1
|
Jin Z, Wang H, Tang R, Pan B, Lee HJ, Liu S, Wang L, Qin J, Xu M. GATA2 promotes castration-resistant prostate cancer development by suppressing IFN-β axis-mediated antitumor immunity. Oncogene 2024; 43:2595-2610. [PMID: 39068217 DOI: 10.1038/s41388-024-03107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Castration-resistant prostate cancer (CRPC) nearly inevitably develops after long-term treatment with androgen deprivation therapy (ADT), leading to significant mortality. Investigating the mechanisms driving CRPC development is imperative. Here, we determined that the pioneer transcription factor GATA2, which is frequently amplified in CRPC patients, inhibits interferon (IFN)-β-mediated antitumor immunity, thereby promoting CRPC progression. Employing a genetically engineered mouse model (GEMM), we demonstrated that GATA2 overexpression hindered castration-induced cell apoptosis and tumor shrinkage, facilitating tumor metastasis and CRPC development. Notably, GATA2 drives castration resistance predominantly via repressing castration-induced activation of IFN-β signaling and CD8+ T-cell infiltration. This finding aligns with the negative correlation between GATA2 expression and IFNB1 expression, as well as CD8+ T-cell infiltration in CRPC patients. Mechanistically, GATA2 recruited PIAS1 as corepressor, and reprogramed the cistrome of IRF3, a key transcription factor of the IFN-β axis, in an androgen-independent manner. Furthermore, we identified a novel silencer element that facilitated the function of GATA2 and PIAS1 through looping to the IFNB1 promoter. Importantly, depletion of GATA2 augmented antitumor immunity and attenuated CRPC development. Consequently, our findings elucidate a novel mechanism wherein GATA2 promotes CRPC progression by suppressing IFN-β axis-mediated antitumor immunity, underscoring GATA2 as a promising therapeutic target for CRPC.
Collapse
Affiliation(s)
- Zige Jin
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hanling Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruxian Tang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Biying Pan
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Hui-Ju Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Siqi Liu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Leiming Wang
- Center for Translational Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Mafei Xu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
2
|
Aktar A, Heit B. Role of the pioneer transcription factor GATA2 in health and disease. J Mol Med (Berl) 2023; 101:1191-1208. [PMID: 37624387 DOI: 10.1007/s00109-023-02359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The transcription factor GATA2 is involved in human diseases ranging from hematopoietic disorders, to cancer, to infectious diseases. GATA2 is one of six GATA-family transcription factors that act as pioneering transcription factors which facilitate the opening of heterochromatin and the subsequent binding of other transcription factors to induce gene expression from previously inaccessible regions of the genome. Although GATA2 is essential for hematopoiesis and lymphangiogenesis, it is also expressed in other tissues such as the lung, prostate gland, gastrointestinal tract, central nervous system, placenta, fetal liver, and fetal heart. Gene or transcriptional abnormalities of GATA2 causes or predisposes patients to several diseases including the hematological cancers acute myeloid leukemia and acute lymphoblastic leukemia, the primary immunodeficiency MonoMAC syndrome, and to cancers of the lung, prostate, uterus, kidney, breast, gastric tract, and ovaries. Recent data has also linked GATA2 expression and mutations to responses to infectious diseases including SARS-CoV-2 and Pneumocystis carinii pneumonia, and to inflammatory disorders such as atherosclerosis. In this article we review the role of GATA2 in the etiology and progression of these various diseases.
Collapse
Affiliation(s)
- Amena Aktar
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada.
- Robarts Research Institute, London, ON, N6A 3K7, Canada.
| |
Collapse
|
3
|
Yang X, Zhang Q, Li S, Devarajan R, Luo B, Tan Z, Wang Z, Giannareas N, Wenta T, Ma W, Li Y, Yang Y, Manninen A, Wu S, Wei GH. GATA2 co-opts TGFβ1/SMAD4 oncogenic signaling and inherited variants at 6q22 to modulate prostate cancer progression. J Exp Clin Cancer Res 2023; 42:198. [PMID: 37550764 PMCID: PMC10408074 DOI: 10.1186/s13046-023-02745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/30/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Aberrant somatic genomic alteration including copy number amplification is a hallmark of cancer genomes. We previously profiled genomic landscapes of prostate cancer (PCa), yet the underlying causal genes with prognostic potential has not been defined. It remains unclear how a somatic genomic event cooperates with inherited germline variants contribute to cancer predisposition and progression. METHODS We applied integrated genomic and clinical data, experimental models and bioinformatic analysis to identify GATA2 as a highly prevalent metastasis-associated genomic amplification in PCa. Biological roles of GATA2 in PCa metastasis was determined in vitro and in vivo. Global chromatin co-occupancy and co-regulation of GATA2 and SMAD4 was investigated by coimmunoprecipitation, ChIP-seq and RNA-seq assays. Tumor cellular assays, qRT-PCR, western blot, ChIP, luciferase assays and CRISPR-Cas9 editing methods were performed to mechanistically understand the cooperation of GATA2 with SMAD4 in promoting TGFβ1 and AR signaling and mediating inherited PCa risk and progression. RESULTS In this study, by integrated genomics and experimental analysis, we identified GATA2 as a prevalent metastasis-associated genomic amplification to transcriptionally augment its own expression in PCa. Functional experiments demonstrated that GATA2 physically interacted and cooperated with SMAD4 for genome-wide chromatin co-occupancy and co-regulation of PCa genes and metastasis pathways like TGFβ signaling. Mechanistically, GATA2 was cooperative with SMAD4 to enhance TGFβ and AR signaling pathways, and activated the expression of TGFβ1 via directly binding to a distal enhancer of TGFβ1. Strinkingly, GATA2 and SMAD4 globally mediated inherited PCa risk and formed a transcriptional complex with HOXB13 at the PCa risk-associated rs339331/6q22 enhancer, leading to increased expression of the PCa susceptibility gene RFX6. CONCLUSIONS Our study prioritizes causal genomic amplification genes with prognostic values in PCa and reveals the pivotal roles of GATA2 in transcriptionally activating the expression of its own and TGFβ1, thereby co-opting to TGFβ1/SMAD4 signaling and RFX6 at 6q22 to modulate PCa predisposition and progression.
Collapse
Affiliation(s)
- Xiayun Yang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| | - Qin Zhang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Shuxuan Li
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Raman Devarajan
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Binjie Luo
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Zenglai Tan
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Zixian Wang
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Nikolaos Giannareas
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Tomasz Wenta
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Wenlong Ma
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| | - Yuqing Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| | - Yuehong Yang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Song Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China.
- Institute of Urology, South China Hospital of Shenzhen University, Shenzhen, China.
| | - Gong-Hong Wei
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Nabavi N, Mahdavi SR, Ardalan MA, Chamanara M, Mosaed R, Lara A, Bastos D, Harsini S, Askari E, Velho PI, Bagheri H. Bipolar Androgen Therapy: When Excess Fuel Extinguishes the Fire. Biomedicines 2023; 11:2084. [PMID: 37509723 PMCID: PMC10377678 DOI: 10.3390/biomedicines11072084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Androgen deprivation therapy (ADT) remains the cornerstone of advanced prostate cancer treatment. However, the progression towards castration-resistant prostate cancer is inevitable, as the cancer cells reactivate androgen receptor signaling and adapt to the castrate state through autoregulation of the androgen receptor. Additionally, the upfront use of novel hormonal agents such as enzalutamide and abiraterone acetate may result in long-term toxicities and may trigger the selection of AR-independent cells through "Darwinian" treatment-induced pressure. Therefore, it is crucial to develop new strategies to overcome these challenges. Bipolar androgen therapy (BAT) is one such approach that has been devised based on studies demonstrating the paradoxical inhibitory effects of supraphysiologic testosterone on prostate cancer growth, achieved through a variety of mechanisms acting in concert. BAT involves rapidly alternating testosterone levels between supraphysiological and near-castrate levels over a period of a month, achieved through monthly intramuscular injections of testosterone plus concurrent ADT. BAT is effective and well-tolerated, improving quality of life and potentially re-sensitizing patients to previous hormonal therapies after progression. By exploring the mechanisms and clinical evidence for BAT, this review seeks to shed light on its potential as a promising new approach to prostate cancer treatment.
Collapse
Affiliation(s)
- Nima Nabavi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran
- Radiation Sciences Research Center, AJA University of Medical Sciences, Tehran 14117-18541, Iran
| | - Seied Rabi Mahdavi
- Department of Medical Physics, Radiation Biology Research Center, Iran University of Medical Sciences, Tehran 14117-18541, Iran
| | - Mohammad Afshar Ardalan
- Department of Internal Medicine, School of Medicine, AJA University of Medical Sciences, Tehran 14117-18541, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran 14117-18541, Iran
| | - Reza Mosaed
- Department of Clinical Pharmacy, School of Medicine, AJA University of Medical Sciences, Tehran 14117-18541, Iran
| | - Aline Lara
- Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
- Hospital do Câncer UOPECCAN, Cascavel 85806-300, Brazil
| | - Diogo Bastos
- Oncology Department, Hospital Sirio-Libanês, São Paulo 01308-050, Brazil
| | - Sara Harsini
- BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Emran Askari
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran
| | - Pedro Isaacsson Velho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD 21231, USA
- Hospital Moinhos de Vento, Porto Alegre 90035-000, Brazil
| | - Hamed Bagheri
- Radiation Sciences Research Center, AJA University of Medical Sciences, Tehran 14117-18541, Iran
- School of Medicine, AJA University of Medical Sciences, Tehran 14118-13389, Iran
| |
Collapse
|
5
|
Li M, Ma Z, Zhang Y, Feng H, Li Y, Sang W, Zhu R, Huang R, Yan J. Integrative analysis of the ST6GALNAC family identifies GATA2-upregulated ST6GALNAC5 as an adverse prognostic biomarker promoting prostate cancer cell invasion. Cancer Cell Int 2023; 23:141. [PMID: 37468844 DOI: 10.1186/s12935-023-02983-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND ST6GALNAC family members function as sialyltransferases and have been implicated in cancer progression. However, their aberrant expression levels, prognostic values and specific roles in metastatic prostate cancer (PCa) remain largely unclear. METHODS Two independent public datasets (TCGA-PRAD and GSE21032), containing 648 PCa samples in total, were employed to comprehensively examine the mRNA expression changes of ST6GALNAC family members in PCa, as well as their associations with clinicopathological parameters and prognosis. The dysregulation of ST6GALNAC5 was further validated in a mouse PCa model and human PCa samples from our cohort (n = 64) by immunohistochemistry (IHC). Gene Set Enrichment Analysis, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and drug sensitivity analyses were performed to enrich the biological processes most related to ST6GALNAC5. Sulforhodamine B, transwell, luciferase reporter and chromatin immunoprecipitation (ChIP) assays were used to examine the PCa cell proliferation, invasion and transcriptional regulation, respectively. RESULTS Systematical investigation of six ST6GALNAC family members in public datasets revealed that ST6GALNAC5 was the only gene consistently and significantly upregulated in metastatic PCa, and ST6GALNAC5 overexpression was also positively associated with Gleason score and predicted poor prognosis in PCa patients. IHC results showed that (1) ST6GALNAC5 protein expression was increased in prostatic intraepithelial neoplasia and further elevated in PCa from a PbCre;PtenF/F mouse model; (2) overexpressed ST6GALNAC5 protein was confirmed in human PCa samples comparing with benign prostatic hyperplasia samples from our cohort (p < 0.001); (3) ST6GALNAC5 overexpression was significantly correlated with perineural invasion of PCa. Moreover, we first found transcription factor GATA2 positively and directly regulated ST6GALNAC5 expression at transcriptional level. ST6GALNAC5 overexpression could partially reverse GATA2-depletion-induced inhibition of PCa cell invasion. The GATA2-ST6GALNAC5 signature exhibited better prediction on the poor prognosis in PCa patients than GATA2 or ST6GALNAC5 alone. CONCLUSIONS Our results indicated that GATA2-upregulated ST6GALNAC5 might serve as an adverse prognostic biomarker promoting prostate cancer cell invasion.
Collapse
Affiliation(s)
- Meiqian Li
- Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zhihui Ma
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Zhang
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Hanyi Feng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Li
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Weicong Sang
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Rujian Zhu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| | - Ruimin Huang
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jun Yan
- Department of Laboratory Animal Science, Fudan University, Shanghai, China.
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
- Model Animal Research Center, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
A COP1-GATA2 axis suppresses AR signaling and prostate cancer. Proc Natl Acad Sci U S A 2022; 119:e2205350119. [PMID: 36251994 PMCID: PMC9618149 DOI: 10.1073/pnas.2205350119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Androgen receptor (AR) signaling is crucial for driving prostate cancer (PCa), the most diagnosed and the second leading cause of death in male patients with cancer in the United States. Androgen deprivation therapy is initially effective in most instances of AR-positive advanced or metastatic PCa. However, patients inevitably develop lethal castration-resistant PCa (CRPC), which is also resistant to the next-generation AR signaling inhibitors. Most CRPCs maintain AR expression, and blocking AR signaling remains a main therapeutic approach. GATA2 is a pioneer transcription factor emerging as a key therapeutic target for PCa because it promotes AR expression and activation. While directly inhibiting GATA2 transcriptional activity remains challenging, enhancing GATA2 degradation is a plausible therapeutic strategy. How GATA2 protein stability is regulated in PCa remains unknown. Here, we show that constitutive photomorphogenesis protein 1 (COP1), an E3 ubiquitin ligase, drives GATA2 ubiquitination at K419/K424 for degradation. GATA2 lacks a conserved [D/E](x)xxVP[D/E] degron but uses alternate BR1/BR2 motifs to bind COP1. By promoting GATA2 degradation, COP1 inhibits AR expression and activation and represses PCa cell and xenograft growth and castration resistance. Accordingly, GATA2 overexpression or COP1 mutations that disrupt COP1-GATA2 binding block COP1 tumor-suppressing activities. We conclude that GATA2 is a major COP1 substrate in PCa and that COP1 promotion of GATA2 degradation is a direct mechanism for regulating AR expression and activation, PCa growth, and castration resistance.
Collapse
|
7
|
Up-regulation of POM121 is linked to prostate cancer aggressiveness and serves as a prognostic biomarker. Urol Oncol 2022; 40:380.e11-380.e18. [DOI: 10.1016/j.urolonc.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/13/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
|
8
|
Kaochar S, Rusin A, Foley C, Rajapakshe K, Robertson M, Skapura D, Mason C, Berman De Ruiz K, Tyryshkin AM, Deng J, Shin JN, Fiskus W, Dong J, Huang S, Navone NM, Davis CM, Ehli EA, Coarfa C, Mitsiades N. Inhibition of GATA2 in prostate cancer by a clinically available small molecule. Endocr Relat Cancer 2021; 29:15-31. [PMID: 34636746 PMCID: PMC8634153 DOI: 10.1530/erc-21-0085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022]
Abstract
Castration-resistant prostate cancer (CRPC) remains highly lethal and in need of novel, actionable therapeutic targets. The pioneer factor GATA2 is a significant prostate cancer (PC) driver and is linked to poor prognosis. GATA2 directly promotes androgen receptor (AR) gene expression (both full-length and splice-variant) and facilitates AR binding to chromatin, recruitment of coregulators, and target gene transcription. Unfortunately, there is no clinically applicable GATA2 inhibitor available at the moment. Using a bioinformatics algorithm, we screened in silico 2650 clinically relevant drugs for a potential GATA2 inhibitor. Validation studies used cytotoxicity and proliferation assays, global gene expression analysis, RT-qPCR, reporter assay, reverse phase protein array analysis (RPPA), and immunoblotting. We examined target engagement via cellular thermal shift assay (CETSA), ChIP-qPCR, and GATA2 DNA-binding assay. We identified the vasodilator dilazep as a potential GATA2 inhibitor and confirmed on-target activity via CETSA. Dilazep exerted anticancer activity across a broad panel of GATA2-dependent PC cell lines in vitro and in a PDX model in vivo. Dilazep inhibited GATA2 recruitment to chromatin and suppressed the cell-cycle program, transcriptional programs driven by GATA2, AR, and c-MYC, and the expression of several oncogenic drivers, including AR, c-MYC, FOXM1, CENPF, EZH2, UBE2C, and RRM2, as well as of several mediators of metastasis, DNA damage repair, and stemness. In conclusion, we provide, via an extensive compendium of methodologies, proof-of-principle that a small molecule can inhibit GATA2 function and suppress its downstream AR, c-MYC, and other PC-driving effectors. We propose GATA2 as a therapeutic target in CRPC.
Collapse
Affiliation(s)
- Salma Kaochar
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Correspondence should be addressed to S Kaochar or N Mitsiades: or
| | - Aleksandra Rusin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Christopher Foley
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Kimal Rajapakshe
- Dan L. Duncan Comprehensive Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Matthew Robertson
- Dan L. Duncan Comprehensive Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Darlene Skapura
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Cammy Mason
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | | | | | - Jenny Deng
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jin Na Shin
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Warren Fiskus
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jianrong Dong
- Dan L. Duncan Comprehensive Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Shixia Huang
- Dan L. Duncan Comprehensive Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Education, Innovation, and Technology, Baylor College of Medicine, Houston, Texas, USA
| | - Nora M Navone
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas Anderson Cancer Center, Houston, Texas, USA
| | - Christel M Davis
- Avera Institute for Human Genetics, Sioux Falls, South Dakota, USA
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota, USA
| | - Cristian Coarfa
- Dan L. Duncan Comprehensive Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Nicholas Mitsiades
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Correspondence should be addressed to S Kaochar or N Mitsiades: or
| |
Collapse
|
9
|
Bai B, Chen Q, Jing R, He X, Wang H, Ban Y, Ye Q, Xu W, Zheng C. Molecular Basis of Prostate Cancer and Natural Products as Potential Chemotherapeutic and Chemopreventive Agents. Front Pharmacol 2021; 12:738235. [PMID: 34630112 PMCID: PMC8495205 DOI: 10.3389/fphar.2021.738235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most common malignant cancer in males. It involves a complex process driven by diverse molecular pathways that closely related to the survival, apoptosis, metabolic and metastatic characteristics of aggressive cancer. Prostate cancer can be categorized into androgen dependent prostate cancer and castration-resistant prostate cancer and cure remains elusive due to the developed resistance of the disease. Natural compounds represent an extraordinary resource of structural scaffolds with high diversity that can offer promising chemical agents for making prostate cancer less devastating and curable. Herein, those natural compounds of different origins and structures with potential cytotoxicity and/or in vivo anti-tumor activities against prostate cancer are critically reviewed and summarized according to the cellular signaling pathways they interfere. Moreover, the anti-prostate cancer efficacy of many nutrients, medicinal plant extracts and Chinese medical formulations were presented, and the future prospects for the application of these compounds and extracts were discussed. Although the failure of conventional chemotherapy as well as involved serious side effects makes natural products ideal candidates for the treatment of prostate cancer, more investigations of preclinical and even clinical studies are necessary to make use of these medical substances reasonably. Therefore, the elucidation of structure-activity relationship and precise mechanism of action, identification of novel potential molecular targets, and optimization of drug combination are essential in natural medicine research and development.
Collapse
Affiliation(s)
- Bingke Bai
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qianbo Chen
- Department of Anesthesiology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Rui Jing
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yanfei Ban
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qi Ye
- Department of Biological Science, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiheng Xu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
10
|
Ghosh S, Dutta N, Banerjee P, Gajbhiye RL, Sareng HR, Kapse P, Pal S, Burdelya L, Mandal NC, Ravichandiran V, Bhattacharjee A, Kundu GC, Gudkov AV, Pal M. Induction of monoamine oxidase A-mediated oxidative stress and impairment of NRF2-antioxidant defence response by polyphenol-rich fraction of Bergenia ligulata sensitizes prostate cancer cells in vitro and in vivo. Free Radic Biol Med 2021; 172:136-151. [PMID: 34097996 DOI: 10.1016/j.freeradbiomed.2021.05.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
Prostate cancer (PCa) is a major cause of mortality and morbidity in men. Available therapies yield limited outcome. We explored anti-PCa activity in a polyphenol-rich fraction of Bergenia ligulata (PFBL), a plant used in Indian traditional and folk medicine for its anti-inflammatory and antineoplastic properties. PFBL constituted of about fifteen different compounds as per LCMS analysis induced apoptotic death in both androgen-dependent LNCaP and androgen-refractory PC3 and DU145 cells with little effect on NKE and WI38 cells. Further investigation revealed that PFBL mediates its function through upregulating ROS production by enhanced catalytic activity of Monoamine oxidase A (MAO-A). Notably, the differential inactivation of NRF2-antioxidant response pathway by PFBL resulted in death in PC3 versus NKE cells involving GSK-3β activity facilitated by AKT inhibition. PFBL efficiently reduced the PC3-tumor xenograft in NOD-SCID mice alone and in synergy with Paclitaxel. Tumor tissues in PFBL-treated mice showed upregulation of similar mechanism of cell death as observed in isolated PC3 cells i.e., elevation of MAO-A catalytic activity, ROS production accompanied by activation of β-TrCP-GSK-3β axis of NRF2 degradation. Blood counts, liver, and splenocyte sensitivity analyses justified the PFBL safety in the healthy mice. To our knowledge this is the first report of an activity that crippled NRF2 activation both in vitro and in vivo in response to MAO-A activation. Results of this study suggest the development of a novel treatment protocol utilizing PFBL to improve therapeutic outcome for patients with aggressive PCa which claims hundreds of thousands of lives each year.
Collapse
Affiliation(s)
- Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Naibedya Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Pinaki Banerjee
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Rahul L Gajbhiye
- National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | | | - Prachi Kapse
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Srabani Pal
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Lyudmila Burdelya
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Velyutham Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India; National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | | | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, India.
| |
Collapse
|
11
|
Shen T, Wang W, Zhou W, Coleman I, Cai Q, Dong B, Ittmann MM, Creighton CJ, Bian Y, Meng Y, Rowley DR, Nelson PS, Moore DD, Yang F. MAPK4 promotes prostate cancer by concerted activation of androgen receptor and AKT. J Clin Invest 2021; 131:135465. [PMID: 33586682 DOI: 10.1172/jci135465] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/10/2020] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in American men. Androgen receptor (AR) signaling is essential for PCa cell growth/survival and remains a key therapeutic target for lethal castration-resistant PCa (CRPC). GATA2 is a pioneer transcription factor crucial for inducing AR expression/activation. We recently reported that MAPK4, an atypical MAPK, promotes tumor progression via noncanonical activation of AKT. Here, we demonstrated that MAPK4 activated AR by enhancing GATA2 transcriptional expression and stabilizing GATA2 protein through repression of GATA2 ubiquitination/degradation. MAPK4 expression correlated with AR activation in human CRPC. Concerted activation of both GATA2/AR and AKT by MAPK4 promoted PCa cell proliferation, anchorage-independent growth, xenograft growth, and castration resistance. Conversely, knockdown of MAPK4 decreased activation of both AR and AKT and inhibited PCa cell and xenograft growth, including castration-resistant growth. Both GATA2/AR and AKT activation were necessary for MAPK4 tumor-promoting activity. Interestingly, combined overexpression of GATA2 plus a constitutively activated AKT was sufficient to drive PCa growth and castration resistance, shedding light on an alternative, MAPK4-independent tumor-promoting pathway in human PCa. We concluded that MAPK4 promotes PCa growth and castration resistance by cooperating parallel pathways of activating GATA2/AR and AKT and that MAPK4 is a novel therapeutic target in PCa, especially CRPC.
Collapse
Affiliation(s)
- Tao Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Wolong Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ilsa Coleman
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Qinbo Cai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Chad J Creighton
- Department of Medicine, and.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yingnan Bian
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yanling Meng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - David R Rowley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Peter S Nelson
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Feng Yang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
12
|
Lu M, Wu S, Cheng G, Xu C, Chen Z. Integrative Bioinformatics Analysis of iNOS/NOS2 in gastric and colorectal cancer. Pteridines 2020. [DOI: 10.1515/pteridines-2020-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Objective The aim of the present work was to investigate the expression of nitric oxide synthase 2 (iNOS/ NOS2) in colorectal and gastric cancers and evaluate its association with patient’s prognosis by integrated bioinformatics analysis.
Methods The data for present study was obtained from the TCGA, GTEx, and STRING database. iNOS/NOS2 mRNA expression in normal tissue and colorectal, and gastric cancer tissuea were investigated through the GTEx and TCGA database. iNOS/NOS2 gene mutations and frequency were analyzed in the TCGA database using the cBioPortal online data analysis tool. The protein-protein interaction (PPI) network of iNOS/NOS2 was constructed by STRING database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of iNOS/NOS2 and relevant proteins involved in the PPI network were enriched and demonstrated by the bubble plot. Comparison of the overall survival(OS) and disease free survival(DFS) between samples expressing high and low levels of iNOS/NOS2 was analysis based on the TCGA databases through the GEPIA online data analysis tool.
Results For colon adenocarcinoma (COAD) and rectal adenocarcinoma(READ) iNOS/NOS2 mRNA expression levels in tumor tissue were significant higher than those of corresponding normal colorectal tissue (p<0.05). iNOS/NOS2 mutations were identified in both colorectal cancer and gastric cancer. Missense substitutions and synonymous substitution were the top two mutation types for colorectal and gastric cancer. The top positive and negative co-expressed genes correlated with iNOS/ NOS2 were TRIM40 (rpearson=0.56, p<0.05) and GDPD5 (rpearson=-0.41, p<0.05) in colorectal cancer respectively andCASP5 (rpearson=0.63,p<0.05) and PIAS3 (rpearson=-0.43,p<0.05) in gastric cancer. Twenty one proteins were included in the PPI network with 51 nodes and 345 edges which indicated the PPI enrichment wassignificant (p=1.0e-16). The KEGG of the included genes were mainly enriched in metabolic pathway and Jak-STAT signaling pathway. There was a significant difference indisease free survival (DFS) between samples expressing high and low iNOS/NOS2 (HR=0.37, p=0.044) in rectal cancer. The difference was not statistical between iNOS/NOS2 high and low expressing groups for overall survival(OS) or DFS in the colon cancer or gastric cancer(p>0.05).
Conclusions iNOS/NOS2 mRNA isup-regulated in tumor tissue compared to corresponding normal tissue in colorectal and gastric cancer which implement it in the development of colorectal and gastric cancers.
Collapse
Affiliation(s)
- Mingbei Lu
- Department of Thyroid and Breast Surgery , Lishui People’s Hospital , Lishui 323000, Zhejiang Province , China
| | - Suping Wu
- Department of ICU , Lishui People’s Hospital , Lishui 323000, Zhejiang Province , China
| | - Guoxiong Cheng
- Department of Gastrointestinal Surgery , Lishui People’s Hospital , Lishui 323000, Zhejiang Province , China
| | - Chaobo Xu
- Department of Gastrointestinal Surgery , Lishui People’s Hospital , Lishui 323000, Zhejiang Province , China
| | - Zhengwei Chen
- Department of Gastrointestinal Surgery , Lishui People’s Hospital , Lishui 323000, Zhejiang Province , China
| |
Collapse
|
13
|
Woo J, Santasusagna S, Banks J, Pastor-Lopez S, Yadav K, Carceles-Cordon M, Dominguez-Andres A, Den RB, Languino LR, Pippa R, Lallas CD, Lu-Yao G, Kelly WK, Knudsen KE, Rodriguez-Bravo V, Tewari AK, Prats JM, Leiby BE, Gomella LG, Domingo-Domenech J. Urine Extracellular Vesicle GATA2 mRNA Discriminates Biopsy Result in Men with Suspicion of Prostate Cancer. J Urol 2020; 204:691-700. [PMID: 32250729 PMCID: PMC7483587 DOI: 10.1097/ju.0000000000001066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Prostate specific antigen has limited performance in detecting prostate cancer. The transcription factor GATA2 is expressed in aggressive prostate cancer. We analyzed the predictive value of urine extracellular vesicle GATA2 mRNA alone and in combination with a multigene panel to improve detection of prostate cancer and high risk disease. MATERIALS AND METHODS GATA2 mRNA was analyzed in matched extracellular vesicles isolated from urines before and after prostatectomy (16) and paired urine and tissue prostatectomy samples (19). Extracellular vesicle GATA2 mRNA performance to distinguish prostate cancer and high grade disease was tested in training (52) and validation (165) cohorts. The predictive value of a multigene score including GATA2, PCA3 and TMPRSS2-ERG (GAPT-E) was tested in both cohorts. RESULTS Confirming its prostate origin, urine extracellular vesicle GATA2 mRNA levels decreased significantly after prostatectomy and correlated with prostate cancer tissue GATA2 mRNA levels. In the training and validation cohort GATA2 discriminated prostate cancer (AUC 0.74 and 0.66) and high grade disease (AUC 0.78 and 0.65), respectively. Notably, the GAPT-E score improved discrimination of prostate cancer (AUC 0.84 and 0.72) and high grade cancer (AUC 0.85 and 0.71) in both cohorts when compared with each biomarker alone and PT-E (PCA3 and TMPRSS2-ERG). A GAPT-E score for high grade prostate cancer would avoid 92.1% of unnecessary prostate biopsies, compared to 61.9% when a PT-E score is used. CONCLUSIONS Urine extracellular vesicle GATA2 mRNA analysis improves the detection of high risk prostate cancer and may reduce the number of unnecessary biopsies.
Collapse
Affiliation(s)
- J Woo
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - S Santasusagna
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - J Banks
- Division of Biostatistics and Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - S Pastor-Lopez
- Urology Department, Hospital Sant Jaume Calella, Barcelona, Spain
| | - K Yadav
- Urology Department, Icahn School of Medicine at Mount Sinai, New York, New York
| | - M Carceles-Cordon
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - A Dominguez-Andres
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - R B Den
- Radiation Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - L R Languino
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - R Pippa
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - C D Lallas
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - G Lu-Yao
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - W K Kelly
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - K E Knudsen
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - V Rodriguez-Bravo
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - A K Tewari
- Urology Department, Icahn School of Medicine at Mount Sinai, New York, New York
| | - J M Prats
- Urology Department, Hospital Sant Jaume Calella, Barcelona, Spain
| | - B E Leiby
- Division of Biostatistics and Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - L G Gomella
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Josep Domingo-Domenech
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Hankey W, Chen Z, Wang Q. Shaping Chromatin States in Prostate Cancer by Pioneer Transcription Factors. Cancer Res 2020; 80:2427-2436. [PMID: 32094298 PMCID: PMC7299826 DOI: 10.1158/0008-5472.can-19-3447] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/14/2020] [Accepted: 02/19/2020] [Indexed: 01/28/2023]
Abstract
The androgen receptor (AR) is a critical therapeutic target in prostate cancer that responds to antagonists in primary disease, but inevitably becomes reactivated, signaling onset of the lethal castration-resistant prostate cancer (CRPC) stage. Epigenomic investigation of the chromatin environment and interacting partners required for AR transcriptional activity has uncovered three pioneer factors that open up chromatin and facilitate AR-driven transcriptional programs. FOXA1, HOXB13, and GATA2 are required for normal AR transcription in prostate epithelial development and for oncogenic AR transcription during prostate carcinogenesis. AR signaling is dependent upon these three pioneer factors both before and after the clinical transition from treatable androgen-dependent disease to untreatable CRPC. Agents targeting their respective DNA binding or downstream chromatin-remodeling events have shown promise in preclinical studies of CRPC. AR-independent functions of FOXA1, HOXB13, and GATA2 are emerging as well. While all three pioneer factors exert effects that promote carcinogenesis, some of their functions may inhibit certain stages of prostate cancer progression. In all, these pioneer factors represent some of the most promising potential therapeutic targets to emerge thus far from the study of the prostate cancer epigenome.
Collapse
Affiliation(s)
- William Hankey
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina
| | - Zhong Chen
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina.
| | - Qianben Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
15
|
Romano O, Miccio A. GATA factor transcriptional activity: Insights from genome-wide binding profiles. IUBMB Life 2019; 72:10-26. [PMID: 31574210 DOI: 10.1002/iub.2169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023]
Abstract
The members of the GATA family of transcription factors have homologous zinc fingers and bind to similar sequence motifs. Recent advances in genome-wide technologies and the integration of bioinformatics data have led to a better understanding of how GATA factors regulate gene expression; GATA-factor-induced transcriptional and epigenetic changes have now been analyzed at unprecedented levels of detail. Here, we review the results of genome-wide studies of GATA factor occupancy in human and murine cell lines and primary cells (as determined by chromatin immunoprecipitation sequencing), and then discuss the molecular mechanisms underlying the mediation of transcriptional and epigenetic regulation by GATA factors.
Collapse
Affiliation(s)
- Oriana Romano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Annarita Miccio
- Laboratory of chromatin and gene regulation during development, Imagine Institute, INSERM UMR, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
16
|
Büscheck F, Zub M, Heumann A, Hube-Magg C, Simon R, Lang DS, Höflmayer D, Neubauer E, Jacobsen F, Hinsch A, Luebke AM, Tsourlakis MC, Sauter G, Huland H, Graefen M, Haese A, Heinzer H, Schlomm T, Clauditz TS, Burandt E, Wilczak W, Steurer S, Minner S. The independent prognostic impact of the GATA2 pioneering factor is restricted to ERG-negative prostate cancer. Tumour Biol 2019; 41:1010428318824815. [PMID: 31296150 DOI: 10.1177/1010428318824815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
GATA2 is a pioneering transcription factor governing androgen receptor expression and signaling in prostate cells. To understand the prognostic potential of GATA2 assessment in prostate cancer, we analyzed nuclear GATA2 expression on an annotated tissue microarray with 12,427 prostate cancer samples. Normal prostate glands were negative to weakly positive. GATA2 staining was found in almost all prostate cancers (95%). Strong GATA2 staining was linked to advanced tumor stage, high classical and quantitative Gleason grade (p < 0.0001 each), positive nodal stage (p = 0.0116), and early biochemical recurrence (p < 0.0001). GATA2 was linked to ERG-fusion-type cancers, with strong GATA2 staining in 29% of ERG-negative and 53% of ERG-positive cancers (p < 0.0001). Separate calculations in 3854 cancers with and 4768 cancers without TMPRSS2:ERG fusion revealed that these associations with tumor phenotype and patient outcome were largely driven by the subset of ERG-negative tumors. GATA2 expression was further linked to androgen receptor expression: Only 8% of androgen receptor-negative, but 56% of strongly androgen receptor expressing cancers had strong GATA2 expression (p < 0.0001). In conclusion, the results of our study demonstrate that increasing GATA2 levels are linked to prostate cancer progression and aggressiveness. The prognostic value of GATA2 is remarkable in ERG-negative cancers. However, the upregulation of GATA2 in ERG-positive cancers makes it unsuitable as a prognostic marker in this patient subset.
Collapse
Affiliation(s)
- Franziska Büscheck
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maciej Zub
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Asmus Heumann
- 2 General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dagmar S Lang
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Emily Neubauer
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Guido Sauter
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartwig Huland
- 3 Martini-Clinic Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- 3 Martini-Clinic Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Haese
- 3 Martini-Clinic Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- 3 Martini-Clinic Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Torsten Schlomm
- 4 Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Till S Clauditz
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
17
|
Zhang H, Zhao X, Wang M, Ji W. Key modules and hub genes identified by coexpression network analysis for revealing novel biomarkers for larynx squamous cell carcinoma. J Cell Biochem 2019; 120:19832-19840. [PMID: 31310372 DOI: 10.1002/jcb.29288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/18/2019] [Indexed: 11/10/2022]
Abstract
Larynx squamous cell carcinoma (LSCC) is the second most aggressive head and neck squamous cell carcinoma. Numerous genes have been identified to be aberrantly expressed during the development of LSCC. However, currently, researchers focus more on the individual molecule and downstream genes, leaving the coexpression among genes and key upstream disease driver genes unexploited. In this study, we applied weighted gene coexpression analysis (WGCNA) to decipher potential hub genes driving the development of LSCC. After downloading of LSCC microarray profile from gene expression omnibus, different expression analysis was performed, which was used to conduct functional enrichment analysis. Then, we applied WGCNA to highlight the hub genes which were relevant to the carcinogenesis and progression. A total of 2858 differentially expressed genes were identified in LSCC samples compared with adjacent non-neoplastic tissues. WGCNA revealed three LSCC set-specific modules having significant Kyoto Encyclopedia of Genes and Genomes enrichment effect, including pink, cyan, and black module. Nine hub genes were identified to be crucial in LSCC onset and progression, which may assist clinical decisions and serve as potential targets for LSCC treatment.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Otorhinolaryngology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xudong Zhao
- Department of Otorhinolaryngology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Mengmeng Wang
- Sleep Medical Center, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wenyue Ji
- Department of Otorhinolaryngology, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
18
|
Weidle UH, Epp A, Birzele F, Brinkmann U. The Functional Role of Prostate Cancer Metastasis-related Micro-RNAs. Cancer Genomics Proteomics 2019; 16:1-19. [PMID: 30587496 DOI: 10.21873/cgp.20108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/08/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
The mortality of patients with hormone-resistant prostate cancer can be ascribed to a large degree to metastasis to distant organs, predominantly to the bones. In this review, we discuss the contribution of micro-RNAs (miRs) to the metastatic process of prostate cancer. The criteria for selection of miRs for this review were the availability of preclinical in vivo metastasis-related data in conjunction with prognostic clinical data. Depending on their function in the metastatic process, the corresponding miRs are up- or down-regulated in prostate cancer tissues when compared to matching normal tissues. Up-regulated miRs preferentially target suppressors of cytokine signaling or tumor suppressor-related genes and metastasis-inhibitory transcription factors. Down-regulated miRs promote epithelial-mesenchymal transition or mesenchymal-epithelial transition and diverse pro-metastatic signaling pathways. Some of the discussed miRs exert their function by simultaneously targeting epigenetic pathways as well as cell-cycle-related, anti-apoptotic and signaling-promoting targets. Finally, we discuss potential therapeutic options for the treatment of prostate cancer-related metastases by substitution or inhibition of miRs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Alexandra Epp
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
19
|
Parolia A, Venalainen E, Xue H, Mather R, Lin D, Wu R, Pucci P, Rogalski J, Evans JR, Feng F, Collins CC, Wang Y, Crea F. The long noncoding RNA HORAS5 mediates castration-resistant prostate cancer survival by activating the androgen receptor transcriptional program. Mol Oncol 2019; 13:1121-1136. [PMID: 30776192 PMCID: PMC6487714 DOI: 10.1002/1878-0261.12471] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/17/2019] [Accepted: 01/27/2019] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is driven by the androgen receptor (AR)‐signaling axis. Hormonal therapy often mitigates PCa progression, but a notable number of cases progress to castration‐resistant PCa (CRPC). CRPC retains AR activity and is incurable. Long noncoding RNA (lncRNA) represent an uncharted region of the transcriptome. Several lncRNA have been recently described to mediate oncogenic functions, suggesting that these molecules can be potential therapeutic targets. Here, we identified CRPC‐associated lncRNA by analyzing patient‐derived xenografts (PDXs) and clinical data. Subsequently, we characterized one of the CRPC‐promoting lncRNA,HORAS5, in vitro and in vivo. We demonstrated that HORAS5 is a stable, cytoplasmic lncRNA that promotes CRPC proliferation and survival by maintaining AR activity under androgen‐depleted conditions. Most strikingly, knockdown of HORAS5 causes a significant reduction in the expression of AR itself and oncogenic AR targets such as KIAA0101. Elevated expression of HORAS5 is also associated with worse clinical outcomes in patients. Our results from HORAS5 inhibition in in vivo models further confirm that HORAS5 is a viable therapeutic target for CRPC. Thus, we posit that HORAS5 is a novel, targetable mediator of CRPC through its essential role in the maintenance of oncogenic AR activity. Overall, this study adds to our mechanistic understanding of how lncRNA function in cancer progression.
Collapse
Affiliation(s)
- Abhijit Parolia
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Hui Xue
- British Columbia Cancer Research Centre, Vancouver, Canada.,Vancouver Prostate Centre, Canada
| | - Rebecca Mather
- School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Dong Lin
- British Columbia Cancer Research Centre, Vancouver, Canada.,Vancouver Prostate Centre, Canada
| | - Rebecca Wu
- British Columbia Cancer Research Centre, Vancouver, Canada
| | - Perla Pucci
- School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Jason Rogalski
- Proteomics Core Facility, Centre for High-Throughput Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Joseph R Evans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Felix Feng
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | - Yuzhuo Wang
- British Columbia Cancer Research Centre, Vancouver, Canada.,Vancouver Prostate Centre, Canada
| | - Francesco Crea
- British Columbia Cancer Research Centre, Vancouver, Canada.,School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| |
Collapse
|
20
|
Chaytor L, Simcock M, Nakjang S, Heath R, Walker L, Robson C, Jones D, Gaughan L. The Pioneering Role of GATA2 in Androgen Receptor Variant Regulation Is Controlled by Bromodomain and Extraterminal Proteins in Castrate-Resistant Prostate Cancer. Mol Cancer Res 2019; 17:1264-1278. [DOI: 10.1158/1541-7786.mcr-18-1231] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/25/2019] [Accepted: 02/28/2019] [Indexed: 11/16/2022]
|
21
|
Merkulov VM, Leberfarb EY, Merkulova TI. Regulatory SNPs and their widespread effects on the transcriptome. J Biosci 2018; 43:1069-1075. [PMID: 30541964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Currently, it is generally accepted that the cis-acting effects of noncoding variants on gene expression are a major factor for phenotypic variation in complex traits and disease susceptibility. Meanwhile, the protein products of many target genes for the identified cis-regulatory variants (rSNPs) are regulatory molecules themselves (transcription factors, effectors, components of signal transduction pathways, etc.), which implies dramatic downstream effects of these variations on complex gene networks. Here, we brief the results of recent most comprehensive studies on the role of rSNPs in transcriptional regulation across the genome.
Collapse
Affiliation(s)
- Vasily M Merkulov
- Laboratory of Gene Expression Regulation, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | | | | |
Collapse
|
22
|
Li X, Hu WW, Wang L, Yang XH. Co-expression analysis reveals key gene modules and pathways of oral squamous cell carcinoma. Cancer Biomark 2018; 22:763-771. [PMID: 29914011 DOI: 10.3233/cbm-181314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma is a malignant tumor which is particularly common in the developing world, mostly in older males. OBJECTIVE Although gene expression analyses had been performed previously, to our best knowledge, systemic co-expression analysis for this disease is still lacking to date. METHODS In this study, we built the co-expression modules with the help of Weighted Correlation Network Analysis (WGCNA) and investigated the function enrichment of co-expression genes from important modules by bioinformatics analysis. RESULTS A total of 10 co-expression modules were conducted for 4500 genes from 167 oral squamous cell carcinoma samples. Number of genes for each module ranged from 52 to 1112, with the mean of 450. Interaction relationships of hub-genes between pairwise modules showed great differences, suggesting the high confidence of modules. Functional enrichments of the co-expression modules exhibited great differences. Furthermore, genes in the module ME blue and module ME magenta significantly enriched in hsa05332 (Graft-versus-host disease) and hsa05330 (Allograft rejection), and the two pathways were associated with the oral squamous cell carcinoma. CONCLUSION Together, our findings provided the framework of co-expression gene modules of oral squamous cell carcinoma and further understanding of these modules at functional aspect.
Collapse
Affiliation(s)
- Xiao Li
- Department of Radiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wei-Wei Hu
- Department of Stomatology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| | - Li Wang
- Department of Radiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiang-Hui Yang
- Department of Stomatology, Hubei Women's and Children's Hospital, Wuhan, Hubei, China
| |
Collapse
|
23
|
Merkulov VM, Leberfarb EY, Merkulova TI. Regulatory SNPs and their widespread effects on the transcriptome. J Biosci 2018. [DOI: 10.1007/s12038-018-9817-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Chu J, Li N, Gai W. Identification of genes that predict the biochemical recurrence of prostate cancer. Oncol Lett 2018; 16:3447-3452. [PMID: 30127947 PMCID: PMC6096182 DOI: 10.3892/ol.2018.9106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/05/2017] [Indexed: 01/03/2023] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancer types in men. Biochemical recurrence continues to occur in a large proportion of patients after radical prostatectomy. Thus, prognostic biomarkers are required to determine which treatment is suitable. In the present study, RNA-sequencing gene expression data from The Cancer Genome Atlas was used in order to develop a risk-score staging system based on the expression of eight genes. Cox multivariate regression was used to predict the outcome of patients with PCa. The biomedical recurrence-free survival of patients with low-risk scores was significantly longer compared with patients with high-risk scores (P=5×10−7). This result was further validated using another dataset, GSE70769, from the National Center for Biotechnology Information. The prognostic values of other clinical information and risk scores were evaluated for 5-year biochemical recurrence. The prognostic value of the risk score was determined using an area under curve value of 0.819, predicting the 5-year biochemical recurrence of patients with PCa. The risk score was identified to be significantly associated with primary tumor stage (P<0.01), Gleason score (P<0.01), and lymph node invasion (P<0.05), but was independent of age. Cox multivariate regression revealed that the risk score was an indicator for prediction of biochemical recurrence. Thus, the risk score is a valuable and robust indicator for predicting the biochemical recurrence of patients with PCa.
Collapse
Affiliation(s)
- Jianfeng Chu
- Department of Urology, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Ning Li
- Department of Urology, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Wentao Gai
- Department of Urology, Yantai Municipal Laiyang Central Hospital, Yantai, Shandong, 265200, P.R. China
| |
Collapse
|
25
|
Li T, Gao X, Han L, Yu J, Li H. Identification of hub genes with prognostic values in gastric cancer by bioinformatics analysis. World J Surg Oncol 2018; 16:114. [PMID: 29921304 PMCID: PMC6009060 DOI: 10.1186/s12957-018-1409-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Background Gastric cancer (GC) is a prevalent malignant cancer of digestive system. To identify key genes in GC, mRNA microarray GSE27342, GSE29272, and GSE33335 were downloaded from GEO database. Methods Differentially expressed genes (DEGs) were obtained using GEO2R. DAVID database was used to analyze function and pathways enrichment of DEGs. Protein-protein interaction (PPI) network was established by STRING and visualized by Cytoscape software. Then, the influence of hub genes on overall survival (OS) was performed by the Kaplan-Meier plotter online tool. Module analysis of the PPI network was performed using MCODE. Additionally, potential stem loop miRNAs of hub genes were predicted by miRecords and screened by TCGA dataset. Transcription factors (TFs) of hub genes were detected by NetworkAnalyst. Results In total, 67 DEGs were identified; upregulated DEGs were mainly enriched in biological process (BP) related to angiogenesis and extracellular matrix organization and the downregulated DEGs were mainly enriched in BP related to ion transport and response to bacterium. KEGG pathways analysis showed that the upregulated DEGs were enriched in ECM-receptor interaction and the downregulated DEGs were enriched in gastric acid secretion. A PPI network of DEGs was constructed, consisting of 43 nodes and 87 edges. Twelve genes were considered as hub genes owing to high degrees in the network. Hsa-miR-29c, hsa-miR-30c, hsa-miR-335, hsa-miR-33b, and hsa-miR-101 might play a crucial role in hub genes regulation. In addition, the transcription factors-hub genes pairs were displayed with 182 edges and 102 nodes. The high expression of 7 out of 12 hub genes was associated with worse OS, including COL4A1, VCAN, THBS2, TIMP1, COL1A2, SERPINH1, and COL6A3. Conclusions The miRNA and TFs regulation network of hub genes in GC may promote understanding of the molecular mechanisms underlying the development of gastric cancer and provide potential targets for GC diagnosis and treatment. Electronic supplementary material The online version of this article (10.1186/s12957-018-1409-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ting Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Xujie Gao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Lei Han
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China. .,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China. .,National Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
26
|
Chen B, Luo J, Zhou Y, Xin X, Cai R, Ling C. PIASy antagonizes Ras-driven NSCLC survival by promoting GATA2 SUMOylation. J Cancer 2018; 9:1689-1697. [PMID: 29760808 PMCID: PMC5950599 DOI: 10.7150/jca.24137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/05/2018] [Indexed: 11/05/2022] Open
Abstract
GATA2 regulated transcriptional network has been validated requisite for RAS oncogene-driven non-small cell lung cancer (NSCLC). GATA2 has been reported as a SUMOylated protein. In endothelial cells, its transcriptional activity is attenuated by SUMO-2 conjugation, which is specifically catalyzed by its E3 ligase PIASy. In this study, we found a decreased expression of PIASy in RAS mutant NSCLC cell lines and specimens with RAS mutations. Forced expression of PIASy in NSCLC cells inhibits their viability in vitro, as well as tumorigenesis and growth in vivo. Mechanistically, we demonstrated overexpression of PIASy in A549 cells altered the regulated transcriptional network of GATA2, including proteasome, IL-1-signaling, and Rho-signaling pathways. Forced expression of PIASy resulted in the accumulated SUMOylation of GATA2, attenuating its transcriptional activity in A549 cells. These results collectively suggest that PIASy plays an antagonistic role in RAS-driven NSCLC survival, by enhancing the SUMOylation of GATA2 and inhibiting its transcriptional activity.
Collapse
Affiliation(s)
- Bin Chen
- Department of Oncology, Shanghai Pulmonary Hospital, Shanghai Tongji University, Shanghai 200433, China.,Department of Respiratory Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Jie Luo
- Department of Oncology, Shanghai Pulmonary Hospital, Shanghai Tongji University, Shanghai 200433, China
| | - Yirui Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Shanghai Tongji University, Shanghai 200433, China
| | - Xu Xin
- Department of Oncology, Shanghai Pulmonary Hospital, Shanghai Tongji University, Shanghai 200433, China
| | - Rong Cai
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunhua Ling
- Department of Respiratory Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| |
Collapse
|
27
|
Mishra A, Sriram H, Chandarana P, Tanavde V, Kumar RV, Gopinath A, Govindarajan R, Ramaswamy S, Sadasivam S. Decreased expression of cell adhesion genes in cancer stem-like cells isolated from primary oral squamous cell carcinomas. Tumour Biol 2018; 40:1010428318780859. [PMID: 29888653 DOI: 10.1177/1010428318780859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The goal of this study was to isolate cancer stem-like cells marked by high expression of CD44, a putative cancer stem cell marker, from primary oral squamous cell carcinomas and identify distinctive gene expression patterns in these cells. From 1 October 2013 to 4 September 2015, 76 stage III-IV primary oral squamous cell carcinoma of the gingivobuccal sulcus were resected. In all, 13 tumours were analysed by immunohistochemistry to visualise CD44-expressing cells. Expression of CD44 within The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma RNA-sequencing data was also assessed. Seventy resected tumours were dissociated into single cells and stained with antibodies to CD44 as well as CD45 and CD31 (together referred as Lineage/Lin). From 45 of these, CD44+Lin- and CD44-Lin- subpopulations were successfully isolated using fluorescence-activated cell sorting, and good-quality RNA was obtained from 14 such sorted pairs. Libraries from five pairs were sequenced and the results analysed using bioinformatics tools. Reverse transcription quantitative polymerase chain reaction was performed to experimentally validate the differential expression of selected candidate genes identified from the transcriptome sequencing in the same 5 and an additional 9 tumours. CD44 was expressed on the surface of poorly differentiated tumour cells, and within the The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma samples, its messenger RNA levels were higher in tumours compared to normal. Transcriptomics revealed that 102 genes were upregulated and 85 genes were downregulated in CD44+Lin- compared to CD44-Lin- cells in at least 3 of the 5 tumours sequenced. The upregulated genes included those involved in immune regulation, while the downregulated genes were enriched for genes involved in cell adhesion. Decreased expression of PCDH18, MGP, SPARCL1 and KRTDAP was confirmed by reverse transcription quantitative polymerase chain reaction. Lower expression of the cell-cell adhesion molecule PCDH18 correlated with poorer overall survival in the The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma data highlighting it as a potential negative prognostic factor in this cancer.
Collapse
Affiliation(s)
- Amrendra Mishra
- 1 Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, UAS-GKVK Campus, Bengaluru, India
- 2 Hannover Biomedical Research School, Hannover Medical School, Hannover, Germany
| | - Harshini Sriram
- 1 Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, UAS-GKVK Campus, Bengaluru, India
| | | | - Vivek Tanavde
- 3 iBioAnalysis Pvt. Ltd., Ahmedabad, India
- 4 Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
- 5 Bioinformatics Institute, Agency for Science Technology and Research (A*STAR), Singapore
| | - Rekha V Kumar
- 6 Kidwai Memorial Institute of Oncology, Bengaluru, India
| | | | | | - S Ramaswamy
- 1 Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, UAS-GKVK Campus, Bengaluru, India
| | - Subhashini Sadasivam
- 1 Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, UAS-GKVK Campus, Bengaluru, India
| |
Collapse
|
28
|
Bondy-Chorney E, Denoncourt A, Sai Y, Downey M. Nonhistone targets of KAT2A and KAT2B implicated in cancer biology 1. Biochem Cell Biol 2018; 97:30-45. [PMID: 29671337 DOI: 10.1139/bcb-2017-0297] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lysine acetylation is a critical post-translation modification that can impact a protein's localization, stability, and function. Originally thought to only occur on histones, we now know thousands of nonhistone proteins are also acetylated. In conjunction with many other proteins, lysine acetyltransferases (KATs) are incorporated into large protein complexes that carry out these modifications. In this review we focus on the contribution of two KATs, KAT2A and KAT2B, and their potential roles in the development and progression of cancer. Systems biology demands that we take a broad look at protein function rather than focusing on individual pathways or targets. As such, in this review we examine KAT2A/2B-directed nonhistone protein acetylations in cancer in the context of the 10 "Hallmarks of Cancer", as defined by Hanahan and Weinberg. By focusing on specific examples of KAT2A/2B-directed acetylations with well-defined mechanisms or strong links to a cancer phenotype, we aim to reinforce the complex role that these enzymes play in cancer biology.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Yuka Sai
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| |
Collapse
|
29
|
Tam KJ, Dalal K, Hsing M, Cheng CW, Khosravi S, Yenki P, Tse C, Peacock JW, Sharma A, Chiang YT, Wang Y, Cherkasov A, Rennie PS, Gleave ME, Ong CJ. Androgen receptor transcriptionally regulates semaphorin 3C in a GATA2-dependent manner. Oncotarget 2018; 8:9617-9633. [PMID: 28038451 PMCID: PMC5354758 DOI: 10.18632/oncotarget.14168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
The androgen receptor (AR) is a member of the nuclear receptor superfamily of transcription factors and is central to prostate cancer (PCa) progression. Ligand-activated AR engages androgen response elements (AREs) at androgen-responsive genes to drive the expression of gene batteries involved in cell proliferation and cell fate. Understanding the transcriptional targets of the AR has become critical in apprehending the mechanisms driving treatment-resistant stages of PCa. Although AR transcription regulation has been extensively studied, the signaling networks downstream of AR are incompletely described. Semaphorin 3C (SEMA3C) is a secreted signaling protein with roles in nervous system and cardiac development but can also drive cellular growth and invasive characteristics in multiple cancers including PCa. Despite numerous findings that implicate SEMA3C in cancer progression, regulatory mechanisms governing its expression remain largely unknown. Here we identify and characterize an androgen response element within the SEMA3C locus. Using the AR-positive LNCaP PCa cell line, we show that SEMA3C expression is driven by AR through this element and that AR-mediated expression of SEMA3C is dependent on the transcription factor GATA2. SEMA3C has been shown to promote cellular growth in certain cell types so implicit to our findings is the discovery of direct regulation of a growth factor by AR. We also show that FOXA1 is a negative regulator of SEMA3C. These findings identify SEMA3C as a novel target of AR, GATA2, and FOXA1 and expand our understanding of semaphorin signaling and cancer biology.
Collapse
Affiliation(s)
- Kevin J Tam
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Kush Dalal
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Michael Hsing
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Chi Wing Cheng
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Shahram Khosravi
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Parvin Yenki
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Charan Tse
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - James W Peacock
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Aishwariya Sharma
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Yan Ting Chiang
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Christopher J Ong
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Treatment with docetaxel in combination with Aneustat leads to potent inhibition of metastasis in a patient-derived xenograft model of advanced prostate cancer. Br J Cancer 2018; 118:802-812. [PMID: 29381682 PMCID: PMC5877435 DOI: 10.1038/bjc.2017.474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/09/2023] Open
Abstract
Background: Docetaxel used for first-line treatment of advanced prostate cancer (PCa) is only marginally effective. We previously showed, using the LTL-313H subrenal capsule patient-derived metastatic PCa xenograft model, that docetaxel combined with Aneustat (OMN54), a multivalent plant-derived therapeutic, led to marked synergistic tumour growth inhibition. Here, we investigated the effect of docetaxel+Aneustat on metastasis. Methods: C4-2 cells were incubated with docetaxel, Aneustat and docetaxel+Aneustat to assess effects on cell migration. The LTL-313H model, similarly treated, was analysed for effects on lung micro-metastasis and kidney invasion. The LTL-313H gene expression profile was compared with profiles of PCa patients (obtained from Oncomine) and subjected to IPA to determine involvement of cancer driver genes. Results: Docetaxel+Aneustat markedly inhibited C4-2 cell migration and LTL-313H lung micro-metastasis/kidney invasion. Oncomine analysis indicated that treatment with docetaxel+Aneustat was associated with improved patient outcome. The drug combination markedly downregulated expression of cancer driver genes such as FOXM1 (and FOXM1-target genes). FOXM1 overexpression reduced the anti-metastatic activity of docetaxel+Aneustat. Conclusions: Docetaxel+Aneustat can inhibit PCa tissue invasion and metastasis. This activity appears to be based on reduced expression of cancer driver genes such as FOXM1. Use of docetaxel+Aneustat may provide a new, more effective regimen for therapy of metastatic PCa.
Collapse
|
31
|
Jin HJ, Jung S, DebRoy AR, Davuluri RV. Identification and validation of regulatory SNPs that modulate transcription factor chromatin binding and gene expression in prostate cancer. Oncotarget 2018; 7:54616-54626. [PMID: 27409348 PMCID: PMC5338917 DOI: 10.18632/oncotarget.10520] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/23/2016] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer (PCa) is the second most common solid tumor for cancer related deaths in American men. Genome wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with the increased risk of PCa. Because most of the susceptibility SNPs are located in noncoding regions, little is known about their functional mechanisms. We hypothesize that functional SNPs reside in cell type-specific regulatory elements that mediate the binding of critical transcription factors (TFs), which in turn result in changes in target gene expression. Using PCa-specific functional genomics data, here we identify 38 regulatory candidate SNPs and their target genes in PCa. Through risk analysis by incorporating gene expression and clinical data, we identify 6 target genes (ZG16B, ANKRD5, RERE, FAM96B, NAALADL2 and GTPBP10) as significant predictors of PCa biochemical recurrence. In addition, 5 SNPs (rs2659051, rs10936845, rs9925556, rs6057110 and rs2742624) are selected for experimental validation using Chromatin immunoprecipitation (ChIP), dual-luciferase reporter assay in LNCaP cells, showing allele-specific enhancer activity. Furthermore, we delete the rs2742624-containing region using CRISPR/Cas9 genome editing and observe the drastic downregulation of its target gene UPK3A. Taken together, our results illustrate that this new methodology can be applied to identify regulatory SNPs and their target genes that likely impact PCa risk. We suggest that similar studies can be performed to characterize regulatory variants in other diseases.
Collapse
Affiliation(s)
- Hong-Jian Jin
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Segun Jung
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Auditi R DebRoy
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ramana V Davuluri
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
32
|
Luo Z, Rhie SK, Lay FD, Farnham PJ. A Prostate Cancer Risk Element Functions as a Repressive Loop that Regulates HOXA13. Cell Rep 2017; 21:1411-1417. [PMID: 29117547 PMCID: PMC5726543 DOI: 10.1016/j.celrep.2017.10.048] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/13/2017] [Accepted: 10/12/2017] [Indexed: 01/20/2023] Open
Abstract
Prostate cancer (PCa) is the leading cancer among men in the United States, with genetic factors contributing to ∼42% of the susceptibility to PCa. We analyzed a PCa risk region located at 7p15.2 to gain insight into the mechanisms by which this noncoding region may affect gene regulation and contribute to PCa risk. We performed Hi-C analysis and demonstrated that this region has long-range interactions with the HOXA locus, located ∼873 kb away. Using the CRISPR/Cas9 system, we deleted a 4-kb region encompassing several PCa risk-associated SNPs and performed RNA-seq to investigate transcriptomic changes in prostate cells lacking the regulatory element. Our results suggest that the risk element affects the expression of HOXA13 and HOTTIP, but not other genes in the HOXA locus, via a repressive loop. Forced expression of HOXA13 was performed to gain further insight into the mechanisms by which this risk element affects PCa risk.
Collapse
Affiliation(s)
- Zhifei Luo
- Department of Biochemistry and Molecular Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Suhn Kyong Rhie
- Department of Biochemistry and Molecular Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Fides D Lay
- Department of Biochemistry and Molecular Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
33
|
Identification of prognostic markers of high grade prostate cancer through an integrated bioinformatics approach. J Cancer Res Clin Oncol 2017; 143:2571-2579. [PMID: 28849390 DOI: 10.1007/s00432-017-2497-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE Prostate cancer is one of the leading causes of cancer death for male. In the present study, we applied an integrated bioinformatics approach to provide a novel perspective and identified some hub genes of prostate cancer. METHOD Microarray data of fifty-nine prostate cancer were downloaded from Gene Expression Omnibus. Gene Ontology and pathway analysis were applied for differentially expressed genes between high and low grade prostate cancer. Weighted gene coexpression network analysis was applied to construct gene network and classify genes into different modules. The most related module to high grade prostate cancer was identified and hub genes in the module were revealed. Ingenuity pathway analysis was applied to check the chosen module's relationship to high grade prostate cancer. Hub gene's expression profile was verified with clinical samples and a dataset from The Cancer Genome Atlas project. RESULT 3193 differentially expressed genes were filtered and gene ontology and pathway analysis revealed some cancer- and sex hormone-related results. Weighted gene coexpression network was constructed and genes were classified into six modules. The red module was selected and ingenuity pathway analysis confirmed its relationship with high grade prostate cancer. Hub genes were identified and their expression profile was also confirmed. CONCLUSION The present study applied integrate bioinformatics approaches to generate a holistic view of high grade prostate cancer and identified hub genes could serve as prognosis markers and potential treatment targets.
Collapse
|
34
|
Robinson JL, Tzou KS, Parker AS, Heckman MG, Wu KJ, Hilton TW, Pisansky TM, Schild SE, Peterson JL, Vallow LA, Buskirk SJ. GATA2 expression and biochemical recurrence following salvage radiation therapy for relapsing prostate cancer. Br J Radiol 2017; 90:20170174. [PMID: 28486040 DOI: 10.1259/bjr.20170174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE High GATA2 expression has been associated with an increased risk of poor clinical outcomes after radical prostatectomy; however, this has not been studied in relation to risk of biochemical recurrence (BCR) after salvage radiation therapy (SRT) for recurrent prostate cancer after radical prostatectomy. Our aim was to evaluate the association between protein expression levels of GATA2 in primary prostate cancer tumour samples and the risk of BCR after SRT. METHODS 109 males who were treated with SRT were included. The percentage of cells with nuclear staining and GATA2 staining intensity were both measured. These two measures were multiplied together to obtain a GATA2 H-score (range 0-12) which was our primary GATA2 staining measure. RESULTS In unadjusted analysis, the risk of BCR was higher for patients with a GATA2 H-score >4 (hazard ratio = 2.04, p = 0.033). In multivariable analysis adjusting for SRT dose, pre-SRT PSA, pathological tumour stage and Gleason score, this association weakened substantially (hazard ratio = 1.45, p = 0.31). This lack of an independent association with BCR appears to be the result of correlations between GATA2 H-score >4 and higher pre-SRT PSA (p = 0.021), higher Gleason score (p = 0.044) and more severe pathological tumour stage (p = 0.068). CONCLUSION Higher levels of GATA2 expression appear to be a marker of prostate cancer severity; however, these do not provide independent prognostic information regarding BCR beyond that of validated clinicopathological risk factors. Advances in knowledge: A higher GATA2 expression level appears to be correlated with known measures of prostate cancer severity and therefore is likely not an independent marker of outcome after SRT.
Collapse
Affiliation(s)
| | - Katherine S Tzou
- 2 Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Alexander S Parker
- 3 Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- 3 Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Kevin J Wu
- 4 Department of Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Tracy W Hilton
- 4 Department of Pathology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Steven E Schild
- 6 Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Laura A Vallow
- 2 Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Steven J Buskirk
- 2 Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
35
|
Identification of Key Modules and Hub Genes of Keloids with Weighted Gene Coexpression Network Analysis. Plast Reconstr Surg 2017; 139:376-390. [PMID: 28121871 DOI: 10.1097/prs.0000000000003014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Keloid scarring impairs patients' quality of life, and although many therapeutic strategies have been developed, most remain unsatisfactory because of limited understanding of the mechanisms underlying keloid development. METHODS A microarray gene expression data set from keloid tissue was acquired from the Gene Expression Omnibus. Differentially expressed genes in fibroblasts and keratinocytes underwent functional annotation and pathway analysis. Weighted gene coexpression network analysis was applied to identify the gene targets of keloid scars within differentially expressed genes. Modules and hub genes for keloids were identified. Enrichment analysis was undertaken to verify the modules' and hub genes' relationship with keloids. RESULTS Enrichment analysis and pathway analysis showed gene ontology terms and pathways related to keloids. Each cell type generated three modules in weighted gene coexpression network analysis, with one module most related to keloids. Enrichment analysis showed that the modules concerned are enriched with terms related to keloids. Three hub genes were selected for fibroblasts and keratinocytes, and their relationship to keloids was verified. Immunohistochemical staining verified expression change of some hub genes. CONCLUSIONS This is the first study to describe the gene networks underlying keloids. Modules and hub genes generated in the present study are highly related to keloids and may identify novel therapeutic targets for treatment of keloids. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
|
36
|
Abstract
Several therapeutic strategies are actually available in the management of prostate cancer: Targeting the androgen receptor (AR) is the goal both for initial androgen deprivation therapy (ADT) and second-generation androgen ablative agents (abiraterone and enzalutamide). Chemotherapy with taxanes, administered upon progression or as first line approach in association with ADT, is another therapeutic option. Unfortunately, none of these therapies is curative and patients are destined to develop a resistant phenotype.Progression to ADT leads to the attainment of a castration resistant disease whose mechanisms remain incompletely understood. Reactivation of AR has been shown to occur and second-generation of AR targeting drugs are usually prescribed. Upon progression to these agents AR signaling still remains the primary driver although it often becomes ligand independent, since it can be either restored through mutations on the ligand binding domain and/or formation of AR splicing variants or by passed through a cross talk with other oncogenic signaling pathways.AR-independent signaling pathways may represent additional mechanisms underlying castration resistant progression. It is clear that castration resistant prostate cancer is a group of diverse diseases and new treatment paradigms need to be developed.
Collapse
Affiliation(s)
- Alfredo Berruti
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Medical Oncology, University of Brescia at ASST-Spedali Civili, Brescia, Italy. .,Oncologia Medica, ASST-Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy.
| | - Alberto Dalla Volta
- Department of Oncology, Verona Comprehensive Cancer Network, G.B. Rossi Hospital, University of Verona, Piazzale L. A. Scuro 10, 37134, Verona, Italy
| |
Collapse
|
37
|
Rodriguez-Bravo V, Carceles-Cordon M, Hoshida Y, Cordon-Cardo C, Galsky MD, Domingo-Domenech J. The role of GATA2 in lethal prostate cancer aggressiveness. Nat Rev Urol 2017; 14:38-48. [PMID: 27872477 PMCID: PMC5489122 DOI: 10.1038/nrurol.2016.225] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advanced prostate cancer is a classic example of the intractability and consequent lethality that characterizes metastatic carcinomas. Novel treatments have improved the survival of men with prostate cancer; however, advanced prostate cancer invariably becomes resistant to these therapies and ultimately progresses to a lethal metastatic stage. Consequently, detailed knowledge of the molecular mechanisms that control prostate cancer cell survival and progression towards this lethal stage of disease will benefit the development of new therapeutics. The transcription factor endothelial transcription factor GATA-2 (GATA2) has been reported to have a key role in driving prostate cancer aggressiveness. In addition to being a pioneer transcription factor that increases androgen receptor (AR) binding and activity, GATA2 regulates a core subset of clinically relevant genes in an AR-independent manner. Functionally, GATA2 overexpression in prostate cancer increases cellular motility and invasiveness, proliferation, tumorigenicity, and resistance to standard therapies. Thus, GATA2 has a multifaceted function in prostate cancer aggressiveness and is a highly attractive target in the development of novel treatments against lethal prostate cancer.
Collapse
Affiliation(s)
- Veronica Rodriguez-Bravo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Marc Carceles-Cordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Yujin Hoshida
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Matthew D Galsky
- Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Josep Domingo-Domenech
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
38
|
Das R, Gregory PA, Fernandes RC, Denis I, Wang Q, Townley SL, Zhao SG, Hanson AR, Pickering MA, Armstrong HK, Lokman NA, Ebrahimie E, Davicioni E, Jenkins RB, Karnes RJ, Ross AE, Den RB, Klein EA, Chi KN, Ramshaw HS, Williams ED, Zoubeidi A, Goodall GJ, Feng FY, Butler LM, Tilley WD, Selth LA. MicroRNA-194 Promotes Prostate Cancer Metastasis by Inhibiting SOCS2. Cancer Res 2016; 77:1021-1034. [PMID: 28011622 DOI: 10.1158/0008-5472.can-16-2529] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/18/2016] [Accepted: 12/05/2016] [Indexed: 11/16/2022]
Abstract
Serum levels of miR-194 have been reported to predict prostate cancer recurrence after surgery, but its functional contributions to this disease have not been studied. Herein, it is demonstrated that miR-194 is a driver of prostate cancer metastasis. Prostate tissue levels of miR-194 were associated with disease aggressiveness and poor outcome. Ectopic delivery of miR-194 stimulated migration, invasion, and epithelial-mesenchymal transition in human prostate cancer cell lines, and stable overexpression of miR-194 enhanced metastasis of intravenous and intraprostatic tumor xenografts. Conversely, inhibition of miR-194 activity suppressed the invasive capacity of prostate cancer cell lines in vitro and in vivo Mechanistic investigations identified the ubiquitin ligase suppressor of cytokine signaling 2 (SOCS2) as a direct, biologically relevant target of miR-194 in prostate cancer. Low levels of SOCS2 correlated strongly with disease recurrence and metastasis in clinical specimens. SOCS2 downregulation recapitulated miR-194-driven metastatic phenotypes, whereas overexpression of a nontargetable SOCS2 reduced miR-194-stimulated invasion. Targeting of SOCS2 by miR-194 resulted in derepression of the oncogenic kinases FLT3 and JAK2, leading to enhanced ERK and STAT3 signaling. Pharmacologic inhibition of ERK and JAK/STAT pathways reversed miR-194-driven phenotypes. The GATA2 transcription factor was identified as an upstream regulator of miR-194, consistent with a strong concordance between GATA2 and miR-194 levels in clinical specimens. Overall, these results offer new insights into the molecular mechanisms of metastatic progression in prostate cancer. Cancer Res; 77(4); 1021-34. ©2016 AACR.
Collapse
Affiliation(s)
- Rajdeep Das
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.,Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Rayzel C Fernandes
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.,Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Iza Denis
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.,Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Qingqing Wang
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.,Breast Cancer Genetics Group, Centre for Personalised Cancer Medicine, School of Medicine, The University of Adelaide, SA 5005, Australia
| | - Scott L Townley
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Adrienne R Hanson
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Marie A Pickering
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Heather K Armstrong
- Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Noor A Lokman
- Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Esmaeil Ebrahimie
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Elai Davicioni
- GenomeDx Biosciences Inc., Vancouver, British Columbia, Canada
| | - Robert B Jenkins
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Ashley E Ross
- Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland
| | - Robert B Den
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kim N Chi
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Hayley S Ramshaw
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre Queensland, Translational Research Institute, Princess Alexandra Hospital, Queensland University of Technology, Brisbane, Australia
| | - Amina Zoubeidi
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia.,School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Felix Y Feng
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Lisa M Butler
- Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.,Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia. .,Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| |
Collapse
|
39
|
Coutinho I, Day TK, Tilley WD, Selth LA. Androgen receptor signaling in castration-resistant prostate cancer: a lesson in persistence. Endocr Relat Cancer 2016; 23:T179-T197. [PMID: 27799360 DOI: 10.1530/erc-16-0422] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/13/2022]
Abstract
The androgen receptor (AR) signaling axis drives all stages of prostate cancer, including the lethal, drug-resistant form of the disease termed castration-resistant prostate cancer (CRPC), which arises after failure of androgen deprivation therapy (ADT). Persistent AR activity in spite of ADT and the second-generation AR-targeting agents enzalutamide and abiraterone is achieved in many cases by direct alterations to the AR signaling axis. Herein, we provide a detailed description of how such alterations contribute to the development and progression of CRPC. Aspects of this broad and ever-evolving field specifically addressed in this review include: the etiology and significance of increased AR expression; the frequency and role of gain-of-function mutations in the AR gene; the function of constitutively active, truncated forms of the AR termed AR variants and the clinical relevance of alterations to the activity and expression of AR coregulators. Additionally, we examine the novel therapeutic strategies to inhibit these classes of therapy resistance mechanisms, with an emphasis on emerging agents that act in a manner distinct from the current ligand-centric approaches. Throughout, we discuss how the central role of AR in prostate cancer and the constant evolution of the AR signaling axis during disease progression represent archetypes of two key concepts in oncology, oncogene addiction and therapy-mediated selection pressure.
Collapse
Affiliation(s)
- Isabel Coutinho
- Dame Roma Mitchell Cancer Research LaboratoriesSchool of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men's HealthSchool of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Tanya K Day
- Dame Roma Mitchell Cancer Research LaboratoriesSchool of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men's HealthSchool of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research LaboratoriesSchool of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men's HealthSchool of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research LaboratoriesSchool of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men's HealthSchool of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
40
|
Luk ISU, Shrestha R, Xue H, Wang Y, Zhang F, Lin D, Haegert A, Wu R, Dong X, Collins CC, Zoubeidi A, Gleave ME, Gout PW, Wang Y. BIRC6 Targeting as Potential Therapy for Advanced, Enzalutamide-Resistant Prostate Cancer. Clin Cancer Res 2016; 23:1542-1551. [PMID: 27663589 DOI: 10.1158/1078-0432.ccr-16-0718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/11/2016] [Accepted: 09/05/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Enzalutamide resistance has emerged as a major problem in the management of castration-resistant prostate cancer (CRPC). Research on therapy resistance of CRPCs has primarily focused on the androgen receptor pathway. In contrast, there is limited information on antiapoptotic mechanisms that may facilitate the treatment resistance. The inhibitor of apoptosis proteins (IAP) family is well recognized for its role in promoting treatment resistance of cancers by inhibiting drug-induced apoptosis. Here, we examined whether BIRC6, an IAP family member, has a role in enzalutamide resistance of CRPCs and could provide a therapeutic target for enzalutamide-resistant CRPC.Experimental Design: Use of enzalutamide-resistant CRPC models: (i) the transplantable, first high-fidelity LTL-313BR patient-derived enzalutamide-resistant CRPC tissue xenograft line showing primary enzalutamide resistance, (ii) MR42D and MR49F CRPC cells/xenografts showing acquired enzalutamide resistance. Specific BIRC6 downregulation in these models was produced using a BIRC6-targeting antisense oligonucleotide (ASO-6w2). Gene expression was determined by qRT-PCR and gene expression profiling. Molecular pathways associated with growth inhibition were assessed via gene enrichment analysis.Results: Of eight IAPs examined, BIRC6 was the only one showing elevated expression in both enzalutamide-resistant CRPC models. Treatment with ASO-6w2 markedly suppressed growth of LTL-313BR xenografts and increased tumor apoptosis without inducing major host toxicity. Pathway enrichment analysis indicated that GPCR and matrisome signaling were the most significantly altered pathways. Furthermore, ASO-6w2 inhibited expression of prosurvival genes that were upregulated in the LTL-313BR line.Conclusions:BIRC6 targeting inhibited the growth of enzalutamide-resistant CRPC models and may represent a new option for clinical treatment of advanced, enzalutamide-resistant prostate cancer. Clin Cancer Res; 23(6); 1542-51. ©2016 AACR.
Collapse
Affiliation(s)
- Iris Sze Ue Luk
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Raunak Shrestha
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Hui Xue
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Yuwei Wang
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Fang Zhang
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Dong Lin
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Anne Haegert
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Xin Dong
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Colin C Collins
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada. .,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
41
|
El Maassarani M, Barbarin A, Fromont G, Kaissi O, Lebbe M, Vannier B, Moussa A, Séité P. Integrated and Functional Genomics Analysis Validates the Relevance of the Nuclear Variant ErbB380kDa in Prostate Cancer Progression. PLoS One 2016; 11:e0155950. [PMID: 27191720 PMCID: PMC4871423 DOI: 10.1371/journal.pone.0155950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 05/07/2016] [Indexed: 01/13/2023] Open
Abstract
The EGF-family of tyrosine-kinase receptors activates cytoplasmic pathways involved in cell proliferation, migration and differentiation in response to specific extracellular ligands. Beside these canonical pathways, the nuclear localization of the ErbB receptors in primary tumours and cancer cell lines led to investigate their role as transcriptional regulators of cancer genes. The nuclear localization of ErbB3 has been reported in various cancer tissues and cell lines but the nuclear functions and the putative correlation with tumour progression and resistance to therapy remain unclear. We first assessed ErbB3 expression in normal and tumour prostate tissues. The nuclear staining was mainly due to an isoform matching the C-terminus domain of the full length ErbB3185kDa receptor. Nuclear staining was also restricted to cancer cells and was increased in advanced castration-resistant prostate cancer when compared to localized tumours, suggesting it could be involved in the progression of prostate cancer up to the terminal castration-resistant stage. ChIP-on-chip experiments were performed on immortalized and tumour cell lines selected upon characterization of endogenous nuclear expression of an ErbB380kDa isoform. Among the 1840 target promoters identified, 26 were selected before ErbB380kDa-dependent gene expression was evaluated by real-time quantitative RT-PCR, providing evidence that ErbB380kDa exerted transcriptional control on those genes. Some targets are already known to be involved in prostate cancer progression even though no link was previously established with ErbB3 membrane and/or nuclear signalling. Many others, not yet associated with prostate cancer, could provide new therapeutic possibilities for patients expressing ErbB380kDa. Detecting ErbB380kDa could thus constitute a useful marker of prognosis and response to therapy.
Collapse
Affiliation(s)
- Mahmoud El Maassarani
- Equipe 2RCT, Université de Poitiers, Faculté des Sciences Fondamentales, Pôle Biologie- Santé, 1 rue G. Bonnet, 86073, Poitiers cedex 9, France
| | - Alice Barbarin
- Equipe 2RCT, Université de Poitiers, Faculté des Sciences Fondamentales, Pôle Biologie- Santé, 1 rue G. Bonnet, 86073, Poitiers cedex 9, France
| | - Gaëlle Fromont
- Centre Hospitalier Universitaire Bretonneau, Laboratoire d'Anatomopathologie, INSERM U1069, 37000 Tours, France
| | - Ouafae Kaissi
- LTI Laboratory, Abdelmalek Essaadi University, ENSAT, BP 1818, 90 000 Tangier, Morocco
| | - Margot Lebbe
- Equipe 2RCT, Université de Poitiers, Faculté des Sciences Fondamentales, Pôle Biologie- Santé, 1 rue G. Bonnet, 86073, Poitiers cedex 9, France
| | - Brigitte Vannier
- Equipe 2RCT, Université de Poitiers, Faculté des Sciences Fondamentales, Pôle Biologie- Santé, 1 rue G. Bonnet, 86073, Poitiers cedex 9, France
| | - Ahmed Moussa
- LTI Laboratory, Abdelmalek Essaadi University, ENSAT, BP 1818, 90 000 Tangier, Morocco
| | - Paule Séité
- Equipe 2RCT, Université de Poitiers, Faculté des Sciences Fondamentales, Pôle Biologie- Santé, 1 rue G. Bonnet, 86073, Poitiers cedex 9, France
| |
Collapse
|
42
|
Crea F, Quagliata L, Michael A, Liu HH, Frumento P, Azad AA, Xue H, Pikor L, Watahiki A, Morant R, Eppenberger-Castori S, Wang Y, Parolia A, Lennox KA, Lam WL, Gleave M, Chi KN, Pandha H, Wang Y, Helgason CD. Integrated analysis of the prostate cancer small-nucleolar transcriptome reveals SNORA55 as a driver of prostate cancer progression. Mol Oncol 2016; 10:693-703. [PMID: 26809501 PMCID: PMC5423162 DOI: 10.1016/j.molonc.2015.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/13/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the primary cause of death in prostate cancer (PCa) patients. Small nucleolar RNAs (snoRNAs) have long been considered "housekeeping" genes with no relevance for cancer biology. Emerging evidence has challenged this assumption, suggesting that snoRNA expression is frequently modulated during cancer progression. Despite this, no study has systematically addressed the prognostic and functional significance of snoRNAs in PCa. We performed RNA Sequencing on paired metastatic/non-metastatic PCa xenografts derived from clinical specimens. The clinical significance of differentially expressed snoRNAs was further investigated in two independent primary PCa cohorts (131 and 43 patients, respectively). The snoRNA demonstrating the strongest association with clinical outcome was quantified in PCa patient-derived serum samples and its functional relevance was investigated in PCa cells via gene expression profiling, pathway analysis and gene silencing. Our comparison revealed 21 differentially expressed snoRNAs in the metastatic vs. non-metastatic xenografts. Of those, 12 were represented in clinical databases and were further analyzed. SNORA55 emerged as a predictor of shorter relapse-free survival (results confirmed in two independent databases). SNORA55 was reproducibly detectable in serum samples from PCa patients. SNORA55 silencing in PCa cell lines significantly inhibited cell proliferation and migration. Pathway analysis revealed that SNORA55 expression is significantly associated with growth factor signaling and pro-inflammatory cytokine expression in PCa. Our results demonstrate that SNORA55 up-regulation predicts PCa progression and that silencing this non-coding gene affects PCa cell proliferation and metastatic potential, thus positioning it as both a novel biomarker and therapeutic target.
Collapse
Affiliation(s)
- Francesco Crea
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver BC, Canada; The Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver BC, Canada; Department of Life, Health, and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Luca Quagliata
- Molecular Pathology Unit, Institute of Pathology University Hospital Basel, Switzerland
| | - Agnieszka Michael
- Oncology, FHMS, School of Biosciences and Medicine, University of Surrey, UK
| | - Hui Hsuan Liu
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver BC, Canada
| | - Paolo Frumento
- Karolinska Institutet, Institute of Environmental Medicine, Unit of Biostatistics, Stockholm, Sweden
| | - Arun A Azad
- Medical Oncology, BC Cancer Agency Vancouver Cancer Centre, Vancouver BC, Canada
| | - Hui Xue
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver BC, Canada
| | - Larissa Pikor
- Genetics Unit, Integrative Oncology, BC Cancer Agency Cancer Research Centre, Vancouver BC, Canada
| | - Akira Watahiki
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver BC, Canada; The Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver BC, Canada
| | - Rudolf Morant
- Cancer Center ZeTuP AG St.Gallen, St.Gallen, Switzerland
| | | | - Yuwei Wang
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver BC, Canada
| | - Abhijit Parolia
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver BC, Canada
| | - Kim A Lennox
- Integrated DNA Technologies, Coralville, IA, USA
| | - Wan L Lam
- Genetics Unit, Integrative Oncology, BC Cancer Agency Cancer Research Centre, Vancouver BC, Canada
| | - Martin Gleave
- The Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver BC, Canada
| | - Kim N Chi
- The Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver BC, Canada; Medical Oncology, BC Cancer Agency Vancouver Cancer Centre, Vancouver BC, Canada
| | - Hardev Pandha
- Oncology, FHMS, School of Biosciences and Medicine, University of Surrey, UK
| | - Yuzhuo Wang
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver BC, Canada; The Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver BC, Canada.
| | - Cheryl D Helgason
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver BC, Canada.
| |
Collapse
|
43
|
Foley C, Mitsiades N. Moving Beyond the Androgen Receptor (AR): Targeting AR-Interacting Proteins to Treat Prostate Cancer. HORMONES & CANCER 2016; 7:84-103. [PMID: 26728473 PMCID: PMC5380740 DOI: 10.1007/s12672-015-0239-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023]
Abstract
Medical or surgical castration serves as the backbone of systemic therapy for advanced and metastatic prostate cancer, taking advantage of the importance of androgen signaling in this disease. Unfortunately, resistance to castration emerges almost universally. Despite the development and approval of new and more potent androgen synthesis inhibitors and androgen receptor (AR) antagonists, prostate cancers continue to develop resistance to these therapeutics, while often maintaining their dependence on the AR signaling axis. This highlights the need for innovative therapeutic approaches that aim to continue disrupting AR downstream signaling but are orthogonal to directly targeting the AR itself. In this review, we discuss the preclinical research that has been done, as well as clinical trials for prostate cancer, on inhibiting several important families of AR-interacting proteins, including chaperones (such as heat shock protein 90 (HSP90) and FKBP52), pioneer factors (including forkhead box protein A1 (FOXA1) and GATA-2), and AR transcriptional coregulators such as the p160 steroid receptor coactivators (SRCs) SRC-1, SRC-2, SRC-3, as well as lysine deacetylases (KDACs) and lysine acetyltransferases (KATs). Researching the effect of-and developing new therapeutic agents that target-the AR signaling axis is critical to advancing our understanding of prostate cancer biology, to continue to improve treatments for prostate cancer and for overcoming castration resistance.
Collapse
Affiliation(s)
- Christopher Foley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA
| | - Nicholas Mitsiades
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
44
|
Pihlajoki M, Färkkilä A, Soini T, Heikinheimo M, Wilson DB. GATA factors in endocrine neoplasia. Mol Cell Endocrinol 2016; 421:2-17. [PMID: 26027919 PMCID: PMC4662929 DOI: 10.1016/j.mce.2015.05.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/26/2015] [Accepted: 05/09/2015] [Indexed: 02/07/2023]
Abstract
GATA transcription factors are structurally-related zinc finger proteins that recognize the consensus DNA sequence WGATAA (the GATA motif), an essential cis-acting element in the promoters and enhancers of many genes. These transcription factors regulate cell fate specification and differentiation in a wide array of tissues. As demonstrated by genetic analyses of mice and humans, GATA factors play pivotal roles in the development, homeostasis, and function of several endocrine organs including the adrenal cortex, ovary, pancreas, parathyroid, pituitary, and testis. Additionally, GATA factors have been shown to be mutated, overexpressed, or underexpressed in a variety of endocrine tumors (e.g., adrenocortical neoplasms, parathyroid tumors, pituitary adenomas, and sex cord stromal tumors). Emerging evidence suggests that GATA factors play a direct role in the initiation, proliferation, or propagation of certain endocrine tumors via modulation of key developmental signaling pathways implicated in oncogenesis, such as the WNT/β-catenin and TGFβ pathways. Altered expression or function of GATA factors can also affect the metabolism, ploidy, and invasiveness of tumor cells. This article provides an overview of the role of GATA factors in endocrine neoplasms. Relevant animal models are highlighted.
Collapse
Affiliation(s)
- Marjut Pihlajoki
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Anniina Färkkilä
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland; Department of Obstetrics and Gynecology, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Tea Soini
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Markku Heikinheimo
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland; Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David B Wilson
- Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
45
|
Choi SYC, Xue H, Wu R, Fazli L, Lin D, Collins CC, Gleave ME, Gout PW, Wang Y. The MCT4 Gene: A Novel, Potential Target for Therapy of Advanced Prostate Cancer. Clin Cancer Res 2016; 22:2721-33. [PMID: 26755530 DOI: 10.1158/1078-0432.ccr-15-1624] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/06/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The management of castration-resistant prostate cancer (CRPC) is a major challenge in the clinic. Androgen receptor signaling-directed strategies are not curative in CRPC therapy, and new strategies targeting alternative, key cancer properties are needed. Using reprogrammed glucose metabolism (aerobic glycolysis), cancer cells typically secrete excessive amounts of lactic acid into their microenvironment, promoting cancer development, survival, and progression. Cellular lactic acid secretion is thought to be predominantly mediated by MCT4, a plasma membrane transporter protein. As such, the MCT4 gene provides a unique, potential therapeutic target for cancer. EXPERIMENTAL DESIGN A tissue microarray of various Gleason grade human prostate cancers was stained for MCT4 protein. Specific, MCT4-targeting antisense oligonucleotides (MCT4 ASO) were designed and candidate MCT4 ASOs checked for effects on (i) MCT4 expression, lactic acid secretion/content, glucose consumption, glycolytic gene expression, and proliferation of human CRPC cells and (ii) growth of PC-3 tumors in nude mice. RESULTS Elevated MCT4 expression was associated with human CRPC and an earlier time to relapse. The treatment of PC-3, DU145, and C4-2 CRPC cultures with candidate MCT4 ASOs led to marked inhibition of MCT4 expression, lactic acid secretion, to increased intracellular lactic acid levels, and markedly reduced aerobic glycolysis and cell proliferation. Treatment of PC-3 tumor-bearing nude mice with the MCT4 ASOs markedly inhibited tumor growth without inducing major host toxicity. CONCLUSIONS MCT4-targeting ASOs that inhibit lactic acid secretion may be useful for therapy of CRPC and other cancers, as they can interfere with reprogrammed energy metabolism of cancers, an emerging hallmark of cancer. Clin Cancer Res; 22(11); 2721-33. ©2016 AACR.
Collapse
Affiliation(s)
- Stephen Yiu Chuen Choi
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada. Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Hui Xue
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada. Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Dong Lin
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada. Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Colin C Collins
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin E Gleave
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada. Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada.
| |
Collapse
|
46
|
Guo J, Wang M, Liu X. MicroRNA-195 suppresses tumor cell proliferation and metastasis by directly targeting BCOX1 in prostate carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:91. [PMID: 26338045 PMCID: PMC4559360 DOI: 10.1186/s13046-015-0209-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022]
Abstract
Elucidation of the downstream targets regulated by the metastasis-suppressive miRNAs can shed light on the metastatic processes in prostate cancer (PCa). We conducted microarray analyses and found that miR-195 was significantly decreased in metastatic PCa. Low miR-195 expression is an independent prognostic factor for poor biochemical recurrence-free and overall survival. Forced expression of miR-195 in PCa cells drastically inhibits proliferation, migration and invasion in vitro and inhibits tumor growth and metastasis in vivo. BCOX1 is identified as a direct target of miR-195 in PCa, and is found to be drastically increased in metastatic PCa. BCOX1 knockdown phenotypically copies miR-195-induced phenotypes, whereas forced expression of BCOX1 reverses the effects of miR-195. Collectively, this is the first report unveils that loss of miR-195 expression and thus uncontrolled BCOX1 upregulation might drive PCa metastasis.
Collapse
Affiliation(s)
- Jia Guo
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan, 430060, Hubei, People's Republic of China
| | - Min Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan, 430060, Hubei, People's Republic of China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
47
|
Chiang YT, Gout PW, Collins CC, Wang Y. Prostate cancer metastasis-driving genes: hurdles and potential approaches in their identification. Asian J Androl 2015; 16:545-8. [PMID: 24589457 PMCID: PMC4104078 DOI: 10.4103/1008-682x.122875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Metastatic prostate cancer is currently incurable. Metastasis is thought to result from changes in the expression of specific metastasis-driving genes in nonmetastatic prostate cancer tissue, leading to a cascade of activated downstream genes that set the metastatic process in motion. Such genes could potentially serve as effective therapeutic targets for improved management of the disease. They could be identified by comparative analysis of gene expression profiles of patient-derived metastatic and nonmetastatic prostate cancer tissues to pinpoint genes showing altered expression, followed by determining whether silencing of such genes can lead to inhibition of metastatic properties. Various hurdles encountered in this approach are discussed, including (i) the need for clinically relevant, nonmetastatic and metastatic prostate cancer tissues such as xenografts of patients’ prostate cancers developed via subrenal capsule grafting technology and (ii) limitations in the currently available methodology for identification of master regulatory genes.
Collapse
Affiliation(s)
| | | | | | - Yuzhuo Wang
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, the University of British Columbia; Department of Experimental Therapeutics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|
48
|
Liu X, Jiang B, Wang A, Di J, Wang Z, Chen L, Su X. GATA2 rs2335052 Polymorphism Predicts the Survival of Patients with Colorectal Cancer. PLoS One 2015; 10:e0136020. [PMID: 26287967 PMCID: PMC4546112 DOI: 10.1371/journal.pone.0136020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 07/30/2015] [Indexed: 11/30/2022] Open
Abstract
Background GATA binding protein 2 (GATA2) is a transcription factor that has essential roles in hematologic malignancies and progression of various solid tumors. Our previous studies suggested that high GATA2 expression is associated with recurrence of colorectal cancer (CRC). However, the influence of GATA2 single nucleotide polymorphisms (SNPs) on the survival of CRC remains unknown. Methods We genotyped GATA2 SNP rs2335052 using Sanger sequencing after PCR amplification, and determined GATA2 expression by immunohistochemistry in a cohort of 180 CRC patients. Kaplan-Meier survival analysis and Cox proportional hazard regression were used to analyze the association between the GATA2 rs2335052 genotypes and the clinical outcome of CRC. Results We found that there was no significant correlation between the rs2335052 genotypes and the expression of GATA2. However, the Kaplan-Meier survival analysis suggested that the carriers of the A-allele of SNP rs2335052 were significantly associated with increased risk of recurrence and reduced disease-free survival (DFS), compared with those carrying the variant genotype of GG in rs2335052 (P = 0.021). Moreover, univariate and multivariate Cox regression analyses revealed that GATA2 SNP rs2335052 was an independent risk factor for the DFS of CRC patients. Conclusion Our results demonstrated that GATA2 SNP rs2335052 is an independent predictor for prognosis of CRC patients. This raised the possibility that SNP rs2335052 may serve as a potential indicator for predicting recurrence of CRC after curative colectomy.
Collapse
Affiliation(s)
- Xijuan Liu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Beihai Jiang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Aidong Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiabo Di
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zaozao Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lei Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangqian Su
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
- * E-mail:
| |
Collapse
|
49
|
Wang Z, Yuan H, Sun C, Xu L, Chen Y, Zhu Q, Zhao H, Huang Q, Dong J, Lan Q. GATA2 promotes glioma progression through EGFR/ERK/Elk-1 pathway. Med Oncol 2015; 32:87. [PMID: 25707769 DOI: 10.1007/s12032-015-0522-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/13/2015] [Indexed: 11/25/2022]
Abstract
Among the gliomas, glioblastoma (GBM) is the highest grade and the most malignant glioma tumor. GATA2 is a hematopoietic factor that has been intensely studied in hematopoietic malignancies. Recently, the functions of GATA2 as an oncogene in other types of human cancer have been reported. However, no role for GATA2 in the development and progression of glioma has been reported to date. In the present study, we found that the expression level of GATA2 is upregulated in GBM and is correlated with GBM outcome. Ectopic expression of GATA2 or RNAi-mediated knockdown of GATA2 significantly enhanced or inhibited proliferation, migration and invasion of glioma cells. Moreover, we found that epidermal growth factor receptor and extracellular signal-regulated kinase, as upstream components of the signaling pathway, upregulate GATA2 expression; moreover, GATA2 promotes Elk-1 expression. Therefore, a genetic approach or pharmacological intervention targeting GATA2 could potentially serve as an effective strategy for treating glioma patients.
Collapse
Affiliation(s)
- Zhongyong Wang
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Vidal SJ, Rodriguez-Bravo V, Quinn SA, Rodriguez-Barrueco R, Lujambio A, Williams E, Sun X, de la Iglesia-Vicente J, Lee A, Readhead B, Chen X, Galsky M, Esteve B, Petrylak DP, Dudley JT, Rabadan R, Silva JM, Hoshida Y, Lowe SW, Cordon-Cardo C, Domingo-Domenech J. A targetable GATA2-IGF2 axis confers aggressiveness in lethal prostate cancer. Cancer Cell 2015; 27:223-39. [PMID: 25670080 PMCID: PMC4356948 DOI: 10.1016/j.ccell.2014.11.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/07/2014] [Accepted: 11/13/2014] [Indexed: 01/11/2023]
Abstract
Elucidating the determinants of aggressiveness in lethal prostate cancer may stimulate therapeutic strategies that improve clinical outcomes. We used experimental models and clinical databases to identify GATA2 as a regulator of chemotherapy resistance and tumorigenicity in this context. Mechanistically, direct upregulation of the growth hormone IGF2 emerged as a mediator of the aggressive properties regulated by GATA2. IGF2 in turn activated IGF1R and INSR as well as a downstream polykinase program. The characterization of this axis prompted a combination strategy whereby dual IGF1R/INSR inhibition restored the efficacy of chemotherapy and improved survival in preclinical models. These studies reveal a GATA2-IGF2 aggressiveness axis in lethal prostate cancer and identify a therapeutic opportunity in this challenging disease.
Collapse
Affiliation(s)
- Samuel J Vidal
- College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - S Aidan Quinn
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA 10032, USA
| | | | - Amaia Lujambio
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Estrelania Williams
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiaochen Sun
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Albert Lee
- Department of Biomedical Informatics, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10031, USA
| | - Ben Readhead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xintong Chen
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Galsky
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Berta Esteve
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel P Petrylak
- Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raul Rabadan
- Department of Biomedical Informatics, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10031, USA
| | - Jose M Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yujin Hoshida
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Josep Domingo-Domenech
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|