| | - Alexandra Maștaleru
- Department of Medical Specialties I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.M.); (I.M.A.); (M.M.L.)
| | - Irina Mihaela Abdulan
- Department of Medical Specialties I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.M.); (I.M.A.); (M.M.L.)
| | - Daniel Constantin Brănișteanu
- Department of Surgery II, Discipline of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.I.A.); (C.M.B.); (D.C.B.); (R.E.C.)
| | - Alin Ciobîcă
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University Iasi, 700505 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, 700506 Iasi, Romania
- Academy of Romanian Scientists, Str Splaiul Independentei no. 54, Sector 5, 050094 Bucharest, Romania
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Miruna Balmuș
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Alexandru Lapusneanu Street, No. 26, 700057 Iasi, Romania;
| | - Teodora Stratulat-Alexa
- Department of Medical Oncology, Discipline of Oncology-Radiation Therapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Roxana Elena Ciuntu
- Department of Surgery II, Discipline of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.I.A.); (C.M.B.); (D.C.B.); (R.E.C.)
| | - Florentina Severin
- Department of Surgery II, Discipline of Oto Rhino Laryngology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Mădălina Mocanu
- Department of Medical Health III, Discipline of Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maria Magdalena Leon
- Department of Medical Specialties I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.M.); (I.M.A.); (M.M.L.)
| |
Collapse
|
10
|
Skulachev VP, Vyssokikh MY, Chernyak BV, Mulkidjanian AY, Skulachev MV, Shilovsky GA, Lyamzaev KG, Borisov VB, Severin FF, Sadovnichii VA. Six Functions of Respiration: Isn't It Time to Take Control over ROS Production in Mitochondria, and Aging Along with It? Int J Mol Sci 2023; 24:12540. [PMID: 37628720 PMCID: PMC10454651 DOI: 10.3390/ijms241612540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Cellular respiration is associated with at least six distinct but intertwined biological functions. (1) biosynthesis of ATP from ADP and inorganic phosphate, (2) consumption of respiratory substrates, (3) support of membrane transport, (4) conversion of respiratory energy to heat, (5) removal of oxygen to prevent oxidative damage, and (6) generation of reactive oxygen species (ROS) as signaling molecules. Here we focus on function #6, which helps the organism control its mitochondria. The ROS bursts typically occur when the mitochondrial membrane potential (MMP) becomes too high, e.g., due to mitochondrial malfunction, leading to cardiolipin (CL) oxidation. Depending on the intensity of CL damage, specific programs for the elimination of damaged mitochondria (mitophagy), whole cells (apoptosis), or organisms (phenoptosis) can be activated. In particular, we consider those mechanisms that suppress ROS generation by enabling ATP synthesis at low MMP levels. We discuss evidence that the mild depolarization mechanism of direct ATP/ADP exchange across mammalian inner and outer mitochondrial membranes weakens with age. We review recent data showing that by protecting CL from oxidation, mitochondria-targeted antioxidants decrease lethality in response to many potentially deadly shock insults. Thus, targeting ROS- and CL-dependent pathways may prevent acute mortality and, hopefully, slow aging.
Collapse
Affiliation(s)
- Vladimir P. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Mikhail Yu. Vyssokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | | | - Maxim V. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
- Institute of Mitoengineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Gregory A. Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, 129226 Moscow, Russia
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Fedor F. Severin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Victor A. Sadovnichii
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
11
|
López-Lluch G. Coenzyme Q-related compounds to maintain healthy mitochondria during aging. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:277-308. [PMID: 37437981 DOI: 10.1016/bs.apcsb.2023.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Mitochondrial dysfunction is one of the main factors that affects aging progression and many age-related diseases. Accumulation of dysfunctional mitochondria can be driven by unbalanced mito/autophagy or by decrease in mitochondrial biosynthesis and turnover. Coenzyme Q is an essential component of the mitochondrial electron transport chain and a key factor in the protection of membrane and mitochondrial DNA against oxidation. Coenzyme Q levels decay during aging and this can be considered an accelerating factor in mitochondrial dysfunction and aging progression. Supplementation with coenzyme Q is successful for some tissues and organs but not for others. For this reason, the role of coenzyme Q in systemic aging is a complex picture that needs different strategies depending on the organ considered the main objective to be addressed. In this chapter we focus on the different effects of coenzyme Q and related compounds and the probable strategies to induce endogenous synthesis to maintain healthy aging.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
12
|
Poyatos P, Gratacós M, Samuel K, Orriols R, Tura-Ceide O. Oxidative Stress and Antioxidant Therapy in Pulmonary Hypertension. Antioxidants (Basel) 2023; 12:1006. [PMID: 37237872 PMCID: PMC10215203 DOI: 10.3390/antiox12051006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease characterized by elevated artery pressures and pulmonary vascular resistance. Underlying mechanisms comprise endothelial dysfunction, pulmonary artery remodeling and vasoconstriction. Several studies have shown evidence of the critical role of oxidative stress in PH pathophysiology. Alteration of redox homeostasis produces excessive generation of reactive oxygen species, inducing oxidative stress and the subsequent alteration of biological molecules. Exacerbations in oxidative stress production can lead to alterations in nitric oxide signaling pathways, contributing to the proliferation of pulmonary arterial endothelial cells and smooth muscle cells, inducing PH development. Recently, antioxidant therapy has been suggested as a novel therapeutic strategy for PH pathology. However, the favorable outcomes observed in preclinical studies have not been consistently reproduced in clinical practice. Therefore, targeting oxidative stress as a therapeutic intervention for PH is an area that is still being explored. This review summarizes the contribution of oxidative stress to the pathogenesis of the different types of PH and suggests antioxidant therapy as a promising strategy for PH treatment.
Collapse
Affiliation(s)
- Paula Poyatos
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (P.P.); (M.G.)
- Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain
| | - Miquel Gratacós
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (P.P.); (M.G.)
| | - Kay Samuel
- Scottish National Blood Transfusion Service, NHS National Services Scotland, Edinburgh EH14 4BE, UK
| | - Ramon Orriols
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (P.P.); (M.G.)
- Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (P.P.); (M.G.)
- Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
13
|
Zinovkin RA, Lyamzaev KG, Chernyak BV. Current perspectives of mitochondria-targeted antioxidants in cancer prevention and treatment. Front Cell Dev Biol 2023; 11:1048177. [PMID: 37009472 PMCID: PMC10060896 DOI: 10.3389/fcell.2023.1048177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Oxidative stress nearly always accompanies all stages of cancer development. At the early stages, antioxidants may help to reduce reactive oxygen species (ROS) production and exhibit anticarcinogenic effects. In the later stages, ROS involvement becomes more complex. On the one hand, ROS are necessary for cancer progression and epithelial-mesenchymal transition. On the other hand, antioxidants may promote cancer cell survival and may increase metastatic frequency. The role of mitochondrial ROS in cancer development remains largely unknown. This paper reviews experimental data on the effects of both endogenous and exogenous antioxidants on cancerogenesis focusing on the development and application of mitochondria-targeted antioxidants. We also discuss the prospects for antioxidant cancer therapy, focusing on the use of mitochondria-targeted antioxidants.
Collapse
Affiliation(s)
- Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
14
|
Mitochondrial Oxidative Stress and Mitophagy Activation Contribute to TNF-Dependent Impairment of Myogenesis. Antioxidants (Basel) 2023; 12:antiox12030602. [PMID: 36978858 PMCID: PMC10044935 DOI: 10.3390/antiox12030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Many muscular pathologies are associated with oxidative stress and elevated levels of the tumor necrosis factor (TNF) that cause muscle protein catabolism and impair myogenesis. Myogenesis defects caused by TNF are mediated in part by reactive oxygen species (ROS), including those produced by mitochondria (mitoROS), but the mechanism of their pathological action is not fully understood. We hypothesized that mitoROS act by triggering and enhancing mitophagy, an important tool for remodelling the mitochondrial reticulum during myogenesis. We used three recently developed probes—MitoTracker Orange CM-H2TMRos, mito-QC, and MitoCLox—to study myogenesis in human myoblasts. Induction of myogenesis resulted in a significant increase in mitoROS generation and phospholipid peroxidation in the inner mitochondrial membrane, as well as mitophagy enhancement. Treatment of myoblasts with TNF 24 h before induction of myogenesis resulted in a significant decrease in the myoblast fusion index and myosin heavy chain (MYH2) synthesis. TNF increased the levels of mitoROS, phospholipid peroxidation in the inner mitochondrial membrane and mitophagy at an early stage of differentiation. Trolox and SkQ1 antioxidants partially restored TNF-impaired myogenesis. The general autophagy inducers rapamycin and AICAR, which also stimulate mitophagy, completely blocked myogenesis. The autophagy suppression by the ULK1 inhibitor SBI-0206965 partially restored myogenesis impaired by TNF. Thus, suppression of myogenesis by TNF is associated with a mitoROS-dependent increase in general autophagy and mitophagy.
Collapse
|
15
|
Gain C, Song S, Angtuaco T, Satta S, Kelesidis T. The role of oxidative stress in the pathogenesis of infections with coronaviruses. Front Microbiol 2023; 13:1111930. [PMID: 36713204 PMCID: PMC9880066 DOI: 10.3389/fmicb.2022.1111930] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Coronaviruses can cause serious respiratory tract infections and may also impact other end organs such as the central nervous system, the lung and the heart. The coronavirus disease 2019 (COVID-19) has had a devastating impact on humanity. Understanding the mechanisms that contribute to the pathogenesis of coronavirus infections, will set the foundation for development of new treatments to attenuate the impact of infections with coronaviruses on host cells and tissues. During infection of host cells, coronaviruses trigger an imbalance between increased production of reactive oxygen species (ROS) and reduced antioxidant host responses that leads to increased redox stress. Subsequently, increased redox stress contributes to reduced antiviral host responses and increased virus-induced inflammation and apoptosis that ultimately drive cell and tissue damage and end organ disease. However, there is limited understanding how different coronaviruses including SARS-CoV-2, manipulate cellular machinery that drives redox responses. This review aims to elucidate the redox mechanisms involved in the replication of coronaviruses and associated inflammation, apoptotic pathways, autoimmunity, vascular dysfunction and tissue damage that collectively contribute to multiorgan damage.
Collapse
Affiliation(s)
| | | | | | | | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
16
|
Chernyak BV, Lyamzaev KG. Innate Immunity and Phenoptosis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1634-1639. [PMID: 36717452 PMCID: PMC9839199 DOI: 10.1134/s0006297922120185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 01/15/2023]
Abstract
The hypothesis is proposed that activation of innate immunity is the primary mechanism of phenoptosis (programmed death of an organism). In support of the hypothesis, we discuss (i) the data on active release of signaling molecules from the cell producing excessive inflammation; (ii) the data on contribution of mitochondrial production of reactive oxygen species to immune response.
Collapse
Affiliation(s)
- Boris V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Konstantin G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, 129226, Russia
| |
Collapse
|
17
|
The Multiple Sclerosis Modulatory Potential of Natural Multi-Targeting Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238402. [PMID: 36500494 PMCID: PMC9740750 DOI: 10.3390/molecules27238402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Multiple sclerosis (MS) is a complex neurodegenerative disease. Although its pathogenesis is rather vague in some aspects, it is well known to be an inflammatory process characterized by inflammatory cytokine release and oxidative burden, resulting in demyelination and reduced remyelination and axonal survival together with microglial activation. Antioxidant compounds are gaining interest towards the manipulation of MS, since they offer, in most of the cases, many benefits, due to their pleiotropical activity, that mainly derives from the oxidative stress decrease. This review analyzes research articles, of the last decade, which describe biological in vitro, in vivo and clinical evaluation of various categories of the most therapeutically applied natural antioxidant compounds, and some of their derivatives, with anti-MS activity. It also summarizes some of the main characteristics of MS and the role the reactive oxygen and nitrogen species may have in its progression, as well as their relation with the other mechanistic aspects of the disease, in order for the multi-targeting potential of those antioxidants to be defined and the source of origination of such activity explained. Antioxidant compounds with specific characteristics are expected to affect positively some aspects of the disease, and their potential may render them as effective candidates for neurological impairment reduction in combination with the MS treatment regimen. However, more studies are needed in order such antioxidants to be established as recommended treatment to MS patients.
Collapse
|
18
|
Fedorov AV, Chelombitko MA, Chernyavskij DA, Galkin II, Pletjushkina OY, Vasilieva TV, Zinovkin RA, Chernyak BV. Mitochondria-Targeted Antioxidant SkQ1 Prevents the Development of Experimental Colitis in Mice and Impairment of the Barrier Function of the Intestinal Epithelium. Cells 2022; 11:3441. [PMID: 36359839 PMCID: PMC9659222 DOI: 10.3390/cells11213441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Mitochondria-targeted antioxidants have become promising candidates for the therapy of various pathologies. The mitochondria-targeted antioxidant SkQ1, which is a derivative of plastoquinone, has been successfully used in preclinical studies for the treatment of cardiovascular and renal diseases, and has demonstrated anti-inflammatory activity in a number of inflammatory disease models. The present work aimed to investigate the therapeutic potential of SkQ1 and C12TPP, the analog of SkQ1 lacking the antioxidant quinone moiety, in the prevention of sodium dextran sulfate (DSS) experimental colitis and impairment of the barrier function of the intestinal epithelium in mice. DSS-treated animals exhibited weight loss, bloody stool, dysfunction of the intestinal epithelium barrier (which was observed using FITC-dextran permeability), reduced colon length, and histopathological changes in the colon mucosa. SkQ1 prevented the development of clinical and histological changes in DSS-treated mice. SkQ1 also reduced mRNA expression of pro-inflammatory molecules TNF, IL-6, IL-1β, and ICAM-1 in the proximal colon compared with DSS-treated animals. SkQ1 prevented DSS-induced tight junction disassembly in Caco-2 cells. Pretreatment of mice by C12TPP did not protect against DSS-induced colitis. Furthermore, C12TPP did not prevent DSS-induced tight junction disassembly in Caco-2 cells. Our results suggest that SkQ1 may be a promising therapeutic agent for the treatment of inflammatory bowel diseases, in particular ulcerative colitis.
Collapse
Affiliation(s)
- Artem V. Fedorov
- Department of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maria A. Chelombitko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Russian Clinical Research Center for Gerontology of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, 129226 Moscow, Russia
| | - Daniil A. Chernyavskij
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan I. Galkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Yu. Pletjushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tamara V. Vasilieva
- Department of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- HSE University, 101000 Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
19
|
Turnic TN, Popadic V, Klasnja S, Sekulic A, Nikolic N, Zivkovic V, Jeremic N, Andjic M, Draginic N, Srejovic I, Jeremic J, Zdravkovic M, Jakovljevic V. Bradykinin and Galectin-3 in Survived and Deceased Patients with COVID-19 Pneumonia: An Increasingly Promising Biochemical Target. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7920915. [PMID: 36338343 PMCID: PMC9633192 DOI: 10.1155/2022/7920915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/13/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022]
Abstract
Introduction There are still no definite curative or preventive strategies for COVID-19 disease. It is crucial to fully comprehend the pathogenesis of COVID-19 infection so that we can develop expedient pharmacological protocols. While the impact of cytokine storm on COVID-19 severity has been one of the most tested hypotheses, the role of bradykinin and various other oxidative stress markers has been relatively under-researched. Their levels can be determined immediately after a hospital admission so they could be used as early predictors of the further development of the disease. Aim The study aims at evaluating the possibility of using bradykinin and galectin-3 levels as early predictors that COVID-19 disease will progress into a severe case. Material and methods. The study was conducted as a prospective cross-sectional study. It included 47 consecutive adult patients with confirmed SARS-CoV-2 infection and COVID-19 pneumonia. All study subjects were admitted for a hospital treatment to the tertiary Clinical Hospital Center Bezanijska kosa, Belgrade, Serbia on June 2021. The blood samples were collected at the patients' admission. The analyses of demographic, radiological, and clinical data were later conducted for both groups (the deceased patients and those who survived). In addition, we analyzed the potential relations between the outcome and the levels of bradykinin and galectin-3 measured immediately after the patients were admitted to the hospital. Results The patients who passed away were predominantly older men with comorbidities. We recorded higher CT scores in the deceased patients and the significantly higher levels of urea, creatinine, CK, troponine, CRP, and other laboratory markers. They stayed at the ICU unit longer and required mechanical ventilation more frequently than the patients who survived. On the other hand, no differences were recorded in the time periods passing from the onset of the systems to the hospital admissions. Finally, we can highlight several independent predictors of mortality in patients with COVID-19 pneumonia, including the following: (1) patients who are 50 or more years old, (2) with in-hospital stays are longer that 4 days, (3) bradykinin levels surpass 220000 pg/ml, (4) D-dimer, creatinine, and CRP are elevated, and (5) comorbidities were present (such as hypertension and diabetes). Conclusion The present study strongly supports the bradykinin storm hypothesis. Since elevated bradykinin levels have been found in most COVID-19 cases with fatal outcomes, the future therapeutical strategies for COVID-19 have to be focused on reducing bradykinin serum concentrations.
Collapse
Affiliation(s)
- Tamara Nikolic Turnic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Serbia
- N.A.Semashko Public Health and Healthcare Department, F.F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Viseslav Popadic
- University Clinical Hospital Center Bežanijska kosa, Belgrade, Serbia
| | - Slobodan Klasnja
- University Clinical Hospital Center Bežanijska kosa, Belgrade, Serbia
| | - Ana Sekulic
- University Clinical Hospital Center Bežanijska kosa, Belgrade, Serbia
| | - Novica Nikolic
- University Clinical Hospital Center Bežanijska kosa, Belgrade, Serbia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
- Department of Pharmacology, 1st Moscow State Medical, University IM Sechenov, Trubetskaya street 8, str. 2, 119991 Moscow, Russia
| | - Nevena Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Serbia
- I.M. Shechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya st., Moscow, Russia
| | - Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Nevena Draginic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
- Department of Pharmacology, 1st Moscow State Medical, University IM Sechenov, Trubetskaya street 8, str. 2, 119991 Moscow, Russia
| | - Jovana Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Marija Zdravkovic
- University Clinical Hospital Center Bežanijska kosa, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
- Department of Human Pathology, 1st Moscow State Medical, University IM Sechenov, Trubetskaya street 8, str. 2, 119991 Moscow, Russia
| |
Collapse
|
20
|
Chelombitko MA, Galkin II, Pletjushkina OY, Zinovkin RA, Popova EN. Effect of Antioxidants on the Production of MCP-1 Chemokine by EA.hy926 Cells in Response to IL-6. MOSCOW UNIVERSITY BIOLOGICAL SCIENCES BULLETIN 2022; 77:184-191. [PMCID: PMC9640856 DOI: 10.3103/s0096392522030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022]
|
21
|
Maiuolo J, Carresi C, Gliozzi M, Mollace R, Scarano F, Scicchitano M, Macrì R, Nucera S, Bosco F, Oppedisano F, Ruga S, Coppoletta AR, Guarnieri L, Cardamone A, Bava I, Musolino V, Paone S, Palma E, Mollace V. The Contribution of Gut Microbiota and Endothelial Dysfunction in the Development of Arterial Hypertension in Animal Models and in Humans. Int J Mol Sci 2022; 23:ijms23073698. [PMID: 35409057 PMCID: PMC8999124 DOI: 10.3390/ijms23073698] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
The maintenance of the physiological values of blood pressure is closely related to unchangeable factors (genetic predisposition or pathological alterations) but also to modifiable factors (dietary fat and salt, sedentary lifestyle, overweight, inappropriate combinations of drugs, alcohol abuse, smoking and use of psychogenic substances). Hypertension is usually characterized by the presence of a chronic increase in systemic blood pressure above the threshold value and is an important risk factor for cardiovascular disease, including myocardial infarction, stroke, micro- and macro-vascular diseases. Hypertension is closely related to functional changes in the endothelium, such as an altered production of vasoconstrictive and vasodilator substances, which lead to an increase in vascular resistance. These alterations make the endothelial tissue unresponsive to autocrine and paracrine stimuli, initially determining an adaptive response, which over time lead to an increase in risk or disease. The gut microbiota is composed of a highly diverse bacterial population of approximately 1014 bacteria. A balanced intestinal microbiota preserves the digestive and absorbent functions of the intestine, protecting from pathogens and toxic metabolites in the circulation and reducing the onset of various diseases. The gut microbiota has been shown to produce unique metabolites potentially important in the generation of hypertension and endothelial dysfunction. This review highlights the close connection between hypertension, endothelial dysfunction and gut microbiota.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, in IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy;
- Correspondence: (J.M.); (M.G.)
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Correspondence: (J.M.); (M.G.)
| | - Rocco Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Roberta Macrì
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Anna Rita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Lorenza Guarnieri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Irene Bava
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, in IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy;
| | - Sara Paone
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
| |
Collapse
|
22
|
Parodi-Rullán RM, Javadov S, Fossati S. Dissecting the Crosstalk between Endothelial Mitochondrial Damage, Vascular Inflammation, and Neurodegeneration in Cerebral Amyloid Angiopathy and Alzheimer's Disease. Cells 2021; 10:cells10112903. [PMID: 34831125 PMCID: PMC8616424 DOI: 10.3390/cells10112903] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent cause of dementia and is pathologically characterized by the presence of parenchymal senile plaques composed of amyloid β (Aβ) and intraneuronal neurofibrillary tangles of hyperphosphorylated tau protein. The accumulation of Aβ also occurs within the cerebral vasculature in over 80% of AD patients and in non-demented individuals, a condition called cerebral amyloid angiopathy (CAA). The development of CAA is associated with neurovascular dysfunction, blood–brain barrier (BBB) leakage, and persistent vascular- and neuro-inflammation, eventually leading to neurodegeneration. Although pathologically AD and CAA are well characterized diseases, the chronology of molecular changes that lead to their development is still unclear. Substantial evidence demonstrates defects in mitochondrial function in various cells of the neurovascular unit as well as in the brain parenchyma during the early stages of AD and CAA. Dysfunctional mitochondria release danger-associated molecular patterns (DAMPs) that activate a wide range of inflammatory pathways. In this review, we gather evidence to postulate a crucial role of the mitochondria, specifically of cerebral endothelial cells, as sensors and initiators of Aβ-induced vascular inflammation. The activated vasculature recruits circulating immune cells into the brain parenchyma, leading to the development of neuroinflammation and neurodegeneration in AD and CAA.
Collapse
Affiliation(s)
- Rebecca M. Parodi-Rullán
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00921, USA;
| | - Silvia Fossati
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Correspondence: ; Tel.: +1-215-707-6046
| |
Collapse
|
23
|
Russell G, Nenov A, Hancock JT. Oxy-hydrogen Gas: The Rationale Behind Its Use as a Novel and Sustainable Treatment for
COVID-19 and Other Respiratory Diseases. EUROPEAN MEDICAL JOURNAL 2021. [DOI: 10.33590/emj/21-00027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxy-hydrogen gas (HHO) is a gaseous mixture of molecular hydrogen and molecular oxygen that is generated by the electrolysis of water and delivered in a 2:1 ratio (66% and 33%, respectively) through the use of noninvasive inhalation devices such as nasal cannulas or nebulisers. Although there is a paucity of scientific evidence supporting this new and emerging therapy, initial investigations indicate that HHO proffers cytoprotective qualities, typically by reducing oxidative stress and attenuating
the inflammatory response. These aspects are particularly favourable when considering respiratory medicine because underlying inflammation is known to drive the pathological progress of numerous respiratory conditions, including asthma, chronic obstructive pulmonary disorder, and, pertinently, coronavirus disease (COVID-19). Direct delivery to the lung parenchyma is also likely to increase the effectiveness of this emerging medical therapy. This narrative review aims to delineate how this particular combination of gases can affect cellular processes at the molecular level by focussing on the evolutionary requirement for both oxygen and hydrogen. Furthermore, the authors assess the current available data for the safety and efficacy of HHO in a clinical setting.
Collapse
Affiliation(s)
- Grace Russell
- Department of Applied Sciences, University of the West of England, Bristol, UK
| | | | - John T. Hancock
- Department of Applied Sciences, University of the West of England, Bristol, UK
| |
Collapse
|
24
|
Verhoeven J, Baelen J, Agrawal M, Agostinis P. Endothelial cell autophagy in homeostasis and cancer. FEBS Lett 2021; 595:1497-1511. [PMID: 33837545 DOI: 10.1002/1873-3468.14087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Autophagy, the major lysosomal pathway for the degradation and recycling of cytoplasmic materials, is increasingly recognized as a major player in endothelial cell (EC) biology and vascular pathology. Particularly in solid tumors, tumor microenvironmental stress such as hypoxia, nutrient deprivation, inflammatory mediators, and metabolic aberrations stimulates autophagy in tumor-associated blood vessels. Increased autophagy in ECs may serve as a mechanism to alleviate stress and restrict exacerbated inflammatory responses. However, increased autophagy in tumor-associated ECs can re-model metabolic pathways and affect the trafficking and surface availability of key mediators and regulators of the interplay between EC and immune cells. In line with this, heightened EC autophagy is involved in pathological angiogenesis, inflammatory, and immune responses. Here, we review major cellular and molecular mechanisms regulated by autophagy in ECs under physiological conditions and discuss recent evidence implicating EC autophagy in tumor angiogenesis and immunosurveillance.
Collapse
Affiliation(s)
- Jelle Verhoeven
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Jef Baelen
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Madhur Agrawal
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| |
Collapse
|
25
|
Chernyak BV, Popova EN, Prikhodko AS, Grebenchikov OA, Zinovkina LA, Zinovkin RA. COVID-19 and Oxidative Stress. BIOCHEMISTRY (MOSCOW) 2021; 85:1543-1553. [PMID: 33705292 PMCID: PMC7768996 DOI: 10.1134/s0006297920120068] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathogenesis of the novel coronavirus infection COVID-19 is the subject of active research around the world. COVID-19 caused by the SARS-CoV-2 is a complex disease in which interaction of the virus with target cells, action of the immune system and the body’s systemic response to these events are closely intertwined. Many respiratory viral infections, including COVID-19, cause death of the infected cells, activation of innate immune response, and secretion of inflammatory cytokines. All these processes are associated with the development of oxidative stress, which makes an important contribution to pathogenesis of the viral infections. This review analyzes information on the oxidative stress associated with the infections caused by SARS-CoV-2 and other respiratory viruses. The review also focuses on involvement of the vascular endothelium in the COVID-19 pathogenesis.
Collapse
Affiliation(s)
- B V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - E N Popova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A S Prikhodko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - O A Grebenchikov
- Negovsky Scientific Research Institute of General Reanimatology, Moscow, 107031, Russia
| | - L A Zinovkina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - R A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, 119992, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| |
Collapse
|
26
|
Vorobjeva NV, Sud'ina GF, Chernyak BV. Mitochondria Are Potential Targets for the Development of New Drugs Against Neutrophilic Inflammation in Severe Pneumonia Including COVID-19. Front Pharmacol 2021; 12:609508. [PMID: 33584318 PMCID: PMC7878366 DOI: 10.3389/fphar.2021.609508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022] Open
Affiliation(s)
- Nina V Vorobjeva
- Biology Faculty, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Galina F Sud'ina
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Boris V Chernyak
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
27
|
Chelombitko MA, Chernyak BV, Fedorov AV, Zinovkin RA, Razin E, Paruchuru LB. Corrigendum: The Role Played by Mitochondria in FcϵRI-Dependent Mast Cell Activation. Front Immunol 2020; 11:620293. [PMID: 33362803 PMCID: PMC7761169 DOI: 10.3389/fimmu.2020.620293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
[This corrects the article .].
Collapse
Affiliation(s)
- Maria A Chelombitko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Artem V Fedorov
- Department of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Roman A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ehud Razin
- Department of Biochemistry and Molecular Biology, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lakhsmi Bhargavi Paruchuru
- Department of Biochemistry and Molecular Biology, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
28
|
Chernyak BV, Popova EN, Zinovkina LA, Lyamzaev KG, Zinovkin RA. Mitochondria as Targets for Endothelial Protection in COVID-19. Front Physiol 2020; 11:606170. [PMID: 33329059 PMCID: PMC7710659 DOI: 10.3389/fphys.2020.606170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Affiliation(s)
- Boris V Chernyak
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina N Popova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ludmila A Zinovkina
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin G Lyamzaev
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Roman A Zinovkin
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
29
|
Chelombitko MA, Chernyak BV, Fedorov AV, Zinovkin RA, Razin E, Paruchuru LB. The Role Played by Mitochondria in FcεRI-Dependent Mast Cell Activation. Front Immunol 2020; 11:584210. [PMID: 33178217 PMCID: PMC7596649 DOI: 10.3389/fimmu.2020.584210] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Mast cells play a key role in the regulation of innate and adaptive immunity and are involved in pathogenesis of many inflammatory and allergic diseases. The most studied mechanism of mast cell activation is mediated by the interaction of antigens with immunoglobulin E (IgE) and a subsequent binding with the high-affinity receptor Fc epsilon RI (FcεRI). Increasing evidences indicated that mitochondria are actively involved in the FcεRI-dependent activation of this type of cells. Here, we discuss changes in energy metabolism and mitochondrial dynamics during IgE-antigen stimulation of mast cells. We reviewed the recent data with regards to the role played by mitochondrial membrane potential, mitochondrial calcium ions (Ca2+) influx and reactive oxygen species (ROS) in mast cell FcεRI-dependent activation. Additionally, in the present review we have discussed the crucial role played by the pyruvate dehydrogenase (PDH) complex, transcription factors signal transducer and activator of transcription 3 (STAT3) and microphthalmia-associated transcription factor (MITF) in the development and function of mast cells. These two transcription factors besides their nuclear localization were also found to translocate in to the mitochondria and functions as direct modulators of mitochondrial activity. Studying the role played by mast cell mitochondria following their activation is essential for expanding our basic knowledge about mast cell physiological functions and would help to design mitochondria-targeted anti-allergic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Maria A. Chelombitko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Artem V. Fedorov
- Department of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ehud Razin
- Department of Biochemistry and Molecular Biology, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lakhsmi Bhargavi Paruchuru
- Department of Biochemistry and Molecular Biology, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
30
|
Forrester SJ, Preston KJ, Cooper HA, Boyer MJ, Escoto KM, Poltronetti AJ, Elliott KJ, Kuroda R, Miyao M, Sesaki H, Akiyama T, Kimura Y, Rizzo V, Scalia R, Eguchi S. Mitochondrial Fission Mediates Endothelial Inflammation. Hypertension 2020; 76:267-276. [PMID: 32389075 PMCID: PMC7289685 DOI: 10.1161/hypertensionaha.120.14686] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
Endothelial inflammation and mitochondrial dysfunction have been implicated in cardiovascular diseases, yet, a unifying mechanism tying them together remains limited. Mitochondrial dysfunction is frequently associated with mitochondrial fission/fragmentation mediated by the GTPase Drp1 (dynamin-related protein 1). Nuclear factor (NF)-κB, a master regulator of inflammation, is implicated in endothelial dysfunction and resultant complications. Here, we explore a causal relationship between mitochondrial fission and NF-κB activation in endothelial inflammatory responses. In cultured endothelial cells, TNF-α (tumor necrosis factor-α) or lipopolysaccharide induces mitochondrial fragmentation. Inhibition of Drp1 activity or expression suppresses mitochondrial fission, NF-κB activation, vascular cell adhesion molecule-1 induction, and leukocyte adhesion induced by these proinflammatory factors. Moreover, attenuations of inflammatory leukocyte adhesion were observed in Drp1 heterodeficient mice as well as endothelial Drp1 silenced mice. Intriguingly, inhibition of the canonical NF-κB signaling suppresses endothelial mitochondrial fission. Mechanistically, NF-κB p65/RelA seems to mediate inflammatory mitochondrial fission in endothelial cells. In addition, the classical anti-inflammatory drug, salicylate, seems to maintain mitochondrial fission/fusion balance against TNF-α via inhibition of NF-κB. In conclusion, our results suggest a previously unknown mechanism whereby the canonical NF-κB cascade and a mitochondrial fission pathway interdependently regulate endothelial inflammation.
Collapse
Affiliation(s)
- Steven J. Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Kyle J. Preston
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Hannah A. Cooper
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Michael J. Boyer
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Kathleen M. Escoto
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Anthony J. Poltronetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Katherine J. Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Ryohei Kuroda
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Masashi Miyao
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, U.S.A
| | - Tomoko Akiyama
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA19140
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, U.S.A
| |
Collapse
|
31
|
Zinovkin RA, Zamyatnin AA. Mitochondria-Targeted Drugs. Curr Mol Pharmacol 2020; 12:202-214. [PMID: 30479224 PMCID: PMC6875871 DOI: 10.2174/1874467212666181127151059] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 01/06/2023]
Abstract
Background: Targeting of drugs to the subcellular compartments represents one of the modern trends in molecular pharmacology. The approach for targeting mitochondria was developed nearly 50 years ago, but only in the last decade has it started to become widely used for delivering drugs. A number of pathologies are associated with mitochondrial dysfunction, including cardiovascular, neurological, inflammatory and metabolic conditions. Objective: This mini-review aims to highlight the role of mitochondria in pathophysiological conditions and diseases, to classify and summarize our knowledge about targeting mitochondria and to review the most important preclinical and clinical data relating to the antioxidant lipophilic cations MitoQ and SkQ1. Methods: This is a review of available information in the PubMed and Clinical Trials databases (US National Library of Medicine) with no limiting period. Results and Conclusion: Mitochondria play an important role in the pathogenesis of many diseases and possibly in aging. Both MitoQ and SkQ1 have shown many beneficial features in animal models and in a few completed clinical trials. More clinical trials and research efforts are needed to understand the signaling pathways influenced by these compounds. The antioxidant lipophilic cations have great potential for the treatment of a wide range of pathologies.
Collapse
Affiliation(s)
- Roman A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Institute of Mitoengineering, Moscow State University, Moscow, Russian Federation
| | - Andrey A Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
32
|
Zinovkina LA, Galivondzhyan AK, Prikhodko AS, Galkin II, Zinovkin RA. Mitochondria-targeted triphenylphosphonium-based compounds do not affect estrogen receptor α. PeerJ 2020; 8:e8803. [PMID: 32257641 PMCID: PMC7102506 DOI: 10.7717/peerj.8803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/25/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Targeting negatively charged mitochondria is often achieved using triphenylphosphonium (TPP) cations. These cationic vehicles may possess biological activity, and a docking study indicates that TPP-moieties may act as modulators of signaling through the estrogen receptor α (ERα). Moreover, in vivo and in vitro experiments revealed the estrogen-like effects of TPP-based compounds. Here, we tested the hypothesis that TPP-based compounds regulate the activity of ERα. METHODS We used ERa-positive and ERα-negative human breast adenocarcinoma cell lines (MCF-7 and MDA-MB-231, respectively). Cell proliferation was measured using a resazurin cell growth assay and a real-time cell analyzer assay. Cell cycle progression was analyzed using flow cytometry. Real-time PCR was used to assess mRNA expression of endogenous estrogen-responsive genes. Luciferase activity was measured to evaluate transcription driven by estrogen-responsive promoters in cells transfected with an estrogen response element (ERE)3-luciferase expression vector. RESULTS The TPP-based molecules SkQ1 and C12TPP, as well as the rhodamine-based SkQR1, did not increase the proliferation or alter the cell cycle progression of MCF-7 cells. In contrast, 17β estradiol increased the proliferation of MCF-7 cells and the proportion of cells in the S/G2/M-phases of the cell cycle. TPP-based compounds did not affect the induction of transcription of an ERE-luciferase expression vector in vitro, and SkQ1 did not alter the levels of expression of estrogen-dependent genes encoding GREB1, TFF1, COX6, and IGFBP4. CONCLUSION TPP-based compounds do not possess properties typical of ERα agonists.
Collapse
Affiliation(s)
- Ludmila A. Zinovkina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Institute of Mitoengineering, Moscow State University, Moscow, Russia
| | - Alina K. Galivondzhyan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia S. Prikhodko
- Institute of Mitoengineering, Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan I. Galkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Roman A. Zinovkin
- Institute of Mitoengineering, Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
33
|
Ren L, Han F, Xuan L, Lv Y, Gong L, Yan Y, Wan Z, Guo L, Liu H, Xu B, Sun Y, Yang S, Liu L. Clusterin ameliorates endothelial dysfunction in diabetes by suppressing mitochondrial fragmentation. Free Radic Biol Med 2019; 145:357-373. [PMID: 31614179 DOI: 10.1016/j.freeradbiomed.2019.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
Clusterin (CLU) is a stress-responding protein associated with cytoprotection in a broad range of pathological processes. However, clusterin's function in diabetes-induced endothelial dysfunction has not been defined. Herein, using two diabetes models, we investigated the role of clusterin in endothelial dysfunction triggered by diabetes and the molecular mechanisms involved. The results revealed that clusterin overexpression inhibited ICAM-1/VCAM-1 expression in aortas and improved endothelium-dependent vasodilatation in db/db diabetic mice and streptozotocin (STZ)-induced diabetes models. Consistently, in vitro, adenoviral clusterin overexpression reduced the expression of a range of pro-inflammatory cytokines and suppressed monocyte adhesion to endothelial cells subjected to high glucose and high palmitate. Further study indicated that clusterin overexpression mitigated mitochondrial excessive fission and reduced mitochondrial ROS production. Conversely, silencing clusterin aggravated mitochondrial fission and endothelial inflammatory activation in high glucose-exposed endothelial cells. Accumulating evidence indicates that impaired mitochondrial dynamics plays a considerable role in promoting endothelial dysfunction in diabetic subjects. Therefore, treatments targeting mitochondrial undue fission may be promising measures to prevent vascular complications of diabetes. Furthermore, AMP-activated protein kinase (AMPK) activation contributed to the modulation of mitochondrial dynamics executed by clusterin. Mechanistically, clusterin promoted the phosphorylation of AMPKα and its downstream target acetyl-CoA carboxylase (ACC), while the inhibition of AMPKα negated the improvement in mitochondrial dynamics provided by clusterin overexpression. Over all, these findings suggest that clusterin exerts beneficial effects in endothelial cells under diabetic conditions via inhibiting mitochondrial fragmentation mediated by AMPK.
Collapse
Affiliation(s)
- Lulu Ren
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Feifei Han
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lingling Xuan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yali Lv
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lili Gong
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yan Yan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zirui Wan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lifang Guo
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - He Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Benshan Xu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yuan Sun
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Song Yang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lihong Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
34
|
Trott DW, Fadel PJ. Inflammation as a mediator of arterial ageing. Exp Physiol 2019; 104:1455-1471. [PMID: 31325339 DOI: 10.1113/ep087499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review summarizes and synthesizes what is known about the contribution of inflammation to age-related arterial dysfunction. What advances does it highlight? This review details observational evidence for the relationship of age-related inflammation and arterial dysfunction, insight from autoimmune inflammatory diseases and their effects on arterial function, interventional evidence linking inflammation and age-related arterial dysfunction, insight into age-related arterial inflammation from preclinical models and interventions to ameliorate age-related inflammation and arterial dysfunction. ABSTRACT Advanced age is a primary risk factor for cardiovascular disease, the leading cause of death in the industrialized world. Two major components of arterial ageing are stiffening of the large arteries and impaired endothelium-dependent dilatation in multiple vascular beds. These two alterations are major contributors to the development of overt cardiovascular disease. Increasing inflammation with advanced age is likely to play a role in this arterial dysfunction. The purpose of this review is to synthesize what is known about inflammation and its relationship to age-related arterial dysfunction. This review discusses both the initial observational evidence for the relationship of age-related inflammation and arterial dysfunction and the evidence that inflammatory autoimmune diseases are associated with a premature arterial ageing phenotype. We next discuss interventional and mechanistic evidence linking inflammation and age-related arterial dysfunction in older adults. We also attempt to summarize the relevant evidence from preclinical models. Lastly, we discuss interventions in both humans and animals that have been shown to ameliorate age-related arterial inflammation and dysfunction. The available evidence provides a strong basis for the role of inflammation in both large artery stiffening and impairment of endothelium-dependent dilatation; however, the specific inflammatory mediators, the initiating factors and the relative importance of the endothelium, smooth muscle cells, perivascular adipose tissue and immune cells in arterial inflammation are not well understood. With the expansion of the ageing population, ameliorating age-related arterial inflammation represents an important potential strategy for preserving vascular health in the elderly.
Collapse
Affiliation(s)
- Daniel W Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
35
|
Fetisova EK, Muntyan MS, Lyamzaev KG, Chernyak BV. Therapeutic Effect of the Mitochondria-Targeted Antioxidant SkQ1 on the Culture Model of Multiple Sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2082561. [PMID: 31354902 PMCID: PMC6636568 DOI: 10.1155/2019/2082561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/18/2019] [Accepted: 06/09/2019] [Indexed: 01/04/2023]
Abstract
Multiple sclerosis (MS) is a heterogeneous autoimmune disease of unknown etiology characterized by inflammation, demyelination, and axonal degeneration that affects both the white and gray matter of CNS. Recent large-scale epidemiological and genomic studies identified several genetic and environmental risk factors for the disease. Among them are environmental factors of infectious origin, possibly causing MS, which include Epstein-Barr virus infection, reactivation of some endogenous retrovirus groups, and infection by pathogenic bacteria (mycobacteria, Chlamydia pneumoniae, and Helicobacter pylori). However, the nature of the events leading to the activation of immune cells in MS is mostly unknown and there is no effective therapy against the disease. Amazingly, whatever the cause of the disease, signs of damage to the nerve tissue with MS lesions were the same as with infectious leprosy, while in the latter case nitrozooxidative stress was suggested as the main cause of the nerve damage. With this in mind and following the hypothesis that excessive production of mitochondrial reactive oxygen species critically contributes to MS pathogenesis, we studied the effect of mitochondria-targeted antioxidant SkQ1 in an in vitro MS model of the primary oligodendrocyte culture of the cerebellum, challenged with lipopolysaccharide (LPS). SkQ1 was found to accumulate in the mitochondria of oligodendrocytes and microglial cells, and it was also found to prevent LPS-induced inhibition of myelin production in oligodendrocytes. The results implicate that mitochondria-targeted antioxidants could be promising candidates as components of a combined therapy for MS and related neurological disorders.
Collapse
Affiliation(s)
- Elena K. Fetisova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria S. Muntyan
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin G. Lyamzaev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris V. Chernyak
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
36
|
Dai J, Liu R, Zhao J, Zhang A. Sulfur dioxide improves endothelial dysfunction by downregulating the angiotensin II/AT 1R pathway in D-galactose-induced aging rats. J Renin Angiotensin Aldosterone Syst 2018; 19:1470320318778898. [PMID: 29848151 PMCID: PMC5985551 DOI: 10.1177/1470320318778898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to investigate the protective effects of sulfur dioxide (SO2) on the endothelial function of the aorta in D-galactose (D-gal)-induced aging rats. Sprague Dawley rats were randomized into a D-gal group, a D-gal + SO2 group and a control group, then injected with D-gal, D-gal + SO2 donor or equivalent volumes of saline, respectively, for 8 consecutive weeks. After 8 weeks, the mean arterial pressure was significantly increased in the D-gal group, but was lowered by SO2. SO2 significantly ameliorated the endothelial dysfunction induced by D-gal treatment. The vasorelaxant effect of SO2 was associated with the elevated nitric oxide levels and upregulated phosphorylation of endothelial nitric oxide synthase. In the D-gal group, the concentration of angiotensin II in the plasma was significantly increased, but was decreased by SO2. Moreover, levels of vascular tissue hydrogen peroxide (H2O2) and malondialdehyde were significantly lower in SO2-treated groups than those in the D-gal group. Western blot analysis showed that the expressions of oxidative stress-related proteins (the angiotensin II type 1 receptor (AT1R), and nicotinamide adenine dinucleotide phosphate oxidase subunits) were increased in the D-gal group, while they were decreased after treatment with SO2. In conclusion, SO2 attenuated endothelial dysfunction in association with the inhibition of oxidative stress injury and the downregulation of the angiotensin II/AT1R pathway in D-gal-induced aging rats.
Collapse
Affiliation(s)
- Jing Dai
- 1 Department of Clinical Diagnostics, Hebei Medical University, China
| | - Rui Liu
- 2 Department of Thoracic Surgery, Suining Central Hospital, China
| | - Jinjie Zhao
- 3 Department of Cardiovascular Surgery, Suining Central Hospital, China
| | - Aijie Zhang
- 4 Basic Laboratory, Suining Central Hospital, China
| |
Collapse
|
37
|
Gurău F, Baldoni S, Prattichizzo F, Espinosa E, Amenta F, Procopio AD, Albertini MC, Bonafè M, Olivieri F. Anti-senescence compounds: A potential nutraceutical approach to healthy aging. Ageing Res Rev 2018; 46:14-31. [PMID: 29742452 DOI: 10.1016/j.arr.2018.05.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/02/2018] [Accepted: 05/03/2018] [Indexed: 01/10/2023]
Abstract
The desire of eternal youth seems to be as old as mankind. However, the increasing life expectancy experienced by populations in developed countries also involves a significantly increased incidence of the most common age-related diseases (ARDs). Senescent cells (SCs) have been identified as culprits of organismal aging. Their number rises with age and their senescence-associated secretory phenotype fuels the chronic, pro-inflammatory systemic state (inflammaging) that characterizes aging, impairing the regenerative ability of stem cells and increasing the risk of developing ARDs. A variegated class of molecules, including synthetic senolytic compounds and natural compounds contained in food, have been suggested to possess anti-senescence activity. Senolytics are attracting growing interest, and their safety and reliability as anti-senescence drugs are being assessed in human clinical trials. Notably, since SCs spread inflammation at the systemic level through pro-oxidant and pro-inflammatory signals, foods rich in polyphenols, which exert antioxidant and anti-inflammatory actions, have the potential to be harnessed as "anti-senescence foods" in a nutraceutical approach to healthier aging. We discuss the beneficial effects of polyphenol-rich foods in relation to the Mediterranean diet and the dietary habits of long-lived individuals, and examine their ability to modulate bacterial genera in the gut.
Collapse
Affiliation(s)
- Felicia Gurău
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Simone Baldoni
- School of Medicinal Sciences and Health Products, University of Camerino, Camerino, Italy
| | | | - Emma Espinosa
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Amenta
- School of Medicinal Sciences and Health Products, University of Camerino, Camerino, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy
| | | | - Massimiliano Bonafè
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Bologna, Italy; Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Forlì, Italy.
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy.
| |
Collapse
|
38
|
Chelombitko MA, Averina OA, Vasilyeva TV, Pletiushkina OY, Popova EN, Fedorov AV, Chernyak BV, Shishkina VS, Ilinskaya OP. Mitochondria-Targeted Antioxidant SkQ1 (10-(6´-Plastoquinonyl)decyltriphenylphosphonium Bromide) Inhibits Mast Cell Degranulation in vivo and in vitro. BIOCHEMISTRY (MOSCOW) 2018; 82:1493-1503. [PMID: 29486699 DOI: 10.1134/s0006297917120082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The therapeutic effect of mitochondria-targeted antioxidant 10-(6´-plastoquinonyl)decyltriphenylphosphonium bromide (SkQ1) in experimental models of acute inflammation and wound repair has been shown earlier. It was suggested that the antiinflammatory activity of SkQ1 is related to its ability to suppress inflammatory activation of the vascular endothelium and neutrophil migration into tissues. Here, we demonstrated that SkQ1 inhibits activation of mast cells (MCs) followed by their degranulation and histamine release in vivo and in vitro. Intraperitoneal injections of SkQ1 in the mouse air-pouch model reduced the number of leukocytes in the air-pouch cavity and significantly decreased the histamine content in it, as well as suppressing MC degranulation in the air-pouch tissue. The direct effect of SkQ1 on MCs was studied in vitro in the rat basophilic leukemia RBL-2H3 cell line. SkQ1 inhibited induced degranulation of RBL-2H3 cells. These results suggest that mitochondrial reactive oxygen species are involved in the activation of MCs. It is known that MCs play a crucial role in regulation of vascular permeability by secreting histamine. Suppression of MC degranulation by SkQ1 might be a significant factor in the antiinflammatory activity of this mitochondria-targeted antioxidant.
Collapse
Affiliation(s)
- M A Chelombitko
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Przybylska D, Janiszewska D, Goździk A, Bielak-Zmijewska A, Sunderland P, Sikora E, Mosieniak G. NOX4 downregulation leads to senescence of human vascular smooth muscle cells. Oncotarget 2018; 7:66429-66443. [PMID: 27655718 PMCID: PMC5341811 DOI: 10.18632/oncotarget.12079] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/12/2016] [Indexed: 11/25/2022] Open
Abstract
Senescence is a stress response characterized by an irreversible growth arrest and alterations in certain cell functions. It is believed that both double-strand DNA breaks (DSB) and increased ROS level are the main culprit of senescence. Excessive ROS production is also particularly important in the development of a number of cardiovascular disorders. In this context the involvement of professional ROS-producing enzymes, NADPH oxidases (NOX), was postulated. In contrary to the common knowledge, we have shown that not only increased ROS production but also diminished ROS level could be involved in the induction of senescence. Accordingly, our studies revealed that stress-induced premature senescence (SIPS) of vascular smooth muscle cells (VSMCs) induced by doxorubicin or H2O2, correlates with increased level of DSB and ROS. On the other hand, both SIPS and replicative senescence were accompanied by diminished expression of NOX4. Moreover, inhibition of NOX activity or decrease of NOX4 expression led to permanent growth arrest of VSMCs and secretion of interleukins and VEGF. Interestingly, cells undergoing senescence due to NOX4 depletion neither acquired DSB nor activated DNA damage response. Instead, transient induction of the p27, upregulation of HIF-1alpha, decreased expression of cyclin D1 and hypophosphorylated Rb was observed. Our results showed that lowering the level of ROS-producing enzyme - NOX4 oxidase below physiological level leads to cellular senescence of VSMCs which is correlated with secretion of pro-inflammatory cytokines. Thus the use of specific NOX4 inhibitors for pharmacotherapy of vascular diseases should be carefully considered.
Collapse
Affiliation(s)
- Dorota Przybylska
- Laboratory of Molecular Bases of Aging, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Janiszewska
- Laboratory of Molecular Bases of Aging, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Goździk
- Laboratory of Molecular Bases of Aging, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anna Bielak-Zmijewska
- Laboratory of Molecular Bases of Aging, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Sunderland
- Laboratory of Molecular Bases of Aging, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Grażyna Mosieniak
- Laboratory of Molecular Bases of Aging, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
40
|
Zecchin A, Kalucka J, Dubois C, Carmeliet P. How Endothelial Cells Adapt Their Metabolism to Form Vessels in Tumors. Front Immunol 2017; 8:1750. [PMID: 29321777 PMCID: PMC5732229 DOI: 10.3389/fimmu.2017.01750] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/24/2017] [Indexed: 12/28/2022] Open
Abstract
Endothelial cells (ECs) line blood vessels, i.e., vital conduits for oxygen and nutrient delivery to distant tissues. While mostly present as quiescent "phalanx" cells throughout adult life, ECs can rapidly switch to a migratory "tip" cell and a proliferative "stalk" cell, and sprout into avascular tissue to form new blood vessels. The angiogenic switch has long been considered to be primarily orchestrated by the activity of angiogenic molecules. However, recent evidence illustrates an instrumental role of cellular metabolism in vessel sprouting, whereby ECs require specific metabolic adaptations to grow. Here, we overview the emerging picture that tip, stalk, and phalanx cells have distinct metabolic signatures and discuss how these signatures can become deregulated in pathological conditions, such as in cancer.
Collapse
Affiliation(s)
- Annalisa Zecchin
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Charlotte Dubois
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Pinegin B, Vorobjeva N, Pashenkov M, Chernyak B. The role of mitochondrial ROS in antibacterial immunity. J Cell Physiol 2017; 233:3745-3754. [PMID: 28771715 DOI: 10.1002/jcp.26117] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/01/2017] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS) are essential participants of various innate immune cell responses against microorganisms and are also involved in many cellular regulatory pathways. It was believed that the main pool of ROS in the innate immune cells is generated by the NADPH oxidase enzymatic complex. However, it was discovered recently that mitochondrial ROS (mtROS) are equally important for the functioning of the immune system. mtROS play an important role in the development of the antimicrobial innate immune responses. The present mini-review summarizes the most recent data on the role of mtROS in the antibacterial immunity. The principles of mtROS formation and possible mechanisms of their generation under the activation of innate immunity are highlighted in this review. We also speculate on the possibilities of using activators of mtROS production in clinical practice.
Collapse
Affiliation(s)
- Boris Pinegin
- Laboratory of Clinical Immunology, National Research Center "Institute of Immunology" of the Federal Medical-Biological Agency, Moscow, Russia
| | - Nina Vorobjeva
- Department of Immunology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail Pashenkov
- Laboratory of Clinical Immunology, National Research Center "Institute of Immunology" of the Federal Medical-Biological Agency, Moscow, Russia
| | - Boris Chernyak
- Department of Bioenergetics, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
42
|
Mitochondria-Targeted Antioxidant SkQ1 Improves Dermal Wound Healing in Genetically Diabetic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6408278. [PMID: 28761623 PMCID: PMC5518517 DOI: 10.1155/2017/6408278] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/20/2017] [Indexed: 01/13/2023]
Abstract
Oxidative stress is widely recognized as an important factor in the delayed wound healing in diabetes. However, the role of mitochondrial reactive oxygen species in this process is unknown. It was assumed that mitochondrial reactive oxygen species are involved in many wound-healing processes in both diabetic humans and animals. We have applied the mitochondria-targeted antioxidant 10-(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1) to explore the role of mitochondrial reactive oxygen species in the wound healing of genetically diabetic mice. Healing of full-thickness excisional dermal wounds in diabetic C57BL/KsJ-db-/db- mice was significantly enhanced after long-term (12 weeks) administration of SkQ1. SkQ1 accelerated wound closure and stimulated epithelization, granulation tissue formation, and vascularization. On the 7th day after wounding, SkQ1 treatment increased the number of α-smooth muscle actin-positive cells (myofibroblasts), reduced the number of neutrophils, and increased macrophage infiltration. SkQ1 lowered lipid peroxidation level but did not change the level of the circulatory IL-6 and TNF. SkQ1 pretreatment also stimulated cell migration in a scratch-wound assay in vitro under hyperglycemic condition. Thus, a mitochondria-targeted antioxidant normalized both inflammatory and regenerative phases of wound healing in diabetic mice. Our results pointed to nearly all the major steps of wound healing as the target of excessive mitochondrial reactive oxygen species production in type II diabetes.
Collapse
|
43
|
Joo HK, Lee YR, Choi S, Park MS, Kang G, Kim CS, Jeon BH. Protein kinase C beta II upregulates intercellular adhesion molecule-1 via mitochondrial activation in cultured endothelial cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:377-384. [PMID: 28706451 PMCID: PMC5507776 DOI: 10.4196/kjpp.2017.21.4.377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 01/31/2023]
Abstract
Activation of protein kinase C (PKC) is closely linked with endothelial dysfunction. However, the effect of PKCβII on endothelial dysfunction has not been characterized in cultured endothelial cells. Here, using adenoviral PKCβII gene transfer and pharmacological inhibitors, the role of PKCβII on endothelial dysfucntion was investigated in cultured endothelial cells. Phorbol 12-myristate 13-acetate (PMA) increased reactive oxygen species (ROS), p66shc phosphorylation, intracellular adhesion molecule-1, and monocyte adhesion, which were inhibited by PKCβi (10 nM), a selective inhibitor of PKCβII. PMA increased the phosphorylation of CREB and manganese superoxide dismutase (MnSOD), which were also inhibited by PKCβi. Gene silencing of CREB inhibited PMA-induced MnSOD expression, suggesting that CREB plays a key role in MnSOD expression. Gene silencing of PKCβII inhibited PMA-induced mitochondrial ROS, MnSOD, and ICAM-1 expression. In contrast, overexpression of PKCβII using adenoviral PKCβII increased mitochondrial ROS, MnSOD, ICAM-1, and p66shc phosphorylation in cultured endothelial cells. Finally, PKCβII-induced ICAM-1 expression was inhibited by Mito-TEMPO, a mitochondrial ROS scavenger, suggesting the involvement of mitochondrial ROS in PKC-induced vascular inflammation. Taken together, the results suggest that PKCβII plays an important role in PMA-induced endothelial dysfunction, and that the inhibition of PKCβII-dependent p66shc signaling acts as a therapeutic target for vascular inflammatory diseases.
Collapse
Affiliation(s)
- Hee Kyoung Joo
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Yu Ran Lee
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Sunga Choi
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Myoung Soo Park
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Gun Kang
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Cuk-Seong Kim
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Byeong Hwa Jeon
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
44
|
Chelombitko MA, Averina OA, Vasil'eva TV, Dvorianinova EE, Egorov MV, Pletjushkina OY, Popova EN, Fedorov AV, Romashchenko VP, Ilyinskaya OP. Comparison of the Effects of Mitochondria-Targeted Antioxidant 10-(6'-Plastoquinonyl)Decyltriphenylphosphonium Bromide (SkQ1) and a Fragment of its Molecule Dodecyltriphenylphosphonium on Carrageenan-Induced Acute Inflammation in Mouse Model of Subcuteneous Air Pouch. Bull Exp Biol Med 2017; 162:730-733. [PMID: 28429222 DOI: 10.1007/s10517-017-3699-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 10/19/2022]
Abstract
The effect of mitochondria-targeted antioxidant 10-(6'-plastoquinonyl) decyltriphenylphosphonium bromide (SkQ1) and its fragment dodecyltriphenylphosphonium (C12TPP), weak uncouplers of respiration and oxidative phosphorylation, was studied using a mouse model of carrageenan-induced acute inflammation in the subcutaneous air pouch. In our model, SkQ1 demonstrated a strong anti-inflammatory effect that manifested in a decrease in the absolute number of inflammatory cells, mainly neutrophils, and their relative number in parallel with an increase in macrophages and mast cell content in the inflammatory exudate. The concentration of proinflammatory cytokine IL-6 in the exudate also tended to decrease. C12TPP produced no significant effect on the inflammation process.
Collapse
Affiliation(s)
- M A Chelombitko
- Biological Faculty, M. V. Lomonosov Moscow State University, Moskva, Russia.
| | - O A Averina
- Institute of Mitoengineering, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - T V Vasil'eva
- Biological Faculty, M. V. Lomonosov Moscow State University, Moskva, Russia
| | - E E Dvorianinova
- Biological Faculty, M. V. Lomonosov Moscow State University, Moskva, Russia
| | - M V Egorov
- Institute of Mitoengineering, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - O Yu Pletjushkina
- A. N. Belozersky Research Institute of Physicochemical Biology, Moscow, Russia
| | - E N Popova
- A. N. Belozersky Research Institute of Physicochemical Biology, Moscow, Russia
| | - A V Fedorov
- Biological Faculty, M. V. Lomonosov Moscow State University, Moskva, Russia
| | - V P Romashchenko
- A. N. Belozersky Research Institute of Physicochemical Biology, Moscow, Russia
| | - O P Ilyinskaya
- Biological Faculty, M. V. Lomonosov Moscow State University, Moskva, Russia
| |
Collapse
|
45
|
Vorobjeva N, Prikhodko A, Galkin I, Pletjushkina O, Zinovkin R, Sud'ina G, Chernyak B, Pinegin B. Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranulation of human neutrophils in vitro. Eur J Cell Biol 2017; 96:254-265. [PMID: 28325500 DOI: 10.1016/j.ejcb.2017.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/04/2017] [Accepted: 03/04/2017] [Indexed: 12/23/2022] Open
Abstract
Activation of neutrophils is accompanied by the oxidative burst, exocytosis of various granule types (degranulation) and a delay in spontaneous apoptosis. The major source of reactive oxygen species (ROS) in human neutrophils is NADPH oxidase (NOX2), however, other sources of ROS also exist. Although the function of ROS is mainly defensive, they can also play a regulatory role in cell signaling. However, the contribution of various sources of ROS in these processes is not clear. We investigated a possible role of mitochondria-derived ROS (mtROS) in the regulation of neutrophil activation induced by chemoattractant fMLP in vitro. Using the mitochondria-targeted antioxidant SkQ1, we demonstrated that mtROS are implicated in the oxidative burst caused by NOX2 activation as well as in the exocytosis of primary (azurophil) and secondary (specific) granules. Scavenging of mtROS with SkQ1 slightly accelerated spontaneous apoptosis and significantly stimulated apoptosis of fMLP-activated neutrophils. These data indicate that mtROS play a critical role in signal transduction that mediates the major neutrophil functional responses in the process of activation.
Collapse
Affiliation(s)
- Nina Vorobjeva
- Department Immunology, Biology Faculty; Lomonosov Moscow State University, 119998 Moscow, Russia; Institute of Immunology, FMBA, Kashirskoe Shosse 24/2, 115478, Moscow, Russia.
| | - Anastasia Prikhodko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan Galkin
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Olga Pletjushkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Roman Zinovkin
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Galina Sud'ina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Boris Chernyak
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Boris Pinegin
- Institute of Immunology, FMBA, Kashirskoe Shosse 24/2, 115478, Moscow, Russia
| |
Collapse
|
46
|
Zakharova VV, Pletjushkina OY, Galkin II, Zinovkin RA, Chernyak BV, Krysko DV, Bachert C, Krysko O, Skulachev VP, Popova EN. Low concentration of uncouplers of oxidative phosphorylation decreases the TNF-induced endothelial permeability and lethality in mice. Biochim Biophys Acta Mol Basis Dis 2017; 1863:968-977. [PMID: 28131916 DOI: 10.1016/j.bbadis.2017.01.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/30/2016] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
Mitochondrial dysfunctions occur in many diseases linked to the systemic inflammatory response syndrome (SIRS). Mild uncoupling of oxidative phosphorylation is known to rescue model animals from pathologies related to mitochondrial dysfunctions and overproduction of reactive oxygen species (ROS). To study the potential of SIRS therapy by uncoupling, we tested protonophore dinitrophenol (DNP) and a free fatty acid (FFA) anion carrier, lipophilic cation dodecyltriphenylphosphonium (C12TPP) in mice and in vitro models of SIRS. DNP and C12TPP prevented the body temperature drop and lethality in mice injected with high doses of a SIRS inducer, tumor necrosis factor (TNF). The mitochondria-targeted antioxidant plastoquinonyl decyltriphenylphosphonium (SkQ1) which also catalyzes FFA-dependent uncoupling revealed similar protective effects and downregulated expression of the NFκB-regulated genes (VCAM1, ICAM1, MCP1, and IL-6) involved in the inflammatory response of endothelium in aortas of the TNF-treated mice. In vitro mild uncoupling rescued from TNF-induced endothelial permeability, disassembly of cell contacts and VE-cadherin cleavage by the matrix metalloprotease 9 (ММР9). The uncouplers prevented TNF-induced expression of MMP9 via inhibition of NFκB signaling. Water-soluble antioxidant Trolox also prevented TNF-induced activation and permeability of endothelium in vitro via inhibition of NFκB signaling, suggesting that the protective action of the uncouplers is linked to their antioxidant potential.
Collapse
Affiliation(s)
- Vlada V Zakharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Yu Pletjushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan I Galkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Roman A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitri V Krysko
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium; Molecular Signalling and Cell Death Unit, VIB-UGent Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University
| | - Claus Bachert
- Upper Airways Research Laboratory, Ghent University, Ghent Belgium
| | - Olga Krysko
- Upper Airways Research Laboratory, Ghent University, Ghent Belgium
| | - Vladimir P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina N Popova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
47
|
Khan SY, Awad EM, Oszwald A, Mayr M, Yin X, Waltenberger B, Stuppner H, Lipovac M, Uhrin P, Breuss JM. Premature senescence of endothelial cells upon chronic exposure to TNFα can be prevented by N-acetyl cysteine and plumericin. Sci Rep 2017; 7:39501. [PMID: 28045034 PMCID: PMC5206708 DOI: 10.1038/srep39501] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is characterized by a permanent cell-cycle arrest and a pro-inflammatory secretory phenotype, and can be induced by a variety of stimuli, including ionizing radiation, oxidative stress, and inflammation. In endothelial cells, this phenomenon might contribute to vascular disease. Plasma levels of the inflammatory cytokine tumor necrosis factor alpha (TNFα) are increased in age-related and chronic conditions such as atherosclerosis, rheumatoid arthritis, psoriasis, and Crohn's disease. Although TNFα is a known activator of the central inflammatory mediator NF-κB, and can induce the intracellular generation of reactive oxygen species (ROS), the question whether TNFα can induce senescence has not been answered conclusively. Here, we investigated the effect of prolonged TNFα exposure on the fate of endothelial cells and found that such treatment induced premature senescence. Induction of endothelial senescence was prevented by the anti-oxidant N-acetyl cysteine, as well as by plumericin and PHA-408, inhibitors of the NF-κB pathway. Our results indicated that prolonged TNFα exposure could have detrimental consequences to endothelial cells by causing senescence and, therefore, chronically increased TNFα levels might possibly contribute to the pathology of chronic inflammatory diseases by driving premature endothelial senescence.
Collapse
Affiliation(s)
- Shafaat Y. Khan
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Department of Zoology, University of Sargodha, 40100 Sargodha Pakistan
| | - Ezzat M. Awad
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Andre Oszwald
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London SE5 9NU, UK
| | - Xiaoke Yin
- King’s British Heart Foundation Centre, King’s College London, London SE5 9NU, UK
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Lipovac
- Karl Landsteiner Institute for Cell-based Therapy in Gynecology, 2100 Korneuburg, Austria
| | - Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes M. Breuss
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
48
|
Zakharova VV, Pletjushkina OY, Zinovkin RA, Popova EN, Chernyak BV. Mitochondria-Targeted Antioxidants and Uncouplers of Oxidative Phosphorylation in Treatment of the Systemic Inflammatory Response Syndrome (SIRS). J Cell Physiol 2016; 232:904-912. [DOI: 10.1002/jcp.25626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Vlada V. Zakharova
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Russia
- Faculty of Bioengineering and Bioinformatics; Lomonosov Moscow State University; Moscow Russia
| | - Olga Yu. Pletjushkina
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Russia
| | - Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Russia
| | - Ekaterina N. Popova
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Russia
| |
Collapse
|
49
|
Demyanenko IA, Popova EN, Zakharova VV, Ilyinskaya OP, Vasilieva TV, Romashchenko VP, Fedorov AV, Manskikh VN, Skulachev MV, Zinovkin RA, Pletjushkina OY, Skulachev VP, Chernyak BV. Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice. Aging (Albany NY) 2016; 7:475-85. [PMID: 26187706 PMCID: PMC4543037 DOI: 10.18632/aging.100772] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The process of skin wound healing is delayed or impaired in aging animals. To investigate the possible role of mitochondrial reactive oxygen species (mtROS) in cutaneous wound healing of aged mice, we have applied the mitochondria-targeted antioxidant SkQ1. The SkQ1 treatment resulted in accelerated resolution of the inflammatory phase, formation of granulation tissue, vascularization and epithelization of the wounds. The wounds of SkQ1-treated mice contained increased amount of myofibroblasts which produce extracellular matrix proteins and growth factors mediating granulation tissue formation. This effect resembled SkQ1-induced differentiation of fibroblasts to myofibroblast, observed earlier in vitro. The Transforming Growth Factor beta (TGFβ)produced by SkQ1-treated fibroblasts was found to stimulated motility of endothelial cells in vitro, an effect which may underlie pro-angiogenic action of SkQ1 in the wounds. In vitro experiments showed that SkQ1 prevented decomposition of VE-cadherin containing contacts and following increase in permeability of endothelial cells monolayer, induced by pro-inflammatory cytokine TNF. Prevention of excessive reaction of endothelium to the pro-inflammatory cytokine(s) might account for anti-inflammatory effect of SkQ1. Our findings point to an important role of mtROS in pathogenesis of age-related chronic wounds.
Collapse
Affiliation(s)
- Ilya A Demyanenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina N Popova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| | - Vlada V Zakharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Olga P Ilyinskaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Valeria P Romashchenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Artem V Fedorov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vasily N Manskikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim V Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| | - Roman A Zinovkin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Yu Pletjushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Boris V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
50
|
Conceptos actuales sobre el envejecimiento y la enfermedad cardiovascular. REVISTA COLOMBIANA DE CARDIOLOGÍA 2016. [DOI: 10.1016/j.rccar.2015.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|