1
|
Zhang G, Zhang Y, Wang B, Xu H, Xie D, Guo Z. miR-605-3p may affect caerulein-induced ductal cell injury and pyroptosis in acute pancreatitis by targeting the DUOX2/NLRP3/NF-κB pathway. PeerJ 2024; 12:e17874. [PMID: 39224819 PMCID: PMC11368084 DOI: 10.7717/peerj.17874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Acute pancreatitis (AP) is a sudden-onset disease of the digestive system caused by abnormal activation of pancreatic enzymes. Dual oxidase 2 (DUOX2) has been found to be elevated in the progression of a variety of inflammatory diseases. Therefore, we analyzed the specific roles of DUOX2 in AP development. Blood samples were collected from of AP patients and healthy people, and the caerulein- stimulated human pancreatic duct cells (H6C7) were utilized to establish an AP cell model. Cell growth and apoptosis were measured using an MTT assay and TUNEL staining. Additionally, RT-qPCR and western blot assays were conducted to assess the RNA and protein expressions of the cells. ELISA kits were used to determine TNF-α, IL-6, IL-8, and IL-1β levels. The interaction between DUOX2 and miR-605-3p was predicted using the Targetscan database and confirmed by dual-luciferase report assay. We found that DUOX2 increased while miR-605-3p decreased in the blood of AP patients and caerulein-stimulated H6C7 cells. DUOX2 was targeted by miR-605-3p. Furthermore, DUOX2 knockdown or miR-605-3p overexpression promoted cell viability, decreased the TNF-α, IL-6, IL-8, and IL-1β levels, and inhibited apoptosis rate in caerulein-stimulated H6C7 cells. DUOX2 knockdown or miR-605-3p overexpression also increased the Bcl-2 protein levels and down-regulated Bax, cleaved-caspase-1, NLRP3 and p-p65. Interestingly, DUOX2 overexpression reversed the miR-605-3p mimic function in the caerulein-treated H6C7 cells. In conclusion, our research demonstrated that DUOX2 knockdown relieved the injury and inflammation in caerulein-stimulated H6C7 cells.
Collapse
Affiliation(s)
- Gai Zhang
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Wannan Medical College Yijishan Hospital, Wuhu, Anhui, China
| | - Yuanyuan Zhang
- Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bing Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Wannan Medical College Yijishan Hospital, Wuhu, Anhui, China
| | - Hao Xu
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Wannan Medical College Yijishan Hospital, Wuhu, Anhui, China
| | - Donghui Xie
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Wannan Medical College Yijishan Hospital, Wuhu, Anhui, China
| | - Zhenli Guo
- Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Mitsui A, Iioka H, Ling Y, Okuda S, Kurose A, Schopperle M, Kondo T, Sakaguchi M, Saito K, Kondo E. Pathological and Biological Significance of the Specific Glycan, TRA-1-60, on Aggressive Gastric Adenocarcinoma. J Transl Med 2024; 104:102073. [PMID: 38718982 DOI: 10.1016/j.labinv.2024.102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024] Open
Abstract
The glycans form a unique complex on the surface of cancer cells and play a pivotal role in tumor progression, impacting proliferation, invasion, and metastasis. TRA-1-60 is a glycan that was identified as a critical marker for the establishment of fully reprogrammed inducible pluripotent stem cells. Its expression has been detected in multiple cancer tissues, including embryonal carcinoma, prostate cancer, and pancreatic cancer, but the biological and pathological characterization of TRA-1-60-expressing tumor cells remains unclear within various types of malignancies. Here, we report the biological characteristics of TRA-1-60-expressing gastric cancer cells, especially those with its cell surface expression, and the therapeutic significance of targeting TRA-1-60. The cells with cell membrane expression of TRA-1-60 were mainly observed in the invasive area of patient gastric cancer tissues and correlated with advanced stages of the disease based on histopathological and clinicopathological analyses. In vitro analysis using a scirrhous gastric adenocarcinoma line, HSC-58, which highly expresses TRA-1-60 on its plasma membrane, revealed increased stress-resistant mechanisms, supported by the upregulation of glutathione synthetase and NCF-1 (p47phox) via lipid-ROS regulatory pathways, as detected by RNA-seq analysis followed by oxidative stress gene profiling. Our in vivo therapeutic study using the TRA-1-60-targeting antibody-drug conjugate, namely, Bstrongomab-conjugated monomethyl auristatin E, showed robust efficacy in a mouse model of peritoneal carcinomatosis induced by intraperitoneal xenograft of HSC-58, by markedly reducing massive tumor ascites. Thus, targeting the specific cell surface glycan, TRA-1-60, shows a significant therapeutic impact in advanced-stage gastric cancers.
Collapse
Affiliation(s)
- Ayaka Mitsui
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hidekazu Iioka
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yiwei Ling
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akira Kurose
- Department of Anatomic Pathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | - Tomoko Kondo
- Department of Molecular Pathology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Saito
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata, Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
3
|
Wang SL, Wu Y, Konaté M, Lu J, Mallick D, Antony S, Meitzler JL, Jiang G, Dahan I, Juhasz A, Diebold B, Roy K, Doroshow JH. Exogenous DNA enhances DUOX2 expression and function in human pancreatic cancer cells by activating the cGAS-STING signaling pathway. Free Radic Biol Med 2023; 205:262-274. [PMID: 37330147 PMCID: PMC10527782 DOI: 10.1016/j.freeradbiomed.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/27/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Pro-inflammatory cytokines upregulate the expression of the H2O2-producing NADPH oxidase dual oxidase 2 (DUOX2)2 which, when elevated, adversely affects survival from pancreatic ductal adenocarcinoma (PDAC). Because the cGAS-STING pathway is known to initiate pro-inflammatory cytokine expression following uptake of exogenous DNA, we examined whether activation of cGAS-STING could play a role in the generation of reactive oxygen species by PDAC cells. Here, we found that a variety of exogenous DNA species markedly increased the production of cGAMP, the phosphorylation of TBK1 and IRF3, and the translocation of phosphorylated IRF3 into the nucleus, leading to a significant, IRF3-dependent enhancement of DUOX2 expression, and a significant flux of H2O2 in PDAC cells. However, unlike the canonical cGAS-STING pathway, DNA-related DUOX2 upregulation was not mediated by NF-κB. Although exogenous IFN-β significantly increased Stat1/2-associated DUOX2 expression, intracellular IFN-β signaling that followed cGAMP or DNA exposure did not itself increase DUOX2 levels. Finally, DUOX2 upregulation subsequent to cGAS-STING activation was accompanied by the enhanced, normoxic expression of HIF-1α and VEGF-A as well as DNA double strand cleavage, suggesting that cGAS-STING signaling may support the development of an oxidative, pro-angiogenic microenvironment that could contribute to the inflammation-related genetic instability of pancreatic cancer.
Collapse
Affiliation(s)
- Stephen L Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yongzhong Wu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Mariam Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jiamo Lu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - David Mallick
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jennifer L Meitzler
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Guojian Jiang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Iris Dahan
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Agnes Juhasz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Becky Diebold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - James H Doroshow
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
DeMichele E, Sosnowski O, Buret AG, Allain T. Regulatory Functions of Hypoxia in Host-Parasite Interactions: A Focus on Enteric, Tissue, and Blood Protozoa. Microorganisms 2023; 11:1598. [PMID: 37375100 PMCID: PMC10303274 DOI: 10.3390/microorganisms11061598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Body tissues are subjected to various oxygenic gradients and fluctuations and hence can become transiently hypoxic. Hypoxia-inducible factor (HIF) is the master transcriptional regulator of the cellular hypoxic response and is capable of modulating cellular metabolism, immune responses, epithelial barrier integrity, and local microbiota. Recent reports have characterized the hypoxic response to various infections. However, little is known about the role of HIF activation in the context of protozoan parasitic infections. Growing evidence suggests that tissue and blood protozoa can activate HIF and subsequent HIF target genes in the host, helping or hindering their pathogenicity. In the gut, enteric protozoa are adapted to steep longitudinal and radial oxygen gradients to complete their life cycle, yet the role of HIF during these protozoan infections remains unclear. This review focuses on the hypoxic response to protozoa and its role in the pathophysiology of parasitic infections. We also discuss how hypoxia modulates host immune responses in the context of protozoan infections.
Collapse
Affiliation(s)
- Emily DeMichele
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olivia Sosnowski
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Andre G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Thibault Allain
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
5
|
Han Z, Qian Y, Gao X, Yang D, Cai Y, Chen Y, Jin J, Yang Z. Hypoxia-responsive covalent organic framework by single NIR laser-triggered for multimodal synergistic therapy of triple-negative breast cancer. Colloids Surf B Biointerfaces 2023; 222:113094. [PMID: 36535221 DOI: 10.1016/j.colsurfb.2022.113094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
In recent years, laser-mediated photodynamic therapy and photothermal therapy have attracted widespread attention due to their minimally invasive, easy to operate characteristics and high specificity. However, the traditional photodynamic or photothermal therapy exist several shortcomings such as the hypoxic microenvironment, intracellular heat shock proteins or complex operation. In this study, covalent organic framework (COF) was used as the drug carrier to equip with the photosensitizer indocyanine green (ICG) and the hypoxia-activating prodrug AQ4N. The hyaluronic acid (HA) was modified on the surface of COF to obtain the HA-COF@ICG/AQ4N drug delivery system. HA-modified COF delivery systems can target tumor cells through recognize CD44 which is overexpressed in the surface of tumor cells membrane. Under the irradiation of single NIR laser, ICG that can excite the nanoplatform simultaneously produces a combined effect of photodynamic and photothermal. At the same time, photodynamic therapy through depleting intracellular oxygen exacerbates the hypoxic state of the tumor microenvironment, which in turn enhances AQ4N reduced to chemotherapeutic drug AQ4, producing a synergistic cascade antitumor effect. The results of our study by tumor cell and tumor spheroids indicated that the hypoxia-activated multi-functional nanoplatform could effectively inhibit the growth and metastasis of triple-negative breast cancer.
Collapse
Affiliation(s)
- Zhaoyu Han
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yue Qian
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiyue Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Dutao Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
4T1 cell membrane-derived biodegradable nanosystem for comprehensive interruption of cancer cell metabolism. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Sikder A, Vambhurkar G, Amulya E, Bagasariya D, Famta P, Shah S, Khatri DK, Singh SB, Sinha VR, Srivastava S. Advancements in redox-sensitive micelles as nanotheranostics: A new horizon in cancer management. J Control Release 2022; 349:1009-1030. [PMID: 35961470 DOI: 10.1016/j.jconrel.2022.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
World Health Organisation (WHO) delineated cancer as one of the foremost reasons for mortality with 10 million deaths in the year 2020. Early diagnosis and effective drug delivery are of utmost importance in cancer management. The entrapment of both bio-imaging dyes and drugs will open novel avenues in the area of tumor theranostics. Elevated levels of reactive oxygen species (ROS) and glutathione (GSH) are the characteristic features of the tumor microenvironment (TME). Researchers have taken advantage of these specific TME features in recent years to develop micelle-based theranostic nanosystems. This review focuses on the advantages of redox-sensitive micelles (RSMs) and supramolecular self-assemblies for tumor theranostics. Key chemical linkers employed for the tumor-specific release of the cargo have been discussed. In vitro characterisation techniques used for the characterization of RSMs have been deliberated. Potential bottlenecks that may present themselves in the bench-to-bedside translation of this technology and the regulatory considerations have been deliberated.
Collapse
Affiliation(s)
- Anupama Sikder
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - V R Sinha
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
8
|
Mantziou S, Markopoulos G, Thrasyvoulou S, Noutsopoulos D, Gkartziou F, Vartholomatos G, Tzavaras T. Tinzaparin inhibits VL30 retrotransposition induced by oxidative stress and/or VEGF in HC11 mouse progenitor mammary cells: Association between inhibition of cancer stem cell proliferation and mammosphere disaggregation. Oncol Rep 2021; 46:241. [PMID: 34558648 PMCID: PMC8485018 DOI: 10.3892/or.2021.8192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Tinzaparin is an anticoagulant and antiangiogenic drug with inhibitory properties against tumor growth. VEGF stimulates angiogenesis, while an association between reactive oxygen species (ROS) and angiogenesis is involved in tumor progression. The present study aimed to investigate the effect of tinzaparin on VL30 retrotransposition-positive mouse HC11 mammary stem-like epithelial cells, previously reported to be associated with induced mammosphere/cancer stem cell (CSC) generation and tumorigenesis. Under 24 h serum starvation, 15.2% nominal retrotransposition frequency was increased to 29%. Additionally, while treatment with 3–12 ng/ml VEGF further induced retrotransposition frequency in a dose-dependent manner (up to 40.3%), pre-incubation with tinzaparin (2 IU/ml) for 0.5–4 h reduced this frequency to 18.3% in a time-dependent manner, confirmed by analogous results in NIH3T3 fibroblasts. Treatment with 10–40 pg/ml glucose oxidase (GO) for 24 h induced HC11 cell retrotransposition in a dose-dependent manner (up to 82.5%), while a 3 h pre-incubation with tinzaparin (1 or 2 IU/ml) elicited a 13.5 or 25.5% reduction in retrotransposition, respectively. Regarding tumorigenic VL30 retrotransposition-positive HC11 cells, treatment with 2 IU/ml tinzaparin for 5 days reduced proliferation rate in a time-dependent manner (up to ~55%), and after 3 weeks, disaggregated soft agar-formed foci, as well as low-adherent mammospheres, producing single mesenchymal-like cells with a ~50% reduced retrotransposition. With respect to the VL30 retrotransposition mechanism: While 12 ng/ml VEGF increased the level of VL30 and endogenous reverse transcriptase (enRT) transcripts ~1.41- and ~1.16-fold, respectively, subsequent tinzaparin treatment reduced both endogenous/ROS- and VEGF-induced levels 1.15- and 0.40-fold (VL30) and 0.60- and 0.52-fold (enRT), respectively. To the best of our knowledge, these data demonstrate for the first time, the novel inhibition activity of tinzaparin against ROS- and VEGF-induced VL30 retrotransposition, and the proliferation and/or aggregation of mouse HC11 mammosphere/tumor-initiating CSCs, thus contributing to the inhibition of VL30 retrotransposition-induced primary tumor growth.
Collapse
Affiliation(s)
- Stefania Mantziou
- Laboratory of General Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios Markopoulos
- Laboratory of General Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Soteroula Thrasyvoulou
- Laboratory of General Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Noutsopoulos
- Laboratory of General Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Foteini Gkartziou
- Laboratory of General Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios Vartholomatos
- Molecular Biology Unit, Hematology Laboratory, University Hospital of Ioannina, 45110 Ioannina, Greece
| | - Theodore Tzavaras
- Laboratory of General Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
9
|
Alhawmdeh M, Isreb M, Aziz A, Jacob BK, Anderson D, Najafzadeh M. Interferon-γ liposome: a new system to improve drug delivery in the treatment of lung cancer. ERJ Open Res 2021; 7:00555-2020. [PMID: 34435034 PMCID: PMC8381253 DOI: 10.1183/23120541.00555-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/23/2021] [Indexed: 11/11/2022] Open
Abstract
Lung cancer is one of the main causes of death worldwide. Published data show the use of interferons (IFNs) in treating lung tumours. IFNs also have potential for their antiproliferative, antiangiogenic, immunoregulatory and proapoptotic effects. IFN-γ functions as an anticancer agent against various forms of cancer. This study aimed to investigate the effect of IFN-γ liposome (nano) on peripheral lymphocytes from 20 individuals in each group: lung cancer patients compared to healthy individuals. The effectiveness of IFN-γ liposome against oxidative stress was also evaluated in this study. A concentration of 100 U·mL-1 of IFN-γ liposome was used to treat the lymphocytes in the Comet and micronucleus assays based on the preliminary test for the optimal dose. The lymphocytes from lung cancer patients presented with higher DNA damage levels than those of healthy individuals. In healthy individuals, IFN-γ liposome did not cause any DNA damage in the lymphocytes. Also, it caused a significant reduction in DNA damage in the lymphocytes from lung cancer patients in both the Comet and micronucleus assays. The 100 U·mL-1 of IFN-γ liposome significantly reduced the oxidative stress caused by H2O2 and appeared to be effective in both groups using the Comet and micronucleus assays. Results from both Comet and micronucleus assays were consistent. The data obtained indicated that IFN-γ in both forms (IFN-γ bulk and IFN-γ nanoliposome) may potentially be effective for the treatment of lung cancer and showed the ability of IFN-γ liposome to reduce DNA damage more than the bulk form.
Collapse
Affiliation(s)
- Maysa Alhawmdeh
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Mohammad Isreb
- Faculty of Life Sciences, School of Pharmacy, University of Bradford, Bradford, UK
| | - Abid Aziz
- Bradford Royal Infirmary, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Badie K. Jacob
- Bradford Royal Infirmary, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Diana Anderson
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Mojgan Najafzadeh
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
10
|
DUOX2 As a Potential Prognostic Marker which Promotes Cell Motility and Proliferation in Pancreatic Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6530298. [PMID: 33748270 PMCID: PMC7943273 DOI: 10.1155/2021/6530298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/04/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022]
Abstract
DUOX2 has been reported to highly express in several types of cancers. However, the prognostic significance and the biological function of DUOX2 expression with pancreatic cancer (PC) still remain unclear. The present study is aimed at investigating whether DUOX2 could act as a novel biomarker of prognosis and evaluating its effect on PC cell progression. The mRNA and protein expression of DUOX2 in PC cells and tissues were assessed by quantitative real-time PCR (RT-qPCR) and immunohistochemistry. The effect of DUOX2 expression on PC cell motility and proliferation was evaluated in vitro. The correlation between DUOX2 mRNA expression and clinicopathological features and its prognostic significance were analyzed according to the Gene Expression Profiling Interactive Analysis (GEPIA) website based on The Cancer Genome Atlas (TCGA) and the GTEx databases combined with our clinical information. According to bioinformatics analysis, we forecasted the upstream transcription factors (TFs) and microRNA (miRNA) regulatory mechanism of DUOX2 in PC. The expression of DUOX2 at transcriptional and protein level was dramatically increased in PC specimens when compared to adjacent nontumor specimens. Functionally, DUOX2 knockdown inhibited cell motility and proliferation activities. Our clinical data revealed that the patients had better postoperative overall survival (OS) with lower expression of DUOX2, which is consistent with GEPIA data. Multivariate analysis revealed that high DUOX2 expression was considered as an independent prognostic indicator for OS (P = 0.031). Based on Cistrome database, the top 5 TFs of each positively and negatively association with DUOX2 were predicted. hsa-miR-5193 and hsa-miR-1343-3p targeting DUOX2 were forecasted from TargetScan, miRDB, and DIANA-TarBase databases, which were negatively correlated with OS (P = 0.043 and P = 0.0088, respectively) and DUOX2 expression (P = 0.0093 and P = 0.0032, respectively) in PC from TCGA data. These findings suggest that DUOX2 acts as a promising predictive biomarker and an oncogene in PC, which could be a therapeutic target for PC.
Collapse
|
11
|
Zhang X, Han J, Feng L, Zhi L, Jiang D, Yu B, Zhang Z, Gao B, Zhang C, Li M, Zhao L, Wang G. DUOX2 promotes the progression of colorectal cancer cells by regulating the AKT pathway and interacting with RPL3. Carcinogenesis 2021; 42:105-117. [PMID: 32531052 PMCID: PMC7877561 DOI: 10.1093/carcin/bgaa056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Dual oxidase 2 (DUOX2) is an important regulatory protein in the organic process of thyroid hormone iodine. Mounting evidence suggests that DUOX2 plays a crucial role in the occurrence and development of cancers. However, the function and mechanism of DUOX2 in colorectal cancer (CRC) have not been fully clarified. In the present study, the relationship between the expression of DUOX2 and the clinicopathological features and prognosis of CRC patients was analyzed. Furthermore, the effects of DUOX2 on proliferation and invasion in vitro and in vivo were examined. DUOX2-associated proteins were identified by immunoprecipitation (IP). Next-generation sequencing detection was performed to illustrate the mechanism of DUOX2 in CRC cells. It was found that the expression levels of DUOX2 in metastatic sites were significantly higher than those in primary tumor tissues, and this was demonstrated to be associated with poor prognosis. The knockdown of DUOX2 inhibited the invasion and migration of CRC cells. Furthermore, DUOX2 regulated the stability of ribosomal protein uL3 (RPL3) by affecting the ubiquitination status of RPL3, and the invasion and migration ability of DUOX2 can be reversed by the overexpression of RPL3. The downregulation of DUOX2 can affect the expression level of a large number of genes, and a number of these are enriched in the PI3K-AKT pathway. Some of the changes caused by DUOX2 can be reversed by RPL3. In summary, DUOX2 exhibits a significantly higher expression in CRC tumor samples, and facilitates the invasion and metastasis ability of CRC cells by interacting with RPL3.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Jing Han
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Li Feng
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Lianghui Zhi
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Da Jiang
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Bin Yu
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Zhenya Zhang
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Bo Gao
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Cong Zhang
- Scientific Research Center, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Meng Li
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Lianmei Zhao
- Scientific Research Center, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Guiying Wang
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
- Department of General Surgery, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
12
|
Abstract
Significance: The primary function of NADPH oxidases (NOX1-5 and dual oxidases DUOX1/2) is to produce reactive oxygen species (ROS). If inadequately regulated, NOX-associated ROS can promote oxidative stress, aberrant signaling, and genomic instability. Correspondingly, NOX isoforms are known to be overexpressed in multiple malignancies, thus constituting potential therapeutic targets in cancer. Recent Advances: Multiple genetic studies aimed at suppressing the expression of NOX proteins in cellular and animal models of cancer have provided support for the notion that NOXs play a pro-tumorigenic role. Further, large drug screens and rational design efforts have yielded inhibitor compounds, such as the diphenylene iodonium (DPI) analog series developed by our group, with increased selectivity and potency over "first generation" NOX inhibitors such as apocynin and DPI. Critical Issues: The precise role of NOX enzymes in tumor biology remains poorly defined. The tumorigenic properties of NOXs vary with cancer type, and precise tools, such as selective inhibitors, are needed to deconvolute NOX contribution to cancer development. Most NOX inhibitors developed to date are unspecific, and/or their mechanistic and pharmacological characteristics are not well defined. A lack of high-resolution crystal structures for NOX functional domains has hindered the development of potent and selective inhibitors. Future Directions: In-depth studies of NOX interactions with the tumor microenvironment (e.g., cytokines, cell-surface antigens) will help identify new approaches for NOX inhibition in cancer.
Collapse
Affiliation(s)
- Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA.,Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Abbasi A, Pakravan N, Hassan ZM. Hyaluronic acid optimises therapeutic effects of hydrogen peroxide-induced oxidative stress on breast cancer. J Cell Physiol 2020; 236:1494-1514. [PMID: 32740942 DOI: 10.1002/jcp.29957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022]
Abstract
Distinguishing the multiple effects of reactive oxygen species (ROS) on cancer cells is important to understand their role in tumour biology. On one side, ROS can be oncogenic by promoting hypoxic conditions, genomic instability and tumorigenesis. Conversely, elevated levels of ROS-induced oxidative stress can induce cancer cell death. This is evidenced by the conflicting results of research using antioxidant therapy, which in some cases promoted tumour growth and metastasis. However, some antioxidative or ROS-mediated oxidative therapies have also yielded beneficial effects. To better define the effects of oxidative stress, in vitro experiments were conducted on 4T1 and splenic mononuclear cells (MNCs) under hypoxic and normoxic conditions. Furthermore, hydrogen peroxide (H2 O2 ; 10-1,000 μM) was used as an ROS source alone or in combination with hyaluronic acid (HA), which is frequently used as drug delivery vehicle. Our result indicated that the treatment of cancer cells with H2 O2 + HA was significantly more effective than H2 O2 alone. In addition, treatment with H2 O2 + HA led to increased apoptosis, decreased proliferation, and multiphase cell cycle arrest in 4T1 cells in a dose-dependent manner under normoxic or hypoxic conditions. As a result, migratory tendency and the messenger RNA levels of vascular endothelial growth factor, matrix metalloproteinase-2 (MMP-2), and MMP-9 were significantly decreased in 4T1 cells. Of note, HA treatment combined with 100-1,000 μM H2 O2 caused more damage to MNCs as compared to treatment with lower concentrations (10-50 μM). Based on these results, we propose to administer high-dose H2 O2 + HA (100-1000 μM) for intratumoural injection and low doses for systemic administration. Intratumoural route could have toxic and inhibitory effects not only on the tumour but also on residential myeloid cells defending it, whereas systemic treatment could stimulate peripheral immune responses against the tumour. More in vivo research is required to confirm this hypothesis.
Collapse
Affiliation(s)
- Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Pakravan
- Department of Immunology, Medical School, Alborz University of Medical Sciences, Karaj, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Wu T, Xu W, Wang Y, Tao M, Hu Z, Lv B, Hui Y, Du H. OxLDL enhances choroidal neovascularization lesion through inducing vascular endothelium to mesenchymal transition process and angiogenic factor expression. Cell Signal 2020; 70:109571. [DOI: 10.1016/j.cellsig.2020.109571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 10/25/2022]
|
15
|
de Faria CC, Fortunato RS. The role of dual oxidases in physiology and cancer. Genet Mol Biol 2020; 43:e20190096. [PMID: 32453337 PMCID: PMC7265977 DOI: 10.1590/1678-4685/gmb-2019-0096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/24/2020] [Indexed: 01/17/2023] Open
Abstract
NOX/DUOX enzymes are transmembrane proteins that carry electrons through biological membranes generating reactive oxygen species. The NOX family is composed of seven members, which are NOX1 to NOX5 and DUOX1 and 2. DUOX enzymes were initially called thyroid oxidases, based on their high expression level in the thyroid tissue. However, DUOX expression has been documented in several extrathyroid tissues, mostly at the apical membrane of the salivary glands, the airways, and the intestinal tract, revealing additional cellular functions associated with DUOX-related H2O2 generation. In this review, we will briefly summarize the current knowledge regarding DUOX structure and physiological functions, as well as their possible role in cancer biology.
Collapse
Affiliation(s)
- Caroline Coelho de Faria
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas
Filho, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Soares Fortunato
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas
Filho, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
Hong SW, Noh MH, Kim YS, Jin DH, Moon SH, Yang JW, Hur DY. APX-115A, a pan-NADPH Oxidase Inhibitor, Induces Caspase-dependent Cell Death by Suppressing NOX4-ROS Signaling in EBV-infected Retinal Epithelial Cells. Curr Eye Res 2020; 45:1136-1143. [PMID: 31951764 DOI: 10.1080/02713683.2020.1718164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE Epstein-Barr virus is a γ-herpes virus that infects primary B cells and can transform infected cells into immortalized lymphoblastoid cell lines (LCL). The role of EBV in malignancies such as Burkitt's lymphoma and nasopharyngeal carcinoma is well understood, however, its role in EBV-infected retinal cells remains poorly understood. Therefore, we investigated the effect of EBV on the growth of retinal cells. METHODS Previously, we established and reported a cell line model to address the relationship between EBV infection and retinal cell proliferation that used adult retinal pigment epithelium (ARPE-19) and EBV infection. To determine the effect of EBV on ARPE-19 cells, cell death was measured by propidium iodine/annexin V staining and reactive oxygen species (ROS) were measured by FACS, and protein expression was evaluated using western blot analysis. Also, downregulation of LMP1 and NADPH oxidase 4 (NOX4) expression was accomplished using siRNA technology. RESULTS We found that ROS were dramatically increased in EBV-infected ARPE19 cells (APRE19/EBV) relative to the parental cell line. Additionally, the expression level of NOX4, a main source of ROS, was upregulated by EBV infection. Interestingly, downregulation of LMP1, one of the EBV viral onco-proteins, completely decreased EBV-induced ROS accumulation and the upregulation of NOX4. Treatment with APX-115A, a pan-NOX inhibitor, induced apoptotic cell death of only the EBV-infected ARPE19 cells but not the parental cell line. Pretreatment with z-VAD, a pan-caspase inhibitor, inhibited NOX inhibitor-induced cell death in ARPE19/EBV cells. Furthermore, APX-115A-induced cell death mediated the activation of JNK and ERK. Finally, we confirmed the expression level of NOX4, and APX-115A induced cell death of EBV-infected human primary retina epithelial cells and the activation of JNK and ERK. CONCLUSION Taken together, these our results suggest that APX-115A could be a therapeutic agent for treating EBV-infected retinal cells or diseases by inhibiting LMP1-NOX4-ROS signaling.
Collapse
Affiliation(s)
- Seung-Woo Hong
- Department of Anatomy, Inje University College of Medicine , Pusan, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center , Seoul, Republic of Korea
| | - Min Hye Noh
- Department of Anatomy, Inje University College of Medicine , Pusan, Republic of Korea
| | - Yeong Seok Kim
- Department of Anatomy, Inje University College of Medicine , Pusan, Republic of Korea
| | - Dong-Hoon Jin
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center , Seoul, Republic of Korea
| | - Sung Hwan Moon
- AptaBio Therapeutics Incorporation , Gyeonggi-do, Republic of Korea
| | - Jae Wook Yang
- Department of Ophthalmology, Inje University Pusan Paik Hospital , Pusan, Republic of Korea
| | - Dae Young Hur
- Department of Anatomy, Inje University College of Medicine , Pusan, Republic of Korea
| |
Collapse
|
17
|
Lemaire J, Mireault M, Jumarie C. Zinc interference with Cd‐induced hormetic effect in differentiated Caco‐2 cells: Evidence for inhibition downstream ERK activation. J Biochem Mol Toxicol 2019; 34:e22437. [DOI: 10.1002/jbt.22437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/07/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Joannie Lemaire
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| | - Myriam Mireault
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| | - Catherine Jumarie
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| |
Collapse
|
18
|
Wu Y, Konaté MM, Lu J, Makhlouf H, Chuaqui R, Antony S, Meitzler JL, Difilippantonio MJ, Liu H, Juhasz A, Jiang G, Dahan I, Roy K, Doroshow JH. IL-4 and IL-17A Cooperatively Promote Hydrogen Peroxide Production, Oxidative DNA Damage, and Upregulation of Dual Oxidase 2 in Human Colon and Pancreatic Cancer Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:2532-2544. [PMID: 31548328 DOI: 10.4049/jimmunol.1800469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/27/2019] [Indexed: 01/05/2023]
Abstract
Dual oxidase 2 (DUOX2) generates H2O2 that plays a critical role in both host defense and chronic inflammation. Previously, we demonstrated that the proinflammatory mediators IFN-γ and LPS enhance expression of DUOX2 and its maturation factor DUOXA2 through STAT1- and NF-κB‒mediated signaling in human pancreatic cancer cells. Using a panel of colon and pancreatic cancer cell lines, we now report the induction of DUOX2/DUOXA2 mRNA and protein expression by the TH2 cytokine IL-4. IL-4 activated STAT6 signaling that, when silenced, significantly decreased induction of DUOX2. Furthermore, the TH17 cytokine IL-17A combined synergistically with IL-4 to increase DUOX2 expression in both colon and pancreatic cancer cells mediated, at least in part, by signaling through NF-κB. The upregulation of DUOX2 was associated with a significant increase in the production of extracellular H2O2 and DNA damage-as indicated by the accumulation of 8-oxo-dG and γH2AX-which was suppressed by the NADPH oxidase inhibitor diphenylene iodonium and a DUOX2-specific small interfering RNA. The clinical relevance of these experiments is suggested by immunohistochemical, microarray, and quantitative RT-PCR studies of human colon and pancreatic tumors demonstrating significantly higher DUOX2, IL-4R, and IL-17RA expression in tumors than in adjacent normal tissues; in pancreatic adenocarcinoma, increased DUOX2 expression is adversely associated with overall patient survival. These data suggest a functional association between DUOX2-mediated H2O2 production and induced DNA damage in gastrointestinal malignancies.
Collapse
Affiliation(s)
- Yongzhong Wu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jiamo Lu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Hala Makhlouf
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rodrigo Chuaqui
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jennifer L Meitzler
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Michael J Difilippantonio
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Han Liu
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Agnes Juhasz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Guojian Jiang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Iris Dahan
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - James H Doroshow
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and .,Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
19
|
王 帆, 陈 锋, 胡 伟, 张 弋. [Mig- 7 gene silencing inhibits vasculogenic mimicry formation and invasion of glioma U251 cells in vitro by suppressing MEK/ERK signaling]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:566-571. [PMID: 31140421 PMCID: PMC6743935 DOI: 10.12122/j.issn.1673-4254.2019.05.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the inhibitory effects of silencing migration-inducing gene-7 (Mig-7) on vasculogenic mimicry formation, migration and invasion of human glioma cells in vitro and whether MEK/ERK signaling pathway mediates these effects. METHODS Human glioma U251 cells were infected by lentiviral vectors carrying a small interfering RNA targeting Mig-7 gene (sh-Mig-7) or a negative control shRNA (sh-NC), and real-time quantitative PCR was used to detect the expression level of Mig-7 mRNA in the cells. Three-dimensional culture and Transwell chamber invasion assay were used to observe the effect of Mig-7 gene silencing on vasculogenic mimicry formation and invasion ability of the U251 cells. Western blotting was performed to detect the changes in the protein expression levels of MEK/ERK in the infected cells. RESULTS We successfully obtained a U251 cell line with stable low expression of Mig-7 gene using RNA interference technique. Compared with the cells infected with sh-NC lentivirus and the non- infected cells, U251 cells infected with the lentiviral vector carrying sh-Mig-7 showed significantly decreased expression level of Mig-7 (P < 0.01) with obviously lowered vasculogenic mimicry formation and invasion abilities (P < 0.05). Mig-7 silencing also significantly lowered the expressions of MEK and ERK proteins in U251 cells (P < 0.05). CONCLUSIONS Silencing of Mig-7 gene inhibits vasculogenic mimicry formation and invasion of U251 cells possibly by suppressing MEK/ERK signaling, suggesting the important role of Mig-7 gene in vasculogenic mimicry formation and invasion of human glioma cells.
Collapse
Affiliation(s)
- 帆 王
- 厦门市第三医院神经外科,福建 厦门 361000Department of Neurosurgery, Third Hospital of Xiamen, Xiamen 361100, China
| | - 锋龙 陈
- 厦门市第三医院神经外科,福建 厦门 361000Department of Neurosurgery, Third Hospital of Xiamen, Xiamen 361100, China
| | - 伟鹏 胡
- 福建医科大学附属第二医院神经外科,福建 泉州 362000Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - 弋 张
- 厦门市第三医院神经外科,福建 厦门 361000Department of Neurosurgery, Third Hospital of Xiamen, Xiamen 361100, China
| |
Collapse
|
20
|
Touyz RM, Anagnostopoulou A, Camargo LL, Rios FJ, Montezano AC. Vascular Biology of Superoxide-Generating NADPH Oxidase 5-Implications in Hypertension and Cardiovascular Disease. Antioxid Redox Signal 2019; 30:1027-1040. [PMID: 30334629 PMCID: PMC6354601 DOI: 10.1089/ars.2018.7583] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE NADPH oxidases (Noxs), of which there are seven isoforms (Nox1-5, Duox1/Duox2), are professional oxidases functioning as reactive oxygen species (ROS)-generating enzymes. ROS are signaling molecules important in physiological processes. Increased ROS production and altered redox signaling in the vascular system have been implicated in the pathophysiology of cardiovascular diseases, including hypertension, and have been attributed, in part, to increased Nox activity. Recent Advances: Nox1, Nox2, Nox4, and Nox5 are expressed and functionally active in human vascular cells. While Nox1, Nox2, and Nox4 have been well characterized in models of cardiovascular disease, little is known about Nox5. This may relate to the lack of experimental models because rodents lack NOX5. However, recent studies have advanced the field by (i) elucidating mechanisms of Nox5 regulation, (ii) identifying Nox5 variants, (iii) characterizing Nox5 expression, and (iv) discovering the Nox5 crystal structure. Moreover, studies in human Nox5-expressing mice have highlighted a putative role for Nox5 in cardiovascular disease. CRITICAL ISSUES Although growing evidence indicates a role for Nox-derived ROS in cardiovascular (patho)physiology, the exact function of each isoform remains unclear. This is especially true for Nox5. FUTURE DIRECTIONS Future directions should focus on clinically relevant studies to discover the functional significance of Noxs, and Nox5 in particular, in human health and disease. Two important recent studies will impact future directions. First, Nox5 is the first Nox to be crystallized. Second, a genome-wide association study identified Nox5 as a novel blood pressure-associated gene. These discoveries, together with advancements in Nox5 biology and biochemistry, will facilitate discovery of drugs that selectively target Noxs to interfere in uncontrolled ROS generation.
Collapse
Affiliation(s)
- Rhian M. Touyz
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Aikaterini Anagnostopoulou
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Livia L. Camargo
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Francisco J. Rios
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Augusto C. Montezano
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
21
|
Ashtekar A, Huk D, Magner A, La Perle KMD, Boucai L, Kirschner LS. Alterations in Sod2-Induced Oxidative Stress Affect Endocrine Cancer Progression. J Clin Endocrinol Metab 2018; 103:4135-4145. [PMID: 30165401 PMCID: PMC6194813 DOI: 10.1210/jc.2018-01039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
CONTEXT Although important advances have been made in understanding the genetics of endocrine tumors, cellular physiology is relatively understudied as a determinant of tumor behavior. Oxidative stress and reactive oxygen species are metabolic factors that may affect tumor behavior, and these are, in part, controlled by manganese-dependent superoxide dismutase (MnSod), the mitochondrial superoxide dismutase (encoded by SOD2). OBJECTIVE We sought to understand the role of MnSod in the prognosis of aggressive human endocrine cancers and directly assessed the effect of MnSod under- or overexpression on tumor behavior, using established mouse thyroid cancer models. METHODS We performed transcriptome analysis of human and mouse models of endocrine cancer. To address the role of Sod2 in endocrine tumors, we introduced a Sod2 null allele or a transgenic Sod2 overexpression allele into mouse models of benign thyroid follicular neoplasia or aggressive, metastatic follicular thyroid cancer (FTC) and monitored phenotypic changes in tumor initiation and progression. RESULTS In the thyroid, SOD2/Sod2 was downregulated in FTC but not papillary thyroid cancer. Reduced expression of SOD2 was correlated with poorer survival of patients with aggressive thyroid or adrenal cancers. In mice with benign thyroid tumors, Sod2 overexpression increased tumor burden. In contrast, in mice with aggressive FTC, overexpression of Sod2 reduced tumor proliferation and improved mortality rates, whereas its deficiency enhanced tumor growth. CONCLUSION Overall, our results indicate that SOD2 has dichotomous roles in cancer progression and acts in a context-specific manner.
Collapse
Affiliation(s)
- Amruta Ashtekar
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Danielle Huk
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Alexa Magner
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Krista M D La Perle
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Laura Boucai
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lawrence S Kirschner
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University, Columbus, Ohio
- Correspondence and Reprint Requests: Lawrence S. Kirschner, MD, PhD, The Ohio State University, BRT 510, 460 W 12th Avenue, Columbus, Ohio 43210. E-mail:
| |
Collapse
|
22
|
Abstract
OBJECTIVE Spinal cord injury (SCI) is associated with modulation of different microRNAs (miRs). This study aims to explore the role of miR-25 in PC-12 cells to reveal the potential of miR-25 in SCI treatment. METHODS SCI model was established in C57BL/6 mice, then miR-expression in the injured spinal cords were detected by qRT-PCR. PC-12 cells were exposed to H2O2 conditions to establish an in vitro model of SCI. PC-12 cells were transfected with expressing vector or antisense oligonucleotides (ASO) of miR-25. The effects of miR-25 expression on H2O2-induced oxidative damage was evaluated by detection of cell viability, apoptosis, ROS activity, HIF-α and γH2A expression, and the level of inflammatory mediators. The expression of Nrf2 in cells was silenced by transfection with Nrf2 siRNA, and the effects of Nrf2 silence on miR-25-mediated PC-12 cells were detected. Besides, the expression of main proteins in Wnt/β-catenin and PI3 K/AKT/ERK signaling were assessed. RESULTS miR-25 was low expressed in injured spinal cords. miR-25 protected PC-12 cells against H2O2-induced oxidative damage, as evidenced by significant suppression in cell apoptosis, increase in cell viability, decrease in the level of ROS, HIF-α and γH2A, and decrease in inflammatory mediators (IL-1β, TNF-α, IL-6, and MCP-1). However, Nrf2 silence abolished the protective functions of miR-25 on H2O2-induced damage. Furthermore, we found that Wnt/β-catenin and PI3 K/AKT/ERK signaling were activated by miR-25. CONCLUSIONS miR-25 protects PC-12 cells against H2O2-induced oxidative damage though regulation of Nrf2 and activation of Wnt/β-catenin and PI3 K/AKT/ERK signaling.
Collapse
Affiliation(s)
| | - Shizhen Niu
- Correspondence to: Shizhen Niu, Department of Spine Surgery, Jining No.1 People's Hospital, No. 6, Jiankang Road, Jining 272000, China.
| |
Collapse
|
23
|
Hegedűs C, Kovács K, Polgár Z, Regdon Z, Szabó É, Robaszkiewicz A, Forman HJ, Martner A, Virág L. Redox control of cancer cell destruction. Redox Biol 2018; 16:59-74. [PMID: 29477046 PMCID: PMC5842284 DOI: 10.1016/j.redox.2018.01.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023] Open
Abstract
Redox regulation has been proposed to control various aspects of carcinogenesis, cancer cell growth, metabolism, migration, invasion, metastasis and cancer vascularization. As cancer has many faces, the role of redox control in different cancers and in the numerous cancer-related processes often point in different directions. In this review, we focus on the redox control mechanisms of tumor cell destruction. The review covers the tumor-intrinsic role of oxidants derived from the reduction of oxygen and nitrogen in the control of tumor cell proliferation as well as the roles of oxidants and antioxidant systems in cancer cell death caused by traditional anticancer weapons (chemotherapeutic agents, radiotherapy, photodynamic therapy). Emphasis is also put on the role of oxidants and redox status in the outcome following interactions between cancer cells, cytotoxic lymphocytes and tumor infiltrating macrophages.
Collapse
Affiliation(s)
- Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Kovács
- MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - Zsuzsanna Polgár
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Szabó
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary.
| |
Collapse
|
24
|
Mythri RB, Raghunath NR, Narwade SC, Pandareesh MDR, Sabitha KR, Aiyaz M, Chand B, Sule M, Ghosh K, Kumar S, Shankarappa B, Soundararajan S, Alladi PA, Purushottam M, Gayathri N, Deobagkar DD, Laxmi TR, Srinivas Bharath MM. Manganese- and 1-methyl-4-phenylpyridinium-induced neurotoxicity display differences in morphological, electrophysiological and genome-wide alterations: implications for idiopathic Parkinson's disease. J Neurochem 2017; 143:334-358. [DOI: 10.1111/jnc.14147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Rajeswara Babu Mythri
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Narayana Reddy Raghunath
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | | | - Mirazkar Dasharatha Rao Pandareesh
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Kollarkandi Rajesh Sabitha
- Department of Neurophysiology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Mohamad Aiyaz
- Genotypic Technology Pvt. Ltd; Bangalore Karnataka India
| | - Bipin Chand
- Genotypic Technology Pvt. Ltd; Bangalore Karnataka India
| | - Manas Sule
- InterpretOmics; Shezan Lavelle; Bangalore Karnataka India
| | - Krittika Ghosh
- InterpretOmics; Shezan Lavelle; Bangalore Karnataka India
| | - Senthil Kumar
- InterpretOmics; Shezan Lavelle; Bangalore Karnataka India
| | - Bhagyalakshmi Shankarappa
- Molecular Genetics Laboratory - Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Soundarya Soundararajan
- Molecular Genetics Laboratory - Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Phalguni Anand Alladi
- Department of Neurophysiology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Meera Purushottam
- Molecular Genetics Laboratory - Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Narayanappa Gayathri
- Department of Neuropathology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | | | - Thenkanidiyoor Rao Laxmi
- Department of Neurophysiology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Muchukunte Mukunda Srinivas Bharath
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| |
Collapse
|
25
|
Meitzler JL, Makhlouf HR, Antony S, Wu Y, Butcher D, Jiang G, Juhasz A, Lu J, Dahan I, Jansen-Dürr P, Pircher H, Shah AM, Roy K, Doroshow JH. Decoding NADPH oxidase 4 expression in human tumors. Redox Biol 2017; 13:182-195. [PMID: 28578276 PMCID: PMC5458090 DOI: 10.1016/j.redox.2017.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
NADPH oxidase 4 (NOX4) is a redox active, membrane-associated protein that contributes to genomic instability, redox signaling, and radiation sensitivity in human cancers based on its capacity to generate H2O2 constitutively. Most studies of NOX4 in malignancy have focused on the evaluation of a small number of tumor cell lines and not on human tumor specimens themselves; furthermore, these studies have often employed immunological tools that have not been well characterized. To determine the prevalence of NOX4 expression across a broad range of solid tumors, we developed a novel monoclonal antibody that recognizes a specific extracellular region of the human NOX4 protein, and that does not cross-react with any of the other six members of the NOX gene family. Evaluation of 20 sets of epithelial tumors revealed, for the first time, high levels of NOX4 expression in carcinomas of the head and neck (15/19 patients), esophagus (12/18 patients), bladder (10/19 patients), ovary (6/17 patients), and prostate (7/19 patients), as well as malignant melanoma (7/15 patients) when these tumors were compared to histologically-uninvolved specimens from the same organs. Detection of NOX4 protein upregulation by low levels of TGF-β1 demonstrated the sensitivity of this new probe; and immunofluorescence experiments found that high levels of endogenous NOX4 expression in ovarian cancer cells were only demonstrable associated with perinuclear membranes. These studies suggest that NOX4 expression is upregulated, compared to normal tissues, in a well-defined, and specific group of human carcinomas, and that its expression is localized on intracellular membranes in a fashion that could modulate oxidative DNA damage.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hala R Makhlouf
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yongzhong Wu
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Guojian Jiang
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Agnes Juhasz
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jiamo Lu
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Iris Dahan
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Haymo Pircher
- Institute for Biomedical Aging Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, Cardiovascular Division, James Black Centre, London SE5 9NU, United Kingdom
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - James H Doroshow
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Little AC, Sulovari A, Danyal K, Heppner DE, Seward DJ, van der Vliet A. Paradoxical roles of dual oxidases in cancer biology. Free Radic Biol Med 2017; 110:117-132. [PMID: 28578013 PMCID: PMC5535817 DOI: 10.1016/j.freeradbiomed.2017.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
Dysregulated oxidative metabolism is a well-recognized aspect of cancer biology, and many therapeutic strategies are based on targeting cancers by altering cellular redox pathways. The NADPH oxidases (NOXes) present an important enzymatic source of biological oxidants, and the expression and activation of several NOX isoforms are frequently dysregulated in many cancers. Cell-based studies have demonstrated a role for several NOX isozymes in controlling cell proliferation and/or cell migration, further supporting a potential contributing role for NOX in promoting cancer. While various NOX isoforms are often upregulated in cancers, paradoxical recent findings indicate that dual oxidases (DUOXes), normally prominently expressed in epithelial lineages, are frequently suppressed in epithelial-derived cancers by epigenetic mechanisms, although the functional relevance of such DUOX silencing has remained unclear. This review will briefly summarize our current understanding regarding the importance of reactive oxygen species (ROS) and NOXes in cancer biology, and focus on recent observations indicating the unique and seemingly opposing roles of DUOX enzymes in cancer biology. We will discuss current knowledge regarding the functional properties of DUOX, and recent studies highlighting mechanistic consequences of DUOX1 loss in lung cancer, and its consequences for tumor invasiveness and current anticancer therapy. Finally, we will also discuss potentially unique roles for the DUOX maturation factors. Overall, a better understanding of mechanisms that regulate DUOX and the functional consequences of DUOX silencing in cancer may offer valuable new diagnostic insights and novel therapeutic opportunities.
Collapse
Affiliation(s)
- Andrew C Little
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States
| | - Arvis Sulovari
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States; Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
27
|
Lin SC, Chang IW, Hsieh PL, Lin CY, Sun DP, Sheu MJ, Yang CC, Lin LC, He HL, Tian YF. High Immunoreactivity of DUOX2 Is Associated With Poor Response to Preoperative Chemoradiation Therapy and Worse Prognosis in Rectal Cancers. J Cancer 2017; 8:2756-2764. [PMID: 28928864 PMCID: PMC5604207 DOI: 10.7150/jca.19545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/25/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose: Colorectal cancer is the third most common cancer and also the fourth most common cause of cancer mortality worldwide. For rectal cancer, neoadjuvant concurrent chemoradiotherapy (CCRT) followed by radical proctectomy is gold standard treatment for patients with stage II/III rectal cancer. By data mining a documented database of rectal cancer transcriptome (GSE35452) from Gene Expression Omnibus, National Center of Biotechnology Information, we recognized that DUOX2 was the most significantly up-regulated transcript among those related to cytokine and chemokine mediated signaling pathway (GO:0019221). Hence, the aim of this study was to assess the DUOX2 expression level and its clinicopathological correlation and prognostic significance in patients of rectal cancer. Materials and Methods: DUOX2 immunostain was performed in 172 rectal adenocarcinomas treated with preoperative CCRT followed by radical proctectomy, which were divided into high- and low-expression subgroups. Furthermore, statistical analyses were examined to correlate the relationship between DUOX2 immunoreactivity and important clinical and pathological characteristics, as well as three survival indices: disease-specific survival (DSS), local recurrence-free survival (LRFS) and metastasis-free survival (MeFS). Results: DUOX2 overexpression was linked to post-CCRT tumor advancement, pre- and post-CCRT nodal metastasis and poor response to CCRT (all P ≤ 0.021). Furthermore, DUOX2 high expression was significantly associated with inferior DSS, LRFS and MeFS in univariate analysis (P ≤ 0.0097) and also served as an independent prognosticator indicating shorter DSS and LRFS interval in multivariate analysis (hazard ratio (HR) = 3.413, 95% confidence interval (CI): 1.349-8.633; HR = 4.533, 95% CI: 1.499-13.708, respectively). Conclusion: DUOX2 may play a pivotal role in carcinogenesis, tumor progression and response to neoadjuvant CCRT in rectal cancers, and serve as a novel prognostic biomarker. Additional researches to clarify the molecular and biochemical pathways are essential for developing promising DUOX2-targeted therapies for patients with rectal cancers.
Collapse
Affiliation(s)
- Shih-Chun Lin
- Division of Clinical Pathology, Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - I-Wei Chang
- Division of Clinical Pathology, Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan.,School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Pei-Ling Hsieh
- Department of Medical Image, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Yih Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan.,Department of Leisure, Recreation, and Tourism Management, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Ding-Ping Sun
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,Division of General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Ming-Jen Sheu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Hong-Lin He
- Division of Anatomical Pathology, Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Feng Tian
- Division of General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan.,Department of Health & Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
28
|
NADPH Oxidases: Insights into Selected Functions and Mechanisms of Action in Cancer and Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28626501 PMCID: PMC5463201 DOI: 10.1155/2017/9420539] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NADPH oxidases (NOX) are reactive oxygen species- (ROS-) generating enzymes regulating numerous redox-dependent signaling pathways. NOX are important regulators of cell differentiation, growth, and proliferation and of mechanisms, important for a wide range of processes from embryonic development, through tissue regeneration to the development and spread of cancer. In this review, we discuss the roles of NOX and NOX-derived ROS in the functioning of stem cells and cancer stem cells and in selected aspects of cancer cell physiology. Understanding the functions and complex activities of NOX is important for the application of stem cells in tissue engineering, regenerative medicine, and development of new therapies toward invasive forms of cancers.
Collapse
|
29
|
Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, Wu X, Antony S, Wu Y, Melillo G, Meitzler JL, Haines DC, Butcher D, Roy K, Doroshow JH. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem 2017; 292:7866-7887. [PMID: 28330872 PMCID: PMC5427267 DOI: 10.1074/jbc.m116.768283] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) play a critical role in cell signaling and proliferation. NADPH oxidase 1 (NOX1), a membrane-bound flavin dehydrogenase that generates O2˙̄, is highly expressed in colon cancer. To investigate the role that NOX1 plays in colon cancer growth, we used shRNA to decrease NOX1 expression stably in HT-29 human colon cancer cells. The 80–90% decrease in NOX1 expression achieved by RNAi produced a significant decline in ROS production and a G1/S block that translated into a 2–3-fold increase in tumor cell doubling time without increased apoptosis. The block at the G1/S checkpoint was associated with a significant decrease in cyclin D1 expression and profound inhibition of mitogen-activated protein kinase (MAPK) signaling. Decreased steady-state MAPK phosphorylation occurred concomitant with a significant increase in protein phosphatase activity for two colon cancer cell lines in which NOX1 expression was knocked down by RNAi. Diminished NOX1 expression also contributed to decreased growth, blood vessel density, and VEGF and hypoxia-inducible factor 1α (HIF-1α) expression in HT-29 xenografts initiated from NOX1 knockdown cells. Microarray analysis, supplemented by real-time PCR and Western blotting, revealed that the expression of critical regulators of cell proliferation and angiogenesis, including c-MYC, c-MYB, and VEGF, were down-regulated in association with a decline in hypoxic HIF-1α protein expression downstream of silenced NOX1 in both colon cancer cell lines and xenografts. These studies suggest a role for NOX1 in maintaining the proliferative phenotype of some colon cancers and the potential of NOX1 as a therapeutic target in this disease.
Collapse
Affiliation(s)
- Agnes Juhasz
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Susan Markel
- the Department of Medical Oncology and Therapeutics Research and
| | - Shikha Gaur
- the Department of Medical Oncology and Therapeutics Research and
| | - Han Liu
- the Division of Cancer Treatment and Diagnosis, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jiamo Lu
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Guojian Jiang
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Xiwei Wu
- the Bioinformatics Group, City of Hope Comprehensive Cancer Center, Duarte, California 91010
| | - Smitha Antony
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Yongzhong Wu
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Giovanni Melillo
- the Developmental Therapeutics Program, SAIC-Frederick, Inc., NCI at Frederick, Frederick, Maryland 21702, and
| | - Jennifer L Meitzler
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Diana C Haines
- the Pathology/Histotechnology Laboratory, Leidos, Inc./Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland 21702
| | - Donna Butcher
- the Pathology/Histotechnology Laboratory, Leidos, Inc./Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland 21702
| | - Krishnendu Roy
- the Division of Cancer Treatment and Diagnosis, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - James H Doroshow
- From the Developmental Therapeutics Branch of the Center for Cancer Research, .,the Division of Cancer Treatment and Diagnosis, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|