1
|
Liu H, Kang H, Li L, Li Z, He X, Zhang Y, Lu M, Min L, Tu C. Electrolyte prognosis scoring system can predict overall survival in patients with osteosarcoma. Front Oncol 2024; 14:1466912. [PMID: 39445057 PMCID: PMC11496286 DOI: 10.3389/fonc.2024.1466912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Osteosarcoma stands as the most prevalent bone tumor, characterized by a heightened tendency for local recurrence and distant metastasis, resulting in a bleak prognosis. Presently, there exists a shortage of novel markers to effectively determine the prognosis of osteosarcoma patients. Recent research indicates that hematological markers partially mirror an individual's microenvironment, offering potential insights into predicting patient prognosis. However, prior studies predominantly focused on the prognostic significance of singular hematological indices, failing to comprehensively represent the tumor microenvironment of patients. In our investigation, we meticulously gathered data on 22 hematological and electrolyte markers, utilizing LASSO Cox regression analysis to devise an Electrolyte Prognostic Scoring System (EPSS). The EPSS encompasses various indicators, including immunity, inflammation, coagulation, and electrolyte levels. Our findings indicate that the EPSS stands as an independent prognostic factor for overall survival among osteosarcoma patients. It serves as a valuable addition to clinical characteristics, adept at discerning high-risk patients from those deemed clinically low-risk. Furthermore, EPSS-based nomograms demonstrate commendable predictive capabilities.
Collapse
Affiliation(s)
- Han Liu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Kang
- Department of Operating Room, West China Hospital, Sichuan University/Nursing Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Longqing Li
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuangzhuang Li
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanhong He
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqi Zhang
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Minxun Lu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Li Min
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Chongqi Tu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Cuachirria-Espinoza RL, García-Miranda A, Hernández-Barragán R, Nava-Tapia DA, Olea-Flores M, Navarro-Tito N. Analysis of the relationship between resistin with prognosis, cell migration, and p38 and ERK1/2 activation in breast cancer. Biochimie 2024:S0300-9084(24)00227-X. [PMID: 39369940 DOI: 10.1016/j.biochi.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/14/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Obesity increases the risk and mortality of breast cancer through dysregulated secretion of proinflammatory cytokines and tumor adipokines that induce an inflammatory breast microenvironment. Resistin is an adipokine secreted by adipocytes, immune cells, and predominantly macrophages, which contributes to cancer progression, but its molecular mechanism in cancer is not completely described. In this study, we analyzed the relationship of resistin on breast cancer prognosis and tumor progression and the effect in vitro of resistin on p38 and ERK1/2 activation in breast cancer cell lines. By bioinformatic analysis, we found that resistin is overexpressed in the basal subtype triple-negative breast cancer and is related to poor prognosis. In addition, we demonstrated a positive correlation between RETN and MAPK3 expression in basal triple-negative breast cancer. Importantly, we found amplifications of the RETN gene in at least 20 % of metastatic samples from patients with breast cancer. Most samples with RETN amplifications metastasized to bone and showed high expression of IL-8 (CXCL8) and IL-6 (IL6). Finally, resistin could be considered a prognostic marker for basal triple-negative breast cancer, and we also proposed the possibility that resistin-induced cell migration involves the activation of MAPK in breast cancer cells.
Collapse
Affiliation(s)
- Reyna L Cuachirria-Espinoza
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Chilpancingo, GRO, 39090, Mexico
| | - Alin García-Miranda
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Chilpancingo, GRO, 39090, Mexico
| | - Rafael Hernández-Barragán
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Chilpancingo, GRO, 39090, Mexico
| | - Dania A Nava-Tapia
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Chilpancingo, GRO, 39090, Mexico
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Chilpancingo, GRO, 39090, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Chilpancingo, GRO, 39090, Mexico.
| |
Collapse
|
3
|
Kiełbowski K, Bakinowska E, Bratborska AW, Pawlik A. The role of adipokines in the pathogenesis of psoriasis - a focus on resistin, omentin-1 and vaspin. Expert Opin Ther Targets 2024; 28:587-600. [PMID: 38965991 DOI: 10.1080/14728222.2024.2375373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Psoriasis is a chronic immune-mediated skin condition with several types of manifestation, including psoriatic arthritis. In recent years, studies have demonstrated multiple molecules and mechanisms that play important roles in the pathophysiology of psoriasis. Studies have been conducted to determine the role of adipokines, bioactive peptides secreted by the adipose tissue, in the pathogenesis of inflammatory diseases. These studies have shown that adipokines are dysregulated in psoriasis and their abnormal expression profile could contribute to the inflammatory mechanisms observed in psoriasis. AREAS COVERED In this review, we discuss the immunomodulatory features of resistin, omentin-1, and vaspin, and discuss their potential involvement in the pathogenesis of psoriasis. EXPERT OPINION The adipokines resistin, omentin, and vaspin appear to be promising therapeutic targets in psoriasis. It is important to seek to block the action of resistin, either by blocking its receptors or by blocking its systemic effects with antibodies. In the case of omentin and vaspin, substances that are receptor mimetics of these adipokines should be sought and studies conducted of their analogues for the treatment of psoriasis. To introduce these therapies into clinical practice, multicentre clinical trials are required to confirm their efficacy and safety after initial studies in animal models.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
4
|
Rompou AV, Bletsa G, Tsakogiannis D, Theocharis S, Vassiliu P, Danias N. An Updated Review of Resistin and Colorectal Cancer. Cureus 2024; 16:e65403. [PMID: 39184804 PMCID: PMC11344879 DOI: 10.7759/cureus.65403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
Resistin is one of the most important adipokines, and its role lies mainly in controlling insulin sensitivity and inflammation. However, over the last years, the study of resistin gained increased popularity since it was proved that there is a considerable relationship between high levels of resistin and obesity as well as obesity-induced diseases, including diabetes, cardiovascular disorders, and cancer. Regarding cancer risk, circulating resistin levels have been correlated with several types of cancer, including colorectal, breast, lung, endometrial, gastroesophageal, prostate, renal, and pancreatic cancer. Colorectal cancer is regarded as a multi-pathway disease. Several pathophysiological features seem to promote colorectal cancer (CRC) such as chronic inflammation, insulin resistance, and obesity. Even though the molecular mechanisms involved in CRC development remain rather vague, it is widely accepted that several biochemical factors promote CRC by releasing augmented pro-inflammatory cytokines, like IGF-I, insulin, sex-steroid hormones, and adipokines. A wide range of research studies has focused on evaluating the impact of circulating resistin levels on CRC risk and determining the efficacy of chemotherapy in CRC patients by measuring resistin levels. Moreover, significant outcomes have emerged regarding the association of specific single nucleotide polymorphisms (SNPs) in the resistin gene and CRC risk. The present study reviewed the role of circulating resistin levels in CRC development and shed light on specific resistin gene SNPs implicated in the disease's development. Finally, we analyzed the impact of resistin levels on the effectiveness of chemotherapy and further discussed whether resistin can be regarded as a valuable biomarker for CRC prognosis and treatment. Resistin is one of the most important adipokines, and its role lies mainly in controlling insulin sensitivity and inflammation. However, over the last years, the study of resistin gained increased popularity since it was proved that there is a considerable relationship between high levels of resistin and obesity as well as obesity-induced diseases, including diabetes, cardiovascular disorders, and cancer. This review discusses the aberrant expression of resistin and its receptors, its diverse downstream signaling, and its impact on tumor growth, metastasis, angiogenesis, and therapy resistance to support its clinical exploitation in biomarker and therapeutic development.
Collapse
Affiliation(s)
- Aliki Vaia Rompou
- Department of Colorectal Surgery, Guy's and St Thomas' NHS Foundation Trust, London, GBR
| | - Garyfalia Bletsa
- Department of Medicine, Research Center, Hellenic Anticancer Institute, Athens, GRC
| | | | - Stamatios Theocharis
- Department of Pathology, National and Kapodistrian University of Athens, Athens, GRC
| | - Panteleimon Vassiliu
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - Nick Danias
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, GRC
| |
Collapse
|
5
|
Wen J, Wan L, Chen W, Dong X. The prognostic value of ubiquitin/ubiquitin-like-related genes along with immune cell infiltration and clinicopathological features in osteosarcoma. J Orthop Surg Res 2024; 19:356. [PMID: 38879525 PMCID: PMC11179372 DOI: 10.1186/s13018-024-04781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Ubiquitin/ubiquitin-like (Ub/UBL)-related genes have been reported to be associated with the survival of osteosarcoma patients but have not yet been systematically explored. METHODS The prognostic value of Ub/UBL-related genes, immune cell infiltration and clinicopathological features of patients were explored by Cox and LASSO regression analyses. A prognostic model was established and then validated in the GSE21257 dataset. The differential expression of hub genes in osteosarcoma was confirmed by qRT-PCR, western blotting and immunohistochemistry. RESULTS Tripartite Motif Containing 8 (TRIM8) and Ubiquitin Like With PHD And Ring Finger Domains 2 (UHRF2) were screened as genes with prognostic value in osteosarcoma. Kaplan-Meier analysis and scatter plots indicated that patients in the high gene significance score group tended to have a worse prognosis. The concordance index, calibration analysis and receiver operating characteristic analysis suggested that the model had good prediction accuracy and high sensitivity and specificity. Decision curve analysis revealed that patients could obtain greater net benefit from this model. Functional analyses of the differentially expressed genes indicated that they were involved in important functions and pathways. TRIM8 and UHRF2 were confirmed to be highly expressed in osteosarcoma cell lines and tissues. CONCLUSIONS TRIM8 and UHRF2 are potential prognostic genes in osteosarcoma, and these results provide insights into the roles of these genes and their implications for patient outcomes.
Collapse
Affiliation(s)
- Jian Wen
- Department of Pain Management, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Digital Orthopaedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China
- Department of Orthopedics, Pingxiang People's Hospital, The Sixth Clinical College of Gannan Medical University, Pingxiang, 337000, China
| | - Lijia Wan
- Department of Child Healthcare, Hunan Provincial Maternal and Child Health Hospital, Changsha, 410008, Hunan, China
| | - Wenming Chen
- Department of Orthopedics, Pingxiang People's Hospital, The Sixth Clinical College of Gannan Medical University, Pingxiang, 337000, China.
| | - Xieping Dong
- JXHC Key Laboratory of Digital Orthopaedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
6
|
Liu Y, Jiang B, Li Y, Zhang X, Wang L, Yao Y, Zhu B, Shi H, Chai X, Hu X, Zhang B, Li H. Effect of traditional Chinese medicine in osteosarcoma: Cross-interference of signaling pathways and potential therapeutic targets. Medicine (Baltimore) 2024; 103:e36467. [PMID: 38241548 PMCID: PMC10798715 DOI: 10.1097/md.0000000000036467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/14/2023] [Indexed: 01/21/2024] Open
Abstract
Osteosarcoma (OS) has a high recurrence rate, disability rate, mortality and metastasis, it brings great economic burden and psychological pressure to patients, and then seriously affects the quality of life of patients. At present, the treatment methods of OS mainly include radiotherapy, chemotherapy, surgical therapy and neoadjuvant chemotherapy combined with limb salvage surgery. These treatment methods can relieve the clinical symptoms of patients to a certain extent, and also effectively reduce the disability rate, mortality and recurrence rate of OS patients. However, because metastasis of tumor cells leads to new complications, and OS cells become resistant with prolonged drug intervention, which reduces the sensitivity of OS cells to drugs, these treatments still have some limitations. More and more studies have shown that traditional Chinese medicine (TCM) has the characteristics of "multiple targets and multiple pathways," and can play an important role in the development of OS through several key signaling pathways, including PI3K/AKT, Wnt/β-catenin, tyrosine kinase/transcription factor 3 (JAK/STAT3), Notch, transforming growth factor-β (TGF-β)/Smad, nuclear transcription factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), nuclear factor E2-related factor 2 (Nrf2), Hippo/YAP, OPG/RANK/RANKL, Hedgehog and so on. In this paper, the signaling pathways of cross-interference between active ingredients of TCM and OS were reviewed, and the development status of novel OS treatment was analyzed. The active ingredients in TCM can provide therapeutic benefits to patients by targeting the activity of signaling pathways. In addition, potential strategies for targeted therapy of OS by using ferroptosis were discussed. We hope to provide a unique insight for the in-depth research and clinical application of TCM in the fields of OS growth, metastasis and chemotherapy resistance by understanding the signaling crosstalk between active ingredients in TCM and OS.
Collapse
Affiliation(s)
- Yuezhen Liu
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yanqiang Li
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaoshou Zhang
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Lijun Wang
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yasai Yao
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Baohong Zhu
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Hengwei Shi
- The Second Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiping Chai
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xingrong Hu
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Bangneng Zhang
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Hongzhuan Li
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
7
|
Sato S. Adipo-oncology: adipocyte-derived factors govern engraftment, survival, and progression of metastatic cancers. Cell Commun Signal 2024; 22:52. [PMID: 38238841 PMCID: PMC10797898 DOI: 10.1186/s12964-024-01474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
Conventional therapies for metastatic cancers have limited efficacy. Recently, cancer therapies targeting noncancerous cells in tumor microenvironments have shown improved clinical outcomes in patients. However, further advances in our understanding of the metastatic tumor microenvironment are required to improve treatment outcomes. Adipocytes are distributed throughout the body, and as a part of the metastatic tumor microenvironment, they interact with cancer cells in almost all organs. Adipocytes secrete various factors that are reported to exert clinical effects on cancer progression, including engraftment, survival, and expansion at the metastatic sites. However, only a few studies have comprehensively examined their impact on cancer cells. In this review, we examined the impact of adipocytes on cancer by describing the adipocyte-secreted factors that are involved in controlling metastatic cancer, focusing on adipokines, such as adiponectin, leptin, visfatin, chemerin, resistin, apelin, and omentin. Adipocyte-secreted factors promote cancer metastasis and contribute to various biological functions of cancer cells, including migration, invasion, proliferation, immune evasion, and drug resistance at the metastatic sites. We propose the establishment and expansion of "adipo-oncology" as a research field to enhance the comprehensive understanding of the role of adipocytes in metastatic cancers and the development of more robust metastatic cancer treatments.
Collapse
Affiliation(s)
- Shinya Sato
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
- Department of Pathology, Kanagawa Cancer Center Hospital, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
| |
Collapse
|
8
|
Abdalla MMI. Serum resistin and the risk for hepatocellular carcinoma in diabetic patients. World J Gastroenterol 2023; 29:4271-4288. [PMID: 37545641 PMCID: PMC10401662 DOI: 10.3748/wjg.v29.i27.4271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant type of liver cancer, is a major contributor to cancer-related fatalities across the globe. Diabetes has been identified as a significant risk factor for HCC, with recent research indicating that the hormone resistin could be involved in the onset and advancement of HCC in diabetic individuals. Resistin is a hormone that is known to be involved in inflammation and insulin resistance. Patients with HCC have been observed to exhibit increased resistin levels, which could be correlated with more severe disease stages and unfavourable prognoses. Nevertheless, the exact processes through which resistin influences the development and progression of HCC in diabetic patients remain unclear. This article aims to examine the existing literature on the possible use of resistin levels as a biomarker for HCC development and monitoring. Furthermore, it reviews the possible pathways of HCC initiation due to elevated resistin and offers new perspectives on comprehending the fundamental mechanisms of HCC in diabetic patients. Gaining a better understanding of these processes may yield valuable insights into HCC’s development and progression, as well as identify possible avenues for prevention and therapy.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Vimalraj S, Sekaran S. RUNX Family as a Promising Biomarker and a Therapeutic Target in Bone Cancers: A Review on Its Molecular Mechanism(s) behind Tumorigenesis. Cancers (Basel) 2023; 15:3247. [PMID: 37370857 DOI: 10.3390/cancers15123247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The transcription factor runt-related protein (RUNX) family is the major transcription factor responsible for the formation of osteoblasts from bone marrow mesenchymal stem cells, which are involved in bone formation. Accumulating evidence implicates the RUNX family for its role in tumor biology and cancer progression. The RUNX family has been linked to osteosarcoma via its regulation of many tumorigenicity-related factors. In the regulatory network of cancers, with numerous upstream signaling pathways and its potential target molecules downstream, RUNX is a vital molecule. Hence, a pressing need exists to understand the precise process underpinning the occurrence and prognosis of several malignant tumors. Until recently, RUNX has been regarded as one of the therapeutic targets for bone cancer. Therefore, in this review, we have provided insights into various molecular mechanisms behind the tumorigenic role of RUNX in various important cancers. RUNX is anticipated to grow into a novel therapeutic target with the in-depth study of RUNX family-related regulatory processes, aid in the creation of new medications, and enhance clinical efficacy.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
10
|
Huang CL, Achudhan D, Liu PI, Lin YY, Liu SC, Guo JH, Liu CL, Wu CY, Wang SW, Tang CH. Visfatin upregulates VEGF-C expression and lymphangiogenesis in esophageal cancer by activating MEK1/2-ERK and NF-κB signaling. Aging (Albany NY) 2023; 15:204762. [PMID: 37286356 DOI: 10.18632/aging.204762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Lymph node metastasis is a recognized prognostic factor in esophageal cancer. Adipokines, including visfatin, and the molecule vascular endothelial growth factor (VEGF)-C, are implicated in lymphangiogenesis, but whether any association exists between esophageal cancer, adipokines and VEGF-C is unknown. We examined the relevance of adipokines and VEGF-C in esophageal squamous cell carcinoma (ESCC) in the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. We found significantly higher levels of visfatin and VEGF-C expression in esophageal cancer tissue than in normal tissue. Immunohistochemistry (IHC) staining identified that higher levels of visfatin and VEGF-C expression were correlated with advanced stage ESCC. Visfatin treatment of ESCC cell lines upregulated VEGF-C expression and VEGF-C-dependent lymphangiogenesis in lymphatic endothelial cells. Visfatin induced increases in VEGF-C expression by activating the mitogen-activated protein kinase kinases1/2-extracellular signal-regulated kinase (MEK1/2-ERK) and Nuclear Factor Kappa B (NF-κB) signaling cascades. Transfecting ESCC cells with MEK1/2-ERK and NF-κB inhibitors (PD98059, FR180204, PDTC, and TPCK) and siRNAs inhibited visfatin-induced increases in VEGF-C expression. It appears that visfatin and VEGF-C are promising therapeutic targets in the inhibition of lymphangiogenesis in esophageal cancer.
Collapse
Affiliation(s)
- Chang-Lun Huang
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Surgery, Division of Thoracic Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - David Achudhan
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Po-I Liu
- Department of General Thoracic Surgery, Asia University Hospital, Taichung 41354, Taiwan
- Department of Physical Therapy, Asia University, Taichung 41354, Taiwan
| | - Yen-You Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 65152, Taiwan
| | - Jeng-Hung Guo
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung 404327, Taiwan
| | - Chun-Lin Liu
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung 404327, Taiwan
| | - Chih-Ying Wu
- Department of Neurosurgery, China Medical University Hospital, Taichung 404327, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 406040, Taiwan
- Department of Neurosurgery, China Medical University Hsinchu Hospital, Hsinchu 302, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
- College of Pharmacy, Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 406040, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu 302, Taiwan
| |
Collapse
|
11
|
Stępień S, Olczyk P, Gola J, Komosińska-Vassev K, Mielczarek-Palacz A. The Role of Selected Adipocytokines in Ovarian Cancer and Endometrial Cancer. Cells 2023; 12:cells12081118. [PMID: 37190027 DOI: 10.3390/cells12081118] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Due to their multidirectional influence, adipocytokines are currently the subject of numerous intensive studies. Significant impact applies to many processes, both physiological and pathological. Moreover, the role of adipocytokines in carcinogenesis seems particularly interesting and not fully understood. For this reason, ongoing research focuses on the role of these compounds in the network of interactions in the tumor microenvironment. Particular attention should be drawn to cancers that remain challenging for modern gynecological oncology-ovarian and endometrial cancer. This paper presents the role of selected adipocytokines, including leptin, adiponectin, visfatin, resistin, apelin, chemerin, omentin and vaspin in cancer, with a particular focus on ovarian and endometrial cancer, and their potential clinical relevance.
Collapse
Affiliation(s)
- Sebastian Stępień
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
12
|
Lin LW, Wang SW, Huang WC, Huynh TK, Lai CY, Ko CY, Fong YC, Lee JJ, Yang SF, Tang CH. Melatonin Inhibits VEGF-Induced Endothelial Progenitor Cell Angiogenesis in Neovascular Age-Related Macular Degeneration. Cells 2023; 12:cells12050799. [PMID: 36899935 PMCID: PMC10000467 DOI: 10.3390/cells12050799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Neovascular age-related macular degeneration (AMD) is described as abnormal angiogenesis in the retina and the leaking of fluid and blood that generates a huge, dark, blind spot in the center of the visual field, causing severe vision loss in over 90% of patients. Bone marrow-derived endothelial progenitor cells (EPCs) contribute to pathologic angiogenesis. Gene expression profiles downloaded from the eyeIntegration v1.0 database for healthy retinas and retinas from patients with neovascular AMD identified significantly higher levels of EPC-specific markers (CD34, CD133) and blood vessel markers (CD31, VEGF) in the neovascular AMD retinas compared with healthy retinas. Melatonin is a hormone that is mainly secreted by the pineal gland, and is also produced in the retina. Whether melatonin affects vascular endothelial growth factor (VEGF)-induced EPC angiogenesis in neovascular AMD is unknown. Our study revealed that melatonin inhibits VEGF-induced stimulation of EPC migration and tube formation. By directly binding with the VEGFR2 extracellular domain, melatonin significantly and dose-dependently inhibited VEGF-induced PDGF-BB expression and angiogenesis in EPCs via c-Src and FAK, NF-κB and AP-1 signaling. The corneal alkali burn model demonstrated that melatonin markedly inhibited EPC angiogenesis and neovascular AMD. Melatonin appears promising for reducing EPC angiogenesis in neovascular AMD.
Collapse
Affiliation(s)
- Liang-Wei Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 403433, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung 807378, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 403433, Taiwan
- Drug Development Center, China Medical University, Taichung 403433, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung 40354, Taiwan
- Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 403433, Taiwan
| | - Thanh Kieu Huynh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 403433, Taiwan
- Drug Development Center, China Medical University, Taichung 403433, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chao-Yang Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung 40354, Taiwan
| | - Chih-Yuan Ko
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 403433, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yi-Chin Fong
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 403433, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yun-Lin County 65152, Taiwan
| | - Jie-Jen Lee
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (S.-F.Y.); (C.-H.T.)
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 403433, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung 40354, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 403433, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 403433, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu 40402, Taiwan
- Correspondence: (S.-F.Y.); (C.-H.T.)
| |
Collapse
|
13
|
Vliora M, Ravelli C, Grillo E, Corsini M, Flouris AD, Mitola S. The impact of adipokines on vascular networks in adipose tissue. Cytokine Growth Factor Rev 2023; 69:61-72. [PMID: 35953434 DOI: 10.1016/j.cytogfr.2022.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023]
Abstract
Adipose tissue (AT) is a highly active and plastic endocrine organ. It secretes numerous soluble molecules known as adipokines, which act locally to AT control the remodel and homeostasis or exert pleiotropic functions in different peripheral organs. Aberrant production or loss of certain adipokines contributes to AT dysfunction associated with metabolic disorders, including obesity. The AT plasticity is strictly related to tissue vascularization. Angiogenesis supports the AT expansion, while regression of blood vessels is associated with AT hypoxia, which in turn mediates tissue inflammation, fibrosis and metabolic dysfunction. Several adipokines can regulate endothelial cell functions and are endowed with either pro- or anti-angiogenic properties. Here we address the role of adipokines in the regulation of angiogenesis. A better understanding of the link between adipokines and angiogenesis will open the way for novel therapeutic approaches to treat obesity and metabolic diseases.
Collapse
Affiliation(s)
- Maria Vliora
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece; Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy.
| |
Collapse
|
14
|
Yuan B, Shi K, Zha J, Cai Y, Gu Y, Huang K, Yue W, Zhai Q, Ding N, Ren W, He W, Xu Y, Wang T. Nuclear receptor modulators inhibit osteosarcoma cell proliferation and tumour growth by regulating the mTOR signaling pathway. Cell Death Dis 2023; 14:51. [PMID: 36681687 PMCID: PMC9867777 DOI: 10.1038/s41419-022-05545-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023]
Abstract
Osteosarcoma is the most common primary malignant bone tumour in children and adolescents. Chemoresistance leads to poor responses to conventional therapy in patients with osteosarcoma. The discovery of novel effective therapeutic targets and drugs is still the main focus of osteosarcoma research. Nuclear receptors (NRs) have shown substantial promise as novel therapeutic targets for various cancers. In the present study, we performed a drug screen using 29 chemicals that specifically target 17 NRs in several different human osteosarcoma and osteoblast cell lines. The retinoic acid receptor beta (RARb) antagonist LE135, peroxisome proliferator activated receptor gamma (PPARg) antagonist T0070907, liver X receptor (LXR) agonist T0901317 and Rev-Erba agonist SR9011 significantly inhibited the proliferation of malignant osteosarcoma cells (U2OS, HOS-MNNG and Saos-2 cells) but did not inhibit the growth of normal osteoblasts. The effects of these NR modulators on osteosarcoma cells occurred in a dose-dependent manner and were not observed in NR-knockout osteosarcoma cells. These NR modulators also significantly inhibited osteosarcoma growth in vivo and enhanced the antitumour effect of doxorubicin (DOX). Transcriptomic and immunoblotting results showed that these NR modulators may inhibit the growth of osteosarcoma cells by regulating the PI3K/AKT/mTOR and ERK/mTOR pathways. DDIT4, which blocks mTOR activation, was identified as one of the common downstream target genes of these NRs. DDIT4 knockout significantly attenuated the inhibitory effects of these NR modulators on osteosarcoma cell growth. Together, our results revealed that modulators of RARb, PPARg, LXRs and Rev-Erba inhibit osteosarcoma growth both in vitro and in vivo through the mTOR signaling pathway, suggesting that treatment with these NR modulators is a novel potential therapeutic strategy.
Collapse
Affiliation(s)
- Baoshi Yuan
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Kexin Shi
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
- Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310030, China
| | - Juanmin Zha
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yujia Cai
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yue Gu
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Kai Huang
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wenchang Yue
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Qiaocheng Zhai
- Department of Orthopaedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Ning Ding
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wenyan Ren
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Weiqi He
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ying Xu
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Tao Wang
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
15
|
Trang NTN, Lai CY, Tsai HC, Huang YL, Liu SC, Tsai CH, Fong YC, Tzeng HE, Tang CH. Apelin promotes osteosarcoma metastasis by upregulating PLOD2 expression via the Hippo signaling pathway and hsa_circ_0000004/miR-1303 axis. Int J Biol Sci 2023; 19:412-425. [PMID: 36632453 PMCID: PMC9830518 DOI: 10.7150/ijbs.77688] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma is a highly mortal bone tumor, with a high metastatic potential, promoted in part by the enzyme procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2). Increasing level of PLOD2 in osteosarcoma tissue correlates with lymphatic and distant metastasis. The adipokine apelin (APLN) is also found in different cancers and APLN upregulation promotes angiogenesis and metastasis, but its effects on osteosarcoma metastasis are uncertain. We explored APLN functioning in metastatic osteosarcoma. An analysis of records from the Gene Expression Omnibus (GEO) database showed higher levels of APLN expression in osteosarcoma tissue than in normal tissue. Similarly, levels of APLN and PLOD2 mRNA synthesis were upregulated in osteosarcoma tissue. Levels of APLN and PLOD2 protein correlated positively with osteosarcoma clinical stages. APLN increased PLOD2 expression in human osteosarcoma cell lines and cell migration via the mammalian Sterile 20-like kinase 1 (MST1), monopolar spindle-one-binder protein (MOB)1, and YAP cascades, and through hsa_circ_0000004 functioning as a sponge of miR-1303. We also found that knockdown of APLN antagonized lung metastasis in mice with osteosarcoma. APLN may be a therapeutic target in osteosarcoma metastasis.
Collapse
Affiliation(s)
- Nguyen Thi Nha Trang
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chao-Yang Lai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Hsiao-Chi Tsai
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Huey-En Tzeng
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, and Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,✉ Corresponding authors: Chih-Hsin Tang, PhD, Department of Pharmacology, School of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan. Tel: (886) 4-22052121 Ext. 7726; Fax: (886) 4-22333641; E-mail: . Huey-En Tzeng, MD, PhD, Department of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan. Tel: (886) 4-2359-2525; E-mail:
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,✉ Corresponding authors: Chih-Hsin Tang, PhD, Department of Pharmacology, School of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan. Tel: (886) 4-22052121 Ext. 7726; Fax: (886) 4-22333641; E-mail: . Huey-En Tzeng, MD, PhD, Department of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan. Tel: (886) 4-2359-2525; E-mail:
| |
Collapse
|
16
|
Adipokines as Regulators of Autophagy in Obesity-Linked Cancer. Cells 2022; 11:cells11203230. [PMID: 36291097 PMCID: PMC9600294 DOI: 10.3390/cells11203230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Excess body weight and obesity have become significant risk factors for cancer development. During obesity, adipose tissue alters its biological function, deregulating the secretion of bioactive factors such as hormones, cytokines, and adipokines that promote an inflammatory microenvironment conducive to carcinogenesis and tumor progression. Adipokines regulate tumor processes such as apoptosis, proliferation, migration, angiogenesis, and invasion. Additionally, it has been found that they can modulate autophagy, a process implicated in tumor suppression in healthy tissue and cancer progression in established tumors. Since the tumor-promoting role of autophagy has been well described, the process has been suggested as a therapeutic target in cancer. However, the effects of targeting autophagy might depend on the tumor type and microenvironmental conditions, where circulating adipokines could influence the role of autophagy in cancer. Here, we review recent evidence related to the role of adipokines in cancer cell autophagy in an effort to understand the tumor response in the context of obesity under the assumption of an autophagy-targeting treatment.
Collapse
|
17
|
Parafiniuk K, Skiba W, Pawłowska A, Suszczyk D, Maciejczyk A, Wertel I. The Role of the Adipokine Resistin in the Pathogenesis and Progression of Epithelial Ovarian Cancer. Biomedicines 2022; 10:920. [PMID: 35453670 PMCID: PMC9028191 DOI: 10.3390/biomedicines10040920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity is a civilization disease associated with an increased risk of developing cardiovascular diseases, diabetes, and some malignancies. The results concerning the relationship between obesity and epithelial ovarian cancer (EOC) are inconclusive. The higher incidence of neoplasms in obese subjects has led to the development of the adipokine hypothesis. Omental adipocyte cells interact with cancer cells, promoting their migration and metastasis via the secretion of adipokines, growth factors, and hormones. One of the adipokines is resistin. It was shown in vitro that resistin stimulates the growth and differentiation of ovarian cancer cells. Moreover, it increases the level of angiogenesis factors, e.g., matrix metalloproteinase 2 (MMP-2) and vascular epithelial growth factor (VEGF). Additionally, resistin induces epithelial-mesenchymal transition (EMT) and stemness in EOC cell lines. A positive correlation has been shown between a higher level of resistin expression and the stage of histological differentiation of EOC or the occurrence of lymph node metastases. In addition, the overexpression of resistin has been found to act as an independent factor determining disease-free survival as well as overall survival in EOC patients. Growing evidence supports the finding that resistin plays an important role in some mechanisms leading to the progression of EOC, though this issue still requires further research.
Collapse
Affiliation(s)
- Klaudia Parafiniuk
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.P.); (A.P.); (D.S.); (A.M.); (I.W.)
| | - Wiktoria Skiba
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.P.); (A.P.); (D.S.); (A.M.); (I.W.)
| | - Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.P.); (A.P.); (D.S.); (A.M.); (I.W.)
| | - Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.P.); (A.P.); (D.S.); (A.M.); (I.W.)
| | - Aleksandra Maciejczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.P.); (A.P.); (D.S.); (A.M.); (I.W.)
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.P.); (A.P.); (D.S.); (A.M.); (I.W.)
| |
Collapse
|
18
|
Aziz MA, Akter T, Sarwar MS, Islam MS. The first combined meta‐analytic approach for elucidating the relationship of circulating resistin levels and RETN gene polymorphisms with colorectal and breast cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Evidence suggests that circulating resistin levels are altered in colorectal cancer (CRC) and breast cancer (BC). Again, polymorphisms in resistin-encoding gene RETN have been evaluated in CRC and BC. However, there is a scarcity of data establishing the relationship of resistin and RETN polymorphisms (rs1862513 and rs3745367) with these cancers. This study aimed to analyze the relationship of resistin levels and RETN polymorphisms with CRC and BC in a combined meta-analytic approach.
Main body of the abstract
After a comprehensive online literature search, screening and eligibility check, 41 articles (31 with resistin level and 10 with RETN polymorphisms) were retrieved for meta-analyses. The mean difference (MD) of resistin was calculated and pooled to investigate the effect sizes with a 95% confidence interval (CI), and the connection of genetic polymorphisms was analyzed with an odds ratio (OR) and 95% CI. The analysis showed that resistin level is significantly higher in CRC (MD = 3.39) and BC (MD = 3.91) patients. Subgroup analysis in CRC showed significantly higher resistin in serum (MD = 4.61) and plasma (MD = 0.34), and in BC, a significantly elevated resistin level was reported in premenopausal (MD = 7.82) and postmenopausal (MD = 0.37) patients. Again, RETN rs1862513 showed a significantly strong association with CRC (codominant 1—OR 1.24, codominant 2—OR 1.31, dominant model—OR 1.25, and allele model—OR 1.16) and with BC (codominant 2—OR 1.51, codominant 3—OR 1.51, recessive model—OR 1.51, and allele model—OR 1.21). RETN rs3745367 did not show any association with these cancers.
Short conclusion
Overall, our analysis indicates that higher circulating resistin levels are associated with an elevated risk of CRC and premenopausal and postmenopausal BC. Besides, rs1862513 in RETN gene is significantly connected with both CRC and BC.
Collapse
|
19
|
Zheng P, Huang Z, Tong DC, Zhou Q, Tian S, Chen BW, Ning DM, Guo YM, Zhu WH, Long Y, Xiao W, Deng Z, Lei YC, Tian XF. Frankincense myrrh attenuates hepatocellular carcinoma by regulating tumor blood vessel development through multiple epidermal growth factor receptor-mediated signaling pathways. World J Gastrointest Oncol 2022; 14:450-477. [PMID: 35317323 PMCID: PMC8919004 DOI: 10.4251/wjgo.v14.i2.450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/19/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In traditional Chinese medicine (TCM), frankincense and myrrh are the main components of the antitumor drug Xihuang Pill. These compounds show anticancer activity in other biological systems. However, whether frankincense and/or myrrh can inhibit the occurrence of hepatocellular carcinoma (HCC) is unknown, and the potential molecular mechanism(s) has not yet been determined.
AIM To predict and determine latent anti-HCC therapeutic targets and molecular mechanisms of frankincense and myrrh in vivo.
METHODS In the present study, which was based on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (http://tcmspw.com/tcmsp.php), Universal Protein database (http://www.uniprot.org), GeneCards: The Human Gene Database (http://www.genecards.org/) and Comparative Toxicogenomics Database (http://www.ctdbase.org/), the efficacy of and mechanism by which frankincense and myrrh act as anti-HCC compounds were predicted. The core prediction targets were screened by molecular docking. In vivo, SMMC-7721 human liver cancer cells were transplanted as xenografts into nude mice to establish a subcutaneous tumor model, and two doses of frankincense plus myrrh or one dose of an EGFR inhibitor was administered to these mice continuously for 14 d. The tumors were collected and evaluated: the tumor volume and growth rate were gauged to evaluate tumor growth; hematoxylin-eosin staining was performed to estimate histopathological changes; immunofluorescence (IF) was performed to detect the expression of CD31, α-SMA and collagen IV; transmission electron microscopy (TEM) was conducted to observe the morphological structure of vascular cells; enzyme-linked immunosorbent assay (ELISA) was performed to measure the levels of secreted HIF-1α and TNF-α; reverse transcription-polymerase chain reaction (RT-qPCR) was performed to measure the mRNA expression of HIF-1α, TNF-α, VEGF and MMP-9; and Western blot (WB) was performed to determine the levels of proteins expressed in the EGFR-mediated PI3K/Akt and MAPK signaling pathways.
RESULTS The results of the network pharmacology analysis showed that there were 35 active components in the frankincense and myrrh extracts targeting 151 key targets. The molecular docking analysis showed that both boswellic acid and stigmasterol showed strong affinity for the targets, with the greatest affinity for EGFR. Frankincense and myrrh treatment may play a role in the treatment of HCC by regulating hypoxia responses and vascular system-related pathological processes, such as cytokine-receptor binding, and pathways, such as those involving serine/threonine protein kinase complexes and MAPK, HIF-1 and ErbB signaling cascades. The animal experiment results were verified. First, we found that, through frankincense and/or myrrh treatment, the volume of subcutaneously transplanted HCC tumors was significantly reduced, and the pathological morphology was attenuated. Then, IF and TEM showed that frankincense and/or myrrh treatment reduced CD31 and collagen IV expression, increased the coverage of perivascular cells, tightened the connection between cells, and improved the shape of blood vessels. In addition, ELISA, RT-qPCR and WB analyses showed that frankincense and/or myrrh treatment inhibited the levels of hypoxia-inducible factors, inflammatory factors and angiogenesis-related factors, namely, HIF-1α, TNF-α, VEGF and MMP-9. Furthermore, mechanistic experiments illustrated that the effect of frankincense plus myrrh treatment was similar to that of an EGFR inhibitor with regard to controlling EGFR activation, thereby inhibiting the phosphorylation activity of its downstream targets: the PI3K/Akt and MAPK (ERK, p38 and JNK) pathways.
CONCLUSION In summary, frankincense and myrrh treatment targets tumor blood vessels to exert anti-HCC effects via EGFR-activated PI3K/Akt and MAPK signaling pathways, highlighting the potential of this dual TCM compound as an anti-HCC candidate.
Collapse
Affiliation(s)
- Piao Zheng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Zhen Huang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Dong-Chang Tong
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Qing Zhou
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Sha Tian
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Bo-Wei Chen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Di-Min Ning
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Yin-Mei Guo
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Wen-Hao Zhu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Yan Long
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Wei Xiao
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Zhe Deng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Yi-Chen Lei
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Xue-Fei Tian
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
20
|
Li Y, Ou K, Wang Y, Luo L, Chen Z, Wu J. TLR9 agonist suppresses choroidal neovascularization by restricting endothelial cell motility via ERK/c-Jun pathway. Microvasc Res 2022; 141:104338. [PMID: 35150733 DOI: 10.1016/j.mvr.2022.104338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/08/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Choroidal neovascularization (CNV) is the feature of neovascular age-related macular degeneration (AMD). It has been demonstrated that inflammation plays a key role in the development of CNV. Here we aim to investigate how TLR9 agonist (CpG-ODN), one of the key regulators of inflammatory responses, suppresses CNV in vivo. MATERIALS AND METHODS The cell viability was assessed by MTT and EdU test after CpG-ODN treatment. Endothelial cells gap assay, tube formation assay and transwell assay were practiced to observe how CpG-ODN affected the endothelial cells functions. The choroidal explants and laser-induced CNV model were built to investigate how CpG-ODN suppressed angiogenesis. The ERK and c-Jun expression were evaluated to assess if CpG-ODN affected cell proliferation. Flow cytometry and qPCR was practiced to observe how CpG-ODN regulated cell proliferation. RESULTS Our data showed that CpG-ODN not only reduced CNV area in vivo, but also decreased the RPE damage. CpG-ODN inhibited endothelial cells from migration and forming tubes, while the effect was not toxic. EdU test and MTT test suggested that CpG-ODN inhibited endothelial cells proliferation. CpG-ODN significantly increased protein expression of phosphorylated c-Jun but reduced phosphorylated ERK in HUVECs, which was confirmed in ERK transfected 293T cells. JNK inhibitor abolished the suppression of endothelial cells migration and tube formation by CpG-ODN. The findings were also in agreement with the observation in CpG-ODN treated CNV eyes in vivo. The flow cytometry and qPCR data revealed that the suppression of cell motility by CpG-ODN was achieved by arresting endothelial cells cell cycle at G0/G1 phase. CONCLUSIONS Our study demonstrated that CpG-ODN suppressed endothelial cell motility by restricting the cell cycle progression at G0/G1 phase, the effect of which was achieved by interacting with ERK/c-Jun pathways.
Collapse
Affiliation(s)
- Youjian Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Kepeng Ou
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Yuwei Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Liying Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Zhongzhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jiahui Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.
| |
Collapse
|
21
|
CCL4 Stimulates Cell Migration in Human Osteosarcoma via the mir-3927-3p/Integrin αvβ3 Axis. Int J Mol Sci 2021; 22:ijms222312737. [PMID: 34884541 PMCID: PMC8657600 DOI: 10.3390/ijms222312737] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 01/05/2023] Open
Abstract
Osteosarcoma is the most common type of primary malignant bone cancer, and it is associated with high rates of pulmonary metastasis. Integrin αvβ3 is critical for osteosarcoma cell migratory and invasive abilities. Chemokine (C-C motif) ligand 4 (CCL4) has diverse effects on different cancer cells through its interaction with its specific receptor, C-C chemokine receptor type 5 (CCR5). Analysis of mRNA expression in human osteosarcoma tissue identified upregulated levels of CCL4, integrin αv and β3 expression. Similarly, an analysis of records from the Gene Expression Omnibus (GEO) dataset showed that CCL4 was upregulated in human osteosarcoma tissue. Importantly, the expression of both CCL4 and integrin αvβ3 correlated positively with osteosarcoma clinical stages and lung metastasis. Analysis of osteosarcoma cell lines identified that CCL4 promotes integrin αvβ3 expression and cell migration by activating the focal adhesion kinase (FAK), protein kinase B (AKT), and hypoxia inducible factor 1 subunit alpha (HIF-1α) signaling pathways, which can downregulate microRNA-3927-3p expression. Pharmacological inhibition of CCR5 by maraviroc (MVC) prevented increases in integrin αvβ3 expression and cell migration. This study is the first to implicate CCL4 as a potential target in the treatment of metastatic osteosarcoma.
Collapse
|
22
|
Deb A, Deshmukh B, Ramteke P, Bhati FK, Bhat MK. Resistin: A journey from metabolism to cancer. Transl Oncol 2021; 14:101178. [PMID: 34293684 PMCID: PMC8319804 DOI: 10.1016/j.tranon.2021.101178] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Resistin levels have been associated with several pathological disorders such as metabolic disorders, cancers etc. Resistin exists in three isoforms namely RELM-α, β and γ. High resistin level activates inflammatory pathways, promotes metabolic disorders and is associated with carcinogenesis. Increase in the resistin level impairs the therapeutic response by inducing stemness or resistance, in cancer cells. Conventional drugs which alter resistin level could have therapeutic implications in several pathological disorders.
Resistin, a small secretory molecule, has been implicated to play an important role in the development of insulin resistance under obese condition. For the past few decades, it has been linked to various cellular and metabolic functions. It has been associated with diseases like metabolic disorders, cardiovascular diseases and cancers. Numerous clinical studies have indicated an increased serum resistin level in pathological disorders which have been reported to increase mortality rate in comparison to low resistin expressing subjects. Various molecular studies suggest resistin plays a pivotal role in proliferation, metastasis, angiogenesis, inflammation as well as in regulating metabolism in cancer cells. Therefore, understanding the role of resistin and elucidating its’ associated molecular mechanism will give a better insight into the management of these disorders. In this article, we summarize the diverse roles of resistin in pathological disorders based on the available literature, clinicopathological data, and a compiled study from various databases. The article mainly provides comprehensive information of its role as a target in different treatment modalities in pre as well as post-clinical studies.
Collapse
Affiliation(s)
- Ankita Deb
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Bhavana Deshmukh
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Pranay Ramteke
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Firoz Khan Bhati
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
23
|
Li Y, Lin S, Xie X, Zhu H, Fan T, Wang S. Highly enriched exosomal lncRNA OIP5-AS1 regulates osteosarcoma tumor angiogenesis and autophagy through miR-153 and ATG5. Am J Transl Res 2021; 13:4211-4223. [PMID: 34150009 PMCID: PMC8205742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This study aims to investigate the regulatory role of exosome lncRNA OIP5-AS1 in tumor progression and autophagy. METHODS Seventy-three cases of osteosarcoma (OS) tissues and 56 cases of adjacent normal tissues were collected to culture human OS cell line HOS. The exosomes secreted by OS cell line were isolated and collected. Apoptosis and exosome markers were detected by flow cytometry. A nude mouse model of OS was established. The gene expression levels of lncRNA OIP5-AS1, miR-153 and autophagy-related protein 5 (ATG5) were quantified by real-time quantitative PCR (RT-PCR). The binding sites of lncRNA OIP5-AS1 and miR-153 were predicted by Starbase3.0, and the binding sites of miR-153 and ATG5 were predicted by Targetscan7.2. The gene binding sites were verified by luciferase reporter gene detection or RNA immunoprecipitation (RIP). The relative level of protein was tested by Western blot. Transwell was applied to test migration and invasion of OS cells. The angiogenesis of OS cells was tested by tubule formation test. RESULTS The results of RT-PCR showed that lncRNA OIP5-AS1 levels were elevated in OS cells and exosomes secreted by cells. Cell function experiments revealed that the proliferation, migration, and invasion of OS cells were promoted by exosomal lncRNA OIP5-AS1. In exosomes, lncRNA OIP5-AS1 inhibited the expression of LC3-II and Beclin 1 proteins, indicating that exosomal lncRNA OIP5-AS1 inhibited autophagy. According to the results of bioinformatics tools and dual-luciferase reporter (DLR) assay or RNA immunoprecipitation (RIP), miR-153 targeted the 3'-UTR of lncRNA OIP5-AS1 and autophagy-related protein 5 (ATG5). The results of western blot (WB) assay showed that exosomal lncRNA OIP5-AS1 and down-regulated miR-153 led to the enhancement of ATG5 protein expression, while up-regulated miR-153 resulted in the decrease of ATG5 protein expression. ATG5 was negatively correlated with miR-153 and positively correlated with lncRNA OIP5-AS1. The results of tubule formation assay disclosed an increase in the angiogenesis level caused by the exosomal lncRNA OIP5-AS1, which was then reversed by the increase of miR-153 and decrease of ATG5. CONCLUSION Highly enriched exosomal lncRNA OIP5-AS1 can regulate OS tumor angiogenesis and autophagy through miR-153 and ATG5.
Collapse
Affiliation(s)
- Yumei Li
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine274 Zhijiang Central Road, Jingan District, Shanghai 200071, China
| | - Shengming Lin
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine725 Wanping South Road, Xuhui District, Shanghai 200032, China
| | - Xiaoliang Xie
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine274 Zhijiang Central Road, Jingan District, Shanghai 200071, China
| | - Haixia Zhu
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine274 Zhijiang Central Road, Jingan District, Shanghai 200071, China
| | - Tianyou Fan
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine274 Zhijiang Central Road, Jingan District, Shanghai 200071, China
| | - Song Wang
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine725 Wanping South Road, Xuhui District, Shanghai 200032, China
| |
Collapse
|
24
|
Zhou L, Wang J, Liang J, Hou H, Li J, Li J, Cao Y, Li J, Zhang K. Psoriatic mesenchymal stem cells stimulate the angiogenesis of human umbilical vein endothelial cells in vitro. Microvasc Res 2021; 136:104151. [PMID: 33662409 DOI: 10.1016/j.mvr.2021.104151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the regulation of psoriatic dermal mesenchymal stem cells (p-DMSCs) in the expression of vascular growth factor (VEGF), and migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro. METHODS A co-culture model of HUVECs and dermal mesenchymal stem cells (DMSCs)was used in this study. After 7-day co-culture, changes in expression levels of VEGF mRNA and protein in HUVECs were assessed using RT-PCR and Western Blotting, respectively. Migration and tubular formation of HUVECs were also assessed following co-culture of DMSCs and HUVECs. RESULTS In comparison to either HUVECs alone or co-culture of n-DMSCs and HUVECs, co-culture of HUVECs and p-DMSCs significantly increased expression levels of both VEGF mRNA (p < 0.01 vs. HUVECs alone) and protein in HUVECs (p < 0.001 vs. both HUVECs alone and HUVECs co-cultured with n-DMSCs). Moreover, p-DMSCs stimulated HUVEC migration and vascular formation (p < 0.05 vs. both HUVECs alone and co-culture of n-DMSCs and HUVECs). CONCLUSION Psoriatic DMSCs can upregulate VEGF expression, and stimulate migration and angiogenesis of HUVECs, suggesting a pathogenic role of p-DMSCs in psoriasis.
Collapse
Affiliation(s)
- Ling Zhou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Juanjuan Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Jiannan Liang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Hui Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Jiao Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Yue Cao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China.
| |
Collapse
|
25
|
Zhang T, Duran V, Vanarsa K, Mohan C. Targeted urine proteomics in lupus nephritis - a meta-analysis. Expert Rev Proteomics 2021; 17:767-776. [PMID: 33423575 DOI: 10.1080/14789450.2020.1874356] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Proteomic approaches are central in biomarker discovery. While mass-spectrometry-based techniques are widely used, novel targeted proteomic platforms have enabled the high-throughput detection of low-abundance proteins in an affinity-based manner. Urine has gained growing attention as an ideal biofluid for monitoring renal disease including lupus nephritis (LN). METHODS Pubmed was screened for targeted proteomic studies of LN urine interrogating ≥1000 proteins. Data from the primary studies were combined and a meta-analysis was performed. Shared proteins elevated in active LN across studies were identified, and relevant pathways were elucidated using ingenuity pathway and gene ontology analysis. Urine proteomic data was cross-referenced against renal single-cell RNAseq data from LN kidneys. RESULTS Two high-throughput targeted proteomic platforms with capacity to interrogate ≥1000 proteins have been used to investigate LN urine. Twenty-three urine proteins were significantly elevated in both studies, including 10 chemokines, and proteins implicated in angiogenesis, and extracellular matrix turnover. Of these, Cathepsin S, CXCL10, FasL, ferritin, macrophage migration inhibitory factor (MIF), and resistin were also significantly elevated within LN kidneys. CONCLUSION Targeted urinary proteomics have uncovered multiple novel biomarkers for LN. Further validation in prospective cohorts and mechanistic studies are warranted to establish their clinical utility.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biomedical Engineering, University of Houston , Houston, Texas, USA
| | - Valeria Duran
- Department of Biomedical Engineering, University of Houston , Houston, Texas, USA
| | - Kamala Vanarsa
- Department of Biomedical Engineering, University of Houston , Houston, Texas, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston , Houston, Texas, USA
| |
Collapse
|
26
|
Feder AL, Pion E, Troebs J, Lenze U, Prantl L, Htwe MM, Phyo A, Haerteis S, Aung T. Extended analysis of intratumoral heterogeneity of primary osteosarcoma tissue using 3D-in-vivo-tumor-model. Clin Hemorheol Microcirc 2020; 76:133-141. [PMID: 32925008 DOI: 10.3233/ch-209204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Osteosarcomas are a rare, heterogeneous and malignant group of bone tumors that have a high potential for metastasis and aggressive growth patterns. Treatment of metastasized osteosarcoma is often insufficient and research is compromised by problems encountered when culturing cells or analyzing genetic alterations due to the high level of intratumoral and intertumoral heterogeneity. The chick chorioallantoic membrane (CAM) model, a 3D-in-vivo-tumor-model, could potentially facilitate the investigation of osteosarcoma heterogeneity at an individual and highly specified level. OBJECTIVE Objective was to establish the grafting and transplantation of different primary osteosarcoma tissue parts onto several consecutive CAMs for tumor profiling and investigation of osteosarcoma heterogeneity. METHODS Various parts of primary osteosarcoma tissue were grafted onto CAMs and were transplanted onto another CAM for five to seven consecutive times, enabling further experimental analyzes. RESULTS Primary osteosarcoma tissue parts exhibited satisfactory growth patterns and displayed angiogenic development on the CAM. It was possible to graft and transplant different tumor parts several times while the tissue viability was still high and tumor profiling was performed. CONCLUSIONS Primary osteosarcoma tissue grew on several different CAMs for an extended time period and neovascularization of serial transplanted tumor parts was observed, improving the versatility of the 3D-in-vivo-tumor-model.
Collapse
Affiliation(s)
- Anna-Lena Feder
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Eric Pion
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Johannes Troebs
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Ulrich Lenze
- Department of Orthopaedics and Sportorthopaedics, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Lukas Prantl
- Center of Plastic, Aesthetic, Hand and Reconstructive Surgery, University of Regensburg, Regensburg, Germany
| | - Maung Mg Htwe
- Sarcoma and Musculoskeletal Oncoplastic Division, Department of Orthopaedic Surgery, University of Medicine, Mandalay, Myanmar
| | - Aung Phyo
- Sarcoma and Musculoskeletal Oncoplastic Division, Department of Orthopaedic Surgery, University of Medicine, Mandalay, Myanmar
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany.,Center of Plastic, Aesthetic, Hand and Reconstructive Surgery, University of Regensburg, Regensburg, Germany.,Sarcoma and Musculoskeletal Oncoplastic Division, Department of Orthopaedic Surgery, University of Medicine, Mandalay, Myanmar
| |
Collapse
|
27
|
Combined High Resistin and EGFR Expression Predicts a Poor Prognosis in Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8835398. [PMID: 33313320 PMCID: PMC7719526 DOI: 10.1155/2020/8835398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Elevated levels of resistin and epidermal growth factor receptor (EGFR) facilitate the development of breast cancer, although there are no reports of any correlation between these proteins. This study analyzed 392 human breast cancer tissue specimens and 42 samples of adjacent normal tissue. Rates of positive and strongly positive resistin expression were significantly higher in breast cancer tissue than in the adjacent nontumor tissue (83.2% vs. 23.8% and 20.9% vs. 0.0%, respectively; P < 0.001 for both comparisons). Positive resistin expression was significantly associated with tumor size, grade, stage, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) status, and molecular classification; strongly positive resistin expression was associated with tumor grade, ER, PR, HER2 status, and molecular classification. Significantly positive correlations were observed between positive and strongly positive resistin expression and corresponding levels of EGFR expression. Relapse-free and overall survival was worse for patients with high levels of both proteins than for those with high levels of only one protein or normal levels of both proteins. Our evidence suggests that combined high levels of resistin and EGFR expression correlate with survival in patients with breast cancer.
Collapse
|
28
|
Lien MY, Chang AC, Tsai HC, Tsai MH, Hua CH, Cheng SP, Wang SW, Tang CH. Monocyte Chemoattractant Protein 1 Promotes VEGF-A Expression in OSCC by Activating ILK and MEK1/2 Signaling and Downregulating miR-29c. Front Oncol 2020; 10:592415. [PMID: 33330077 PMCID: PMC7729166 DOI: 10.3389/fonc.2020.592415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive tumor that has a poor prognosis, with high levels of local invasion and lymph node metastasis. Vascular endothelial growth factor A (VEGF-A) plays essential roles in OSCC tumor angiogenesis and metastasis. Monocyte chemoattractant protein-1 (MCP-1, CCL2) is implicated in various inflammatory conditions and pathological processes, including oral cancer. The existing evidence has failed to confirm any correlation between MCP-1 or VEGF-A expression and OSCC angiogenesis. In this study, high expression levels of MCP-1 and VEGF-A were positively correlated with disease stage in patients with OSCC. In oral cancer cells, MCP-1 increased VEGF-A expression and subsequently promoted angiogenesis; miR-29c mimic reversed MCP-1 activity. We also found that MCP-1 modulated VEGF-A expression and angiogenesis through CCR2/ILK/MEK1/2 signaling. Ex vivo results of the chick embryo chorioallantoic membrane (CAM) assay revealed the angiogenic qualities of MCP-1, with increased numbers of visible blood vessel branches. Our data suggest that MCP-1 is a new molecular therapeutic target for the inhibition of angiogenesis and metastasis in OSCC.
Collapse
Affiliation(s)
- Ming-Yu Lien
- School of Medicine, China Medical University, Taichung, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - An-Chen Chang
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Chi Tsai
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ming-Hsui Tsai
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Hung Hua
- Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Ping Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,College of Pharmacy, Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
29
|
Chao CC, Lee WF, Yang WH, Lin CY, Han CK, Huang YL, Fong YC, Wu MH, Lee IT, Tsai YH, Tang CH, Liu JF. IGFBP-3 stimulates human osteosarcoma cell migration by upregulating VCAM-1 expression. Life Sci 2020; 265:118758. [PMID: 33188835 DOI: 10.1016/j.lfs.2020.118758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
AIMS Insulin-like growth factor (IGF) signaling has been documented in several human malignancies and is thought to contribute to cellular differentiation and migration, as well as malignant progression. A major binding molecule of IGF, IGF-binding protein 3 (IGFBP-3), regulates multiple IGF effects. Here, we focused on the effect of IGFBP-3 in the motility of osteosarcoma cells and examined signaling regulation. MATERIALS AND METHODS Using a human osteosarcoma tissue array, immunohistochemical staining determined levels of IGFBP-3 expression in osteosarcoma tissue and in normal tissue. The wound healing migration assay, Transwell migration assay, luciferase reporter assay, immunofluorescence staining, Western blot and real-time quantitative PCR were performed to examine whether IGFBP-3 facilitates VCAM-1-dependent migration of osteosarcoma cells. KEY FINDINGS In this study, we found significantly higher IGFBP-3 levels in osteosarcoma tissue compared with normal healthy tissue. IGFBP-3 treatment of two human osteosarcoma cell lines promoted cell migration and upregulated levels of VCAM-1 expression via PI3K/Akt and AP-1 signaling. SIGNIFICANCE IGFBP-3 appears to be a novel therapeutic target in metastatic osteosarcoma.
Collapse
Affiliation(s)
- Chia-Chia Chao
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Fang Lee
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hung Yang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan; Department of Orthopedic Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Chih-Yang Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chien-Kuo Han
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Min-Huan Wu
- Bachelor of Science in Senior Wellness and Sports Science (SWSS), Tunghai University, Taichung, Taiwan; Tunghai University Sports Recreation and Health Management Degree Program (SRHM), Tunghai University, Taichung, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Hsin Tsai
- Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan.
| |
Collapse
|
30
|
Huang F, Cong W, Xiao J, Zhou Y, Gong M, Sun J, Shan L, Xiao Q, Wang L, Liu J, Yu Z, Jia H. Association between excessive chronic iodine exposure and the occurrence of papillary thyroid carcinoma. Oncol Lett 2020; 20:189. [PMID: 32952658 PMCID: PMC7479532 DOI: 10.3892/ol.2020.12051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to elucidate the association between excessive chronic iodine exposure and the risk of developing papillary thyroid carcinoma (PTC). The demographic information and pathological characteristics of patients with thyroid nodules were retrieved from medical records at The Second Hospital of Shandong University. A fasting urine specimen was collected, and creatinine and urinary iodine concentration (UIC) were determined. The water iodine data from the domicile districts of these patients were collated from published reports. The results revealed that almost half of the patients with PTC (44.3%) also exhibited a high UIC (≥300 µg/l). Multivariate analysis revealed that the adjusted odds ratio for high UIC was 3.987 (95% CI: 1.355–11.736) and the adjusted area under the receiver operating characteristic curve was 0.776 (95% CI: 0.687–0.864), which was associated with PTC risk in patients with thyroid nodules. Integrated ecological assessment of chronic iodine exposures demonstrated that >80% (81.4%) of the patients with PTC who also exhibited a high UIC were from historically non-iodine-deficient regions, and 66.7% of patients with PTC who resided in historically iodine-excessive regions were characterized by high UICs. Importantly, a high UIC was significantly associated with capsular invasion and extrathyroid metastasis (P<0.05). Moreover, self-matching results indicated that, in patients with PTC, there were no significant differences in UIC grading between the pre- and postoperative specimens. In conclusion, excessive chronic iodine exposure is significantly associated with the risk of PTC, which contributes to increased capsular invasion and extrathyroid metastases. However, further research is required to validate these findings and to elucidate the potential molecular mechanisms involved.
Collapse
Affiliation(s)
- Fengyan Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wei Cong
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Juan Xiao
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yong Zhou
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Maosong Gong
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jingfu Sun
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Liqun Shan
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qiang Xiao
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lihua Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jianing Liu
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhigang Yu
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Hongying Jia
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
31
|
Liu JF, Lee CW, Lin CY, Chao CC, Chang TM, Han CK, Huang YL, Fong YC, Tang CH. CXCL13/CXCR5 Interaction Facilitates VCAM-1-Dependent Migration in Human Osteosarcoma. Int J Mol Sci 2020; 21:ijms21176095. [PMID: 32847038 PMCID: PMC7504668 DOI: 10.3390/ijms21176095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma is the most common primary tumor of the skeletal system and is well-known to have an aggressive clinical outcome and high metastatic potential. The chemokine (C-X-C motif) ligand 13 (CXCL13) plays a vital role in the development of several cancers. However, the effect of CXCL13 in the motility of osteosarcoma cells remains uncertain. Here, we found that CXCL13 increases the migration and invasion potential of three osteosarcoma cell lines. In addition, CXCL13 expression was upregulated in migration-prone MG-63 cells. Vascular cell adhesion molecule 1 (VCAM-1) siRNA and antibody demonstrated that CXCL13 promotes migration via increasing VCAM-1 production. We also show that CXCR5 receptor controls CXCL13-mediated VCAM-1 expression and cell migration. Our study identified that CXCL13/CXCR5 axis facilitate VCAM-1 production and cell migration in human osteosarcoma via the phospholipase C beta (PLCβ), protein kinase C α (PKCα), c-Src, and nuclear factor-κB (NF-κB) signaling pathways. CXCL13 and CXCR5 appear to be a novel therapeutic target in metastatic osteosarcoma.
Collapse
Affiliation(s)
- Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan;
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City 33303, Taiwan
| | - Chih-Yang Lin
- School of Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Chia-Chia Chao
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Tsung-Ming Chang
- School of Medicine, Institute of Physiology, National Yang-Ming University, Taipei City 11221, Taiwan;
| | - Chien-Kuo Han
- Department of Biotechnology, College of Health Science, Asia University, Taichung 40402, Taiwan; (C.-K.H.); (Y.-L.H.)
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung 40402, Taiwan; (C.-K.H.); (Y.-L.H.)
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 40402, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin 65152, Taiwan
- Correspondence: (Y.-C.F.); (C.-H.T.); Tel.: +886-4-2205-2121-7726 (C.-H.T.); Fax: +886-4-2233-3641 (C.-H.T.)
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Health Science, Asia University, Taichung 40402, Taiwan; (C.-K.H.); (Y.-L.H.)
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Correspondence: (Y.-C.F.); (C.-H.T.); Tel.: +886-4-2205-2121-7726 (C.-H.T.); Fax: +886-4-2233-3641 (C.-H.T.)
| |
Collapse
|
32
|
Wang P, Wang X, Tang Q, Chen H, Zhang Q, Jiang H, Wang Z. Functionalized graphene oxide against U251 glioma cells and its molecular mechanism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111187. [PMID: 32806260 DOI: 10.1016/j.msec.2020.111187] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/22/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
Graphene and its derivatives with exceptional properties are being exploited for drug delivery and even combined therapies for enhanced antitumor activity and reduced side effects. However, the unfavorable surface chemistry of pristine graphene and reduced graphene oxide made them take covalent and non-covalent functionalization strategies to improve their biocompatibility. Although graphene oxide (GO) is soluble in water owing to its oxygen-containing groups such as carboxylic acid and hydroxyl groups, it is highly accepted when to be modified to improve its colloidal stability in physiological buffers in the presence of salts. In this work, we functionalized GO with Pluronic F127 molecules via non-covalent interaction and found that GO and PF127/GO nanohybrid with a concentration lower than 5 μg/ml have no obvious toxic effect on human astrocytes (AS) and human glioma (U251) cells. Anti-tumor drug doxorubicin (DOX) being loaded onto the PF127/GO nanocarriers by π-π stacking exhibited a high loading capacity of 0.83 mg/mg and loading efficiency of 83%. Our study confirmed that the PF127/GO/DOX (PGD) induced a higher apoptosis rate (12.27 ± 0.06%) of U251 cells than that of free DOX (8.20 ± 0.06%) (P < 0.05). Western blotting results indicated that PGD affected the MAPK signaling pathway and induced the intrinsic pathway of apoptosis for the activation of Caspase-3 in U251 cells, which may provide more evidence for the signal pathway of tumor-targeting therapy.
Collapse
Affiliation(s)
- Pingyue Wang
- Neurology Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Xin Wang
- Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Qi Tang
- Neurology Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Hao Chen
- Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Qin Zhang
- Neurology Department, The First Hospital of Jilin University, Changchun 130021, China
| | - Hongyu Jiang
- Department of Health Examination Centre, The First Hospital of Jilin University, Changchun 130021, China
| | - Zan Wang
- Neurology Department, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
33
|
Resistin Enhances VCAM-1 Expression and Monocyte Adhesion in Human Osteoarthritis Synovial Fibroblasts by Inhibiting MiR-381 Expression through the PKC, p38, and JNK Signaling Pathways. Cells 2020; 9:cells9061369. [PMID: 32492888 PMCID: PMC7349127 DOI: 10.3390/cells9061369] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
The development of osteoarthritis (OA) is characterized by synovial inflammation and the upregulation of vascular cell adhesion molecule type 1 (VCAM-1) in human osteoarthritis synovial fibroblasts (OASFs). This increase in VCAM-1 expression promotes monocyte adhesion to OASFs. The adipokine resistin is known to promote the release of inflammatory cytokines during OA progression. In this study, we identified significantly higher levels of resistin and CD68 (a monocyte surface marker) expression in human OA tissue compared with in healthy control tissue. We also found that resistin enhances VCAM-1 expression in human OASFs and facilitates the adhesion of monocytes to OASFs. These effects were attenuated by inhibitors of PKCα, p38, and JNK; their respective siRNAs; and by a microRNA-381 (miR-381) mimic. In our anterior cruciate ligament transection (ACLT) rat model of OA, the inhibition of resistin activity prevented ACLT-induced damage to the OA rat cartilage and pathological changes in resistin and monocyte expression. We also found that resistin affects VCAM-1 expression and monocyte adhesion in human OASFs by inhibiting miR-381 synthesis via the PKCα, p38, and JNK signaling pathways. Our clarification of the crucial role played by resistin in the pathogenesis of OA may lead to more effective therapy that reduces OA inflammation.
Collapse
|
34
|
High Expression of Both Resistin and Fascin-1 Predicts a Poor Prognosis in Patients with Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8753175. [PMID: 32420377 PMCID: PMC7201636 DOI: 10.1155/2020/8753175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022]
Abstract
Emerging evidence indicates that resistin and fascin-1 may possess a causal role in the development of several types of cancers. However, the clinical significance of resistin expression in colorectal cancer (CRC) tissues is unclear, and there are no reports of any correlation between resistin and fascin-1. Our analyses explored the expression of resistin in CRC tissue and analyzed the clinical and prognostic significance of the observed positive correlation between resistin and fascin-1. The rate of strongly positive resistin expression (27.5%) was significantly higher in CRC tissues than in normal colorectal tissues (5.2%). Strongly positive resistin expression is related to multiple poor prognostic factors in CRC, including depth of tumor invasion, lymph node metastasis, and tumor stage. In this study, survival was worse in CRC patients with high levels of both resistin and fascin-1 expression than in those with high levels of only one protein or normal levels of both proteins. We suggest that a combined high level of resistin and fascin-1 expression correlates reliably with survival in CRC, so it may serve as a potential therapeutic target.
Collapse
|
35
|
Lee HP, Wang SW, Wu YC, Lin LW, Tsai FJ, Yang JS, Li TM, Tang CH. Soya-cerebroside inhibits VEGF-facilitated angiogenesis in endothelial progenitor cells. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1713055] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hsiang-Ping Lee
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Liang-Wei Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- China Medical University Children’s Hospital, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|