1
|
Colonne CK, Kimble EL, Turtle CJ. Evolving strategies to overcome barriers in CAR-T cell therapy for acute myeloid leukemia. Expert Rev Hematol 2024:1-22. [PMID: 39439295 DOI: 10.1080/17474086.2024.2420614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a complex and heterogeneous disease characterized by an aggressive clinical course and limited efficacious treatment options in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR)-modified T (CAR-T) cell immunotherapy is an investigational treatment strategy for R/R AML that has shown some promise. However, obstacles to successful CAR-T cell immunotherapy for AML remain. AREAS COVERED In analyses of clinical trials of CAR-T cell therapy for R/R AML, complete responses without measurable residual disease have been reported, but the durability of those responses remains unclear. Significant barriers to successful CAR-T cell therapy in AML include the scarcity of suitable tumor-target antigens (TTA), inherent T cell functional deficits, and the immunoinhibitory and hostile tumor microenvironment (TME). This review will focus on these barriers to successful CAR-T cell therapy in AML, and discuss scientific advancements and evolving strategies to overcome them. EXPERT OPINION Achieving durable remissions in R/R AML will likely require a multifaceted approach that integrates advancements in TTA selection, enhancement of the intrinsic quality of CAR-T cells, and development of strategies to overcome inhibitory mechanisms in the AML TME.
Collapse
Affiliation(s)
- Chanukya K Colonne
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erik L Kimble
- Translational Science and Therapeutic Division, Fred Hutchinson Cancer Center, Seattle, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, USA
| | - Cameron J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
2
|
Garcia-Rodriguez P, Hidalgo L, Rodriguez-Milla MA, Somovilla-Crespo B, Garcia-Castro J. LIN28 upregulation in primary human T cells impaired CAR T antitumoral activity. Front Immunol 2024; 15:1462796. [PMID: 39478867 PMCID: PMC11521810 DOI: 10.3389/fimmu.2024.1462796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
LIN28, a highly conserved RNA-binding protein that acts as a posttranscriptional modulator, plays a vital role in the regulation of T-cell development, reprogramming, and immune activity in infectious diseases and T-cell-based immunotherapies. LIN28 inhibit the expression of let-7 miRNAs, the most prevalent family of miRNAs in lymphocytes. Recently it has been suggested that let-7 enhances murine anti-tumor immune responses. Here, we investigated the impact of LIN28 upregulation on human T cell functions, focusing on its influence on CAR T cell therapy. LIN28 lentiviral transduction of human T cells led to a stable expression of LIN28 that significantly downregulated the let-7 miRNA family without affecting cell viability or expansion potential. LIN28 overexpression maintained human T cell phenotype markers and functionality but impaired the antitumoral cytotoxicity of NKG2D-CAR T cells both in vitro and in vivo. These findings highlight the intricate relationship between LIN28/let-7 axis and human T cell functionality, including in CAR T cell therapy.
Collapse
Affiliation(s)
- Patricia Garcia-Rodriguez
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, Madrid, Spain
- Universidad Nacional de Educación a (UNED), Madrid, Spain
| | - Laura Hidalgo
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Javier Garcia-Castro
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación de Enfermedades Raras (IIER) & Departamento de Desarrollo de Medicamentos de Terapias Avanzadas (DDMTA), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Ghorai SK, Pearson AN. Current Strategies to Improve Chimeric Antigen Receptor T (CAR-T) Cell Persistence. Cureus 2024; 16:e65291. [PMID: 39184661 PMCID: PMC11343441 DOI: 10.7759/cureus.65291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has transformed the field of immunology by redirecting T lymphocytes toward tumor antigens. Despite successes in attaining high remission rates as high as 90%, the performance of CAR therapy is limited by the survival of T cells. T cell persistence is crucial as it sustains immune response against malignancies, playing a critical role in cancer treatment outcomes. This review explores various approaches to improve CAR-T cell persistence, focusing on the choice between autologous and allogeneic cell sources, optimization of culture conditions for T cell subsets, metabolite adjustments to modify T cell metabolism, the use of oncolytic viruses (OVs), and advancements in CAR design. Autologous CAR-T cells generally exhibit longer persistence but are less accessible and cost-effective than their allogeneic counterparts. Optimizing culture conditions by promoting TSCM and TCM cell differentiation has also demonstrated increased persistence, as seen with the use of cytokine combinations like IL-7 and IL-15. Metabolic adjustments, such as using 2-deoxy-D-glucose (2-DG) and L-arginine, have enhanced the formation of memory T cells, leading to improved antitumor activity. OVs, when combined with CAR-T therapy, can amplify CAR-T cell penetration and persistence in solid tumors, although further clinical validation is needed. Advances in CAR design from second to fifth generations have progressively improved T cell activation and survival, with fifth-generation CARs demonstrating strong cytokine-mediated signaling and long-lasting persistence. Understanding the underlying mechanisms behind these strategies is essential for maximizing the potential of CAR-T therapy in treating cancer. Further research is needed to improve safety and efficacy and seamlessly integrate the discussed strategies into the manufacturing process.
Collapse
Affiliation(s)
| | - Ashley N Pearson
- Biomedical Sciences, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
4
|
Lin HK, Uricoli B, Freeman RM, Hossian AKMN, He Z, Anderson JYL, Neffling M, Legier JM, Blake DA, Doxie DB, Nair R, Koff JL, Dhodapkar KM, Shanmugam M, Dreaden EC, Rafiq S. Engineering Improved CAR T Cell Products with A Multi-Cytokine Particle Platform for Hematologic and Solid Tumors. Adv Healthc Mater 2024; 13:e2302425. [PMID: 38245855 PMCID: PMC11144092 DOI: 10.1002/adhm.202302425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/05/2024] [Indexed: 01/22/2024]
Abstract
Despite the remarkable clinical efficacy of chimeric antigen receptor (CAR) T cells in hematological malignancies, only a subset of patients achieves a durable complete response (dCR). DCR has been correlated with CAR T cell products enriched with T cells memory phenotypes. Therefore, reagents that consistently promote memory phenotypes during the manufacturing of CAR T cells have the potential to significantly improve clinical outcomes. A novel modular multi-cytokine particle (MCP) platform is developed that combines the signals necessary for activation, costimulation, and cytokine support into a single "all-in-one" stimulation reagent for CAR T cell manufacturing. This platform allows for the assembly and screening of compositionally diverse MCP libraries to identify formulations tailored to promote specific phenotypes with a high degree of flexibility. The approach is leveraged to identify unique MCP formulations that manufacture CAR T cell products from diffuse large B cell patients with increased proportions of memory-like phenotypes MCP-manufactured CAR T cells demonstrate superior anti-tumor efficacy in mouse models of lymphoma and ovarian cancer through enhanced persistence. These findings serve as a proof-of-principle of the powerful utility of the MCP platform to identify "all-in-one" stimulation reagents that can improve the effectiveness of cell therapy products through optimal manufacturing.
Collapse
Affiliation(s)
- Heather K. Lin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Biaggio Uricoli
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology Atlanta, GA, USA
| | - Ruby M. Freeman
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - AKM Nawshad Hossian
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhulin He
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Jonathan M. Legier
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dejah A. Blake
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Deon B. Doxie
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Remya Nair
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jean L. Koff
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Kavita M. Dhodapkar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Erik C. Dreaden
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Sarwish Rafiq
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
5
|
Stepanov AV, Xie J, Zhu Q, Shen Z, Su W, Kuai L, Soll R, Rader C, Shaver G, Douthit L, Zhang D, Kalinin R, Fu X, Zhao Y, Qin T, Baran PS, Gabibov AG, Bushnell D, Neri D, Kornberg RD, Lerner RA. Control of the antitumour activity and specificity of CAR T cells via organic adapters covalently tethering the CAR to tumour cells. Nat Biomed Eng 2024; 8:529-543. [PMID: 37798444 DOI: 10.1038/s41551-023-01102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/25/2023] [Indexed: 10/07/2023]
Abstract
On-target off-tumour toxicity limits the anticancer applicability of chimaeric antigen receptor (CAR) T cells. Here we show that the tumour-targeting specificity and activity of T cells with a CAR consisting of an antibody with a lysine residue that catalytically forms a reversible covalent bond with a 1,3-diketone hapten can be regulated by the concentration of a small-molecule adapter. This adapter selectively binds to the hapten and to a chosen tumour antigen via a small-molecule binder identified via a DNA-encoded library. The adapter therefore controls the formation of a covalent bond between the catalytic antibody and the hapten, as well as the tethering of the CAR T cells to the tumour cells, and hence the cytotoxicity and specificity of the cytotoxic T cells, as we show in vitro and in mice with prostate cancer xenografts. Such small-molecule switches of T-cell cytotoxicity and specificity via an antigen-independent 'universal' CAR may enhance the control and safety profile of CAR-based cellular immunotherapies.
Collapse
Affiliation(s)
- Alexey V Stepanov
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | - Wenji Su
- WuXi AppTec Co., Ltd, Shanghai, China
| | | | | | - Christoph Rader
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Geramie Shaver
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Lacey Douthit
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ding Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Roman Kalinin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Xiang Fu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Yingying Zhao
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Tian Qin
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Alexander G Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - David Bushnell
- Structural Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Roger D Kornberg
- Structural Biology, School of Medicine, Stanford University, Stanford, CA, USA.
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
6
|
Nikitich A, Helmlinger G, Peskov K, Bocharov G. Mathematical modeling of endogenous and exogenously administered T cell recirculation in mouse and its application to pharmacokinetic studies of cell therapies. Front Immunol 2024; 15:1357706. [PMID: 38846946 PMCID: PMC11155669 DOI: 10.3389/fimmu.2024.1357706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/19/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction In vivo T cell migration has been of interest to scientists for the past 60 years. T cell kinetics are important in the understanding of the immune response to infectious agents. More recently, adoptive T cell therapies have proven to be a most promising approach to treating a wide range of diseases, including autoimmune and cancer diseases, whereby the characterization of cellular kinetics represents an important step towards the prediction of therapeutic efficacy. Methods Here, we developed a physiologically-based pharmacokinetic (PBPK) model that describes endogenous T cell homeostasis and the kinetics of exogenously administered T cells in mouse. Parameter calibration was performed using a nonlinear fixed-effects modeling approach based on published data on T cell kinetics and steady-state levels in different tissues of mice. The Partial Rank Correlation Coefficient (PRCC) method was used to perform a global sensitivity assessment. To estimate the impact of kinetic parameters on exogenously administered T cell dynamics, a local sensitivity analysis was conducted. Results We simulated the model to analyze cellular kinetics following various T cell doses and frequencies of CCR7+ T cells in the population of infused lymphocytes. The model predicted the effects of T cell numbers and of population composition of infused T cells on the resultant concentration of T cells in various organs. For example, a higher percentage of CCR7+ T cells among exogenously administered T lymphocytes led to an augmented accumulation of T cells in the spleen. The model predicted a linear dependence of T cell dynamics on the dose of adoptively transferred T cells. Discussion The mathematical model of T cell migration presented here can be integrated into a multi-scale model of the immune system and be used in a preclinical setting for predicting the distribution of genetically modified T lymphocytes in various organs, following adoptive T cell therapies.
Collapse
Affiliation(s)
- Antonina Nikitich
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
| | | | - Kirill Peskov
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
- Modeling and Simulation Decisions FZ - LLC, Dubai, United Arab Emirates
- University of Science and Technology (STU) “Sirius”, Sochi, Russia
| | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
- Institute for Computer Science and Mathematical Modelling, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center of Fundamental and Applied Mathematics at INM RAS, Moscow, Russia
| |
Collapse
|
7
|
Albelda SM. CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. Nat Rev Clin Oncol 2024; 21:47-66. [PMID: 37904019 DOI: 10.1038/s41571-023-00832-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have been approved for use in patients with B cell malignancies or relapsed and/or refractory multiple myeloma, yet efficacy against most solid tumours remains elusive. The limited imaging and biopsy data from clinical trials in this setting continues to hinder understanding, necessitating a reliance on imperfect preclinical models. In this Perspective, I re-evaluate current data and suggest potential pathways towards greater success, drawing lessons from the few successful trials testing CAR T cells in patients with solid tumours and the clinical experience with tumour-infiltrating lymphocytes. The most promising approaches include the use of pluripotent stem cells, co-targeting multiple mechanisms of immune evasion, employing multiple co-stimulatory domains, and CAR ligand-targeting vaccines. An alternative strategy focused on administering multiple doses of short-lived CAR T cells in an attempt to pre-empt exhaustion and maintain a functional effector pool should also be considered.
Collapse
Affiliation(s)
- Steven M Albelda
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Nasiri F, Farrokhi K, Safarzadeh Kozani P, Mahboubi Kancha M, Dashti Shokoohi S, Safarzadeh Kozani P. CAR-T cell immunotherapy for ovarian cancer: hushing the silent killer. Front Immunol 2023; 14:1302307. [PMID: 38146364 PMCID: PMC10749368 DOI: 10.3389/fimmu.2023.1302307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023] Open
Abstract
As the most lethal gynecologic oncological indication, carcinoma of the ovary has been ranked as the 5th cause of cancer-related mortality in women, with a high percentage of the patients being diagnosed at late stages of the disease and a five-year survival of ~ 30%. Ovarian cancer patients conventionally undergo surgery for tumor removal followed by platinum- or taxane-based chemotherapy; however, a high percentage of patients experience tumor relapse. Cancer immunotherapy has been regarded as a silver lining in the treatment of patients with various immunological or oncological indications; however, mirvetuximab soravtansine (a folate receptor α-specific mAb) and bevacizumab (a VEGF-A-specific mAb) are the only immunotherapeutics approved for the treatment of ovarian cancer patients. Chimeric antigen receptor T-cell (CAR-T) therapy has achieved tremendous clinical success in the treatment of patients with certain B-cell lymphomas and leukemias, as well as multiple myeloma. In the context of solid tumors, CAR-T therapies face serious obstacles that limit their therapeutic benefit. Such hindrances include the immunosuppressive nature of solid tumors, impaired tumor infiltration, lack of qualified tumor-associated antigens, and compromised stimulation and persistence of CAR-Ts following administration. Over the past years, researchers have made arduous attempts to apply CAR-T therapy to ovarian cancer. In this review, we outline the principles of CAR-T therapy and then highlight its limitations in the context of solid tumors. Ultimately, we focus on preclinical and clinical findings achieved in CAR-T-mediated targeting of different ovarian cancer-associated target antigens.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Khadijeh Farrokhi
- Department of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maral Mahboubi Kancha
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Setareh Dashti Shokoohi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Silveira CRF, Corveloni AC, Caruso SR, Macêdo NA, Brussolo NM, Haddad F, Fernandes TR, de Andrade PV, Orellana MD, Guerino-Cunha RL. Cytokines as an important player in the context of CAR-T cell therapy for cancer: Their role in tumor immunomodulation, manufacture, and clinical implications. Front Immunol 2022; 13:947648. [PMID: 36172343 PMCID: PMC9512053 DOI: 10.3389/fimmu.2022.947648] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
CAR-T cell therapies have been recognized as one of the most advanced and efficient strategies to treat patients with hematologic malignancies. However, similar results have not been observed for the treatment of solid tumors. One of the explanations is the fact that tumors have extremely hostile microenvironments for the infiltration and effector activity of T-cells, mainly due to the presence of highly suppressive cytokines, hypoxia, and reactive oxygen species. Taking advantage of cytokines functionally, new fourth-generation CAR constructs have been developed to target tumor cells and additionally release cytokines that can contribute to the cytotoxicity of T-cells. The manufacturing process, including the use of cytokines in the expansion and differentiation of T cells, is also discussed. Finally, the clinical aspects and the influence of cytokines on the clinical condition of patients, such as cytokine release syndrome, who receive treatment with CAR-T cells are addressed. Therefore, this review aims to highlight how important cytokines are as one of the major players of cell therapy.
Collapse
Affiliation(s)
| | | | - Sâmia Rigotto Caruso
- Cell Therapy Laboratory, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
| | - Nathália Araújo Macêdo
- Advanced Cellular Therapy Laboratory, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
| | | | - Felipe Haddad
- Advanced Cellular Therapy Laboratory, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
| | | | - Pamela Viani de Andrade
- Advanced Cellular Therapy Laboratory, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
| | | | - Renato Luiz Guerino-Cunha
- Advanced Cellular Therapy Laboratory, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
- Department of Medical Images, Hematology and Clinical Oncology, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Renato Luiz Guerino-Cunha,
| |
Collapse
|
10
|
Xiao X, Wang Y, Zou Z, Yang Y, Wang X, Xin X, Tu S, Li Y. Combination strategies to optimize the efficacy of chimeric antigen receptor T cell therapy in haematological malignancies. Front Immunol 2022; 13:954235. [PMID: 36091028 PMCID: PMC9460961 DOI: 10.3389/fimmu.2022.954235] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the therapeutic landscape of haematological malignancies. However, resistance and relapse remain prominent limitations, and they are related to the limited persistence and efficacy of CAR T cells, downregulation or loss of tumour antigens, intrinsic resistance of tumours to death signalling, and immune suppressive microenvironment. Rational combined modality treatments are regarded as a promising strategy to further unlock the antitumor potential of CAR T cell therapy, which can be applied before CAR T cell infusion as a conditioning regimen or in ex vivo culture settings as well as concomitant with or after CAR T cell infusion. In this review, we summarize the combinatorial strategies, including chemotherapy, radiotherapy, haematopoietic stem cell transplantation, targeted therapies and other immunotherapies, in an effort to further enhance the effectiveness of this impressive therapy and benefit more patients.
Collapse
Affiliation(s)
- Xinyi Xiao
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yazhuo Wang
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Zhengbang Zou
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yufei Yang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyu Wang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Xin
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sanfang Tu
- Department of Haematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Sanfang Tu, ; Yuhua Li,
| | - Yuhua Li
- Department of Haematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China,*Correspondence: Sanfang Tu, ; Yuhua Li,
| |
Collapse
|
11
|
Watanabe N, Mo F, McKenna MK. Impact of Manufacturing Procedures on CAR T Cell Functionality. Front Immunol 2022; 13:876339. [PMID: 35493513 PMCID: PMC9043864 DOI: 10.3389/fimmu.2022.876339] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
The field of chimeric antigen receptor (CAR) modified T cell therapy has rapidly expanded in the past few decades. As of today, there are six CAR T cell products that have been approved by the FDA: KYMRIAH (tisagenlecleucel, CD19 CAR T cells), YESCARTA (axicabtagene ciloleucel, CD19 CAR T cells), TECARTUS (brexucabtagene autoleucel, CD19 CAR T cells), BREYANZI (lisocabtagene maraleucel, CD19 CAR T cells), ABECMA (idecabtagene vicleucel, BCMA CAR T cells) and CARVYKTI (ciltacabtagene autoleucel, BCMA CAR T cells). With this clinical success, CAR T cell therapy has become one of the most promising treatment options to combat cancers. Current research efforts focus on further potentiating its efficacy in non-responding patients and solid tumor settings. To achieve this, recent evidence suggested that, apart from developing next-generation CAR T cells with additional genetic modifications, ex vivo culture conditions could significantly impact CAR T cell functionality - an often overlooked aspect during clinical translation. In this review, we focus on the ex vivo manufacturing process for CAR T cells and discuss how it impacts CAR T cell function.
Collapse
Affiliation(s)
- Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Feiyan Mo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mary Kathryn McKenna
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
12
|
Marton C, Mercier-Letondal P, Galaine J, Godet Y. An unmet need: Harmonization of IL-7 and IL-15 combination for the ex vivo generation of minimally differentiated T cells. Cell Immunol 2021; 363:104314. [PMID: 33677140 DOI: 10.1016/j.cellimm.2021.104314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 11/29/2022]
Abstract
T cell-based adoptive cell transfer therapy is now clinically used to fight cancer with CD19-targeting chimeric antigen receptor T cells. The use of other T cell-based immunotherapies relying on antigen-specific T cells, genetically modified or not, is expanding in various neoplastic diseases. T cell manufacturing has evolved through sophisticated processes to produce T cells with improved therapeutic potential. Clinical-grade manufacturing processes associated with these therapies must meet pharmaceutical requirements and therefore be standardized. Here, we focus on the use of cytokines to expand minimally differentiated T cells, as well as their standardization and harmonization in research and clinical settings.
Collapse
Affiliation(s)
- Chrystel Marton
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.
| | - Patricia Mercier-Letondal
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Jeanne Galaine
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Yann Godet
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.
| |
Collapse
|
13
|
Chimeric antigen receptor therapy in hematological malignancies: antigenic targets and their clinical research progress. Ann Hematol 2020; 99:1681-1699. [PMID: 32388608 DOI: 10.1007/s00277-020-04020-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/02/2020] [Indexed: 12/20/2022]
Abstract
Chimeric antigen receptor (CAR)-based immunotherapy has achieved dramatic success in the treatment of B cell malignancies, based on the summary of current research data, and has shown good potential in early phase cancer clinical trials. Modified constructs are being optimized to recognize and destroy tumor cells more effectively. By targeting the proper B-lineage-specific antigens such as CD19 and CD20, adoptive immunotherapy has demonstrated promising clinical results and already plays a role in the treatment of several lymphoid malignancies, which highlights the importance of target selection for other CAR therapies. The high efficacy of CAR-T cells has resulted in the approval of anti-CD19-directed CAR-T cells for the treatment of B cell malignancies. In this review, we focus on the basic structure and current clinical application of CAR-T cells, detail the research progress of CAR-T for different antigenic targets in hematological malignancies, and further discuss the current barriers and proposed solutions, investigating the possible mechanisms of recurrence of CAR-T cell therapy. A summary of the paper is also given to overview as the prospects for this therapy.
Collapse
|
14
|
T-cell receptor and chimeric antigen receptor in solid cancers: current landscape, preclinical data and insight into future developments. Curr Opin Oncol 2020; 31:430-438. [PMID: 31335828 DOI: 10.1097/cco.0000000000000562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW The remarkable and durable clinical responses seen in certain solid tumours using checkpoint inhibitors and in haematological malignancies using chimeric antigen receptor (CAR) T therapy have led to great interest in the possibility of using engineered T-cell receptor (TCR) and CAR T therapies to treat solid tumours. RECENT FINDINGS In this article, we focus on the published clinical data for engineered TCR and CAR T therapy in solid tumours and recent preclinical work to explore how these therapies may develop and improve. We discuss recent approaches in target selection, encouraging epitope spreading and replicative capacity, CAR activation, T-cell trafficking, survival in the immunosuppressive microenvironment, universal T-cell therapies, manufacturing processes and managing toxicity. SUMMARY In haematological malignancies, CAR T treatments have shown remarkable clinical responses. Engineered TCR and CAR therapies demonstrate responses in numerous preclinical models of solid tumours and have shown objective clinical responses in select solid tumour types. It is anticipated that the integration of efficacious changes to the T-cell products from disparate preclinical experiments will increase the ability of T-cell therapies to overcome the challenges of treating solid tumours and note that healthcare facilities will need to adapt to deliver these treatments.
Collapse
|
15
|
Zhang Q, Ding J, Sun S, Liu H, Lu M, Wei X, Gao X, Zhang X, Fu Q, Zheng J. Akt inhibition at the initial stage of CAR-T preparation enhances the CAR-positive expression rate, memory phenotype and in vivo efficacy. Am J Cancer Res 2019; 9:2379-2396. [PMID: 31815041 PMCID: PMC6895454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023] Open
Abstract
The adoptive transfer of chimeric antigen receptor-modified T (CAR-T) cells is a novel cancer treatment that has led to encouraging breakthroughs in the treatment of haematological malignancies. The efficacy of infused CAR-T cells is associated with a high CAR-positive expression rate, a strong proliferative response and the persistence of CAR-T cells in vivo. Manufacturing CAR-T cells is a process usually associated with the decreased CAR-positive expression rate and terminal differentiation of the infused CAR-T cells, which causes decreased proliferation and persistence of CAR-T cells in vivo. Therefore, the preparation of a high CAR-positive expression rate and few differentiated CAR-T cells is particularly important for clinical cancer treatment. In this study, we transduced and expanded CAR-T cells targeting the epithelial cell adhesion molecule (EpCAM) in the presence of an Akt inhibitor (MK2206) during the initial stage of CAR-T cell preparation. We show that the Akt inhibitor did not suppress the proliferation or effector function of the EpCAM-CAR-T cells but increased the CAR-positive expression rate and decreased the number of terminally differentiated EpCAM-CAR-T cells. Furthermore, EpCAM-CAR-T cells prepared using this protocol appeared to have enhanced antitumor activity in vivo. Taken together, these findings suggest that Akt inhibition during the initial stage of CAR-T cell preparation could improve the performance of CAR-T cells.
Collapse
Affiliation(s)
- Qing Zhang
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
| | - Jiage Ding
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
| | - Shishuo Sun
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
| | - Hongyan Liu
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- The Second People’s Hospital of LianyungangLianyungang, Jiangsu, P. R. China
| | - Mengmeng Lu
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
| | - Xiaohuan Wei
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
| | - Xiaoge Gao
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
| | - Xiaokang Zhang
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
| | - Qiang Fu
- Department of Immunology, Binzhou Medical UniversityYantai, Shandong, P. R. China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
| |
Collapse
|
16
|
Baybutt TR, Flickinger JC, Caparosa EM, Snook AE. Advances in Chimeric Antigen Receptor T-Cell Therapies for Solid Tumors. Clin Pharmacol Ther 2019; 105:71-78. [PMID: 30406956 DOI: 10.1002/cpt.1280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/01/2018] [Indexed: 12/27/2022]
Abstract
In 2017, the US Food and Drug Administration approved the first two novel cellular immunotherapies using synthetic, engineered receptors known as chimeric antigen receptors (CARs), tisagenlecleucel (Kymriah) and axicabtagene ciloleucel (Yescarta), expressed by patient-derived T cells for the treatment of hematological malignancies expressing the B-cell surface antigen CD19 in both pediatric and adult patients. This approval marked a major milestone in the use of antigen-directed "living drugs" for the treatment of relapsed or refractory blood cancers, and with these two approvals, there is increased impetus to expand not only the target antigens but also the tumor types that can be targeted. This state-of-the-art review will focus on the challenges, advances, and novel approaches being used to implement CAR T-cell immunotherapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Trevor R Baybutt
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ellen M Caparosa
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Gong W, Hoffmann JM, Stock S, Wang L, Liu Y, Schubert ML, Neuber B, Hückelhoven-Krauss A, Gern U, Schmitt A, Müller-Tidow C, Shiku H, Schmitt M, Sellner L. Comparison of IL-2 vs IL-7/IL-15 for the generation of NY-ESO-1-specific T cells. Cancer Immunol Immunother 2019; 68:1195-1209. [PMID: 31177329 PMCID: PMC11028180 DOI: 10.1007/s00262-019-02354-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/03/2019] [Indexed: 01/13/2023]
Abstract
The anti-tumor efficacy of TCR-engineered T cells in vivo depends largely on less-differentiated subsets such as T cells with naïve-like T cell (TN) phenotypes with greater expansion and long-term persistence. To increase these subsets, we compared the generation of New York esophageal squamous cell carcinoma-1 (NY-ESO-1)-specific T cells under supplementation with either IL-2 or IL-7/IL-15. PBMCs were transduced with MS3II-NY-ESO-1-siTCR retroviral vector. T cell generation was adapted from a CD19-specific CART cell production protocol. Comparable results in viability, expansion and transduction efficiency of T cells under stimulation with either IL-2 or IL-7/IL-15 were observed. IL-7/IL-15 led to an increase of CD4+ T cells and a decrease of CD8+ T cells, enriched the amount of TN among CD4+ T cells but not among CD8+ T cells. In a 51Cr release assay, similar specific lysis of NY-ESO-1-positive SW982 sarcoma cells was achieved. However, intracellular cytokine staining revealed a significantly increased production of IFN-γ and TNF-α in T cells generated by IL-2 stimulation. To validate these unexpected findings, NY-ESO-1-specific T cell production was evaluated in another protocol originally established for TCR-engineered T cells. IL-7/IL-15 increased the proportion of TN. However, the absolute number of TN did not increase due to a significantly slower expansion of T cells with IL-7/IL-15. In conclusion, IL-7/IL-15 does not seem to be superior to IL-2 for the generation of NY-ESO-1-specific T cells. This is in sharp contrast to the observations in CD19-specific CART cells. Changes of cytokine cocktails should be carefully evaluated for individual vector systems.
Collapse
Affiliation(s)
- Wenjie Gong
- Cellular Immunotherapy Unit, Department of Internal Medicine V, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Jean-Marc Hoffmann
- Cellular Immunotherapy Unit, Department of Internal Medicine V, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Sophia Stock
- Cellular Immunotherapy Unit, Department of Internal Medicine V, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Lei Wang
- Cellular Immunotherapy Unit, Department of Internal Medicine V, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Yibin Liu
- Cellular Immunotherapy Unit, Department of Internal Medicine V, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Maria-Luisa Schubert
- Cellular Immunotherapy Unit, Department of Internal Medicine V, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Brigitte Neuber
- Cellular Immunotherapy Unit, Department of Internal Medicine V, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Angela Hückelhoven-Krauss
- Cellular Immunotherapy Unit, Department of Internal Medicine V, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Ulrike Gern
- Cellular Immunotherapy Unit, Department of Internal Medicine V, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Anita Schmitt
- Cellular Immunotherapy Unit, Department of Internal Medicine V, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Cellular Immunotherapy Unit, Department of Internal Medicine V, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University, Tsu, Japan
| | - Michael Schmitt
- Cellular Immunotherapy Unit, Department of Internal Medicine V, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Leopold Sellner
- Cellular Immunotherapy Unit, Department of Internal Medicine V, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
18
|
Lu YJ, Chu H, Wheeler LW, Nelson M, Westrick E, Matthaei JF, Cardle II, Johnson A, Gustafson J, Parker N, Vetzel M, Xu LC, Wang EZ, Jensen MC, Klein PJ, Low PS, Leamon CP. Preclinical Evaluation of Bispecific Adaptor Molecule Controlled Folate Receptor CAR-T Cell Therapy With Special Focus on Pediatric Malignancies. Front Oncol 2019; 9:151. [PMID: 30941303 PMCID: PMC6433934 DOI: 10.3389/fonc.2019.00151] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has transformed pediatric oncology by producing high remission rates and potent effects in CD19+ B-cell malignancies. This scenario is ideal as CD19 expression is homogeneous and human blood provides a favorable environment for CAR-T cells to thrive and destroy cancer cells (along with normal B cells). Yet, CAR-T cell therapies for solid tumors remain challenged by fewer tumor targets and poor CAR-T cell performances in a hostile tumor microenvironment. For acute myeloid leukemia and childhood solid tumors such as osteosarcoma, the primary treatment is systemic chemotherapy that often falls short of expectation especially for relapsed and refractory conditions. We aim to develop a CAR-T adaptor molecule (CAM)-based therapy that uses a bispecific small-molecule ligand EC17, fluorescein isothiocyanate (FITC) conjugated with folic acid, to redirect FITC-specific CAR-T cells against folate receptor (FR)-positive tumors. As previously confirmed in rodents as well as in human clinical studies, EC17 penetrates solid tumors within minutes and is retained due to high affinity for the FR, whereas unbound EC17 rapidly clears from the blood and from receptor-negative tissues. When combined with a rationally designed CAR construct, EC17 CAM was shown to trigger CAR-modified T cell activation and cytolytic activity with a low FR threshold against tumor targets. However, maximal cytolytic potential correlated with (i) functional FR levels (in a semi-log fashion), (ii) the amount of effector cells present, and (iii) tumors' natural sensitivity to T cell mediated killing. In tumor-bearing mice, administration of EC17 CAM was the key to drive CAR-T cell activation, proliferation, and persistence against FR+ pediatric hematologic and solid tumors. In our modeling systems, cytokine release syndrome (CRS) was induced under specific conditions, but the risk of severe CRS could be easily mitigated or prevented by applying intermittent dosing and/or dose-titration strategies for the EC17 CAM. Our approach offers the flexibility of antigen control, prevents T cell exhaustion, and provides additional safety mechanisms including rapid reversal of severe CRS with intravenous sodium fluorescein. In this paper, we summarize the translational aspects of our technology in support of clinical development.
Collapse
Affiliation(s)
| | - Haiyan Chu
- Endocyte, Inc., West Lafayette, IN, United States
| | | | | | | | - James F Matthaei
- Ben Towne Center for Childhood Cancer Research (BTCCCR), Seattle Children's Research Institute, Seattle, WA, United States
| | - Ian I Cardle
- Ben Towne Center for Childhood Cancer Research (BTCCCR), Seattle Children's Research Institute, Seattle, WA, United States
| | - Adam Johnson
- Ben Towne Center for Childhood Cancer Research (BTCCCR), Seattle Children's Research Institute, Seattle, WA, United States
| | - Joshua Gustafson
- Ben Towne Center for Childhood Cancer Research (BTCCCR), Seattle Children's Research Institute, Seattle, WA, United States
| | - Nikki Parker
- Endocyte, Inc., West Lafayette, IN, United States
| | | | - Le-Cun Xu
- Endocyte, Inc., West Lafayette, IN, United States
| | | | - Michael C Jensen
- Ben Towne Center for Childhood Cancer Research (BTCCCR), Seattle Children's Research Institute, Seattle, WA, United States
| | | | - Philip S Low
- Endocyte, Inc., West Lafayette, IN, United States.,Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | | |
Collapse
|
19
|
Dwivedi A, Karulkar A, Ghosh S, Rafiq A, Purwar R. Lymphocytes in Cellular Therapy: Functional Regulation of CAR T Cells. Front Immunol 2019; 9:3180. [PMID: 30713539 PMCID: PMC6345708 DOI: 10.3389/fimmu.2018.03180] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/27/2018] [Indexed: 12/30/2022] Open
Abstract
Lymphocytes especially autologous T cells have been used for the treatment of numerous indications including cancers, autoimmune disorders and infectious diseases. Very recently, FDA approved Chimeric Antigen Receptor T cells (CAR T cells) therapy for relapse and refractory CD19+ B cell acute lymphoblastic leukemia (r/r B-ALL) and r/r diffuse large B cell lymphoma (r/r DLBCL) upon their remarkable success in multiple Phase I-II clinical trials. While CAR T cells are considered as major breakthrough in the field of cancer immunotherapy, the regulation of CAR T cells remains poorly understood. In this review we will discuss the strategies that regulate the CAR T cells efficacy and persistence with focus on roles of different structural component of CAR construct. Different domains of CAR construct, for example, antigen binding domain, hinge, transmembrane, and signaling domain as well as immune-regulatory cytokines have significant impact on CAR T cell efficacy. Finally, this review will highlight the strategies that will promote CAR T cells efficacy and will reduce the toxicity.
Collapse
Affiliation(s)
- Alka Dwivedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Atharva Karulkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sarbari Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Afrin Rafiq
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rahul Purwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
20
|
Tokarew N, Ogonek J, Endres S, von Bergwelt-Baildon M, Kobold S. Teaching an old dog new tricks: next-generation CAR T cells. Br J Cancer 2019; 120:26-37. [PMID: 30413825 PMCID: PMC6325111 DOI: 10.1038/s41416-018-0325-1] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023] Open
Abstract
Adoptive T cell therapy (ACT) refers to the therapeutic use of T cells. T cells genetically engineered to express chimeric antigen receptors (CAR) constitute the most clinically advanced form of ACT approved to date for the treatment of CD19-positive leukaemias and lymphomas. CARs are synthetic receptors that are able to confer antigen-binding and activating functions on T cells with the aim of therapeutically targeting cancer cells. Several factors are essential for CAR T cell therapy to be effective, such as recruitment, activation, expansion and persistence of bioengineered T cells at the tumour site. Despite the advances made in CAR T cell therapy, however, most tumour entities still escape immune detection and elimination. A number of strategies counteracting these problems will need to be addressed in order to render T cell therapy effective in more situations than currently possible. Non-haematological tumours are also the subject of active investigation, but ACT has so far shown only marginal success rates in these cases. New approaches are needed to enhance the ability of ACT to target solid tumours without increasing toxicity, by improving recognition, infiltration, and persistence within tumours, as well as an enhanced resistance to the suppressive tumour microenvironment.
Collapse
Affiliation(s)
- Nicholas Tokarew
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Justyna Ogonek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | | | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany.
| |
Collapse
|
21
|
Sharma P, Debinski W. Receptor-Targeted Glial Brain Tumor Therapies. Int J Mol Sci 2018; 19:E3326. [PMID: 30366424 PMCID: PMC6274942 DOI: 10.3390/ijms19113326] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022] Open
Abstract
Among primary brain tumors, malignant gliomas are notably difficult to manage. The higher-grade tumors represent an unmet need in medicine. There have been extensive efforts to implement receptor-targeted therapeutic approaches directed against gliomas. These approaches include immunotherapies, such as vaccines, adoptive immunotherapy, and passive immunotherapy. Targeted cytotoxic radio energy and pro-drug activation have been designed specifically for brain tumors. The field of targeting through receptors progressed significantly with the discovery of an interleukin 13 receptor alpha 2 (IL-13RA2) as a tumor-associated receptor over-expressed in most patients with glioblastoma (GBM) but not in normal brain. IL-13RA2 has been exploited in novel experimental therapies with very encouraging clinical responses. Other receptors are specifically over-expressed in many patients with GBM, such as EphA2 and EphA3 receptors, among others. These findings are important in view of the heterogeneity of GBM tumors and multiple tumor compartments responsible for tumor progression and resistance to therapies. The combined targeting of multiple receptors in different tumor compartments should be a preferred way to design novel receptor-targeted therapeutic approaches in gliomas.
Collapse
Affiliation(s)
- Puja Sharma
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Waldemar Debinski
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
22
|
Rytel L. The Influence of Bisphenol A (BPA) on Neuregulin 1-Like Immunoreactive Nerve Fibers in the Wall of Porcine Uterus. Int J Mol Sci 2018; 19:ijms19102962. [PMID: 30274171 PMCID: PMC6213500 DOI: 10.3390/ijms19102962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Bisphenol A (BPA), a substance commonly used in the manufacture of plastics, shows multidirectional negative effects on humans and animals. Due to similarities to estrogens, BPA initially leads to disorders in the reproductive system. On the other hand, it is known that neuregulin 1 (NRG-1) is an active substance which enhances the survivability of cells, inhibits apoptosis, and protects tissues against damaging factors. Because the influence of BPA on the nervous system has also been described, the aim of the present study was to investigate for the first time the influence of various doses of BPA on neuregulin 1-like immunoreactive (NRG-1-LI) nerves located in the porcine uterus using the routine single- and double-immunofluorescence technique. The obtained results have shown that BPA increases the number and affects the neurochemical characterization of NRG-1-LI in the uterus, and changes are visible even under the impact of small doses of this toxin. The character of observed changes depended on the dose of BPA and the part of the uterus studied. These observations suggest that NRG-1 in nerves supplying the uterus may play roles in adaptive and protective mechanisms under the impact of BPA.
Collapse
Affiliation(s)
- Liliana Rytel
- Department of Internal Disease with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 14, 10-719 Olsztyn, Poland.
| |
Collapse
|
23
|
McCloskey CW, Rodriguez GM, Galpin KJC, Vanderhyden BC. Ovarian Cancer Immunotherapy: Preclinical Models and Emerging Therapeutics. Cancers (Basel) 2018; 10:cancers10080244. [PMID: 30049987 PMCID: PMC6115831 DOI: 10.3390/cancers10080244] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has emerged as one of the most promising approaches for ovarian cancer treatment. The tumor microenvironment (TME) is a key factor to consider when stimulating antitumoral responses as it consists largely of tumor promoting immunosuppressive cell types that attenuate antitumor immunity. As our understanding of the determinants of the TME composition grows, we have begun to appreciate the need to address both inter- and intra-tumor heterogeneity, mutation/neoantigen burden, immune landscape, and stromal cell contributions. The majority of immunotherapy studies in ovarian cancer have been performed using the well-characterized murine ID8 ovarian carcinoma model. Numerous other animal models of ovarian cancer exist, but have been underutilized because of their narrow initial characterizations in this context. Here, we describe animal models that may be untapped resources for the immunotherapy field because of their shared genomic alterations and histopathology with human ovarian cancer. We also shed light on the strengths and limitations of these models, and the knowledge gaps that need to be addressed to enhance the utility of preclinical models for testing novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
24
|
Han Y, Xie W, Song DG, Powell DJ. Control of triple-negative breast cancer using ex vivo self-enriched, costimulated NKG2D CAR T cells. J Hematol Oncol 2018; 11:92. [PMID: 29980239 PMCID: PMC6035420 DOI: 10.1186/s13045-018-0635-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is an aggressive disease that currently lacks effective targeted therapy. NKG2D ligands (NKG2DLs) are expressed on various tumor types and immunosuppressive cells within tumor microenvironments, providing suitable targets for cancer therapy. Methods We applied a chimeric antigen receptor (CAR) approach for the targeting of NKG2DLs expressed on human TNBCs. Lentiviral vectors were used to express the extracellular domain of human NKG2D that binds various NKG2DLs, fused to signaling domains derived from T cell receptor CD3 zeta alone or with CD27 or 4-1BB (CD137) costimulatory domain. Results Interleukin-2 (IL-2) promoted the expansion and self-enrichment of NKG2D-redirected CAR T cells in vitro. High CD25 expression on first-generation NKG2D CAR T cells was essential for the self-enrichment effect in the presence of IL-2, but not for CARs containing CD27 or 4-1BB domains. Importantly, self-enriched NKG2D CAR T cells effectively recognized and eliminated TNBC cell lines in vitro, and adoptive transfer of T cells expressing NKG2D CARs with CD27 or 4-1BB specifically enhanced NKG2D CAR surface expression, T cell persistence, and the regression of established MDA-MB-231 TNBC in vivo. NKG2D-z CAR T cells lacking costimulatory domains were less effective, highlighting the need for costimulatory signals. Conclusions These results demonstrate that CD27 or 4-1BB costimulated, self-enriched NKG2D CAR-redirected T cells mediate anti-tumor activity against TNBC tumor, which represent a promising immunotherapeutic approach to TNBC treatment. Electronic supplementary material The online version of this article (10.1186/s13045-018-0635-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yali Han
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Smilow CTR, Philadelphia, PA, 19104, USA.,Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Wei Xie
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Smilow CTR, Philadelphia, PA, 19104, USA.,Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - De-Gang Song
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Smilow CTR, Philadelphia, PA, 19104, USA. .,Present address: Janssen R&D, LLC, 1400 McKean Road, Spring House, PA, 19477, USA.
| | - Daniel J Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Smilow CTR, Philadelphia, PA, 19104, USA. .,Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Rm 8-103 Smilow CTR, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
Magee MS, Abraham TS, Baybutt TR, Flickinger JC, Ridge NA, Marszalowicz GP, Prajapati P, Hersperger AR, Waldman SA, Snook AE. Human GUCY2C-Targeted Chimeric Antigen Receptor (CAR)-Expressing T Cells Eliminate Colorectal Cancer Metastases. Cancer Immunol Res 2018; 6:509-516. [PMID: 29615399 DOI: 10.1158/2326-6066.cir-16-0362] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 11/03/2017] [Accepted: 03/22/2018] [Indexed: 12/22/2022]
Abstract
One major hurdle to the success of adoptive T-cell therapy is the identification of antigens that permit effective targeting of tumors in the absence of toxicities to essential organs. Previous work has demonstrated that T cells engineered to express chimeric antigen receptors (CAR-T cells) targeting the murine homolog of the colorectal cancer antigen GUCY2C treat established colorectal cancer metastases, without toxicity to the normal GUCY2C-expressing intestinal epithelium, reflecting structural compartmentalization of endogenous GUCY2C to apical membranes comprising the intestinal lumen. Here, we examined the utility of a human-specific, GUCY2C-directed single-chain variable fragment as the basis for a CAR construct targeting human GUCY2C-expressing metastases. Human GUCY2C-targeted murine CAR-T cells promoted antigen-dependent T-cell activation quantified by activation marker upregulation, cytokine production, and killing of GUCY2C-expressing, but not GUCY2C-deficient, cancer cells in vitro GUCY2C CAR-T cells provided long-term protection against lung metastases of murine colorectal cancer cells engineered to express human GUCY2C in a syngeneic mouse model. GUCY2C murine CAR-T cells recognized and killed human colorectal cancer cells endogenously expressing GUCY2C, providing durable survival in a human xenograft model in immunodeficient mice. Thus, we have identified a human GUCY2C-specific CAR-T cell therapy approach that may be developed for the treatment of GUCY2C-expressing metastatic colorectal cancer. Cancer Immunol Res; 6(5); 509-16. ©2018 AACR.
Collapse
Affiliation(s)
- Michael S Magee
- Bluebird Bio, Cambridge, Massachusetts.,Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Tara S Abraham
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Trevor R Baybutt
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Natalie A Ridge
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Glen P Marszalowicz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Priyanka Prajapati
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam R Hersperger
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
26
|
Ptáčková P, Musil J, Štach M, Lesný P, Němečková Š, Král V, Fábry M, Otáhal P. A new approach to CAR T-cell gene engineering and cultivation using piggyBac transposon in the presence of IL-4, IL-7 and IL-21. Cytotherapy 2018; 20:507-520. [PMID: 29475789 DOI: 10.1016/j.jcyt.2017.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/20/2017] [Accepted: 10/06/2017] [Indexed: 10/25/2022]
Abstract
BACKGROUND AIMS Clinical-grade chimeric antigenic receptor (CAR)19 T cells are routinely manufactured by lentiviral/retroviral (LV/RV) transduction of an anti-CD3/CD28 activated T cells, which are then propagated in a culture medium supplemented with interleukin (IL)-2. The use of LV/RVs for T-cell modification represents a manufacturing challenge due to the complexity of the transduction approach and the necessity of thorough quality control. METHODS We present here a significantly improved protocol for CAR19 T-cell manufacture that is based on the electroporation of peripheral blood mononuclear cells with plasmid DNA encoding the piggyBac transposon/transposase vectors and their cultivation in the presence of cytokines IL-4, IL-7 and IL-21. RESULTS We found that activation of the CAR receptor by either its cognate ligand (i.e., CD19 expressed on the surface of B cells) or anti-CAR antibody, followed by cultivation in the presence of cytokines IL-4 and IL-7, enables strong and highly selective expansion of functional CAR19 T cells, resulting in >90% CAR+ T cells. Addition of cytokine IL-21 to the mixture of IL-4 and IL-7 supported development of immature CAR19 T cells with central memory and stem cell memory phenotypes and expressing very low amounts of inhibitory receptors PD-1, LAG-3 and TIM-3. CONCLUSIONS Our protocol provides a simple and cost-effective method for engineering high-quality T cells for adoptive therapies.
Collapse
Affiliation(s)
- Pavlína Ptáčková
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jan Musil
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Martin Štach
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Petr Lesný
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Šárka Němečková
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Vlastimil Král
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Otáhal
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic; Department of Hematology, First Faculty of Medicine and General University Hospital, Prague, Czech Republic.
| |
Collapse
|
27
|
Hoffmann JM, Schubert ML, Wang L, Hückelhoven A, Sellner L, Stock S, Schmitt A, Kleist C, Gern U, Loskog A, Wuchter P, Hofmann S, Ho AD, Müller-Tidow C, Dreger P, Schmitt M. Differences in Expansion Potential of Naive Chimeric Antigen Receptor T Cells from Healthy Donors and Untreated Chronic Lymphocytic Leukemia Patients. Front Immunol 2018; 8:1956. [PMID: 29375575 PMCID: PMC5767585 DOI: 10.3389/fimmu.2017.01956] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
Introduction Therapy with chimeric antigen receptor T (CART) cells for hematological malignancies has shown promising results. Effectiveness of CART cells may depend on the ratio of naive (TN) vs. effector (TE) T cells, TN cells being responsible for an enduring antitumor activity through maturation. Therefore, we investigated factors influencing the TN/TE ratio of CART cells. Materials and methods CART cells were generated upon transduction of peripheral blood mononuclear cells with a CD19.CAR-CD28-CD137zeta third generation retroviral vector under two different stimulating culture conditions: anti-CD3/anti-CD28 antibodies adding either interleukin (IL)-7/IL-15 or IL-2. CART cells were maintained in culture for 20 days. We evaluated 24 healthy donors (HDs) and 11 patients with chronic lymphocytic leukemia (CLL) for the composition of cell subsets and produced CART cells. Phenotype and functionality were tested using flow cytometry and chromium release assays. Results IL-7/IL-15 preferentially induced differentiation into TN, stem cell memory (TSCM: naive CD27+ CD95+), CD4+ and CXCR3+ CART cells, while IL-2 increased effector memory (TEM), CD56+ and CD4+ T regulatory (TReg) CART cells. The net amplification of different CART subpopulations derived from HDs and untreated CLL patients was compared. Particularly the expansion of CD4+ CARTN cells differed significantly between the two groups. For HDs, this subtype expanded >60-fold, whereas CD4+ CARTN cells of untreated CLL patients expanded less than 10-fold. Expression of exhaustion marker programmed cell death 1 on CARTN cells on day 10 of culture was significantly higher in patient samples compared to HD samples. As the percentage of malignant B cells was expectedly higher within patient samples, an excessive amount of B cells during culture could account for the reduced expansion potential of CARTN cells in untreated CLL patients. Final TN/TE ratio stayed <0.3 despite stimulation condition for patients, whereas this ratio was >2 in samples from HDs stimulated with IL-7/IL-15, thus demonstrating efficient CARTN expansion. Conclusion Untreated CLL patients might constitute a challenge for long-lasting CART effects in vivo since only a low number of TN among the CART product could be generated. Depletion of malignant B cells before starting CART production might be considered to increase the TN/TE ratio within the CART product.
Collapse
Affiliation(s)
- Jean-Marc Hoffmann
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Maria-Luisa Schubert
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Lei Wang
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Angela Hückelhoven
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Leopold Sellner
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sophia Stock
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Anita Schmitt
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Kleist
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Ulrike Gern
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Patrick Wuchter
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Susanne Hofmann
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Anthony D Ho
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carsten Müller-Tidow
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Peter Dreger
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Michael Schmitt
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
28
|
Rosewell Shaw A, Porter CE, Watanabe N, Tanoue K, Sikora A, Gottschalk S, Brenner MK, Suzuki M. Adenovirotherapy Delivering Cytokine and Checkpoint Inhibitor Augments CAR T Cells against Metastatic Head and Neck Cancer. Mol Ther 2017; 25:2440-2451. [PMID: 28974431 DOI: 10.1016/j.ymthe.2017.09.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022] Open
Abstract
In solid tumors, chimeric antigen receptor (CAR)-modified T cells must overcome the challenges of the immunosuppressive tumor microenvironment. We hypothesized that pre-treating tumors with our binary oncolytic adenovirus (CAd), which produces local oncolysis and expresses immunostimulatory molecules, would enhance the antitumor activity of HER2-specific CAR T cells, which alone are insufficient to cure solid tumors. We tested multiple cytokines in conjunction with PD-L1-blocking antibody and found that Ad-derived IL-12p70 prevents the loss of HER2.CAR-expressing T cells at the tumor site. Accordingly, we created a construct encoding the PD-L1-blocking antibody and IL-12p70 (CAd12_PDL1). In head and neck squamous cell carcinoma (HNSCC) xenograft models, combining local treatment with CAd12_PDL1 and systemic HER2.CAR T cell infusion improved survival to >100 days compared with approximately 25 days with either approach alone. This combination also controlled both primary and metastasized tumors in an orthotopic model of HNSCC. Overall, our data show that CAd12_PDL1 augments the anti-tumor effects of HER2.CAR T cells, thus controlling the growth of both primary and metastasized tumors.
Collapse
Affiliation(s)
- Amanda Rosewell Shaw
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Caroline E Porter
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Norihiro Watanabe
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Kiyonori Tanoue
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Andrew Sikora
- Department of Otolaryngology, Baylor College of Medicine, Houston, TX, USA
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm K Brenner
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Masataka Suzuki
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
29
|
New approaches for the enhancement of chimeric antigen receptors for the treatment of HIV. Transl Res 2017; 187:83-92. [PMID: 28755872 DOI: 10.1016/j.trsl.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/30/2017] [Accepted: 07/08/2017] [Indexed: 12/20/2022]
Abstract
HIV infection continues to be a life-long chronic disease in spite of the success of antiretroviral therapy (ART) in controlling viral replication and preventing disease progression. However, because of the high cost of treatment, severe side effects, and inefficiency in curing the disease with ART, there is a call for alternative therapies that will provide a functional cure for HIV. Cytotoxic T lymphocytes (CTLs) are vital in the control and clearance of viral infections and therefore immune-based therapies have attempted to engineer HIV-specific CTLs that would be able to clear the infection from the body. The development of chimeric antigen receptors (CARs) provides an opportunity to engineer superior HIV-specific CTLs that will be independent of the major histocompatibility complex for target recognition. A CD4-based CAR has been previously tested in clinical trials to test the antiviral efficacy of peripheral T cells armed with this CD4-based CAR. The results from these clinical trials showed the safety and feasibility of CAR T cell therapy for HIV infection; however, minimal antiviral efficacy was seen. In this review, we will discuss the various strategies being developed to enhance the therapeutic potency of anti-HIV CARs with the goal of generating superior antiviral responses that will lead to life-long HIV immunity and clearance of the virus from the body.
Collapse
|
30
|
Jaspers JE, Brentjens RJ. Development of CAR T cells designed to improve antitumor efficacy and safety. Pharmacol Ther 2017; 178:83-91. [PMID: 28342824 DOI: 10.1016/j.pharmthera.2017.03.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has shown promising efficacy against hematologic malignancies. Antitumor activity of CAR T cells, however, needs to be improved to increase therapeutic efficacy in both hematologic and solid cancers. Limitations to overcome are 'on-target, off-tumor' toxicity, antigen escape, short CAR T cell persistence, little expansion, trafficking to the tumor and inhibition of T cell activity by an inhibitory tumor microenvironment. Here we will discuss how optimizing the design of CAR T cells through genetic engineering addresses these limitations and improves the antitumor efficacy of CAR T cell therapy in pre-clinical models.
Collapse
Affiliation(s)
- Janneke E Jaspers
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology & Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
31
|
Orlowski RJ, Porter DL, Frey NV. The promise of chimeric antigen receptor T cells (CARTs) in leukaemia. Br J Haematol 2016; 177:13-26. [PMID: 27977050 DOI: 10.1111/bjh.14475] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The success of genetically engineered T cells that express chimeric antigen receptors (CARTs) has been a momentous step forward in harnessing the potent cancer fighting abilities of the immune system. The efficacy seen in relapsed/refractory (r/r) acute lymphoblastic leukaemia (ALL), not only by inducing remission, but also in maintaining long-term disease control, has been unprecedented. While the foundation for this approach has been firmly set in place, continued development will improve the efficacy, toxicity and applicability to other malignancies of this new class of 'living drugs'. In this review, we provide a comprehensive overview of the most current clinical trial data in both acute and chronic leukaemias, and discuss some of the potential ways to enhance the activity and safety of CART therapy going forward.
Collapse
Affiliation(s)
- Robert J Orlowski
- Department of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - David L Porter
- Department of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Noelle V Frey
- Department of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Magee MS, Kraft CL, Abraham TS, Baybutt TR, Marszalowicz GP, Li P, Waldman SA, Snook AE. GUCY2C-directed CAR-T cells oppose colorectal cancer metastases without autoimmunity. Oncoimmunology 2016; 5:e1227897. [PMID: 27853651 PMCID: PMC5087292 DOI: 10.1080/2162402x.2016.1227897] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Adoptive T-cell therapy (ACT) is an emerging paradigm in which T cells are genetically modified to target cancer-associated antigens and eradicate tumors. However, challenges treating epithelial cancers with ACT reflect antigen targets that are not tumor-specific, permitting immune damage to normal tissues, and preclinical testing in artificial xenogeneic models, preventing prediction of toxicities in patients. In that context, mucosa-restricted antigens expressed by cancers exploit anatomical compartmentalization which shields mucosae from systemic antitumor immunity. This shielding may be amplified with ACT platforms employing antibody-based chimeric antigen receptors (CARs), which mediate MHC-independent recog-nition of antigens. GUCY2C is a cancer mucosa antigen expressed on the luminal surfaces of the intestinal mucosa in mice and humans, and universally overexpressed by colorectal tumors, suggesting its unique utility as an ACT target. T cells expressing CARs directed by a GUCY2C-specific antibody fragment recognized GUCY2C, quantified by expression of activation markers and cytokines. Further, GUCY2C CAR-T cells lysed GUCY2C-expressing, but not GUCY2C-deficient, mouse colorectal cancer cells. Moreover, GUCY2C CAR-T cells reduced tumor number and morbidity and improved survival in mice harboring GUCY2C-expressing colorectal cancer metastases. GUCY2C-directed T cell efficacy reflected CAR affinity and surface expression and was achieved without immune-mediated damage to normal tissues in syngeneic mice. These observations highlight the potential for therapeutic translation of GUCY2C-directed CAR-T cells to treat metastatic tumors, without collateral autoimmunity, in patients with metastatic colorectal cancer.
Collapse
Affiliation(s)
- Michael S Magee
- Bluebird Bio, Seattle, Cambridge, MA, USA; Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Crystal L Kraft
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University , Philadelphia, PA, USA
| | - Tara S Abraham
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University , Philadelphia, PA, USA
| | - Trevor R Baybutt
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University , Philadelphia, PA, USA
| | - Glen P Marszalowicz
- School of Biomedical Engineering, Science & Health Systems, Drexel University , Philadelphia, PA, USA
| | - Peng Li
- Department of Pathology, Stanford University School of Medicine , Stanford, CA, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University , Philadelphia, PA, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University , Philadelphia, PA, USA
| |
Collapse
|