1
|
López-Plaza B, Gil Á, Menéndez-Rey A, Bensadon-Naeder L, Hummel T, Feliú-Batlle J, Palma-Milla S. Effect of Regular Consumption of a Miraculin-Based Food Supplement on Taste Perception and Nutritional Status in Malnourished Cancer Patients: A Triple-Blind, Randomized, Placebo-Controlled Clinical Trial-CLINMIR Pilot Protocol. Nutrients 2023; 15:4639. [PMID: 37960292 PMCID: PMC10648678 DOI: 10.3390/nu15214639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Taste disorders are common among cancer patients undergoing chemotherapy, with a prevalence ranging from 20% to 86%, persisting throughout treatment. This condition leads to reduced food consumption, increasing the risk of malnutrition. Malnutrition is associated not only with worse treatment efficacy and poor disease prognosis but also with reduced functional status and quality of life. The fruit of Synsepalum dulcificum (Daniell), commonly known as miracle berry or miracle fruit, contains miraculin, a taste-modifying protein with profound effects on taste perception. The CLINMIR Protocol is a triple-blind, randomized, placebo-controlled clinical trial designed to evaluate the regular consumption of a food supplement containing a miraculin-based novel food, dried miracle berry (DMB), on the taste perception (measured through electrogustometry) and nutritional status (evaluated through the GLIM Criteria) of malnourished cancer patients under active antineoplastic treatment. To this end, a pilot study was designed with 30 randomized patients divided into three study arms (150 mg DMB + 150 mg freeze-dried strawberries, 300 mg DMB, or placebo) for three months. Throughout the five main visits, an exhaustive assessment of different parameters susceptible to improvement through regular consumption of the miraculin-based food supplement will be conducted, including electrical and chemical taste perception, smell perception, nutritional and morphofunctional assessment, diet, quality of life, the fatty acid profile of erythrocytes, levels of inflammatory and cancer-associated cytokines, oxidative stress, antioxidant defense system, plasma metabolomics, and saliva and stool microbiota. The primary anticipated result is that malnourished cancer patients with taste distortion who consume the miraculin-based food supplement will report an improvement in food taste perception. This improvement translates into increased food intake, thereby ameliorating their nutritional status and mitigating associated risks. Additionally, the study aims to pinpoint the optimal dosage that provides maximal benefits. The protocol adheres to the SPIRIT 2013 Statement, which provides evidence-based recommendations and is widely endorsed as an international standard for trial protocols. The clinical trial protocol has been registered at the platform for Clinical Trials (NCT05486260).
Collapse
Affiliation(s)
- Bricia López-Plaza
- Nutrition Research Group, La Paz University Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain;
- Medicine Department, Faculty of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Centre of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | | | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany;
| | - Jaime Feliú-Batlle
- Oncology Department, Hospital La Paz Institute for Health Research—IdiPAZ, Hospital Universitario La Paz, 28029 Madrid, Spain;
- CIBERONC (CIBER Cancer), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Medicine Department, Faculty of Medicine, Autonomous University of Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain;
| | - Samara Palma-Milla
- Medicine Department, Faculty of Medicine, Autonomous University of Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain;
- Nutrition Department, Hospital University La Paz, 28046 Madrid, Spain
| |
Collapse
|
2
|
Zinovkin RA, Lyamzaev KG, Chernyak BV. Current perspectives of mitochondria-targeted antioxidants in cancer prevention and treatment. Front Cell Dev Biol 2023; 11:1048177. [PMID: 37009472 PMCID: PMC10060896 DOI: 10.3389/fcell.2023.1048177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Oxidative stress nearly always accompanies all stages of cancer development. At the early stages, antioxidants may help to reduce reactive oxygen species (ROS) production and exhibit anticarcinogenic effects. In the later stages, ROS involvement becomes more complex. On the one hand, ROS are necessary for cancer progression and epithelial-mesenchymal transition. On the other hand, antioxidants may promote cancer cell survival and may increase metastatic frequency. The role of mitochondrial ROS in cancer development remains largely unknown. This paper reviews experimental data on the effects of both endogenous and exogenous antioxidants on cancerogenesis focusing on the development and application of mitochondria-targeted antioxidants. We also discuss the prospects for antioxidant cancer therapy, focusing on the use of mitochondria-targeted antioxidants.
Collapse
Affiliation(s)
- Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Priego-Hernández VD, Arizmendi-Izazaga A, Soto-Flores DG, Santiago-Ramón N, Feria-Valadez MD, Navarro-Tito N, Jiménez-Wences H, Martínez-Carrillo DN, Salmerón-Bárcenas EG, Leyva-Vázquez MA, Illades-Aguiar B, Alarcón-Romero LDC, Ortiz-Ortiz J. Expression of HIF-1α and Genes Involved in Glucose Metabolism Is Increased in Cervical Cancer and HPV-16-Positive Cell Lines. Pathogens 2022; 12:pathogens12010033. [PMID: 36678382 PMCID: PMC9865746 DOI: 10.3390/pathogens12010033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer (CC) is the most common cancer in women in the lower genital tract. The main risk factor for developing CC is persistent infection with HPV 16. The E6 and E7 oncoproteins of HPV 16 have been related to metabolic reprogramming in cancer through the regulation of the expression and stability of HIF-1α and consequently of the expression of its target genes, such as HIF1A (HIF-1α), SLC2A1 (GLUT1), LDHA, CA9 (CAIX), SLC16A3 (MCT4), and BSG (Basigin or CD147), which are involved in glucose metabolism. This work aimed to evaluate the expression of HIF-1α, GLUT1, LDHA, CAIX, MCT4, and Basigin in patient samples and CC cell lines. To evaluate the expression level of HIF1A, SLC2A1, LDHA, CA9, SLC16A3, and BSG genes in tissue from patients with CC and normal tissue, the TCGA dataset was used. To evaluate the expression level of these genes by RT-qPCR in CC cell lines, HPV-negative (C-33A) and HPV-16-positive (SiHa and Ca Ski) cell lines were used. Increased expression of HIF1A, SLC2A1, LDHA, SLC16A3, and BSG was found in Ca Ski and CA9 in SiHa compared to C-33A. Similar results were observed in CC tissues compared to normal tissue obtained by bioinformatics analysis. In conclusion, the expression of HIF-1α, GLUT1, LDHA, CAIX, MCT4, and BSG genes is increased in CC and HPV-16-positive cell lines.
Collapse
Affiliation(s)
- Víctor D. Priego-Hernández
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Adán Arizmendi-Izazaga
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Diana G. Soto-Flores
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Norma Santiago-Ramón
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Milagros D. Feria-Valadez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Hilda Jiménez-Wences
- Laboratorio de Investigación Clínica, Facultad de Ciencias, Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Dinorah N. Martínez-Carrillo
- Laboratorio de Investigación Clínica, Facultad de Ciencias, Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Eric G. Salmerón-Bárcenas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico
| | - Marco A. Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Luz del C. Alarcón-Romero
- Laboratorio de Investigación en Citopatología e Histoquímica de la Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
- Correspondence: ; Tel.: +52-747-471-0901
| |
Collapse
|
4
|
Sud’ina GF, Golenkina EA, Prikhodko AS, Kondratenko ND, Gaponova TV, Chernyak BV. Mitochondria-targeted antioxidant SkQ1 inhibits leukotriene synthesis in human neutrophils. Front Pharmacol 2022; 13:1023517. [PMID: 36506526 PMCID: PMC9729262 DOI: 10.3389/fphar.2022.1023517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Leukotrienes are among the most potent mediators of inflammation, and inhibition of their biosynthesis, is becoming increasingly important in the treatment of many pathologies. In this work, we demonstrated that preincubation of human neutrophils with the mitochondria targeted antioxidant SkQ1 (100 nM) strongly inhibits leukotriene synthesis induced by three different stimuli: the Ca2+ ionophore A23187, the chemotactic formyl-peptide fMLP in combination with cytocholasin B, and opsonized zymosan. The SkQ1 analogue lacking the antioxidant quinone moiety (C12TPP) was ineffective, suggesting that mitochondrial production of reactive oxygen species (ROS) is critical for activating of leukotriene synthesis in human neutrophils. The uncoupler of oxidative phosphorylation FCCP also inhibits leukotriene synthesis, indicating that a high membrane potential is a prerequisite for stimulating leukotriene synthesis in neutrophils. Our data show that activation of mitogen-activated protein kinases p38 and ERK1/2, which is important for leukotriene synthesis in neutrophils is a target for SkQ1: 1) the selective p38 inhibitor SB203580 inhibited fMLP-induced leukotriene synthesis, while the ERK1/2 activation inhibitor U0126 suppressed leukotriene synthesis induced by any of the three stimuli; 2) SkQ1 effectively prevents p38 and ERK1/2 activation (accumulation of phosphorylated forms) induced by all three stimuli. This is the first study pointing to the involvement of mitochondrial reactive oxygen species in the activation of leukotriene synthesis in human neutrophils. The use of mitochondria-targeted antioxidants can be considered as a promising strategy for inhibiting leukotriene synthesis and treating various inflammatory pathologies.
Collapse
Affiliation(s)
- Galina F. Sud’ina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,*Correspondence: Galina F. Sud’ina, ; Boris V. Chernyak,
| | - Ekaterina A. Golenkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia S. Prikhodko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia D. Kondratenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Tatjana V. Gaponova
- National Research Center for Hematology, Russia Federation Ministry of Public Health, Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,*Correspondence: Galina F. Sud’ina, ; Boris V. Chernyak,
| |
Collapse
|
5
|
Monti E, Mancini A, Marras E, Gariboldi MB. Targeting Mitochondrial ROS Production to Reverse the Epithelial-Mesenchymal Transition in Breast Cancer Cells. Curr Issues Mol Biol 2022; 44:5277-5293. [PMID: 36354671 PMCID: PMC9689492 DOI: 10.3390/cimb44110359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 03/03/2024] Open
Abstract
Experimental evidence implicates reactive oxygen species (ROS) generation in the hypoxic stabilization of hypoxia-inducible factor (HIF)-1α and in the subsequent expression of promoters of tumor invasiveness and metastatic spread. However, the role played by mitochondrial ROS in hypoxia-induced Epithelial-Mesenchymal Transition (EMT) activation is still unclear. This study was aimed at testing the hypothesis that the inhibition of hypoxia-induced mitochondrial ROS production, mainly at the mitochondrial Complex III UQCRB site, could result in the reversion of EMT, in addition to decreased HIF-1α stabilization. The role of hypoxia-induced ROS increase in HIF-1α stabilization and the ability of antioxidants, some of which directly targeting mitochondrial Complex III, to block ROS production and HIF-1α stabilization and prevent changes in EMT markers were assessed by evaluating ROS, HIF-1α and EMT markers on breast cancer cells, following 48 h treatment with the antioxidants. The specific role of UQCRB in hypoxia-induced EMT was also evaluated by silencing its expression through RNA interference and by assessing the effects of its downregulation on ROS production, HIF-1α levels, and EMT markers. Our results confirm the pivotal role of UQCRB in hypoxic signaling inducing EMT. Thus, UQCRB might be a new therapeutic target for the development of drugs able to reverse EMT by blocking mitochondrial ROS production.
Collapse
Affiliation(s)
- Elena Monti
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Alessandro Mancini
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- BioUp Sagl, 6900 Lugano, Switzerland
| | - Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| |
Collapse
|
6
|
Yadav T, Gau D, Roy P. Mitochondria-actin cytoskeleton crosstalk in cell migration. J Cell Physiol 2022; 237:2387-2403. [PMID: 35342955 PMCID: PMC9945482 DOI: 10.1002/jcp.30729] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria perform diverse functions in the cell and their roles during processes such as cell survival, differentiation, and migration are increasingly being appreciated. Mitochondrial and actin cytoskeletal networks not only interact with each other, but this multifaceted interaction shapes their functional dynamics. The interrelation between mitochondria and the actin cytoskeleton extends far beyond the requirement of mitochondrial ATP generation to power actin dynamics, and impinges upon several major aspects of cellular physiology. Being situated at the hub of cell signaling pathways, mitochondrial function can alter the activity of actin regulatory proteins and therefore modulate the processes downstream of actin dynamics such as cellular migration. As we will discuss, this regulation is highly nuanced and operates at multiple levels allowing mitochondria to occupy a strategic position in the regulation of migration, as well as pathological events that rely on aberrant cell motility such as cancer metastasis. In this review, we summarize the crosstalk that exists between mitochondria and actin regulatory proteins, and further emphasize on how this interaction holds importance in cell migration in normal as well as dysregulated scenarios as in cancer.
Collapse
Affiliation(s)
- Tarun Yadav
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - David Gau
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Wu C, Wei W, Li J, Peng S. The Impacts of Bone Marrow Mesenchymal Stem Cells (BMSCs)-Derived Periostin on Epithelial-Mesenchymal Transition (EMT) of Cervical Cancer Cells. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is closely related to the migrating and invading behaviors of cells. Periostin is one of the essential components in the extracellular matrix and can induce EMT of cells and their sequential metastasis. But its underlying mechanism is unclear.
The Hela and BMSC cell lines were assigned into Periostin-mimic group, Periostin-Inhibitor group and Periostin-NC group followed by analysis of cell migration and invasion, expression of E-Cadherin, Vimentin, β-Catenin, Snail, MMP-2, MMP-9, PTEN, and p-PTEN. Cells in Periostin-mimic
group exhibited lowest migration, least number of invaded cells, as well as lowest levels of Vimentin, β-Catenin, Snail, MMP-2, MMP-9, p-PTEN, Akt, p-Akt, p-GSK-3β, p-PDK1 and p-cRcf, along with highest levels of E-cadherin and PTEN. Moreover, cells in Periostin-NC
group had intermediate levels of these above indicators, while, the Periostin-Inhibitor group exhibited the highest migration rate, the most number of invaded cells, and the highest levels of these proteins (P < 0.05). In conclusion, BMSCs-derived Periostin can influence the EMT
of cervical cancer cells possibly through restraining the activity of the PI3K/AKT signal transduction pathway, indicating that Periostin might be a target of chemotherapy in clinics for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Chengyong Wu
- Reproductive Medicine Center, Yichun People’s Hospital, Yichun, Jiangxi, 336000, China
| | - Weifeng Wei
- Department of Obstetrics and Gynecology, Meizhou People’s Hospital, Meizhou, Guangdong, 514000, China
| | - Jing Li
- Department of Obstetrics and Gynecology, Meizhou People’s Hospital, Meizhou, Guangdong, 514000, China
| | - Shenglin Peng
- Reproductive Medicine Center, Yichun People’s Hospital, Yichun, Jiangxi, 336000, China
| |
Collapse
|
8
|
Pavlyuchenkova AN, Zinovkin RA, Makievskaya CI, Galkin II, Chelombitko MA. Mitochondria-targeted triphenylphosphonium-based compounds inhibit FcεRI-dependent degranulation of mast cells by preventing mitochondrial dysfunction through Erk1/2. Life Sci 2022; 288:120174. [PMID: 34826439 DOI: 10.1016/j.lfs.2021.120174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 11/27/2022]
Abstract
AIMS FcεRI-dependent activation and degranulation of mast cells (MC) play an important role in allergic diseases. We have previously demonstrated that triphenylphosphonium (TPP)-based antioxidant SkQ1 inhibits mast cell degranulation, but the exact mechanism of this inhibition is still unknown. This study focused on investigating the influence of TPP-based compounds SkQ1 and C12TPP on FcεRI-dependent mitochondrial dysfunction and signaling during MC degranulation. MAIN METHODS MC were sensitized by anti-dinitrophenyl IgE and stimulated by BSA-conjugated dinitrophenyl. The degranulation of MC was estimated by β-hexosaminidase release. The effect of TPP-based compounds on FcεRI-dependent signaling was determined by Western blot analysis for adapter molecule LAT, kinases Syk, PI3K, Erk1/2, and p38. Fluorescent microscopy was used to evaluate mitochondrial parameters such as morphology, membrane potential, reactive oxygen species and ATP level. KEY FINDINGS Pretreatment with TPP-based compounds significantly decreased FcεRI-dependent degranulation of MC. TPP-based compounds also prevented mitochondrial dysfunction (drop in mitochondrial ATP level and mitochondrial fission), and decreased Erk1/2 kinase phosphorylation. Selective Erk1/2 inhibition by U0126 also reduced β-hexosaminidase release and prevented mitochondrial fragmentation during FcεRI-dependent degranulation of MC. SIGNIFICANCE These findings expand the fundamental understanding of the role of mitochondria in the activation of MC. It also contributes to the rationale for the development of mitochondrial-targeted drugs for the treatment of allergic diseases.
Collapse
Affiliation(s)
| | - Roman A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ciara I Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan I Galkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria A Chelombitko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
9
|
Chelombitko MA, Chernyak BV, Fedorov AV, Zinovkin RA, Razin E, Paruchuru LB. The Role Played by Mitochondria in FcεRI-Dependent Mast Cell Activation. Front Immunol 2020; 11:584210. [PMID: 33178217 PMCID: PMC7596649 DOI: 10.3389/fimmu.2020.584210] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Mast cells play a key role in the regulation of innate and adaptive immunity and are involved in pathogenesis of many inflammatory and allergic diseases. The most studied mechanism of mast cell activation is mediated by the interaction of antigens with immunoglobulin E (IgE) and a subsequent binding with the high-affinity receptor Fc epsilon RI (FcεRI). Increasing evidences indicated that mitochondria are actively involved in the FcεRI-dependent activation of this type of cells. Here, we discuss changes in energy metabolism and mitochondrial dynamics during IgE-antigen stimulation of mast cells. We reviewed the recent data with regards to the role played by mitochondrial membrane potential, mitochondrial calcium ions (Ca2+) influx and reactive oxygen species (ROS) in mast cell FcεRI-dependent activation. Additionally, in the present review we have discussed the crucial role played by the pyruvate dehydrogenase (PDH) complex, transcription factors signal transducer and activator of transcription 3 (STAT3) and microphthalmia-associated transcription factor (MITF) in the development and function of mast cells. These two transcription factors besides their nuclear localization were also found to translocate in to the mitochondria and functions as direct modulators of mitochondrial activity. Studying the role played by mast cell mitochondria following their activation is essential for expanding our basic knowledge about mast cell physiological functions and would help to design mitochondria-targeted anti-allergic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Maria A. Chelombitko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Artem V. Fedorov
- Department of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ehud Razin
- Department of Biochemistry and Molecular Biology, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lakhsmi Bhargavi Paruchuru
- Department of Biochemistry and Molecular Biology, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Goleva TN, Lyamzaev KG, Rogov AG, Khailova LS, Epremyan KK, Shumakovich GP, Domnina LV, Ivanova OY, Marmiy NV, Zinevich TV, Esipov DS, Zvyagilskaya RA, Skulachev VP, Chernyak BV. Mitochondria-targeted 1,4-naphthoquinone (SkQN) is a powerful prooxidant and cytotoxic agent. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148210. [PMID: 32305410 DOI: 10.1016/j.bbabio.2020.148210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 12/28/2022]
Abstract
An increase in the production of reactive oxygen species (ROS) in mitochondria due to targeted delivery of redox active compounds may be useful in studies of modulation of cell functions by mitochondrial ROS. Recently, the mitochondria-targeted derivative of menadione (MitoK3) was synthesized. However, MitoK3 did not induce mitochondrial ROS production and lipid peroxidation while exerting significant cytotoxic action. Here we synthesized 1,4-naphthoquinone conjugated with alkyltriphenylphosphonium (SkQN) as a prototype of mitochondria-targeted prooxidant, and its redox properties, interactions with isolated mitochondria, yeast cells and various human cell lines were investigated. According to electrochemical measurements, SkQN was more active redox agent and, due to the absence of methyl group in the naphthoquinone ring, more reactive as electrophile than MitoK3. SkQN (but not MitoK3) stimulated hydrogen peroxide production in isolated mitochondria. At low concentrations, SkQN stimulated state 4 respiration in mitochondria, decreased membrane potential, and blocked ATP synthesis, being more efficient uncoupler of oxidative phosphorylation than MitoK3. In yeast cells, SkQN decreased cell viability and induced oxidative stress and mitochondrial fragmentation. SkQN killed various tumor cells much more efficiently than MitoK3. Since many tumors are characterized by increased oxidative stress, the use of new mitochondria-targeted prooxidants may be a promising strategy for anticancer therapy.
Collapse
Affiliation(s)
- Tatyana N Goleva
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Russian Federation
| | - Konstantin G Lyamzaev
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russian Federation
| | - Anton G Rogov
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Russian Federation
| | - Ljudmila S Khailova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russian Federation
| | - Khoren K Epremyan
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Russian Federation
| | - Galina P Shumakovich
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Russian Federation
| | - Lidia V Domnina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russian Federation
| | - Olga Yu Ivanova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russian Federation
| | - Natalia V Marmiy
- Faculty of Biology, Institute of Mitoengineering, M.V. Lomonosov Moscow State University, Russian Federation
| | - Tatiana V Zinevich
- Faculty of Biology, Institute of Mitoengineering, M.V. Lomonosov Moscow State University, Russian Federation
| | - Dmitry S Esipov
- Faculty of Biology, Institute of Mitoengineering, M.V. Lomonosov Moscow State University, Russian Federation
| | - Renata A Zvyagilskaya
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Russian Federation
| | - Vladimir P Skulachev
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russian Federation
| | - Boris V Chernyak
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russian Federation.
| |
Collapse
|
11
|
Lee H, Hwang-Bo H, Ji SY, Kim MY, Kim SY, Park C, Hong SH, Kim GY, Song KS, Hyun JW, Choi YH. Diesel particulate matter2.5 promotes epithelial-mesenchymal transition of human retinal pigment epithelial cells via generation of reactive oxygen species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114301. [PMID: 32155554 DOI: 10.1016/j.envpol.2020.114301] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Although several studies have linked PM2.5 (particulate matter with a diameter less than 2.5 μm) to ocular surface diseases such as keratitis and conjunctivitis, very few studies have previously addressed its effect on the retina. Therefore, the aim of this study was to evaluate the effect of PM2.5 on epithelial-mesenchymal transition (EMT), a process involved in disorders of the retinal pigment epithelial (RPE) on APRE-19 cells. PM2.5 changed the phenotype of RPE cells from epithelial to fibroblast-like mesenchymal, and increased cell migration. Exposure to PM2.5 markedly increased the expression of mesenchymal markers, but reduced the levels of epithelial markers. Moreover, PM2.5 promoted the phosphorylation of MAPKs and the expression of transforming growth factor-β (TGF-β)-mediated nuclear transcriptional factors. However, these PM2.5-mediated changes were completely reversed by LY2109761, a small molecule inhibitor of the TGF-β receptor type I/II kinases, and N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger. Interestingly, NAC, but not LY2109761, effectively restored the PM2.5-induced mitochondrial defects, including increased ROS, decreased mitochondrial activity, and mitochondrial membrane potential disruption. Collectively, our findings indicate that the TGF-β/Smad/ERK/p38 MAPK signaling pathway is activated downstream of cellular ROS during PM2.5-induced EMT. The present study provides the first evidence that EMT of RPE may be one of the mechanisms of PM2.5-induced retinal dysfunction.
Collapse
Affiliation(s)
- Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea
| | - Hyun Hwang-Bo
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea; Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea
| | - So Young Kim
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea; Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan, 47340, Republic of Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Kyoung Seob Song
- Department of Cell Biology and Biophysics, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Jin Won Hyun
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju, 63243, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea.
| |
Collapse
|
12
|
Denisenko TV, Gorbunova AS, Zhivotovsky B. Mitochondrial Involvement in Migration, Invasion and Metastasis. Front Cell Dev Biol 2019; 7:355. [PMID: 31921862 PMCID: PMC6932960 DOI: 10.3389/fcell.2019.00355] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondria in addition to be a main cellular power station, are involved in the regulation of many physiological processes, such as generation of reactive oxygen species, metabolite production and the maintenance of the intracellular Ca2+ homeostasis. Almost 100 years ago Otto Warburg presented evidence for the role of mitochondria in the development of cancer. During the past 20 years mitochondrial involvement in programmed cell death regulation has been clarified. Moreover, it has been shown that mitochondria may act as a switchboard between various cell death modalities. Recently, accumulated data have pointed to the role of mitochondria in the metastatic dissemination of cancer cells. Here we summarize the modern knowledge concerning the contribution of mitochondria to the invasion and dissemination of tumor cells and the possible mechanisms behind that and attempts to target metastatic cancers involving mitochondria.
Collapse
Affiliation(s)
| | - Anna S Gorbunova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Institute of Environmental Medicine, Division of Toxicology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
13
|
Hyttinen JMT, Kannan R, Felszeghy S, Niittykoski M, Salminen A, Kaarniranta K. The Regulation of NFE2L2 (NRF2) Signalling and Epithelial-to-Mesenchymal Transition in Age-Related Macular Degeneration Pathology. Int J Mol Sci 2019; 20:ijms20225800. [PMID: 31752195 PMCID: PMC6888570 DOI: 10.3390/ijms20225800] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a mounting cause of loss of sight in the elderly in the developed countries, a trend enhanced by the continual ageing of the population. AMD is a multifactorial and only partly understood, malady. Unfortunately, there is no effective treatment for most AMD patients. It is known that oxidative stress (OS) damages the retinal pigment epithelium (RPE) and contributes to the progression of AMD. We review here the potential importance of two OS-related cellular systems in relation to AMD. First, the nuclear factor erythroid 2-related factor 2 (NFE2L2; NRF2)-mediated OS response signalling pathway is important in the prevention of oxidative damage and a failure of this system could be critical in the development of AMD. Second, epithelial-to-mesenchymal transition (EMT) represents a change in the cellular phenotype, which ultimately leads to the fibrosis encountered in RPE, a characteristic of AMD. Many of the pathways triggering EMT are promoted by OS. The possible interconnections between these two signalling routes are discussed here. From a broader perspective, the control of NFE2L2 and EMT as ways of preventing OS-derived cellular damage could be potentially valuable in the therapy of AMD.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Correspondence:
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, DVRC 203, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Szabolcs Felszeghy
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Minna Niittykoski
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
| |
Collapse
|
14
|
Dugina VB, Shagieva GS, Kopnin PB. Biological Role of Actin Isoforms in Mammalian Cells. BIOCHEMISTRY (MOSCOW) 2019; 84:583-592. [DOI: 10.1134/s0006297919060014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
He PJ, Ge RF, Mao WJ, Chung PS, Ahn JC, Wu HT. Oxidative stress induced by carboplatin promotes apoptosis and inhibits migration of HN-3 cells. Oncol Lett 2018; 16:7131-7138. [PMID: 30546448 PMCID: PMC6256460 DOI: 10.3892/ol.2018.9563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 09/07/2018] [Indexed: 12/16/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is currently a serious public health problem in China; thus, it is urgent to identify effective treatment strategies for this disease. Previous studies demonstrated that reactive oxygen species (ROS) serve important roles in the apoptosis of LSCC cells. It has also been indicated that carboplatin (CBDCA), a second-generation platinum compound with broad antineoplastic properties, is able to induce oxidative stress to produce ROS, which in turn promotes apoptosis. Thus, the present study investigated if CBDCA is cytotoxic in LSCC cells due to the oxidative stress caused by ROS. Therefore, an MTT assay was performed to determine the cell viability of HN-3 LSCC cells following treatment with different doses of CBDCA. Subsequently, the expression levels of ROS and the rate of apoptosis/necrosis were evaluated in the cells. Following this, the HN-3 cells were co-treated with CBDCA and glutathione (GSH) or H2O2, followed by an MTT assay, a cell migration assay and western blot analysis. The results demonstrated that CBDCA reduced the viability of HN-3 cells in a time- and dose-dependent manner and promoted the production of ROS and apoptosis at certain doses. Additionally, the combination treatment of CBDCA and H2O2 enhanced the inhibitory effects of CBDCA on cell viability and migration ability, and promoted apoptosis in HN-3 cells; whereas the combined treatment of CBDCA and GSH exerted opposite effects. The results of the present study demonstrated that CBDCA promotes the apoptosis of HN-3 cells through accumulation of ROS, which may provide a novel treatment strategy for treating LSCC.
Collapse
Affiliation(s)
- Pei-Jie He
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China.,Department of Otolaryngology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, P.R. China
| | - Rui-Feng Ge
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wen-Jing Mao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| | - Phil-Sang Chung
- Department of Otolaryngology-Head and Neck Surgery, Beckman Laser Institute Korea, Dankook University, Cheonan, South Chungcheong 330-715, Republic of Korea
| | - Jin-Chul Ahn
- Department of Otolaryngology-Head and Neck Surgery, Beckman Laser Institute Korea, Dankook University, Cheonan, South Chungcheong 330-715, Republic of Korea
| | - Hai-Tao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| |
Collapse
|
16
|
Zhang J, Zhang W, Zhang T, Zhou Q, Liu J, Liu Y, Kong D, Yu W, Liu R, Hai C. TGF-β1 induces epithelial-to-mesenchymal transition via inhibiting mitochondrial functions in A549 cells. Free Radic Res 2018; 52:1432-1444. [DOI: 10.1080/10715762.2018.1500020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiaxin Zhang
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Wei Zhang
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Tao Zhang
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Qingbiao Zhou
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jiangzheng Liu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Ying Liu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Deqin Kong
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Weihua Yu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Rui Liu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Chunxu Hai
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
17
|
Titova E, Shagieva G, Ivanova O, Domnina L, Domninskaya M, Strelkova O, Khromova N, Kopnin P, Chernyak B, Skulachev V, Dugina V. Mitochondria-targeted antioxidant SkQ1 suppresses fibrosarcoma and rhabdomyosarcoma tumour cell growth. Cell Cycle 2018; 17:1797-1811. [PMID: 29995559 DOI: 10.1080/15384101.2018.1496748] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Mitochondria are important regulators of tumour growth and progression due to their specific role in cancer metabolism and modulation of apoptotic pathways. In this paper we describe that mitochondria-targeted antioxidant SkQ1 designed as a conjugate of decyl-triphenylphosphonium cation (TPP+) with plastoquinone, suppressed the growth of fibrosarcoma HT1080 and rhabdomyosarcoma RD tumour cells in culture and tumour growth of RD in xenograft nude mouse model. Under the same conditions, no detrimental effect of SkQ1 on cell growth of primary human subcutaneous fibroblasts was observed. The tumour growth suppression was shown to be a result of the antioxidant action of low nanomolar concentrations of SkQ1. We have revealed significant prolongation of mitosis induced by SkQ1 in both tumour cell cultures. Prolonged mitosis and apoptosis could be responsible for growth suppression after SkQ1 treatment in RD cells. Growth suppression in HT1080 cells was accompanied by the delay of telophase and cytokinesis, followed by multinuclear cells formation. The effects of SkQ1 on the cell cycle were proved to be at least partially mediated by inactivation of Aurora family kinases. ABBREVIATIONS TPP+: Triphenylphosphonium cation; ROS: Reactive oxygen species; mtROS: Mitochondrial reactive oxygen species; NAC: N-acetyl-L-cysteine; DCFH-DA: Dichlorodihydrofluorescein diacetate; APC: Anaphase promoting complex; ABPs: Actin-binding proteins; DMEM: Dulbecco's modified Eagle media; SDS: sodium dodecyl sulfate; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid.
Collapse
Affiliation(s)
- Ekaterina Titova
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Galina Shagieva
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Olga Ivanova
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Lidiya Domnina
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Maria Domninskaya
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Olga Strelkova
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Natalya Khromova
- b Cancerogenesis Research Institute, Blokhin Russian Cancer Research Center , Moscow , Russia
| | - Pavel Kopnin
- b Cancerogenesis Research Institute, Blokhin Russian Cancer Research Center , Moscow , Russia
| | - Boris Chernyak
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Vladimir Skulachev
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia.,c Faculty of Bioengineering and Bioinformatics , Lomonosov Moscow State University , Moscow , Russia
| | - Vera Dugina
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| |
Collapse
|
18
|
de Campos RP, Schultz IC, de Andrade Mello P, Davies S, Gasparin MS, Bertoni APS, Buffon A, Wink MR. Cervical cancer stem-like cells: systematic review and identification of reference genes for gene expression. Cell Biol Int 2018; 42:139-152. [PMID: 28949053 DOI: 10.1002/cbin.10878] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/24/2017] [Indexed: 12/21/2022]
Abstract
Cervical cancer is the fourth most common cancer affecting women worldwide. Among many factors, the presence of cancer stem cells, a subpopulation of cells inside the tumor, has been associated with a worse prognosis. Considering the importance of gene expression studies to understand the biology of cervical cancer stem cells (CCSC), this work identifies stable reference genes for cervical cancer cell lines SiHa, HeLa, and ME180 as well as their respective cancer stem-like cells. A literature review was performed to identify validated reference genes currently used to normalize RT-qPCR data in cervical cancer cell lines. Then, cell lines were cultured in regular monolayer or in a condition that favors tumor sphere formation. RT-qPCR was performed using five reference genes: ACTB, B2M, GAPDH, HPRT1, and TBP. Stability was assessed to validate the selected genes as suitable reference genes. The evaluation validated B2M, GAPDH, HPRT1, and TBP in these experimental conditions. Among them, GAPDH and TBP presented the lowest variability according to the analysis by Normfinder, Bestkeeper, and ΔCq methods, being therefore the most adequate genes to normalize the combination of all samples. These results suggest that B2M, GAPDH, HPRT1, and TBP are suitable reference genes to normalize RT-qPCR data of established cervical cancer cell lines SiHa, HeLa, and ME180 as well as their derived cancer stem-like cells. Indeed, GAPDH and TBP seem to be the most convenient choices for studying gene expression in these cells in monolayers or spheres.
Collapse
Affiliation(s)
- Rafael P de Campos
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| | - Iago C Schultz
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| | - Paola de Andrade Mello
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Rio Grande do Sul, Brazil
- Laboratório de Análises Bioquímicas e Citológicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Rio Grande do Sul, Brazil
| | - Samuel Davies
- Laboratório de Análises Bioquímicas e Citológicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Rio Grande do Sul, Brazil
| | - Manuela S Gasparin
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Rio Grande do Sul, Brazil
- Laboratório de Análises Bioquímicas e Citológicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Rio Grande do Sul, Brazil
| | - Ana P S Bertoni
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| | - Andréia Buffon
- Laboratório de Análises Bioquímicas e Citológicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Rio Grande do Sul, Brazil
| | - Márcia R Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| |
Collapse
|
19
|
Khodaei F, Ahmadi K, Kiyani H, Hashemitabar M, Rezaei M. Mitochondrial Effects of Teucrium Polium and Prosopis Farcta Extracts in Colorectal Cancer Cells. Asian Pac J Cancer Prev 2018; 19:103-109. [PMID: 29373899 PMCID: PMC5844602 DOI: 10.22034/apjcp.2018.19.1.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Teucrium Polium and Prosopis Farcta have been traditionally employed in cancer treatment. In this study we evaluated the effects of methanolic extracts of these two plants in HT-29 cells. Methods: IC50s of extracts were obtained via MTT assay and the levels of ROS production, cell death, collapse of mitochondrial membrane potential and Sirt3 enzyme activity were determined. Results: After 48 hours exposure, IC50s for Teucrium and Prosopis extracts were 3 and 2µg/ml, respectively. Extracts induced higher ROS production after 6 hours than after 12 hours. Mitochondrial membrane potential collapse and cell death rate were also increased; Teucrium caused greater cell death than Prosopis. Extracts from both plants increased Sirt3 activity in its normal form, but only Teucrium extract caused a significant increase in activity of Sirt3 enzyme isolated from cancer cells. Conclusion: Teucrium and Prosopis extracts exert anticancer activity via mitochondrial alterations, as exemplified by increased ROS levels, Sirt3 activity and cell death in HT-29 colorectal cancer cells.
Collapse
Affiliation(s)
- Forouzan Khodaei
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmacology and Toxicology, Shiraz University of Medical Sciences, Shiraz, Iran. ,
| | | | | | | | | |
Collapse
|
20
|
Suarez‐Carmona M, Lesage J, Cataldo D, Gilles C. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol 2017; 11:805-823. [PMID: 28599100 PMCID: PMC5496491 DOI: 10.1002/1878-0261.12095] [Citation(s) in RCA: 402] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Tumors can be depicted as wounds that never heal, and are infiltrated by a large array of inflammatory and immune cells. Tumor-associated chronic inflammation is a hallmark of cancer that fosters progression to a metastatic stage, as has been extensively reviewed lately. Indeed, inflammatory cells persisting in the tumor establish a cross-talk with tumor cells that may result in a phenotype switch into tumor-supporting cells. This has been particularly well described for macrophages and is referred to as tumor-associated 'M2' polarization. Epithelial-to-mesenchymal transition (EMT), the embryonic program that loosens cell-cell adherence complexes and endows cells with enhanced migratory and invasive properties, can be co-opted by cancer cells during metastatic progression. Cancer cells that have undergone EMT are more aggressive, displaying increased invasiveness, stem-like features, and resistance to apoptosis. EMT programs can also stimulate the production of proinflammatory factors by cancer cells. Conversely, inflammation is a potent inducer of EMT in tumors. Therefore, the two phenomena may sustain each other, in an alliance for metastasis. This is the focus of this review, where the interconnections between EMT programs and cellular and molecular actors of inflammation are described. We also recapitulate data linking the EMT/inflammation axis to metastasis.
Collapse
Affiliation(s)
- Meggy Suarez‐Carmona
- National Center for Tumor Diseases (NCT) – University Hospital HeidelbergGermany
| | - Julien Lesage
- Laboratory of Tumor and Development BiologyGIGA‐Cancer University of LiègeBelgium
| | - Didier Cataldo
- Inserm UMR‐S 903SFR CAP‐SantéUniversity of Reims Champagne‐Ardenne (URCA)France
| | - Christine Gilles
- Inserm UMR‐S 903SFR CAP‐SantéUniversity of Reims Champagne‐Ardenne (URCA)France
| |
Collapse
|
21
|
Liao S, Xiao S, Chen H, Zhang M, Chen Z, Long Y, Gao L, Zhu G, He J, Peng S, Xiong W, Zeng Z, Li Z, Zhou M, Li X, Ma J, Wu M, Xiang J, Li G, Zhou Y. CD38 enhances the proliferation and inhibits the apoptosis of cervical cancer cells by affecting the mitochondria functions. Mol Carcinog 2017; 56:2245-2257. [PMID: 28544069 DOI: 10.1002/mc.22677] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/28/2017] [Accepted: 05/20/2017] [Indexed: 01/10/2023]
Abstract
Cervical cancer is one of the most common malignant tumors in women all over the world. The exact mechanism of occurrence and development of cervical cancer has not been fully elucidated. CD38 is a type II transmembrane glycoprotein, which was found to mediate diverse activities, including signal transduction, cell adhesion, and cyclic ADP-ribose synthesis. Here, we reported that CD38 promoted cell proliferation and inhibited cell apoptosis in cervical cancer cells by affecting the mitochondria functions. We established stable cervical cancer cell lines with CD38 over-expressed. CCK8 assay and colony formation assay indicated that CD38 promoted cervical cancer cell proliferation. Nude mouse tumorigenicity assay showed that CD38 significantly promotes tumor growth in vivo. CD38 also induced S phase accumulation in cell cycle analysis and suppressed cell apoptosis in cervical cancer cells. Meanwhile, flow cytometry analysis of mitochondria functions suggested that CD38 decreased intracellular Ca2+ levels in cervical cancer cells and CD38 was involved in down-regulation of ROS levels and prevented mitochondrial apoptosis in cervical cancer cells. The percentage of cells with loss of mitochondrial membrane potential (Δψm) in CD38-overexpressed cervical cancer cells was less than control groups. Furthermore, we found an up-regulation of MDM2, cyclinA1, CDK4, cyclinD1, NF-kB P65, c-rel, and a downregulation of P53, P21, and P38 by Western blot analysis. These results indicated that CD38 enhanced the proliferation and inhibited the apoptosis of cervical cancer cells by affecting the mitochondria functions.
Collapse
Affiliation(s)
- Shan Liao
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongxiang Chen
- The Gynecology Department, People's Hospital of Xinjiang, Urumchi, Xinjiang, China
| | - Manying Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhifang Chen
- The Gynecology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Yuehua Long
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Lu Gao
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Guangchao Zhu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junyu He
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zheng Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jian Ma
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Juanjuan Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yanhong Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|