1
|
Zhong X, Zhang F, Xiao H, Tu R. Single-cell transcriptome analysis of macrophage subpopulations contributing to chemotherapy resistance in ovarian cancer. Immunobiology 2024; 229:152811. [PMID: 38941863 DOI: 10.1016/j.imbio.2024.152811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Ovarian cancer, a fatal gynecological malignancy, is primarily managed through surgery and chemotherapy. However, a significant challenge arises as patients frequently experience relapse due to chemotherapy resistance. This study delves into the complex functions and underlying mechanisms of macrophages in chemotherapy resistance in ovarian cancer. METHOD The single-cell transcriptome sequencing data of ovarian cancer with or without chemotherapy were analyzed. Then, corresponding cell types were identified, and macrophages were extracted from all cells. Following the standardized single-cell analysis using the Seurat package, 15 distinct macrophage clusters were found and differentially expressed genes among them were analyzed. Moreover, their association with chemotherapy resistance was explored through cell proportions and gene expression. RESULT In the single-cell transcriptomic analysis of ovarian cancer tissues before and after chemotherapy, the cellular proportion of CXCL5+ macrophages, THBS1+ macrophages, and MMP9+ macrophages were significantly increased following chemotherapy. Further investigation revealed that these macrophage subpopulations upregulated the expression of multiple pro-tumorigenic angiogenic or invasive factors, in addition to CXCL5, THBS1, and MMP9, including CTSL, CXCL1, and CCL18. Finally, pathway enrichment analysis revealed the significant activation of signaling pathways, such as NOD-like receptor, MAPK, and TNF in these macrophage subpopulations, which provides direction for studying the mechanism of these subpopulations. CONCLUSION CXCL5+, THBS1+, and MMP9+ macrophage subpopulations exhibit an increased cellular prevalence post-chemotherapy and pro-tumorigenic molecular expression profiles, suggesting a close association with chemoresistance in ovarian cancer. These findings contribute to our understanding of the roles and mechanisms of macrophages in ovarian cancer chemoresistance, providing a theoretical basis and direction for the development of therapies targeting macrophages in overcoming ovarian cancer chemoresistance.
Collapse
Affiliation(s)
- Xiaolin Zhong
- Department of Gynecology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen Clinical Research Center for Cancer Therapy, Xiamen 361006, Fujian, China
| | - Fei Zhang
- Department of Gynecology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen Clinical Research Center for Cancer Therapy, Xiamen 361006, Fujian, China
| | - Hongyang Xiao
- Department of Gynecology, Zhongshan Hospital, Fudan University, Shanghai 200035, China.
| | - Ruiqing Tu
- Department of Gynecology, Zhongshan Hospital, Fudan University, Shanghai 200035, China.
| |
Collapse
|
2
|
Walczak-Szeffer A, Piastowska-Ciesielska AW. Endoplasmic reticulum stress as a target for retinoids in cancer treatment. Life Sci 2024; 352:122892. [PMID: 38971363 DOI: 10.1016/j.lfs.2024.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Retinoids, natural and synthetic derivatives of vitamin A, have various regulatory activities including controlling cellular proliferation, differentiation, and death. Furthermore, they have been used to treat specific cancers with satisfying results. Nevertheless, retinoids have yet to be converted into effective systemic therapies for the majority of tumor types. Regulation of unfolded protein response signaling, and persistent activation of endoplasmic reticulum stress (ER-stress) are promising treatment methods for cancer. The present article reviews the current understanding of how vitamin A and its derivatives may aid to cause ER-stress-activated apoptosis, as well as therapeutic options for exploiting ER-stress for achieving beneficial goal. The therapeutic use of some retinoids discussed in this article was related to decreased disease recurrence and improved therapeutic outcomes via ER-stress activation and promotion, indicating that retinoids may play an important role in cancer treatment and prevention. More research is needed to expand the use of vitamin A derivatives in cancer therapy, either alone or in combination with unfolded protein response inducers.
Collapse
Affiliation(s)
- Anna Walczak-Szeffer
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Poland.
| | | |
Collapse
|
3
|
Lyu P, Gu X, Wang F, Sun H, Zhou Q, Yang S, Yuan W. Advances in targeting cancer-associated fibroblasts through single-cell spatial transcriptomic sequencing. Biomark Res 2024; 12:73. [PMID: 39075612 PMCID: PMC11287900 DOI: 10.1186/s40364-024-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the major components of the tumor microenvironment and are related to tumor proliferation, metastasis, relapse, and drug resistance. With the development of sequencing technologies, single-cell RNA sequencing has become a popular method for identifying CAFs in the tumor microenvironment. Whereas the drawbacks of CAFs, such as the lack of a spatial landscape, still exist, recent research has utilized spatial transcriptomics combined with single-cell RNA sequencing to address this issue. These multiomics analyses can resolve the single-cell resolution problem in spatial transcriptomics. In this review, we summarized the recent literature regarding the targeting of CAFs to address drug resistance, angiogenesis, metabolic reprogramming and metastasis in tumor tissue.
Collapse
Affiliation(s)
- Pin Lyu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
4
|
Kamiya T, Mizuno N, Hayashi K, Otsuka T, Haba M, Abe N, Oyama M, Hara H. Methoxylated Flavones from Casimiroa edulis La Llave Suppress MMP9 Expression via Inhibition of the JAK/STAT3 Pathway and TNFα-Dependent Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14678-14683. [PMID: 38910321 DOI: 10.1021/acs.jafc.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Matrix metalloproteinase 9 (MMP9), an MMP isozyme, plays a crucial role in tumor progression by degrading basement membranes. It has therefore been proposed that the pharmacological inhibition of MMP9 expression or activity could inhibit tumor metastasis. We previously isolated two novel methoxylated flavones, casedulones A and B, from the leaves and/or roots of Casimiroa edulis La Llave and determined that these casedulones have antitumor activity that acts via the reduction of MMP9. Here, we examined how these casedulones suppress lipopolysaccharide (LPS)-induced MMP9 expression in human monocytic THP-1 cells. The casedulones suppressed the LPS-induced signal transducer and activator of transcription 3 (STAT3) pathway, which participates in MMP9 induction. In addition, AG490 and S3I-201, inhibitors of Janus kinase (JAK) and STAT3, suppressed LPS-mediated MMP9 induction, suggesting that the casedulones suppressed MMP9 induction through the inhibition of JAK/STAT3 pathways. Based on the findings that cycloheximide, an inhibitor of de novo protein synthesis, completely inhibited LPS-mediated MMP9 induction, the role of de novo proteins in MMP9 induction was further investigated. We found that the casedulones inhibited the induction of interleukin-6 (IL-6), a key inflammatory cytokine that participates in STAT3 activation. Moreover, tumor necrosis factor-α (TNFα)-mediated MMP9 induction was significantly suppressed in the presence of the casedulones. Taken together, these findings suggest that casedulones inhibit the IL-6/STAT3 and TNFα pathways, which all involve LPS-mediated MMP9 induction.
Collapse
|
5
|
Gou Z, Li J, Liu J, Yang N. The hidden messengers: cancer associated fibroblasts-derived exosomal miRNAs as key regulators of cancer malignancy. Front Cell Dev Biol 2024; 12:1378302. [PMID: 38694824 PMCID: PMC11061421 DOI: 10.3389/fcell.2024.1378302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs), a class of stromal cells in the tumor microenvironment (TME), play a key role in controlling cancer cell invasion and metastasis, immune evasion, angiogenesis, and resistance to chemotherapy. CAFs mediate their activities by secreting soluble chemicals, releasing exosomes, and altering the extracellular matrix (ECM). Exosomes contain various biomolecules, such as nucleic acids, lipids, and proteins. microRNA (miRNA), a 22-26 nucleotide non-coding RNA, can regulate the cellular transcription processes. Studies have shown that miRNA-loaded exosomes secreted by CAFs engage in various regulatory communication networks with other TME constituents. This study focused on the roles of CAF-derived exosomal miRNAs in generating cancer malignant characteristics, including immune modulation, tumor growth, migration and invasion, epithelial-mesenchymal transition (EMT), and treatment resistance. This study thoroughly examines miRNA's dual regulatory roles in promoting and suppressing cancer. Thus, changes in the CAF-derived exosomal miRNAs can be used as biomarkers for the diagnosis and prognosis of patients, and their specificity can be used to develop newer therapies. This review also discusses the pressing problems that require immediate attention, aiming to inspire researchers to explore more novel avenues in this field.
Collapse
Affiliation(s)
- Zixuan Gou
- Bethune First Clinical School of Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jianming Liu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Na Yang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Ahuja S, Zaheer S. Multifaceted TGF-β signaling, a master regulator: From bench-to-bedside, intricacies, and complexities. Cell Biol Int 2024; 48:87-127. [PMID: 37859532 DOI: 10.1002/cbin.12097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Physiological embryogenesis and adult tissue homeostasis are regulated by transforming growth factor-β (TGF-β), an evolutionarily conserved family of secreted polypeptide factors, acting in an autocrine and paracrine manner. The role of TGF-β in inflammation, fibrosis, and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, especially fibrosis and cancer, overexpressed TGF-β causes extracellular matrix deposition, epithelial-mesenchymal transition, cancer-associated fibroblast formation, and/or angiogenesis. In this review article, we have tried to dive deep into the mechanism of action of TGF-β in inflammation, fibrosis, and carcinogenesis. As TGF-β and its downstream signaling mechanism are implicated in fibrosis and carcinogenesis blocking this signaling mechanism appears to be a promising avenue. However, targeting TGF-β carries substantial risk as this pathway is implicated in multiple homeostatic processes and is also known to have tumor-suppressor functions. There is a need for careful dosing of TGF-β drugs for therapeutic use and patient selection.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
7
|
Al-khayyat W, Pirkkanen J, Dougherty J, Laframboise T, Dickinson N, Khaper N, Lees SJ, Mendonca MS, Boreham DR, Tai TC, Thome C, Tharmalingam S. Overexpression of FRA1 ( FOSL1) Leads to Global Transcriptional Perturbations, Reduced Cellular Adhesion and Altered Cell Cycle Progression. Cells 2023; 12:2344. [PMID: 37830558 PMCID: PMC10571788 DOI: 10.3390/cells12192344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
FRA1 (FOSL1) is a transcription factor and a member of the activator protein-1 superfamily. FRA1 is expressed in most tissues at low levels, and its expression is robustly induced in response to extracellular signals, leading to downstream cellular processes. However, abnormal FRA1 overexpression has been reported in various pathological states, including tumor progression and inflammation. To date, the molecular effects of FRA1 overexpression are still not understood. Therefore, the aim of this study was to investigate the transcriptional and functional effects of FRA1 overexpression using the CGL1 human hybrid cell line. FRA1-overexpressing CGL1 cells were generated using stably integrated CRISPR-mediated transcriptional activation, resulting in a 2-3 fold increase in FRA1 mRNA and protein levels. RNA-sequencing identified 298 differentially expressed genes with FRA1 overexpression. Gene ontology analysis showed numerous molecular networks enriched with FRA1 overexpression, including transcription-factor binding, regulation of the extracellular matrix and adhesion, and a variety of signaling processes, including protein kinase activity and chemokine signaling. In addition, cell functional assays demonstrated reduced cell adherence to fibronectin and collagen with FRA1 overexpression and altered cell cycle progression. Taken together, this study unravels the transcriptional response mediated by FRA1 overexpression and establishes the role of FRA1 in adhesion and cell cycle progression.
Collapse
Affiliation(s)
- Wuroud Al-khayyat
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Jake Pirkkanen
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Jessica Dougherty
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Taylor Laframboise
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Noah Dickinson
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
| | - Neelam Khaper
- Medical Sciences Division, NOSM University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada; (N.K.); (S.J.L.)
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Simon J. Lees
- Medical Sciences Division, NOSM University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada; (N.K.); (S.J.L.)
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Marc S. Mendonca
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Douglas R. Boreham
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Tze Chun Tai
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Christopher Thome
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Sujeenthar Tharmalingam
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| |
Collapse
|
8
|
Sun EG, Vijayan V, Park MR, Yoo KH, Cho SH, Bae WK, Shim HJ, Hwang JE, Park IK, Chung IJ. Suppression of triple-negative breast cancer aggressiveness by LGALS3BP via inhibition of the TNF-α-TAK1-MMP9 axis. Cell Death Discov 2023; 9:122. [PMID: 37041137 PMCID: PMC10090165 DOI: 10.1038/s41420-023-01419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Transforming growth factor-β-activated kinase 1 (TAK1), which is highly expressed and aberrantly activated in triple-negative breast cancer (TNBC), plays a pivotal role in metastasis and progression. This makes it a potential therapeutic target for TNBC. Previously, we reported lectin galactoside-binding soluble 3 binding protein (LGALS3BP) as a negative regulator of TAK1 signaling in the inflammatory response and inflammation-associated cancer progression. However, the role of LGALS3BP and its molecular interaction with TAK1 in TNBC remain unclear. This study aimed to investigate the function and underlying mechanism of action of LGALS3BP in TNBC progression and determine the therapeutic potential of nanoparticle-mediated delivery of LGALS3BP in TNBC. We found that LGALS3BP overexpression suppressed the overall aggressive phenotype of TNBC cells in vitro and in vivo. LGALS3BP inhibited TNF-α-mediated gene expression of matrix metalloproteinase 9 (MMP9), which encodes a protein crucial for lung metastasis in TNBC patients. Mechanistically, LGALS3BP suppressed TNF-α-mediated activation of TAK1, a key kinase linking TNF-α stimulation and MMP9 expression in TNBC. Nanoparticle-mediated delivery enabled tumor-specific targeting and inhibited TAK1 phosphorylation and MMP9 expression in tumor tissues, suppressing primary tumor growth and lung metastasis in vivo. Our findings reveal a novel role of LGALS3BP in TNBC progression and demonstrate the therapeutic potential of nanoparticle-mediated delivery of LGALS3BP in TNBC.
Collapse
Affiliation(s)
- Eun-Gene Sun
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Veena Vijayan
- Department of Biomedical Sciences and Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Mi-Ra Park
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Sang-Hee Cho
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Woo-Kyun Bae
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC Center, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Hyun-Jeong Shim
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Jun-Eul Hwang
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Ik-Joo Chung
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
| |
Collapse
|
9
|
Sparić R, Andjić M, Babović I, Nejković L, Mitrović M, Štulić J, Pupovac M, Tinelli A. Molecular Insights in Uterine Leiomyosarcoma: A Systematic Review. Int J Mol Sci 2022; 23:ijms23179728. [PMID: 36077127 PMCID: PMC9456512 DOI: 10.3390/ijms23179728] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022] Open
Abstract
Uterine fibroids (UFs) are the most common benign tumors of female genital diseases, unlike uterine leiomyosarcoma (LMS), a rare and aggressive uterine cancer. This narrative review aims to discuss the biology and diagnosis of LMS and, at the same time, their differential diagnosis, in order to distinguish the biological and molecular origins. The authors performed a Medline and PubMed search for the years 1990–2022 using a combination of keywords on the topics to highlight the many genes and proteins involved in the pathogenesis of LMS. The mutation of these genes, in addition to the altered expression and functions of their enzymes, are potentially biomarkers of uterine LMS. Thus, the use of this molecular and protein information could favor differential diagnosis and personalized therapy based on the molecular characteristics of LMS tissue, leading to timely diagnoses and potential better outcomes for patients.
Collapse
Affiliation(s)
- Radmila Sparić
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Mladen Andjić
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Correspondence: (M.A.); (A.T.)
| | - Ivana Babović
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Lazar Nejković
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic of Gynecology and Obstetrics Narodni Front, 11000 Belgrade, Serbia
| | - Milena Mitrović
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Štulić
- Clinic of Gynecology and Obstetrics Narodni Front, 11000 Belgrade, Serbia
| | - Miljan Pupovac
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology, and CERICSAL (CEntro di Ricerca Clinico SALentino), “Verisdelli Ponti Hospital”, Via Giuseppina Delli Ponti, 73020 Scorrano, LE, Italy
- Correspondence: (M.A.); (A.T.)
| |
Collapse
|
10
|
Oudbier SJ, Goh J, Looijaard SMLM, Reijnierse EM, Meskers CGM, Maier AB. Pathophysiological mechanisms explaining the association between low skeletal muscle mass and cognitive function. J Gerontol A Biol Sci Med Sci 2022; 77:1959-1968. [PMID: 35661882 PMCID: PMC9536455 DOI: 10.1093/gerona/glac121] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 11/15/2022] Open
Abstract
Low skeletal muscle mass is associated with cognitive impairment and dementia in older adults. This review describes the possible underlying pathophysiological mechanisms: systemic inflammation, insulin metabolism, protein metabolism, and mitochondrial function. We hypothesize that the central tenet in this pathophysiology is the dysfunctional myokine secretion consequent to minimal physical activity. Myokines, such as fibronectin type III domain containing 5/irisin and cathepsin B, are released by physically active muscle and cross the blood–brain barrier. These myokines upregulate local neurotrophin expression such as brain-derived neurotrophic factor (BDNF) in the brain microenvironment. BDNF exerts anti-inflammatory effects that may be responsible for neuroprotection. Altered myokine secretion due to physical inactivity exacerbates inflammation and impairs muscle glucose metabolism, potentially affecting the transport of insulin across the blood–brain barrier. Our working model also suggests other underlying mechanisms. A negative systemic protein balance, commonly observed in older adults, contributes to low skeletal muscle mass and may also reflect deficient protein metabolism in brain tissues. As a result of age-related loss in skeletal muscle mass, decrease in the abundance of mitochondria and detriments in their function lead to a decrease in tissue oxidative capacity. Dysfunctional mitochondria in skeletal muscle and brain result in the excessive production of reactive oxygen species, which drives tissue oxidative stress and further perpetuates the dysfunction in mitochondria. Both oxidative stress and accumulation of mitochondrial DNA mutations due to aging drive cellular senescence. A targeted approach in the pathophysiology of low muscle mass and cognition could be to restore myokine balance by physical activity.
Collapse
Affiliation(s)
- Susanne Janette Oudbier
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Outpatient Clinics, Amsterdam Public Health research institute, De Boelelaan, Amsterdam, The Netherlands
| | - Jorming Goh
- Healthy Longevity Translational Research Program and Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | | | - Esmee Mariëlle Reijnierse
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan, Amsterdam, The Netherlands.,Amsterdam Movement Sciences, Ageing & Vitality, Amsterdam, The Netherlands.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Carolus Gerardus Maria Meskers
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan, Amsterdam, The Netherlands.,Amsterdam Movement Sciences, Ageing & Vitality, Amsterdam, The Netherlands
| | - Andrea Britta Maier
- Healthy Longevity Translational Research Program and Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.,Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioral and Movement Sciences, VU University Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Harry JA, Ormiston ML. Novel Pathways for Targeting Tumor Angiogenesis in Metastatic Breast Cancer. Front Oncol 2021; 11:772305. [PMID: 34926282 PMCID: PMC8678517 DOI: 10.3389/fonc.2021.772305] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most common cancer affecting women and is the second leading cause of cancer related death worldwide. Angiogenesis, the process of new blood vessel development from pre-existing vasculature, has been implicated in the growth, progression, and metastasis of cancer. Tumor angiogenesis has been explored as a key therapeutic target for decades, as the blockade of this process holds the potential to reduce the oxygen and nutrient supplies that are required for tumor growth. However, many existing anti-angiogenic approaches, such as those targeting Vascular Endothelial Growth Factor, Notch, and Angiopoietin signaling, have been associated with severe side-effects, limited survival advantage, and enhanced cancer regrowth rates. To address these setbacks, alternative pathways involved in the regulation of tumor angiogenesis are being explored, including those involving Bone Morphogenetic Protein-9 signaling, the Sonic Hedgehog pathway, Cyclooxygenase-2, p38-mitogen-activated protein kinase, and Chemokine Ligand 18. This review article will introduce the concept of tumor angiogenesis in the context of breast cancer, followed by an overview of current anti-angiogenic therapies, associated resistance mechanisms and novel therapeutic targets.
Collapse
Affiliation(s)
- Jordan A Harry
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Mark L Ormiston
- Department of Medicine, Queen's University, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Department of Surgery, Queen's University, Kingston, ON, Canada
| |
Collapse
|
12
|
Kahn BM, Lucas A, Alur RG, Wengyn MD, Schwartz GW, Li J, Sun K, Maurer HC, Olive KP, Faryabi RB, Stanger BZ. The vascular landscape of human cancer. J Clin Invest 2021; 131:136655. [PMID: 33258803 DOI: 10.1172/jci136655] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Tumors depend on a blood supply to deliver oxygen and nutrients, making tumor vasculature an attractive anticancer target. However, only a fraction of patients with cancer benefit from angiogenesis inhibitors. Whether antiangiogenic therapy would be more effective if targeted to individuals with specific tumor characteristics is unknown. To better characterize the tumor vascular environment both within and between cancer types, we developed a standardized metric - the endothelial index (EI) - to estimate vascular density in over 10,000 human tumors, corresponding to 31 solid tumor types, from transcriptome data. We then used this index to compare hyper- and hypovascular tumors, enabling the classification of human tumors into 6 vascular microenvironment signatures (VMSs) based on the expression of a panel of 24 vascular "hub" genes. The EI and VMS correlated with known tumor vascular features and were independently associated with prognosis in certain cancer types. Retrospective testing of clinical trial data identified VMS2 classification as a powerful biomarker for response to bevacizumab. Thus, we believe our studies provide an unbiased picture of human tumor vasculature that may enable more precise deployment of antiangiogenesis therapy.
Collapse
Affiliation(s)
- Benjamin M Kahn
- Department of Medicine.,Department of Cell and Developmental Biology.,Abramson Family Cancer Research Institute.,Abramson Cancer Center
| | - Alfredo Lucas
- Department of Medicine.,Department of Cell and Developmental Biology.,Abramson Family Cancer Research Institute.,Abramson Cancer Center
| | - Rohan G Alur
- Department of Medicine.,Department of Cell and Developmental Biology.,Abramson Family Cancer Research Institute.,Abramson Cancer Center
| | - Maximillian D Wengyn
- Department of Medicine.,Department of Cell and Developmental Biology.,Abramson Family Cancer Research Institute.,Abramson Cancer Center
| | - Gregory W Schwartz
- Abramson Family Cancer Research Institute.,Abramson Cancer Center.,Department of Pathology and Laboratory Medicine.,Penn Epigenetics Institute, and.,Department of Cancer Biology Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jinyang Li
- Department of Medicine.,Department of Cell and Developmental Biology.,Abramson Family Cancer Research Institute.,Abramson Cancer Center
| | - Kathryn Sun
- Department of Medicine.,Department of Cell and Developmental Biology.,Abramson Family Cancer Research Institute.,Abramson Cancer Center
| | - H Carlo Maurer
- Department of Medicine, Division of Digestive Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| | - Kenneth P Olive
- Department of Medicine, Division of Digestive Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| | - Robert B Faryabi
- Abramson Family Cancer Research Institute.,Abramson Cancer Center.,Department of Pathology and Laboratory Medicine.,Penn Epigenetics Institute, and.,Department of Cancer Biology Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ben Z Stanger
- Department of Medicine.,Department of Cell and Developmental Biology.,Abramson Family Cancer Research Institute.,Abramson Cancer Center
| |
Collapse
|
13
|
Wu SC, Rau CS, Kuo PJ, Shih FY, Lin HP, Wu YC, Hsieh TM, Liu HT, Hsieh CH. Profiling the Expression of Circulating Acute-Phase Proteins, Cytokines, and Checkpoint Proteins in Patients with Severe Trauma: A Pilot Study. J Inflamm Res 2021; 14:3739-3753. [PMID: 34393495 PMCID: PMC8354739 DOI: 10.2147/jir.s324056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/28/2021] [Indexed: 01/20/2023] Open
Abstract
Purpose Severe trauma may lead to the systemic release of inflammatory mediators into the circulation with profound acute-phase responses; however, the understanding of the expression of these mediators remains limited. This study aimed to characterize the alterations in the expression of circulating acute-phase proteins, cytokines, and checkpoint proteins in patients with severe trauma injuries. Patients and Methods The study population included trauma patients in the intensive care unit (ICU) with an injury severity score equal to or greater than 16 and who had used a ventilator for 48 hours. A total of 12 female and 28 male patients were recruited for the study; six patients died and 34 survived. Blood samples collected at acute stages were compared with those drawn at the subacute stage, the time when the patients were discharged from the ICU, or before the discharge of the patients from the hospital. Results The study identified that the expression of acute-phase proteins, such as alpha-1-acid glycoprotein and C-reactive protein, and cytokines, including granulocyte colony-stimulating factor, interleukin-6, and interleukin-1 receptor antagonist, was elevated in the circulation after severe trauma. In contrast, the levels of acute-phase proteins, such as alpha-2-macroglobulin, serum amyloid P, and von Willebrand factor, and cytokines, including interleukin-4 and interferon gamma-induced protein 10, were reduced. However, there were no significant differences in the expression of checkpoint proteins in the circulation. Conclusion The dysregulated proteins identified in this study may serve as potential therapeutic targets or biomarkers for treating patients with severe trauma. However, the related biological functions of these dysregulated factors require further investigation to validate their functions.
Collapse
Affiliation(s)
- Shao-Chun Wu
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pao-Jen Kuo
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-Yuan Shih
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hui-Ping Lin
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chan Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ting-Min Hsieh
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hang-Tsung Liu
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Hua Hsieh
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Wutschka J, Kast B, Sator-Schmitt M, Appak-Baskoy S, Hess J, Sinn HP, Angel P, Schorpp-Kistner M. JUNB suppresses distant metastasis by influencing the initial metastatic stage. Clin Exp Metastasis 2021; 38:411-423. [PMID: 34282521 PMCID: PMC8318945 DOI: 10.1007/s10585-021-10108-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/23/2021] [Indexed: 01/01/2023]
Abstract
The complex interactions between cells of the tumor microenvironment and cancer cells are considered a major determinant of cancer progression and metastasis. Yet, our understanding of the mechanisms of metastatic disease is not sufficient to successfully treat patients with advanced-stage cancer. JUNB is a member of the AP-1 transcription factor family shown to be frequently deregulated in human cancer and associated with invasion and metastasis. A strikingly high stromal JUNB expression in human breast cancer samples prompted us to functionally investigate the consequences of JUNB loss in cells of the tumor microenvironment on cancer progression and metastasis in mice. To adequately mimic the clinical situation, we applied a syngeneic spontaneous breast cancer metastasis model followed by primary tumor resection and identified stromal JUNB as a potent suppressor of distant metastasis. Comprehensive characterization of the JUNB-deficient tumor microenvironment revealed a strong influx of myeloid cells into primary breast tumors and lungs at early metastatic stage. In these infiltrating neutrophils, BV8 and MMP9, proteins promoting angiogenesis and tissue remodeling, were specifically upregulated in a JUNB-dependent manner. Taken together, we established stromal JUNB as a strong suppressor of distant metastasis. Consequently, therapeutic strategies targeting AP-1 should be carefully designed not to interfere with stromal JUNB expression as this may be detrimental for cancer patients.
Collapse
Affiliation(s)
- Juliane Wutschka
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Bettina Kast
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Melanie Sator-Schmitt
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sila Appak-Baskoy
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- iBEST (Institute of Biomedical Engineering, Science and Technology), Toronto, ON, Canada
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, DKFZ, Heidelberg, Germany
| | - Hans-Peter Sinn
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Marina Schorpp-Kistner
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
15
|
Jia M', Li ZY, Xu K, Wang YH, Yu F, He XY. Biological effects of exosome derived from Cal27 on normal human gingival fibroblasts. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:313-319. [PMID: 34041881 DOI: 10.7518/hxkq.2021.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES The proliferation, migration capacity, and expression of activation-related proteins of NHGFs+Cal27-exo were determined by coculturing Cal27 exosome (Cal27-exo) with normal human gingival fibroblasts (NHGFs) to explore the effects of Cal27-exo on the activation and biological behavior of NHGFs. METHODS Cal27-exo was extracted using supercentrifugation, and exosomes were identified using Western blot, transmission electron microscopy (TEM), and particle size detection. Cal27-exo was cocultured with NHGFs to detect the uptake of Cal27-exo by NHGFs, and the proliferation and migration capacity of NHGFs+Cal27-exo were detected using CCK8 and wound healing tests, respectively. The expression levels of NHGF activation-related proteins, i.e., matrix metalloproteinase-9 (MMP-9), fibroblast-activating protein (FAP), alpha smooth muscle actin (αSMA), and transforming growth factor-β (TGF-β), were detected using real-time quantitative polymerase chain reaction (qRT-PCR). RESULTS Cal27-exo was extracted u-sing supercentrifugation, and Western blot showed the positive expression levels of Alix and CD63. TEM showed that Cal27-exo had a circular double-layer vesicle. The particle size was between 30 and 150 nm. Cal27-exo labeled with PKH67 entered NHGFs after the coculture method. The wound healing test showed that the migration capacity of NHGFs+Cal27-exo was stronger after the scratch compared with that of NHGFs. CCK8 results showed that the proliferation activity of NHGFs+Cal27-exo was enhanced. qRT-PCR results showed that the MMP-9 levels of NHGFs+Cal27-exo were upregulated, whereas the TGF-β and αSMA mRNA levels of NHGFs+Cal27-exo were downregulated (P<0.05). CONCLUSIONS The proliferation and migration ability of NHGFs+Cal27-exo are enhanced, and the mRNA expression of related proteins is changed. Cal27-exo can activate NHGFs, which suggests that Cal27-exo has potential significance in tumor invasion and metastasis.
Collapse
Affiliation(s)
- Mei-'e Jia
- Dept. of Prosthodontics, School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Yong Li
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Kai Xu
- Dept. of Prosthodontics, School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Yi-Heng Wang
- Dept. of Prosthodontics, School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Fei Yu
- Dept. of Prosthodontics, School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Xiang-Yi He
- Dept. of Prosthodontics, School of Stomatology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
Liang Q, Zhou L, Li Y, Liu J, Liu Y. Nano drug delivery system reconstruct tumour vasculature for the tumour vascular normalisation. J Drug Target 2021; 30:119-130. [PMID: 33960252 DOI: 10.1080/1061186x.2021.1927056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The abnormal structure and function of blood vessels in the TME are obvious characteristics of the tumour. Abnormal blood vessels with high leakage support the occurrence of malignant tumours and increase the possibility of tumour cell invasion and metastasis. The formation of abnormal vascular also enhances immunosuppression and prevents the delivery of chemotherapy drugs to deeper tumours. Therefore, the normalisation of tumour blood vessels is a very promising approach to improve anti-tumour efficacy, aiming to restore the structural integrity of vessels and improve drug delivery efficiency and anti-tumour immunity. In this review, we have summarised strategies to improve cancer treatment that via nano drug delivery technology regulates the normalisation of tumour blood vessels. The treatment strategies related to the structure and function of tumour blood vessels such as angiogenesis factors, tumour-associated macrophages, tumour vascular endothelial cells, tumour-associated fibroblasts and immune checkpoints in the TME were mainly discussed. The normalisation of tumour blood vessels presents new opportunities and challenges for the more efficient delivery of nanoparticles to tumour tissues and cells and an innovative combination of treatments for cancer.
Collapse
Affiliation(s)
- Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yifan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
17
|
A cytokine in turmoil: Transforming growth factor beta in cancer. Biomed Pharmacother 2021; 139:111657. [PMID: 34243626 DOI: 10.1016/j.biopha.2021.111657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer remains one of the debilitating health threats to mankind in view of its incurable nature. Many factors are complicit in the initiation, progression and establishment of cancers. Early detection of cancer is the only window of hope that allows for appreciable management and possible limited survival. However, understanding of cancer biology and knowledge of the key factors that interplay at multi-level in the initiation and progression of cancer may hold possible avenues for cancer treatment and management. In particular, dysregulation of growth factor signaling such as that of transforming growth factor beta (TGF-β) and its downstream mediators play key roles in various cancer subtypes. Expanded understanding of the context/cell type-dependent roles of TGF-β and its downstream signaling mediators in cancer may provide leads for cancer pharmacotherapy. Reliable information contained in original articles, reviews, mini-reviews and expert opinions on TGF-β, cancer and the specific roles of TGF-β signaling in various cancer subtypes were retrieved from major scientific data bases including PubMed, Scopus, Medline, Web of Science core collections just to mention but a sample by using the following search terms: TGF-β in cancer, TGF-β and colorectal cancer, TGF-β and brain cancer, TGF-β in cancer initiation, TGF-β and cell proliferation, TGF-β and cell invasion, and TGF-β-based cancer therapy. Retrieved information and reports were carefully examined, contextualized and synchronized into a coherent scientific content to highlight the multiple roles of TGF-β signaling in normal and cancerous cells. From a conceptual standpoint, development of pharmacologically active agents that exert non-specific inhibitory effects on TGF-β signaling on various cell types will undoubtedly lead to a plethora of serious side effects in view of the multi-functionality and pleiotropic nature of TGF-β. Such non-specific targeting of TGF-β could derail any beneficial therapeutic intention associated with TGF-β-based therapy. However, development of pharmacologically active agents designed specifically to target TGF-β signaling in cancer cells may improve cancer pharmacotherapy. Similarly, specific targeting of downstream mediators of TGF-β such as TGF-β type 1 and II receptors (TβRI and TβRII), receptor-mediated Smads, mitogen activated protein kinase (MAPK) and importing proteins in cancer cells may be crucial for cancer pharmacotherapy.
Collapse
|
18
|
Chen X, Zhang L, Yuan M, Kuang Z, Zou Y, Tang T, Zhang W, Hu X, Xia T, Cao T, Jia H. Sam68 Promotes the Progression of Human Breast Cancer through inducing Activation of EphA3. Curr Cancer Drug Targets 2021; 20:76-83. [PMID: 31433759 DOI: 10.2174/1568009619666190718124541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/08/2019] [Accepted: 06/28/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Src associated with mitosis of 68 kDa (Sam68), is often highly expressed in human cancers. Overexpression of Sam68 has been shown to be correlated with poor survival prognosis in some cancer patients. However, little is known whether Sam68 plays a role in promoting metastasis in breast cancer. MATERIALS AND METHODS The expression of Sam68 protein in breast cancer tissue was detected by immunohistochemistry. Trans-well assay, wound-healing, real-time PCR and Western blotting analysis were used to detect the effect of Sam68 on promoting EMT or metastasis of breast cancer. Next-generation RNA sequencing was used to analyze genes that may be regulated by Sam68. RESULTS Sam68 plays a positive role in promoting breast cancer metastasis. Sam68 was found to be overexpressed in breast cancer along with lymph node metastasis. MMP-9 was also found to be overexpressed in breast cancer tissue and was correlated to the expression of Sam68 (P<0.01). Xenograft in NOD/SCID mice and in vitro experiments confirmed that the invasion and metastatic ability of breast cancer cells were regulated by Sam68. And EPHA3 could be up-regulated by Sam68 in breast cancer. CONCLUSION High expression of Sam68 participates in breast cancer metastasis by up-regulating the EPHA3 gene.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lehong Zhang
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Yuan
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziqiao Kuang
- Department of Breast Surgery, Huadu District People's Hospital of Guangzhou, Guangdong, China
| | - Ying Zou
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, United States
| | - Tian Tang
- Department of Pathology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wangjian Zhang
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, United States
| | - Xiaowu Hu
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ting Xia
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tengfei Cao
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haixia Jia
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Hu W, Tao Z, Zhou Q, Zhao D, Gu L, Zhu S, Chen J. Effects of S100 calcium-binding protein A8 (S100A8) and S100 calcium-binding protein A9 (S100A9) on matrix metalloproteinase (MMP) expression in nasopharyngeal carcinoma CNE-2 cells. Transl Cancer Res 2021; 10:1874-1884. [PMID: 35116509 PMCID: PMC8798214 DOI: 10.21037/tcr-21-441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
Background Studies have shown that S100A8 and S100A9 are highly expressed in a variety of tumors, including NPC, and are associated with tumor invasion and migration. MMPs are associated with the invasion and migration of tumor cells. To further investigate the mechanism by which S100A8 and S100A9 affect the invasion and migration of NPC cells, the present study examined the effects of S100A8 and S100A9 on MMPs in NPC CNE-2 cells. Methods Recombinant pEGFP-N1-S100A8 and recombinant pEGFP-N1-S100A9 overexpression vectors and S100A8 and S100A9 RNA interference (RNAi) vectors were constructed and transfected into NPC CNE-2 cells. The transfection efficiency in each group of cells was assessed, and the gene and protein expression of MMP7, MMP9 and MMP12 were determined. Results The transfection efficiency was approximately 60–70%. Compared with those in the control group, the expression levels of MMP7, MMP9 and MMP12 in the S100A8 and S100A9 overexpression groups was significantly higher (P<0.05), and the expression levels of MMP7, MMP9 and MMP12 in the S100A8-RNAi and S100A9-RNAi groups were significantly lower (P<0.05). The number of cells in S100A8 overexpression group and S100A9 overexpression group at 24, 48 and 72 h was higher than that in RNAi group, RNAi control group, overexpression control group and normal control group, with statistical significance; The cell doubling time in S100A8 and S100A9 overexpression group was significantly shorter than that in RNAi control group, overexpression control group and normal control group, with statistical significance. Conclusions High S100A8 and S100A9 expression may promote the expression of MMP7, MMP9 and MMP12, which are related to the invasion and metastasis of NPC cells.
Collapse
Affiliation(s)
- Wenbing Hu
- Department of Oncology, Huangshi Central Hospital of the Edong Healthcare Group, Huangshi, China
| | - Zezhang Tao
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Zhou
- Department of Oncology, Huangshi Central Hospital of the Edong Healthcare Group, Huangshi, China
| | - Deqing Zhao
- Department of Oncology, Huangshi Central Hospital of the Edong Healthcare Group, Huangshi, China
| | - Lei Gu
- Department of Oncology, Huangshi Central Hospital of the Edong Healthcare Group, Huangshi, China
| | - Sujin Zhu
- Department of Oncology, Huangshi Central Hospital of the Edong Healthcare Group, Huangshi, China
| | - Jun Chen
- Department of Oncology, Huangshi Central Hospital of the Edong Healthcare Group, Huangshi, China
| |
Collapse
|
20
|
Zefferino R, Piccoli C, Di Gioia S, Capitanio N, Conese M. How Cells Communicate with Each Other in the Tumor Microenvironment: Suggestions to Design Novel Therapeutic Strategies in Cancer Disease. Int J Mol Sci 2021; 22:ijms22052550. [PMID: 33806300 PMCID: PMC7961918 DOI: 10.3390/ijms22052550] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
Connexin- and pannexin (Panx)-formed hemichannels (HCs) and gap junctions (GJs) operate an interaction with the extracellular matrix and GJ intercellular communication (GJIC), and on account of this they are involved in cancer onset and progression towards invasiveness and metastatization. When we deal with cancer, it is not correct to omit the immune system, as well as neglecting its role in resisting or succumbing to formation and progression of incipient neoplasia until the formation of micrometastasis, nevertheless what really occurs in the tumor microenvironment (TME), which are the main players and which are the tumor or body allies, is still unclear. The goal of this article is to discuss how the pivotal players act, which can enhance or contrast cancer progression during two important process: "Activating Invasion and Metastasis" and the "Avoiding Immune Destruction", with a particular emphasis on the interplay among GJIC, Panx-HCs, and the purinergic system in the TME without disregarding the inflammasome and cytokines thereof derived. In particular, the complex and contrasting roles of Panx1/P2X7R signalosome in tumor facilitation and/or inhibition is discussed in regard to the early/late phases of the carcinogenesis. Finally, considering this complex interplay in the TME between cancer cells, stromal cells, immune cells, and focusing on their means of communication, we should be capable of revealing harmful messages that help the cancer growth and transform them in body allies, thus designing novel therapeutic strategies to fight cancer in a personalized manner.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
- Correspondence: ; Tel.: +39-0881-884673
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (N.C.)
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (N.C.)
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| |
Collapse
|
21
|
The Newly Synthetized Chalcone L1 Is Involved in the Cell Growth Inhibition, Induction of Apoptosis and Suppression of Epithelial-to-Mesenchymal Transition of HeLa Cells. Molecules 2021; 26:molecules26051356. [PMID: 33802621 PMCID: PMC7961543 DOI: 10.3390/molecules26051356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/24/2022] Open
Abstract
Over the past decades, natural products have emerged as promising agents with multiple biological activities. Many studies suggest the antioxidant, antiangiogenic, antiproliferative and anticancer effects of chalcones and their derivatives. Based on these findings, we decided to evaluate the effects of the newly synthetized chalcone L1 in a human cervical carcinoma cell (HeLa) model. Presented results were obtained by western blot and flow cytometric analyses, live cell imaging and antimigratory potential of L1 in HeLa cells was demonstrated by scratch assay. In the present study, we proved the role of L1 as an effective agent with antiproliferative activity supported by G2/M cell cycle arrest and apoptosis. Moreover, we proved that L1 is involved in modulating Transforming Growth Factor-β1 (TGF-β) signal transduction through Smad proteins and it also modulates other signalling pathways including Akt, JNK, p38 MAPK, and Erk1/2. The involvement of L1 in epithelial-to-mesenchymal transition was demonstrated by the regulation of N-cadherin, E-cadherin, and MMP-9 levels. Here, we also evaluated the effect of conditioned medium from BJ-5ta human foreskin fibroblasts in HeLa cell cultures with subsequent L1 treatment. Taken together, these data suggest the potential role of newly synthesized chalcone L1 as an anticancer-tumour microenvironment modulating agent.
Collapse
|
22
|
Chandra Jena B, Kanta Das C, Banerjee I, Das S, Bharadwaj D, Majumder R, Mandal M. Paracrine TGF-β1 from breast cancer contributes to chemoresistance in cancer associated fibroblasts via upregulation of the p44/42 MAPK signaling pathway. Biochem Pharmacol 2021; 186:114474. [PMID: 33607074 DOI: 10.1016/j.bcp.2021.114474] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022]
Abstract
Conventionally, Cancer-associated fibroblasts (CAFs) are considered as an inducer of chemoresistance in cancer cells. However, the underlying mechanism by which carcinomas induce chemoresistance in CAFs through tumor-stroma cross-talk is largely unknown. Henceforth, we uncovered a network of paracrine signals between carcinoma and CAFs that drives chemoresistance in CAFs. Acquired tamoxifen and 5-Fu resistant cell lines MCF-7 and MDA-MB-468 respectively showed higher apoptotic resistance compared to the parental cell. Besides, chemoresistant breast cancer cells showed overexpression of TGF-β1 and have the higher potential to induce CAF phenotype in the normal dermal fibroblasts in a paracrine manner through the TGF-β1 cytokine, compared to their parental cell. Moreover, the chemoresistant cancer cells augmented the EMT markers with a reduction of E-cadherin in the CAFs. Importantly we found out that the TGF- β1 enriched conditioned media from both of the resistant cells triggered chemoresistance in the CAFs by p44/42 MAPK signaling axis. Mechanistically, pharmacological and genetic blockade of TGF-β1 inhibits p44/42 MAPK activation with the subsequent restoration of chemosensitivity in the CAFs. Altogether we ascertained that chemoresistant cancer cells have tremendous potential to modulate the CAFs compared to the parental counterpart. Targeting TGF-β1 and p44/42 MAPK signaling in the future may help to abrogate the chemoresistance in the CAFs.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Chandan Kanta Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Indranil Banerjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Deblina Bharadwaj
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Ranabir Majumder
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
23
|
Peixoto A, Cotton S, Santos LL, Ferreira JA. The Tumour Microenvironment and Circulating Tumour Cells: A Partnership Driving Metastasis and Glycan-Based Opportunities for Cancer Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:1-33. [PMID: 34664231 DOI: 10.1007/978-3-030-73119-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circulating tumour cells (CTC) are rare cells that actively detach or are shed from primary tumours into the lymph and blood. Some CTC subpopulations gain the capacity to survive, home and colonize distant locations, forming metastasis. This results from a multifactorial process in which cancer cells optimize motility, invasion, immune escape and cooperative relationships with microenvironmental cues. Here we present evidences of a self-fuelling molecular crosstalk between cancer cells and the tumour stroma supporting the main milestones leading to metastasis. We discuss how the tumour microenvironment supports pre-metastatic niches and CTC development and ultimately dictates CTC fate in targeted organs. Finally, we highlight the key role played by protein glycosylation in metastasis development, its prompt response to microenvironmental stimuli and the tremendous potential of glycan-based molecular signatures for liquid biopsies and targeted therapeutics.
Collapse
Affiliation(s)
- Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal. .,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal. .,Institute for Research and Innovation in Health (i3s), University of Porto, Porto, Portugal. .,Institute for Biomedical Engineering (INEB), Porto, Portugal. .,Porto Comprehensive Cancer Centre (P.ccc), Porto, Portugal.
| | - Sofia Cotton
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3s), University of Porto, Porto, Portugal.,Institute for Biomedical Engineering (INEB), Porto, Portugal.,Porto Comprehensive Cancer Centre (P.ccc), Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Centre (P.ccc), Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Centre (P.ccc), Porto, Portugal
| |
Collapse
|
24
|
Patruno R, Passantino G, Laface C, Tinelli A, Zito A, Ruggieri R, Luposella F, Gadaleta P, Laforgia M, Lacitignola L, Ammendola M, Ranieri G, Zizzo N. Microvascular Density, Endothelial Area, and Ki-67 Proliferative Index Correlate Each Other in Cat Post-Injection Fibrosarcoma. Cells 2020; 10:cells10010031. [PMID: 33379269 PMCID: PMC7823643 DOI: 10.3390/cells10010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Soft tissue sarcomas are a large group of different tumor types both in humans and in animals. Among them, fibrosarcoma is the most frequent malignant mesenchymal tumoral form in cats, representing up to 28% of all cat skin tumors, while human fibrosarcoma, fortunately, only represents 5% of all sarcomas and 0.025% of the world-wide burden of tumors. This low incidence in humans leads to consideration of this group of tumoral diseases as rare, so therapeutic options are few due to the difficulty of starting clinical trials. In this context, the identification of research models for fibrosarcomas could be of great interest to deepen knowledge in this field and recognize new or possible biological pathways involved in tumor progression and metastasis. Angiogenesis is considered a fundamental scattering cause of tumor aggressiveness and progression in all forms of cancer, but only a few research parameters were developed and reported to express them quantitatively and qualitatively. The role in angiogenesis of microenvironmental stromal cells, such as fibroblasts, lymphocytes, mast cells, and macrophages, was largely demonstrated since this topic was first approached, while quantification of new vessels and their blood capacity in tumoral area is a relatively recent approach that could be well developed thanks to expertise in immunohistochemistry and image analysis. In this paper, a crossing study evaluating microvascular density (MVD), endothelial area (EA), and Ki-67 proliferative index was reported for a series of formalin-fixed and paraffin-embedded tissue samples from 99 cat patients, affected by cat post-injection fibrosarcoma, by using a till ×400 magnification light microscopy. We aim to demonstrate that cat pets may be considered a useful animal model for better studying the correspondent human diseases and we report, for the first time to our knowledge, experimental data in terms of correlation among MVD, EA, and Ki-67 strictly involved in aggressiveness and tumoral progression.
Collapse
Affiliation(s)
- Rosa Patruno
- Department of Veterinary Medicine, Section of Veterinary Pathology and Comparative Oncology, University of Bari “Aldo Moro”, Strada p.le per Casamassima, km 3, 70010 Valenzano, Bari, Italy; (R.P.); (G.P.); (A.T.); (N.Z.)
| | - Giuseppe Passantino
- Department of Veterinary Medicine, Section of Veterinary Pathology and Comparative Oncology, University of Bari “Aldo Moro”, Strada p.le per Casamassima, km 3, 70010 Valenzano, Bari, Italy; (R.P.); (G.P.); (A.T.); (N.Z.)
| | - Carmelo Laface
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “G. Paolo II”, 70124 Bari, Italy; (C.L.); (P.G.)
- Department of Biomedical Sciences and Clinical Oncology, University of Bari Aldo Moro, 10124 Bari, Italy
| | - Antonella Tinelli
- Department of Veterinary Medicine, Section of Veterinary Pathology and Comparative Oncology, University of Bari “Aldo Moro”, Strada p.le per Casamassima, km 3, 70010 Valenzano, Bari, Italy; (R.P.); (G.P.); (A.T.); (N.Z.)
| | - Alfredo Zito
- Pathology Unit, IRCCS Istituto Tumori “G. Paolo II”, 70124 Bari, Italy;
| | - Roberta Ruggieri
- Cardiology Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Francesco Luposella
- Direction Départementale de la Cohésion Sociale et de la Protection des Populations des VOSGES (DDCSPP88), 88080 Vittel, France;
| | - Pietro Gadaleta
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “G. Paolo II”, 70124 Bari, Italy; (C.L.); (P.G.)
| | | | - Luca Lacitignola
- Department of Emergency and Organ Transplantation, University of Bari ‘Aldo Moro’, Strada p.le per Casamassima, km 3, 70010 Valenzano, Bari, Italy;
| | - Michele Ammendola
- Department of Health Science, Digestive Surgery Unit, University “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy;
| | - Girolamo Ranieri
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “G. Paolo II”, 70124 Bari, Italy; (C.L.); (P.G.)
- Correspondence:
| | - Nicola Zizzo
- Department of Veterinary Medicine, Section of Veterinary Pathology and Comparative Oncology, University of Bari “Aldo Moro”, Strada p.le per Casamassima, km 3, 70010 Valenzano, Bari, Italy; (R.P.); (G.P.); (A.T.); (N.Z.)
| |
Collapse
|
25
|
Zonneville J, Colligan S, Grant S, Miller A, Wallace P, Abrams SI, Bakin AV. Blockade of p38 kinase impedes the mobilization of protumorigenic myeloid populations to impact breast cancer metastasis. Int J Cancer 2020; 147:2279-2292. [PMID: 32452014 PMCID: PMC7484223 DOI: 10.1002/ijc.33050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022]
Abstract
Patients with metastatic breast cancer (MBC) have limited therapeutic options and novel treatments are critically needed. Prior research implicates tumor-induced mobilization of myeloid cell populations in metastatic progression, as well as being an unfavorable outcome in MBC; however, the underlying mechanisms for these relationships remain unknown. Here, we provide evidence for a novel mechanism by which p38 promotes metastasis. Using triple-negative breast cancer models, we showed that a selective inhibitor of p38 (p38i) significantly reduced tumor growth, angiogenesis, and lung metastasis. Importantly, p38i decreased the accumulation of myeloid populations, namely, myeloid-derived suppressor cells (MDSCs) and CD163+ tumor-associated macrophages (TAMs). p38 controlled the expression of tumor-derived chemokines/cytokines that facilitated the recruitment of protumor myeloid populations. Depletion of MDSCs was accompanied by reduced TAM infiltration and phenocopied the antimetastatic effects of p38i. Reciprocally, p38i increased tumor infiltration by cytotoxic CD8+ T cells. Furthermore, the CD163+ /CD8+ expression ratio inversely correlated with metastasis-free survival in breast cancer, suggesting that targeting p38 may improve clinical outcomes. Overall, our study highlights a previously unknown p38-driven pathway as a therapeutic target in MBC.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antineoplastic Agents/pharmacology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Carcinogenesis/drug effects
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Line, Tumor
- Chemokines/metabolism
- Cytokines/metabolism
- Female
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- MAP Kinase Signaling System/drug effects
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, SCID
- Mice, Transgenic
- Myeloid Cells/drug effects
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Myeloid-Derived Suppressor Cells/drug effects
- Myeloid-Derived Suppressor Cells/metabolism
- Myeloid-Derived Suppressor Cells/pathology
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Receptors, Cell Surface/metabolism
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/pathology
Collapse
Affiliation(s)
- Justin Zonneville
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Sean Colligan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Sydney Grant
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | | | - Paul Wallace
- Department of Flow & Image Cytometry, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Scott I. Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Andrei V. Bakin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
- Sechenov Medical University, Moscow, Russia 119991
| |
Collapse
|
26
|
Molecular evaluation of chronic restrain stress in mice model of non metastatic fibrosarcoma. J Mol Histol 2020; 51:367-374. [PMID: 32556790 DOI: 10.1007/s10735-020-09886-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/12/2020] [Indexed: 01/09/2023]
Abstract
Chronic stress is regarded as a significant factor in the etiology of the many diseases. Numerous methods have been developed through which the effect of chronic stress is examined. The aim of this study is to demonstrate the new experimental model for analysis of immuno-suppression induced by chronic restraint stress, through challenge with conditionally tumorigenic cell line BHK-21/C13. 20 male NMRI mice were randomly divided into 2 groups-control and experimental. Each mouse was subcutaneously inoculated with BHK-21/C13 cells. Stress in the experimental group was induced for 20 days. After the experiment, tumor masses were removed, and analyzed using histology and immunohistochemistry techniques. We found a statistically significant difference (p = 0.034) in tumor expression and tumor volumes (p = 0.0061) between groups, as well as in immunopositivity on Ki67, cytochrome C and matrix metalloproteinase 9. Absence of immune infiltrate was noticed in experimental, and the presence of inflammatory infiltrate at tumor invasion front in control group.
Collapse
|
27
|
Castration-induced stromal remodeling disrupts the reconstituted prostate epithelial structure. J Transl Med 2020; 100:670-681. [PMID: 31857695 DOI: 10.1038/s41374-019-0352-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023] Open
Abstract
The normal prostate epithelial structure is maintained by homeostatic interactions with smooth muscle cells. However, structural alterations of the stroma are commonly observed in prostatic proliferative diseases, leading to the abnormalities of prostate epithelial structure. A decrease in the androgen level experimentally induces stromal remodeling, i.e., replacement of smooth muscle cells with fibroblasts or myofibroblasts. In this study, we investigated the effects of castration-induced stromal remodeling and subsequent aberrant activation of epithelial-stromal interactions on the reconstituted human prostate-like epithelial structure. We performed in vivo experiments using the human prostate epithelial cell line BPH-1 and fetal rat urogenital sinus mesenchyme to generate heterotypic tissue recombinants that form human prostate-like epithelial structure (i.e., solid- and canalized-epithelial cords). Host mice were castrated at 12 weeks post transplantation (castration) and implanted with a dihydrotestosterone pellet at 14 days post castration (androgen replacement treatment; ART). In the castration group, the percentages of fibrotic area and disrupted prostate epithelial structure without the basement membrane (BM) increased proportionally in a time-dependent manner, but were suppressed by ART. In the castration group, tenascin-C (TNC)-positive fibroblasts were abundant in the stroma surrounding disrupted prostate epithelial structure without the BM. TGF-β1 secretion from BPH-1 cells was increased by co-culturing with human primary cultured prostate fibroblasts. TNC mRNA expression was increased in fibroblasts co-culturing with BPH-1 cells and was suppressed by treatment with a TGF-β RI kinase inhibitor. Moreover, in the castration group, the percentage of p-Smad2-positive cells was significantly higher in the stroma surrounding disrupted prostate epithelial structure without the BM. Our results demonstrate that castration-induced stromal remodeling disrupted the reconstituted human prostate-like epithelial structure and induced the appearance of TNC-positive fibroblasts accompanied by activation of TGF-β signaling. The alteration of prostate stromal structure may be responsible for loss of the BM and epithelial cell polarity.
Collapse
|
28
|
Zonneville J, Wong V, Limoge M, Nikiforov M, Bakin AV. TAK1 signaling regulates p53 through a mechanism involving ribosomal stress. Sci Rep 2020; 10:2517. [PMID: 32054925 PMCID: PMC7018718 DOI: 10.1038/s41598-020-59340-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/22/2020] [Indexed: 01/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is among the most aggressive forms of breast cancer with limited therapeutic options. TAK1 is implicated in aggressive behavior of TNBC, while means are not fully understood. Here, we report that pharmacological blockade of TAK1 signaling hampered ribosome biogenesis (RBG) by reducing expression of RBG regulators such as RRS1, while not changing expression of ribosomal core proteins. Notably, TAK1 blockade upregulated expression of p53 target genes in cell lines carrying wild type (wt) TP53 but not in p53-mutant cells, suggesting involvement of ribosomal stress in the response. Accordingly, p53 activation by blockade of TAK1 was prevented by depletion of ribosomal protein RPL11. Further, siRNA-mediated depletion of TAK1 or RELA resulted in RPL11-dependent activation of p53 signaling. Knockdown of RRS1 was sufficient to disrupt nucleolar structures and resulted in activation of p53. TCGA data showed that TNBCs express high levels of RBG regulators, and elevated RRS1 levels correlate with unfavorable prognosis. Cytotoxicity data showed that TNBC cell lines are more sensitive to TAK1 inhibitor compared to luminal and HER2+ cell lines. These results show that TAK1 regulates p53 activation by controlling RBG factors, and the TAK1-ribosome axis is a potential therapeutic target in TNBC.
Collapse
Affiliation(s)
- Justin Zonneville
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, 14263, USA
| | - Vincent Wong
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Michelle Limoge
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, 14263, USA
| | - Mikhail Nikiforov
- Department of Cancer Biology, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Andrei V Bakin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, 14263, USA.
| |
Collapse
|
29
|
Miller ES, Loftus TJ, Kannan KB, Plazas JM, Efron PA, Mohr AM. Systemic Regulation of Bone Marrow Stromal Cytokines After Severe Trauma. J Surg Res 2019; 243:220-228. [PMID: 31207479 DOI: 10.1016/j.jss.2019.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/03/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traumatic injury generates a prolonged hypercatecholamine state that is associated with reduced growth of bone marrow erythroid progenitors mediated by the bone marrow stroma. The bone marrow stroma is made up of many cells including fibroblasts, which respond to inflammatory stimuli and alter the cytokine profile. We hypothesized that trauma plasma would increase bone marrow stromal fibroblast expression of interleukin-6 (IL-6), granulocyte colony-stimulating factor (G-CSF), erythropoietin (EPO), stem cell factor (SCF), and activation of nuclear factor kappa-light-chain-enhancer of activated B cells and correlate with injury severity and anemia. MATERIALS AND METHODS Plasma from 15 trauma patients was cultured with bone marrow fibroblast cells and compared with that from healthy volunteers. At 6, 24, and 48 h, the expression of IL-6, G-CSF, EPO, SCF, and the activation of nuclear factor kappa-light-chain-enhancer of activated B cells were measured using quantitative polymerase chain reaction. The influence of trauma plasma on cytokine expression was further stratified by injury severity score (ISS). RESULTS The average hemoglobin significantly decreased from admission to discharge (10.7 ± 2.5 to 9.2 ± 1.1 g/dL, P < 0.04). The discharge hemoglobin significantly decreased by 14% from the admission hemoglobin. After 48 h, trauma plasma significantly increased IL-6, G-CSF, and EPO bone marrow fibroblast expression when compared with normal plasma. When stratified by ISS, IL-6, G-CSF, and EPO, bone marrow fibroblast expression was highest in the trauma plasma ISS 27-41 group and was significantly elevated compared with normal plasma. When SCF expression was stratified by ISS, there was a significant increase in expression in ISS 27-41. Higher ISS was also associated with a larger decrease in hemoglobin despite no difference in total blood transfusions. CONCLUSIONS Severe trauma can systemically increase IL-6, G-CSF, and EPO expression in bone marrow stroma. Increased hematopoietic cytokine expression after traumatic injury correlated with a hypercatecholamine state, anemia, and injury severity.
Collapse
Affiliation(s)
- Elizabeth S Miller
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida
| | - Tyler J Loftus
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida
| | - Kolenkode B Kannan
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida
| | - Jessica M Plazas
- College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida
| | - Philip A Efron
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida
| | - Alicia M Mohr
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida.
| |
Collapse
|
30
|
Murthy A, Gerber SA, Koch CJ, Lord EM. Intratumoral Hypoxia Reduces IFN-γ-Mediated Immunity and MHC Class I Induction in a Preclinical Tumor Model. Immunohorizons 2019; 3:149-160. [PMID: 31356176 PMCID: PMC8195309 DOI: 10.4049/immunohorizons.1900017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
Tumor hypoxia occurs because of an increased demand for oxygen by the rapidly growing tumor cells, together with reduction in the oxygen supply due to malformed and nonfunctional tumor vasculature. The effects of tumor hypoxia on radiotherapy (RT) are well known; however, recent findings suggest it may also suppress immunotherapy, although the mechanisms governing this observation remain undetermined. Our laboratory and others have shown that IFN-γ conditions the tumor milieu and is important for the efficacy of RT. Thus, we hypothesized that hypoxia could inhibit IFN-γ–mediated antitumor responses, resulting in decreased RT efficacy. This inhibition could involve the production and/or the cellular response to IFN-γ. To test this, we used murine tumor cell lines B16F0 and Colon38. We observed that hypoxia inhibited upregulation of IFN-γ–dependent MHC class I expression by tumor cells along with the gene expression of IFN-γ–dependent chemokines CXCL9 and CXCL10, essential for immune cell infiltration. Furthermore, CD8+ T cells, an important source of IFN-γ, which mediate effector antitumor responses, had reduced ability to proliferate and generate IFN-γ under hypoxic conditions in vitro. Interestingly, reoxygenation restored the cytokine-producing capability of these cells. Studies performed in vivo using a mouse tumor model and the hypoxia marker EF5 demonstrated that RT could reverse the hypoxia within treated tumors. This study has identified a unique mechanism of hypoxia-induced immune suppression involving the downregulation of IFN-γ production and cellular responsiveness to this essential cytokine. These results suggest that therapies that target and reduce tumor hypoxia can potentially boost antitumor immune responses.
Collapse
Affiliation(s)
- Aditi Murthy
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Scott A Gerber
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642.,Department of Surgery, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; and
| | - Cameron J Koch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104
| | - Edith M Lord
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642;
| |
Collapse
|
31
|
Nectin-3 is a new biomarker that mediates the upregulation of MMP2 and MMP9 in ovarian cancer cells. Biomed Pharmacother 2019; 110:139-144. [DOI: 10.1016/j.biopha.2018.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
|
32
|
Zonneville J, Safina A, Truskinovsky AM, Arteaga CL, Bakin AV. TGF-β signaling promotes tumor vasculature by enhancing the pericyte-endothelium association. BMC Cancer 2018; 18:670. [PMID: 29921235 PMCID: PMC6008941 DOI: 10.1186/s12885-018-4587-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Background The breast cancer microenvironment promotes tumor vascularization through the complex interactions involving tumor-associated fibroblasts (TAFs). Emerging data indicate that TAFs increase production and signaling by TGF-β cytokines, while the role of TGF-β signaling in the regulation of tumor blood vessels is not fully understood. The current study presents evidence that TAFs enhance the organization of tumor blood capillaries, and TGF-β signaling plays an important role in this response. Methods Tumor vascularization was studied in xenograft models of breast carcinoma cells, alone and in combination with fibroblasts. TGF-β signaling in breast cancer cells was modulated by expression of kinase-inactive TGFBR1-K232R (dnTGFBR1) or constitutive-active TGFBR1-T204D (caTGFBR1) receptor mutants. The architecture of tumor blood capillaries was assessed by immune-histochemical analysis of endothelium and pericytes. The role of TGF-β-Smad signaling in fibronectin expression was examined using adenoviral transduction of signaling components. Results Our studies revealed that TAFs significantly increase the lumen size of blood microvessels. Inactivation of TGF-β signaling in tumor cells by dnTGFBR1 reduced the microvessel density and lumen sizes, decreasing tumor growth. In contrast, caTGFBR1-tumors exhibited greater vessel density and lumen sizes. Tumors with inactive dnTGFBR1 showed lower amounts of TAFs, while caTGFBR1 increased amounts of TAFs compared to the control. Inspection of pericytes and endothelial cells in tumor vasculature revealed that TAFs enhanced vessel coverage by pericytes, vascular cells supporting capillaries. This effect was impaired in dnTGFBR1-tumors, whereas active caTGFBR1 enhanced the association of pericytes with endothelium. Accordingly, dnTGFBR1-tumors exhibited the presence of hemorrhages, a sign of fragile blood vessels. Biochemical analysis showed that TGFBR1-SMAD signaling up-regulates fibronectin, a prominent regulator of endothelium-pericyte interactions. Conclusions The current study indicates that tumor-fibroblast crosstalk enhances tumor vascularization by increasing the pericyte-endothelium association via a mechanism involving the TGFβ-fibronectin axis. The tumor-fibroblast model represents a useful system for dissecting the complex interactions governing tumor angiogenesis and developing new approaches to therapeutic targeting tumor vasculature. Electronic supplementary material The online version of this article (10.1186/s12885-018-4587-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justin Zonneville
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, 14263, USA
| | - Alfiya Safina
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Andrei V Bakin
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, 14263, USA.
| |
Collapse
|
33
|
Zhan SJ, Liu B, Linghu H. Identifying genes as potential prognostic indicators in patients with serous ovarian cancer resistant to carboplatin using integrated bioinformatics analysis. Oncol Rep 2018; 39:2653-2663. [PMID: 29693178 PMCID: PMC5983937 DOI: 10.3892/or.2018.6383] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/17/2018] [Indexed: 12/24/2022] Open
Abstract
Serous ovarian cancer (SOC) accounts for >50% of all epithelial ovarian cancers. However, patients with SOC present with various degrees of response to platinum‑based chemotherapy and, thus, their survival may differ. The present study aimed to identify the candidate genes involved in the carcinogenesis and drug resistance of SOC by analyzing the microarray datasets GDS1381 and GDS3592. GDS1381 and GDS3592 were downloaded from the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/gds/). A total of 219 differentially expressed genes (DEGs) were identified. Potential genes that may predict the response to carboplatin and, thus, the prognosis of SOC were analyzed. The enriched functions and pathways of DEGs included extracellular region, extracellular space and extracellular exosome, among others. Upon screening the upregulated and downregulated genes on the connectivity map, 10 small‑molecule drugs were identified that may be helpful in improving drug sensitivity in patients with ovarian cancer. A total of 30 hub genes were screened for further analysis after constructing the protein‑to‑protein interaction network. Through survival analysis, comparison of genes across numerous analyses, and immunohistochemistry, GNAI1, non‑structural maintenance of chromosomes (non‑SMC) condensin I complex subunit H (NCAPH), matrix metallopeptidase 9 (MMP9), aurora kinase A (AURKA) and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) were identified as the key molecules that may be involved in the carcinogenesis and carboplatin resistance of SOC. In conclusion, GNAI1, NCAPH, MMP9, AURKA and EZH2 should be examined in further studies for the possibility of their participation in the carcinogenesis and carboplatin response of SOC.
Collapse
Affiliation(s)
- Shi-Jie Zhan
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bin Liu
- Department of Pathology, The Basic Medical School of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hua Linghu
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
34
|
Zang Y, Gu L, Zhang Y, Wang Y, Xue F. Identification of key genes and pathways in uterine leiomyosarcoma through bioinformatics analysis. Oncol Lett 2018; 15:9361-9368. [PMID: 29844831 DOI: 10.3892/ol.2018.8503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
Uterine leiomyosarcoma (uLMS) is a rare but malignant gynaecological tumour with a poor survival outcome. The present study was aimed at identifying the key genes and pathways in the development of uLMS through bioinformatics analysis. To minimize the frequency of false-positive results of the bioinformatics analysis, 3 microarrays including GSE764, GSE64763 and GSE68312 were downloaded from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were screened out using the online tool GEO2R. Then, Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery. Finally, a protein-protein interaction (PPI) network of the DEGs was constructed using Cytoscape, and module analysis was conducted using the plug-in MCODE. A total of 95 DEGs including 21 upregulated genes and 74 downregulated genes were identified. The upregulated DEGs were annotated with 'DNA metabolic process', 'nucleobase-containing compound biosynthetic process' and 'cellular macromolecule biosynthetic process', while the downregulated DEGs were annotated with 'cellular response to chemical stimulus', 'movement of cell or subcellular component' and 'response to inorganic substances'. The results of the PPI network analysis demonstrated that matrix metallopeptidase 9, apolipoprotein E, cyclin E1 and syndecan 1 were the predominant upregulated genes in uLMS. Additionally, the genes in the main module were enriched in 'proteoglycans in cancer', 'p53 signalling pathway' and 'extracellular matrix-receptor interaction'. The key genes and pathways identified in the present study may provide valuable clues for clarifying the molecular mechanism underlying the development of uLMS and demonstrate promise for use as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lina Gu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yanfang Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
35
|
Bi Y, Xu L, Qiu L, Wang S, Liu X, Zhang Y, Chen Y, Zhang Y, Xu Q, Chang G, Chen G. Reticuloendotheliosis Virus Inhibits the Immune Response Acting on Lymphocytes from Peripheral Blood of Chicken. Front Physiol 2018; 9:4. [PMID: 29410628 PMCID: PMC5787092 DOI: 10.3389/fphys.2018.00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022] Open
Abstract
Chicken reticuloendotheliosis virus (REV) causes the atrophy of immune organs and immuno-suppression. The pathogenic mechanisms of REV are poorly understood. The aim of this study was to use RNA sequencing to analyse the effect of REV on immunity and cell proliferation in chicken lymphocytes from peripheral blood in vitro. Overall, 2977 differentially expressed genes (DEGs) were examined from cells between infected with REV or no; 56 DEGs related to cell proliferation and 130 DEGs related to immunity were identified. MTT, Q-PCR, and FCM indicated that REV reduced the number of lymphocytes by inhibiting the transition of S/G1 phase through FOXO and p53 pathways. Similarly, REV infection would destroy the immune defense of lymphocytes through MAPK-AP1 via Toll-like receptor-, NOD-like receptor-, and salmonella infection pathways to reduce the secretion of IL8 and IL18. In addition, the reduction of lymphocytes also might be responsible for the lower levels of IL8 and IL18, and the rescue of lymphocytes would been activated still through FOXO and p53 pathways. Moreover, the immune response for REV in lymphocytes would activate by up-regulating the expression of NOD1, MYD88, and AP1 through Toll-like receptor-/NOD-like receptor/salmonella-MAPK-AP1 pathways. These results indicate that REV could affect lymphocytes from peripheral blood by inhibit the cell proliferation and the immune system. It also was revealed that NOD1, MYD88, and AP1 were the key genes to activate the immune response through Toll-like receptor-/NOD-like receptor/salmonella-MAPK-AP1 pathways. These findings establish the groundwork and provide new clues for deciphering the molecular mechanism underlying REV infection in chickens.
Collapse
Affiliation(s)
- Yulin Bi
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lu Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lingling Qiu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shasha Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiangping Liu
- Department of Poultry Genetics and Breeding, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Yani Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yang Chen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yang Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qi Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guobin Chang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
36
|
Limoge M, Safina A, Truskinovsky AM, Aljahdali I, Zonneville J, Gruevski A, Arteaga CL, Bakin AV. Tumor p38MAPK signaling enhances breast carcinoma vascularization and growth by promoting expression and deposition of pro-tumorigenic factors. Oncotarget 2017; 8:61969-61981. [PMID: 28977919 PMCID: PMC5617479 DOI: 10.18632/oncotarget.18755] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/19/2017] [Indexed: 01/10/2023] Open
Abstract
The breast carcinoma microenvironment strikingly influences cancer progression and response to therapy. Various cell types in the carcinoma microenvironment show significant activity of p38 mitogen-activated protein kinase (MAPK), although the role of p38MAPK in breast cancer progression is still poorly understood. The present study examined the contribution of tumor p38MAPK to breast carcinoma microenvironment and metastatic capacity. Inactivation of p38MAPK signaling in metastatic breast carcinoma cells was achieved by forced expression of the kinase-inactive mutant of p38/MAPK14 (a dominant-negative p38, dn-p38). Disruption of tumor p38MAPK signaling reduced growth and metastases of breast carcinoma xenografts. Importantly, dn-p38 markedly decreased tumor blood-vessel density and lumen sizes. Mechanistic studies revealed that p38 controls expression of pro-angiogenic extracellular factors such as matrix protein Fibronectin and cytokines VEGFA, IL8, and HBEGF. Tumor-associated fibroblasts enhanced tumor growth and vasculature as well as increased expression of the pro-angiogenic factors. These effects were blunted by dn-p38. Metadata analysis showed elevated expression of p38 target genes in breast cancers and this was an unfavorable marker of disease recurrence and poor-outcome. Thus, our study demonstrates that tumor p38MAPK signaling promotes breast carcinoma growth, invasive and metastatic capacities. Importantly, p38 enhances carcinoma vascularization by facilitating expression and deposition of pro-angiogenic factors. These results argue that p38MAPK is a valuable target for anticancer therapy affecting tumor vasculature. Anti-p38 drugs may provide new therapeutic strategies against breast cancer, including metastatic disease.
Collapse
Affiliation(s)
- Michelle Limoge
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Alfiya Safina
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | - Ieman Aljahdali
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Justin Zonneville
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Aleksandar Gruevski
- State University of New York at Buffalo, Department of Biological Sciences, Buffalo, New York, USA
| | - Carlos L. Arteaga
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Andrei V. Bakin
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|