1
|
Du MW, Zhu XL, Zhang DX, Chen XZ, Yang LH, Xiao JZ, Fang WJ, Xue XC, Pan WH, Liao WQ, Yang T. X-Paste improves wound healing in diabetes via NF-E2-related factor/HO-1 signaling pathway. World J Diabetes 2024; 15:1299-1316. [PMID: 38983806 PMCID: PMC11229958 DOI: 10.4239/wjd.v15.i6.1299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 03/25/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFU), as severe complications of diabetes mellitus (DM), significantly compromise patient health and carry risks of amputation and mortality. AIM To offer new insights into the occurrence and development of DFU, focusing on the therapeutic mechanisms of X-Paste (XP) of wound healing in diabetic mice. METHODS Employing traditional Chinese medicine ointment preparation methods, XP combines various medicinal ingredients. High-performance liquid chromatography (HPLC) identified XP's main components. Using streptozotocin (STZ)-induced diabetic, we aimed to investigate whether XP participated in the process of diabetic wound healing. RNA-sequencing analyzed gene expression differences between XP-treated and control groups. Molecular docking clarified XP's treatment mechanisms for diabetic wound healing. Human umbilical vein endothelial cells (HUVECs) were used to investigate the effects of Andrographolide (Andro) on cell viability, reactive oxygen species generation, apoptosis, proliferation, and metastasis in vitro following exposure to high glucose (HG), while NF-E2-related factor-2 (Nrf2) knockdown elucidated Andro's molecular mechanisms. RESULTS XP notably enhanced wound healing in mice, expediting the healing process. RNA-sequencing revealed Nrf2 upregulation in DM tissues following XP treatment. HPLC identified 21 primary XP components, with Andro exhibiting strong Nrf2 binding. Andro mitigated HG-induced HUVECs proliferation, metastasis, angiogenic injury, and inflammation inhibition. Andro alleviates HG-induced HUVECs damage through Nrf2/HO-1 pathway activation, with Nrf2 knockdown reducing Andro's proliferative and endothelial protective effects. CONCLUSION XP significantly promotes wound healing in STZ-induced diabetic models. As XP's key component, Andro activates the Nrf2/HO-1 signaling pathway, enhancing cell proliferation, tubule formation, and inflammation reduction.
Collapse
Affiliation(s)
- Ming-Wei Du
- Institute of Cardiovascular Disease, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xin-Lin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Dong-Xing Zhang
- Department of Dermatology, Dongshan Hospital, Meizhou 514000, Guangdong Province, China
| | - Xian-Zhen Chen
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250000, Shandong Province, China
| | - Li-Hua Yang
- Department of Emergency, Naval Hospital of Eastern Theater, Zhoushan 316000, Zhejiang Province, China
| | - Jin-Zhou Xiao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Wen-Jie Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xiao-Chun Xue
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- Department of Pharmacy, 905th Hospital of People’s Liberation Army of China (PLA) Navy, Shanghai 200052, China
| | - Wei-Hua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Wan-Qing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Tao Yang
- Institute of Cardiovascular Disease, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| |
Collapse
|
2
|
Huang Z, Wu Z, Zhang J, Wang K, Zhao Q, Chen M, Yan S, Guo Q, Ma Y, Ji L. Andrographolide attenuated MCT-induced HSOS via regulating NRF2-initiated mitochondrial biogenesis and antioxidant response. Cell Biol Toxicol 2023; 39:3269-3285. [PMID: 37816928 DOI: 10.1007/s10565-023-09832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Hepatic sinusoidal obstruction syndrome (HSOS) is a death-dealing liver disease with a fatality rate of up to 67%. In the study present, we explored the efficacy of andrographolide (Andro), a diterpene lactone from Andrographis Herba, in ameliorating the monocrotaline (MCT)-induced HSOS and the underlying mechanism. The alleviation of Andro on MCT-induced rats HSOS was proved by biochemical index detection, electron microscope observation, and liver histological evaluation. Detection of hepatic ATP content, mitochondrial DNA (mtDNA) copy number, and protein expression of nuclear respiratory factor-1 (NRF1) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) demonstrated that Andro strengthened mitochondrial biogenesis in livers from MCT-treated rats. Chromatin immunoprecipitation assay exhibited that Andro enhanced the occupation of nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as NRF2) in the promoter regions of both PPARGC1A and NRF1. Andro also activated the NRF2-dependent anti-oxidative response and alleviated liver oxidative injury. In Nrf2 knock-out mice, MCT induced more severe liver damage, and Andro showed no alleviation in it. Furthermore, the Andro-activated mitochondrial biogenesis and anti-oxidative response were reduced in Nrf2 knock-out mice. Contrastingly, knocking out Kelch-like ECH-associated protein 1 (Keap1), a NRF2 repressor, reduced MCT-induced liver damage. Results from co-immunoprecipitation, molecular docking analysis, biotin-Andro pull-down, cellular thermal shift assay, and surface plasmon resonance assay showed that Andro hindered the NRF2-KEAP1 interaction via directly binding to KEAP1. In conclusion, our results revealed that NRF2-dependent liver mitochondrial biogenesis and anti-oxidative response were essential for the Andro-provided alleviation of the MCT-induced HSOS. Graphical Headlights: 1. Andro alleviated MCT-induced HSOS via activating antioxidative response and promoting mitochondrial biogenesis. 2. Andro-activated antioxidative response and mitochondrial biogenesis were NRF2-dependent. 3. Andro activated NRF2 via binding to KEAP1.
Collapse
Affiliation(s)
- Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zeqi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jingnan Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Keke Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qing Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Minwei Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Shihao Yan
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yun Ma
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Science, King's College London, London, UK
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
3
|
Ge S, Lian W, Bai Y, Wang L, Zhao F, Li H, Wang D, Pang Q. TMT-based quantitative proteomics reveals the targets of andrographolide on LPS-induced liver injury. BMC Vet Res 2023; 19:199. [PMID: 37817228 PMCID: PMC10563216 DOI: 10.1186/s12917-023-03758-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Andrographolide (Andro) is a diterpenoid derived from Andrographis paniculate, which has anti-inflammatory, antibacterial, antiviral and hepatoprotective activities. Gram-negative bacterial infections can cause varying degrees of liver injury in chickens, although Andro has been shown to have a protective effect on the liver, its underlying mechanism of action and effects on liver proteins are not known. METHODS The toxicity of Andro on the viability of leghorn male hepatoma (LMH) cells at different concentrations and times was analyzed by CCK-8 assays. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in the culture supernatants were measured using an automatic biochemical analyzer to evaluate the protective effect of androscopolide on LPS-induced injury of LMH cells. Subsequently, TMT proteomics analysis were performed on the negative control group (NC group), LPS, and LPS-Andro groups, and bioinformatics analysis was performed on the differentially expressed proteins (DEPs). RESULTS It was found that Andro reduced ALT and AST levels in the cell supernatant and alleviated LPS-induced injury in LMH cells. Proteomic analysis identified 50 and 166 differentially expressed proteins in the LPS vs. NC group and LPS-Andro vs. LPS group, respectively. Andro may be involved in steroid metabolic processes, negative regulation of MAPK cascade, oxidative stress, and other processes to protect against LPS-induced liver injury. CONCLUSIONS Andro protects against LPS-induced liver injury, HMGCS1, HMGCR, FDPS, PBK, CAV1, PRDX1, PRDX4, and PRDX6, which were identified by differential proteomics, may be the targets of Andro. Our study may provide new theoretical support for Andro protection against liver injury.
Collapse
Affiliation(s)
- Shihao Ge
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Pharmacy, Heze University, Heze, 274000, Shangdong, China
| | - Wenqi Lian
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yongjiang Bai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Linzheng Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250035, Shangdong, China
| | - Fuwei Zhao
- College of Pharmacy, Heze University, Heze, 274000, Shangdong, China
| | - Houmei Li
- Shuozhou grass and animal husbandry development center, ShuoZhou, 036000, Shanxi, China
| | - Dongliang Wang
- ShuoZhou Vocational Technology College, ShuoZhou, 036000, Shanxi, China
| | - Quanhai Pang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
4
|
Messire G, Serreau R, Berteina-Raboin S. Antioxidant Effects of Catechins (EGCG), Andrographolide, and Curcuminoids Compounds for Skin Protection, Cosmetics, and Dermatological Uses: An Update. Antioxidants (Basel) 2023; 12:1317. [PMID: 37507856 PMCID: PMC10376544 DOI: 10.3390/antiox12071317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Here we have chosen to highlight the main natural molecules extracted from Camellia sinensis, Andrographis paniculata, and Curcuma longa that may possess antioxidant activities of interest for skin protection. The molecules involved in the antioxidant process are, respectively, catechins derivatives, in particular, EGCG, andrographolide, and its derivatives, as well as various curcuminoids. These plants are generally used as beverages for Camellia sinensis (tea tree), as dietary supplements, or as spices. The molecules they contain are known for their diverse therapeutic activities, including anti-inflammatory, antimicrobial, anti-cancer, antidiabetic, and dermatological treatment. Their common antioxidant activities and therapeutic applications are widely documented, but their use in cosmetics is more recent. We will see that the use of pharmacomodulated derivatives, the addition of co-antioxidants, and the use of various formulations enable better skin penetration and greater ingredient stability. In this review, we will endeavor to compile the cosmetic uses of these natural molecules of interest and the various structural modulations reported with the aim of improving their bioavailability as well as establishing their different mechanisms of action.
Collapse
Affiliation(s)
- Gatien Messire
- Institut de Chimie Organique et Analytique ICOA, Université d'Orléans-Pôle de Chimie, UMR CNRS 7311, Rue de Chartres-BP 6759, 45067 Orléans CEDEX 02, France
| | - Raphaël Serreau
- Unité de Recherche PSYCOMADD, APHP Université Paris Saclay, Hôpital Paul-Brousse, 12 Avenue Paul Vaillant Couturier, 94804 Villejuif, France
- Addictologie EPSM Georges DAUMEZON, GHT Loiret, 1 Route de Chanteau, 45400 Fleury les Aubrais, France
| | - Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique ICOA, Université d'Orléans-Pôle de Chimie, UMR CNRS 7311, Rue de Chartres-BP 6759, 45067 Orléans CEDEX 02, France
| |
Collapse
|
5
|
Qin X, Wang X, Tian M, Dong Z, Wang J, Wang C, Huang Q. The role of Andrographolide in the prevention and treatment of liver diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154537. [PMID: 36610122 DOI: 10.1016/j.phymed.2022.154537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The presence or absence of damage to the liver organ is crucial to a person's health. Nutritional disorders, alcohol consumption, and drug abuse are the main causes of liver disease. Liver transplantation is the last irrevocable option for liver disease and has become a serious economic burden worldwide. Andrographolide (AP) is one of the main active ingredients of Herba Andrographitis. It has several biological activities and has been reported to have protective and therapeutic effects against liver diseases. Earlier literature has been written on AP's role in treating inflammation and other diseases, and there has not been a systematic review on liver diseases. This review is dedicated to sorting out the research results of AP against liver diseases. Pharmacokinetics, toxicity, and nanotechnology to improve bioavailability are discussed. Finally, an outlook and assessment of its future are provided. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. PubMed and web of Science databases were used to search all relevant literature on AP for liver disease up to 2022. RESULTS Studies have shown that AP plays an important role in different liver disease phenotypes, mainly through anti-inflammatory and antioxidant activities. AP regulates HO-1 and inhibits hepatitis virus replication. It affects the NF-κB pathway, downregulates inflammatory factors such as IL-1β, IL-6, and TNF-α, and reduces liver damage. In preventing liver fibrosis, AP inhibits angiogenesis and activation of hepatic stellate cells and reduces oxidative stress involved in the Nrf2 and TGF-β1/Smad pathways. In addition, AP impedes the development of liver cancer by promoting apoptosis and autonomous phagocytosis in a cell-dependent way. Interestingly, miRNAs are involved in the therapeutic process of liver cancer and hepatic fibrosis. The poor solubility of AP limits the development of dosage forms. Therefore, the advent of nanoformulations has improved bioavailability. Although the effect of AP is dose- and time-dependent, the magnitude of its toxicity is not negligible. Some clinical trials have shown that AP has mild side effects. CONCLUSIONS AP, as an effective natural product, has a good effect on the liver disease through multiple pathways and targets. However, the dose reaches a certain level, leading to its toxicity and side effects. For better clinical application of AP, high-quality clinical and toxic intervention mechanisms are needed to validate current studies. In addition, modulation of miRNA-mediated hepatocellular carcinoma and liver fibrosis and synergistic action with drugs may be the future focus of AP. In conclusion, AP can be regarded as an important candidate for treating different liver diseases in the future.
Collapse
Affiliation(s)
- Xiaoyan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Xi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Maoying Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Zhaowei Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Jin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Chao Wang
- Sichuan Integrated Traditional Chinese and Western Medicine Hospital, No.51, Section 4, Renmin South Road, Wuhou District, Chengdu, 610042, PR. China.
| | - Qinwan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China.
| |
Collapse
|
6
|
Li X, Yuan W, Wu J, Zhen J, Sun Q, Yu M. Andrographolide, a natural anti-inflammatory agent: An Update. Front Pharmacol 2022; 13:920435. [PMID: 36238575 PMCID: PMC9551308 DOI: 10.3389/fphar.2022.920435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Botanicals have attracted much attention in the field of anti-inflammatory due to their good pharmacological activity and efficacy. Andrographis paniculata is a natural plant ingredient that is widely used around the world. Andrographolide is the main active ingredient derived from Andrographis paniculata, which has a good effect on the treatment of inflammatory diseases. This article reviews the application, anti-inflammatory mechanism and molecular targets of andrographolide in different inflammatory diseases, including respiratory, digestive, immune, nervous, cardiovascular, skeletal, and tumor system diseases. And describe its toxicity and explain its safety. Studies have shown that andrographolide can be used to treat inflammatory lesions of various systemic diseases. In particular, it acts on many inflammation-related signalling pathways. The future direction of andrographolide research is also introduced, as is the recent research that indicates its potential clinical application as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Xiaohong Li
- First Clinical School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiaohong Li,
| | - Weichen Yuan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jibiao Wu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianhua Zhen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qihui Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minmin Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Sun Y, Xu H, Tan B, Yi Q, Liu H, Chen T, Xiang H, Wang R, Xie Q, Tian J, Zhu J. Andrographolide protects bone marrow mesenchymal stem cells against glucose and serum deprivation under hypoxia via the NRF2 signaling pathway. Stem Cell Res Ther 2022; 13:326. [PMID: 35850702 PMCID: PMC9290240 DOI: 10.1186/s13287-022-03016-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Background Bone marrow mesenchymal stem cell (BMSCs) therapy is an important cell transplantation strategy in the regenerative medicine field. However, a severely ischemic microenvironment, such as nutrient depletion and hypoxia, causes a lower survival rate of transplanted BMSCs, limiting the application of BMSCs. Therefore, improving BMSCs viability in adverse microenvironments is an important means to improve the effectiveness of BMSCs therapy. Objective To illustrate the protective effect of andrographolide (AG) against glucose and serum deprivation under hypoxia (1% O2) (GSDH)-induced cell injury in BMSCs and investigate the possible underlying mechanisms. Methods An in vitro primary rat BMSCs cell injury model was established by GSDH, and cellular viability, proliferation and apoptosis were observed after AG treatment under GSDH. Reactive oxygen species levels and oxidative stress-related genes and proteins were measured by flow cytometry, RT-qPCR and Western blotting. Mitochondrial morphology, function and number were further assessed by laser confocal microscopy and flow cytometry. Results AG protected BMSCs against GSDH-induced cell injury, as indicated by increases in cell viability and proliferation and mitochondrial number and decreases in apoptosis and oxidative stress. The metabolic status of BMSCs was changed from glycolysis to oxidative phosphorylation to increase the ATP supply. We further observed that the NRF2 pathway was activated by AG, and treatment of BMSCs with a specific NRF2 inhibitor (ML385) blocked the protective effect of AG. Conclusion Our results suggest that AG is a promising agent to improve the therapeutic effect of BMSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03016-6.
Collapse
Affiliation(s)
- Yanting Sun
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Hao Xu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.,Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Qin Yi
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Huiwen Liu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Tangtian Chen
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Han Xiang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Rui Wang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Qiumin Xie
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Jie Tian
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.,Department of Cardiovascular (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.
| |
Collapse
|
8
|
Qu XQ, Chen QF, Shi QQ, Luo QQ, Zheng SY, Li YH, Bai LY, Gan S, Zhou XY. Hepatocyte-Conditional Knockout of Phosphatidylethanolamine Binding Protein 4 Aggravated LPS/D-GalN-Induced Acute Liver Injury via the TLR4/NF-κB Pathway. Front Immunol 2022; 13:901566. [PMID: 35874667 PMCID: PMC9304715 DOI: 10.3389/fimmu.2022.901566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Acute liver injury (ALI) is a disease that seriously threatens human health and life, and a dysregulated inflammation response is one of the main mechanisms of ALI induced by various factors. Phosphatidylethanolamine binding protein 4 (PEBP4) is a secreted protein with multiple biological functions. At present, studies on PEBP4 exist mainly in the field of tumors and rarely in inflammation. This study aimed to explore the potential roles and mechanisms of PEBP4 on lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced ALI. PEBP4 was downregulated after treatment with LPS/D-GalN in wild-type mice. PEBP4 hepatocyte-conditional knockout (CKO) aggravated liver damage and repressed liver functions, including hepatocellular edema, red blood cell infiltration, and increased aspartate aminotransferase (AST)/alanine aminotrans-ferase (ALT) activities. The inflammatory response was promoted through increased neutrophil infiltration, myeloperoxidase (MPO) activities, and cytokine secretions (interleukin-1β, IL-1β; tumor necrosis factor alpha, TNF-α; and cyclooxygenase-2, COX-2) in PEBP4 CKO mice. PEBP4 CKO also induced an apoptotic effect, including increasing the degree of apoptotic hepatocytes, the expressions and activities of caspases, and pro-apoptotic factor Bax while decreasing anti-apoptotic factor Bcl-2. Furthermore, the data demonstrated the levels of Toll-like receptor 4 (TLR4), phosphorylation-inhibitor of nuclear factor kappaB Alpha (p-IκB-α), and nuclear factor kappaB (NF-κB) p65 were upregulated, while the expressions of cytoplasmic IκB-α and NF-κB p65 were downregulated after PEBP4 CKO. More importantly, both the NF-κB inhibitor (Ammonium pyrrolidinedithiocarbamate, PDTC) and a small-molecule inhibitor of TLR4 (TAK-242) could inhibit TLR4/NF-κB signaling activation and reverse the effects of PEBP4 CKO. In summary, the data suggested that hepatocyte-conditional knockout of PEBP4 aggravated LPS/D-GalN-induced ALI, and the effect is partly mediated by activation of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiao-qin Qu
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, China
| | - Qiong-feng Chen
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, China
- Department of Pathology, Medical College of Nanchang University, Nanchang, China
| | - Qiao-qing Shi
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, China
| | - Qian-qian Luo
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, China
| | - Shuang-yan Zheng
- The Center of Laboratory Animal Science, Nanchang University, Nanchang, China
| | - Yan-hong Li
- Department of Forensic Medicine, Medical College of Nanchang University, Nanchang, China
| | - Liang-yu Bai
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Shuai Gan
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Xiao-yan Zhou
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Tumor Etiology and Molecular Pathology, Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Tandoh A, Danquah CA, Benneh CK, Adongo DW, Boakye-Gyasi E, Woode E. Effect of Diclofenac and Andrographolide Combination on Carrageenan-Induced Paw Edema and Hyperalgesia in Rats. Dose Response 2022; 20:15593258221103846. [PMID: 35663494 PMCID: PMC9158437 DOI: 10.1177/15593258221103846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/27/2022] [Indexed: 01/21/2023] Open
Abstract
Studies into drug combination at low doses are a promising approach to the management of pain and inflammation. The aim of this study was to evaluate the anti-edema and anti-hyperalgesic effects of a combination of diclofenac and andrographolide. Male Sprague-Dawley rats were first treated with diclofenac or andrographolide alone (3–100 mg/kg), as well as a combination of the 2 drugs. Carrageenan was then injected into the right hind paw of rats, and changes in paw volume and sensitivity to mechanical (von Frey) and thermal (Hargreaves test) stimuli measured. Results showed drug combination produced synergistic effects at reducing paw edema especially at lower doses, with a Loewe synergy score of 13.02 ± 8.75 in SynergyFinder and a combination index of .41 ± .18 after isobolographic analysis. Again synergy scores for decreasing response to 1.0 and 3.6 g force application of von Frey filaments after drug combination were 10.127 ± 5.68 and 8.554 ± 6.53, respectively, in SynergyFinder. Synergistic effects were also seen after drug combination in the Hargreaves test with a synergy score of 5.136 ± 16.38. In conclusion, combination of diclofenac with andrographolide showed better pharmacologic effects after carrageenan injection and was more synergistic at low-dose combinations.
Collapse
Affiliation(s)
- Augustine Tandoh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Cynthia Amaning Danquah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Charles Kwaku Benneh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Donatus Wewura Adongo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Eric Boakye-Gyasi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Eric Woode
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
10
|
Cai J, Sun Z, Zhang L, Xu H. SERP1 reduces inchoate acute hepatic injury through regulation of endoplasmic reticulum stress via the GSK3β/β‑catenin/TCF/LEF signaling pathway. Mol Med Rep 2022; 25:193. [PMID: 35419615 PMCID: PMC9051999 DOI: 10.3892/mmr.2022.12709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
The liver is a crucial digestive organ of humans and in charge of detoxification. Acute hepatic injury is an aggressive type of hepatic disease and its harmful effect cannot be ignored. The present study examined the role and mechanism of stress-associated endoplasmic reticulum protein 1 (SERP1) in acute hepatic injury. Mice were injected intraperitoneally with D-galactosamine/lipopolysaccharide (LPS) and rat hepatocytes were induced by LPS to establish an acute hepatic injury model. Tissue lesions were observed by H&E staining, and biomarkers of hepatic injury in the serum were examined. Western blotting, immunohistochemistry and reverse transcription-quantitative PCR were performed to assess SERP1 expression in tissues and hepatocytes. A SERP1 overexpression plasmid was constructed to evaluate the role of SERP1 in inflammation, apoptosis, endoplasmic reticulum stress (ERS) and the GSK3β/β-catenin/T-cell factor (TCF)/lymphoid enhancing factor (LEF) signaling pathway. In addition, a GSK3β overexpression plasmid was constructed to investigate the role of GSK3β/β-catenin signal activation. Additionally, the present study investigated whether SERP1 regulated the endoplasmic reticulum via this pathway. In the present study, reliable animal and cellular hepatic injury models were established and verified. SERP1 overexpression reduced the expression of inflammatory factors, apoptosis-related proteins and ERS-related proteins, as well as the expression of proteins related to GSK3β/β-catenin/TCF/LEF signaling pathways. A GSK3β overexpression plasmid was constructed and it was revealed that GSK3β overexpression could reverse the effects of SERP1 overexpression in aforementioned aspects. This suggested that the activation of the GSK3β/β-catenin/TCF/LEF signaling pathway may be required for the regulation of SERP1. In conclusion, SERP1 regulated ERS via the GSK3β/β-catenin/TCF/LEF signaling pathway, thereby reducing inchoate acute hepatic injury.
Collapse
Affiliation(s)
- Jie Cai
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhenhua Sun
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lili Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hongrui Xu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| |
Collapse
|
11
|
Liu J, Ma Z, Li H, Li X. Chinese medicine in the treatment of autoimmune hepatitis: Progress and future opportunities. Animal Model Exp Med 2022; 5:95-107. [PMID: 35263512 PMCID: PMC9043711 DOI: 10.1002/ame2.12201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease occurring in individuals of all ages with a higher incidence in females and characterized by hypergammaglobulinemia, elevated serum autoantibodies and histological features of interface hepatitis. AIH pathogenesis remains obscure and still needs in‐depth study, which is likely associated with genetic susceptibility and the loss of immune homeostasis. Steroids alone and in combination with other immunosuppressant agents are the primary choices of AIH treatment in the clinic, whereas, in some cases, severe adverse effects and disease relapse may occur. Chinese medicine used for the treatment of AIH has proven its merits over many years and is well tolerated. To better understand the pathogenesis of AIH and to evaluate the efficacy of novel therapies, several animal models have been generated to recapitulate the immune microenvironment of patients with AIH. In the current review, we summarize recent advances in the study of animal models for AIH and their application in pharmacological research of Chinese medicine‐based therapies and also discuss current limitations. This review aims to provide novel insights into the discovery of Chinese medicine‐originated therapies for AIH using cutting‐edge animal models.
Collapse
Affiliation(s)
- Jia Liu
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Zhi Ma
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Han Li
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Xiaojiaoyang Li
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
12
|
Qu J, Liu Q, You G, Ye L, Jin Y, Kong L, Guo W, Xu Q, Sun Y. Advances in ameliorating inflammatory diseases and cancers by andrographolide: Pharmacokinetics, pharmacodynamics, and perspective. Med Res Rev 2021; 42:1147-1178. [PMID: 34877672 DOI: 10.1002/med.21873] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/07/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022]
Abstract
Andrographolide, a well-known natural lactone having a range of pharmacological actions in traditional Chinese medicine. It has long been used to cure a variety of ailments. In this review, we cover the pharmacokinetics and pharmacological activity of andrographolide which supports its further clinical application in cancers and inflammatory diseases. Growing evidence shows a good therapeutic effect in inflammatory diseases, including liver diseases, joint diseases, respiratory system diseases, nervous system diseases, heart diseases, inflammatory bowel diseases, and inflammatory skin diseases. As a result, the effects of andrographolide on immune cells and the processes that underpin them are discussed. The preclinical use of andrographolide to different organs in response to malignancies such as colorectal, liver, gastric, breast, prostate, lung, and oral cancers has also been reviewed. In addition, several clinical trials of andrographolide in inflammatory diseases and cancers have been summarized. This review highlights recent advances in ameliorating inflammatory diseases as well as cancers by andrographolide and its analogs, providing a new perspective for subsequent research of this traditional natural product.
Collapse
Affiliation(s)
- Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Qianqian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Guoquan You
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Ling Ye
- Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Zeng B, Wei A, Zhou Q, Yuan M, Lei K, Liu Y, Song J, Guo L, Ye Q. Andrographolide: A review of its pharmacology, pharmacokinetics, toxicity and clinical trials and pharmaceutical researches. Phytother Res 2021; 36:336-364. [PMID: 34818697 DOI: 10.1002/ptr.7324] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
Andrographis paniculata (Burm. f.) Wall. ex Nees, a renowned herb medicine in China, is broadly utilized in traditional Chinese medicine (TCM) for the treatment of cold and fever, sore throat, sore tongue, snake bite with its excellent functions of clearing heat and toxin, cooling blood and detumescence from times immemorial. Modern pharmacological research corroborates that andrographolide, the major ingredient in this traditional herb, is the fundamental material basis for its efficacy. As the main component of Andrographis paniculata (Burm. f.) Wall. ex Nees, andrographolide reveals numerous therapeutic actions, such as antiinflammatory, antioxidant, anticancer, antimicrobial, antihyperglycemic and so on. However, there are scarcely systematic summaries on the specific mechanism of disease treatment and pharmacokinetics. Moreover, it is also found that it possesses easily ignored security issues in clinical application, such as nephrotoxicity and reproductive toxicity. Thereby it should be kept a lookout over in clinical. Besides, the relationship between the efficacy and security issues of andrographolide should be investigated and evaluated scientifically. In this review, special emphasis is given to andrographolide, a multifunctional natural terpenoids, including its pharmacology, pharmacokinetics, toxicity and pharmaceutical researches. A brief overview of its clinical trials is also presented. This review intends to systematically and comprehensively summarize the current researches of andrographolide, which is of great significance for the development of andrographolide clinical products. Noteworthy, those un-cracked issues such as specific pharmacological mechanisms, security issues, as well as the bottleneck in clinical transformation, which detailed exploration and excavation are still not to be ignored before achieving integration into clinical practice. In addition, given that current extensive clinical data do not have sufficient rigor and documented details, more high-quality investigations in this field are needed to validate the efficacy and/or safety of many herbal products.
Collapse
Affiliation(s)
- Bin Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Ailing Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Minghao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kelu Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yushi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Paul S, Roy D, Pati S, Sa G. The Adroitness of Andrographolide as a Natural Weapon Against Colorectal Cancer. Front Pharmacol 2021; 12:731492. [PMID: 34795581 PMCID: PMC8592893 DOI: 10.3389/fphar.2021.731492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
The conventional carcinoma treatment generally encompasses the employment of radiotherapy, chemotherapy, surgery or use of cytotoxic drugs. However, recent advances in pharmacological research have divulged the importance of traditional treatments in cancer. The aim of the present review is to provide an overview of the importance of one such medicinal herb of Chinese and Indian origin: Andrographis paniculate on colorectal cancer with special emphasis on its principal bioactive component andrographolide (AGP) and its underlying mechanisms of action. AGP has long been known to possess medicinal properties. Studies led by numerous groups of researchers shed light on its molecular mechanism of action. AGP has been shown to act in a multi-faceted manner in context of colorectal cancer by targeting matrix metalloproteinase-9, Toll-like receptor or NFκB signaling pathways. In this review, we highlighted the recent studies that show that AGP can act as an effective immunomodulator by harnessing effective anti-tumor immune response. Recent studies strongly recommend further research on this compound and its analogues, especially under in-vivo condition to assess its actual potential as a prospective and efficient candidate against colorectal cancer. The current review deals with the roles of this phytomedicine in context of colorectal cancer and briefly describes its perspectives to emerge as an essential anti-cancer drug candidate. Finally, we also point out the drawbacks and difficulties in administration of AGP and indicate the use of nano-formulations of this phytomedicine for better therapeutic efficacy.
Collapse
Affiliation(s)
- Silpita Paul
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Dia Roy
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Subhadip Pati
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
15
|
Wang X, Liu J, Dai Z, Sui Y. Andrographolide improves PCP-induced schizophrenia-like behaviors through blocking interaction between NRF2 and KEAP1. J Pharmacol Sci 2021; 147:9-17. [PMID: 34294378 DOI: 10.1016/j.jphs.2021.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/02/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia is one of the foremost psychological illness around the world, and recent evidence shows that inflammation and oxidative stress may play a critical role in the etiology of schizophrenia. Andrographolide is a diterpenoid lactone from Andrographis paniculate, which has shown anti-inflammation and anti-oxidative effects. In this study, we explored whether andrographolide can improve schizophrenia-like behaviors through its inhibition of inflammation and oxidative stress in Phencyclidine (PCP)-induced mouse model of schizophrenia. We found that abnormal behavioral including locomotor activity, forced swimming and novel object recognition were ameliorated following andrographolide administration (5 mg/kg and 10 mg/kg). Andrographolide inhibited PCP-induced production of inflammatory cytokines, decreased p-p65, p-IκBα, p-p38 and p-ERK1/2 in the prefrontal cortex. Andrographolide significantly declined the level of MDA and GSH, as well as elevated the activity of SOD, CAT and GCH-px. In addition, andrographolide increased expression of NRF-2, HO-1 and NQO-1, promoted nuclear translocation of NRF-2 through blocking the interaction between NRF-2 and KEAP1, which may be associated with directly binding to NRF-2. Furthermore, antioxidative effects and anti-schizophrenia-like behaviors of andrographolide were compromised by the application of NRF-2 inhibitor ML385. In conclusion, these results suggested that andrographolide improved oxidative stress and schizophrenia-like behaviors induced by PCP through increasing NRF-2 pathway.
Collapse
Affiliation(s)
- Xiying Wang
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Jia Liu
- Department of Clinical Pharmacy, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiping Dai
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxiu Sui
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Zhang H, Li S, Si Y, Xu H. Andrographolide and its derivatives: Current achievements and future perspectives. Eur J Med Chem 2021; 224:113710. [PMID: 34315039 DOI: 10.1016/j.ejmech.2021.113710] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Natural product andrographolide isolated from the plant Andrographis paniculata shows a plethora of biological activities, including anti-tumor, anti-bacterial, anti-inflammation, anti-virus, anti-fibrosis, anti-obesity, immunomodulatory and hypoglycemic activities. Based on extensive chemical structural modifications, a series of andrographolide derivatives with improved bioavailability and druggability has been developed. Moreover, greater understanding of their mechanisms of action at the molecular and cellular level has been thoroughly investigated. In this review, we give an outlook for the therapeutical potential of andrographolide and its derivatives in diverse diseases and highlighted the drug design, pharmacokinetic and mechanistic studies for the past ten years, together with a brief overview of the pharmacological effects. Notably, we focused to provide a critical enlightenment of the area of andrographolide and its derivatives with the intent of indicating the future perspectives, challenges and limitations. We believe that this review paper will benefit drug discovery where andrographolide was used as a template, shed light on the identification of drug targets for andrographolide and its analogs, as well as increase our knowledge for using them for therapeutic application, including the treatment for various forms of cancers.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yongsheng Si
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
17
|
Kour G, Haq SA, Bajaj BK, Gupta PN, Ahmed Z. Phytochemical add-on therapy to DMARDs therapy in rheumatoid arthritis: In vitro and in vivo bases, clinical evidence and future trends. Pharmacol Res 2021; 169:105618. [PMID: 33878447 DOI: 10.1016/j.phrs.2021.105618] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/25/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
The use of biologically active compounds derived from plants i.e. phytochemicals, have been known for ages for their pharmacological activities in the treatment of autoimmune disorders like rheumatoid arthritis (RA). Besides enormous scientific evidence, the therapeutic potential of phytochemicals is often undervalued. The treatment in RA involves the use of synthetic and biological disease modifying anti-rheumatic drugs (DMARDs). However, the long-term treatment in RA is associated with the risk of gastrointestinal, liver, pulmonary and renal toxicities and serious infections including latent tuberculosis, pneumococcus influenza, herpes zoster and hepatitis. These adverse effects sometimes lead to discontinuation of the therapy. A relatively new vision based on the combination of DMARDs with phytochemicals exhibiting anti-inflammatory, anti-arthritic, anti-oxidant, hepatoprotective and nephroprotective properties for the treatment of RA has achieved substantial importance in the last decade. From this perspective, the present review focuses on the combination of DMARDs (primarily MTX) with phytochemicals that have shown synergistic therapeutic effects while decreasing the toxic repercussions of current RA therapy. The review covers recent evidences of such combination studies that have shown promising results both in experimental arthritic models and clinical arthritis. Few of the combinations including resveratrol, sinomenine, coenzyme Q10 exhibited considerable interest because of their efficacy as an adjuvant to the MTX/standard DMARDs therapy in clinical trials. Besides giving an overview of such combination studies the review also critically discusses the limitations with the use of phytochemicals (e.g. solubility, permeability and bioavailability) compromising their clinical application. Additionally, it stresses upon the need of novel delivery systems and pharmaceutical technologies to increase the therapeutic efficacy of the combination therapy. Overall, the review unveils the potential of phytochemicals in combination with DMARDs with increased tolerability and superior efficacy in further refining the future of the RA therapy.
Collapse
Affiliation(s)
- Gurleen Kour
- Inflammation Pharmacology Division, CSIR, Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India; School of Biotechnology, University of Jammu, Baba Saheb Ambedkar Road, Jammu Tawi, 180006 J&K, India
| | - Syed Assim Haq
- Formulation & Drug Delivery Division, CSIR, Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bijender Kumar Bajaj
- School of Biotechnology, University of Jammu, Baba Saheb Ambedkar Road, Jammu Tawi, 180006 J&K, India
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR, Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Zabeer Ahmed
- Inflammation Pharmacology Division, CSIR, Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
18
|
Burgos RA, Alarcón P, Quiroga J, Manosalva C, Hancke J. Andrographolide, an Anti-Inflammatory Multitarget Drug: All Roads Lead to Cellular Metabolism. Molecules 2020; 26:molecules26010005. [PMID: 33374961 PMCID: PMC7792620 DOI: 10.3390/molecules26010005] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Andrographolide is a labdane diterpene and the main active ingredient isolated from the herb Andrographis paniculata. Andrographolide possesses diverse biological effects including anti-inflammatory, antioxidant, and antineoplastic properties. Clinical studies have demonstrated that andrographolide could be useful in therapy for a wide range of diseases such as osteoarthritis, upper respiratory diseases, and multiple sclerosis. Several targets are described for andrographolide, including the interference of transcription factors NF-κB, AP-1, and HIF-1 and signaling pathways such as PI3K/Akt, MAPK, and JAK/STAT. In addition, an increase in the Nrf2 (nuclear factor erythroid 2–related factor 2) signaling pathway also supports its antioxidant and anti-inflammatory properties. However, this scenario could be more complex since recent evidence suggests that andrographolide targets can modulate glucose metabolism. The metabolic effect of andrographolide might be the key to explaining the diverse therapeutic effects described in preclinical and clinical studies. This review discusses some of the most recent evidence about the anti-inflammatory and metabolic effects of andrographolide.
Collapse
Affiliation(s)
- Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
- Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
- Correspondence: ; Tel.: +56-63-2293-015
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
- Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - John Quiroga
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
- Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
- PhD Program in Veterinary Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carolina Manosalva
- Faculty of Sciences, Institute of Pharmacy, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Juan Hancke
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
| |
Collapse
|
19
|
A Review of Malaysian Herbal Plants and Their Active Constituents with Potential Therapeutic Applications in Sepsis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8257817. [PMID: 33193799 PMCID: PMC7641701 DOI: 10.1155/2020/8257817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Sepsis refers to organ failure due to uncontrolled body immune responses towards infection. The systemic inflammatory response triggered by pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS) from Gram-negative bacteria, is accompanied by the release of various proinflammatory mediators that can lead to organ damage. The progression to septic shock is even more life-threatening due to hypotension. Thus, sepsis is a leading cause of death and morbidity globally. However, current therapies are mainly symptomatic treatment and rely on the use of antibiotics. The lack of a specific treatment demands exploration of new drugs. Malaysian herbal plants have a long history of usage for medicinal purposes. A total of 64 Malaysian plants commonly used in the herbal industry have been published in Malaysian Herbal Monograph 2015 and Globinmed website (http://www.globinmed.com/). An extensive bibliographic search in databases such as PubMed, ScienceDirect, and Scopus revealed that seven of these plants have antisepsis properties, as evidenced by the therapeutic effect of their extracts or isolated compounds against sepsis-associated inflammatory responses or conditions in in vitro or/and in vivo studies. These include Andrographis paniculata, Zingiber officinale, Curcuma longa, Piper nigrum, Syzygium aromaticum, Momordica charantia, and Centella asiatica. Among these, Z. officinale is the most widely studied plant and seems to have the highest potential for future therapeutic applications in sepsis. Although both extracts as well as active constituents from these herbal plants have demonstrated potential antisepsis activity, the activity might be primarily contributed by the active constituent(s) from each of these plants, which are andrographolide (A. paniculata), 6-gingerol and zingerone (Z. officinale), curcumin (C. longa), piperine and pellitorine (P. nigrum), biflorin (S. aromaticum), and asiaticoside, asiatic acid, and madecassoside (C. asiatica). These active constituents have shown great antisepsis effects, and further investigations into their clinical therapeutic potential may be worthwhile.
Collapse
|
20
|
Panossian A, Brendler T. The Role of Adaptogens in Prophylaxis and Treatment of Viral Respiratory Infections. Pharmaceuticals (Basel) 2020; 13:E236. [PMID: 32911682 PMCID: PMC7558817 DOI: 10.3390/ph13090236] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of our review is to demonstrate the potential of herbal preparations, specifically adaptogens for prevention and treatment of respiratory infections, as well as convalescence, specifically through supporting a challenged immune system, increasing resistance to viral infection, inhibiting severe inflammatory progression, and driving effective recovery. The evidence from pre-clinical and clinical studies with Andrographis paniculata, Eleutherococcus senticosus, Glycyrrhiza spp., Panax spp., Rhodiola rosea, Schisandra chinensis, Withania somnifera, their combination products and melatonin suggests that adaptogens can be useful in prophylaxis and treatment of viral infections at all stages of progression of inflammation as well as in aiding recovery of the organism by (i) modulating innate and adaptive immunity, (ii) anti-inflammatory activity, (iii) detoxification and repair of oxidative stress-induced damage in compromised cells, (iv) direct antiviral effects of inhibiting viral docking or replication, and (v) improving quality of life during convalescence.
Collapse
Affiliation(s)
- Alexander Panossian
- Phytomed AB, Vaxtorp, 31275 Halland, Sweden
- EuropharmaUSA, Green Bay, WI 54311, USA
| | - Thomas Brendler
- Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg 2000, South Africa;
- Traditional Medicinals Inc., Rohnert Park, CA 94928, USA
- Plantaphile, Collingswood, NJ 08108, USA
| |
Collapse
|
21
|
Xie S, Deng W, Chen J, Wu QQ, Li H, Wang J, Wei L, Liu C, Duan M, Cai Z, Xie Q, Hu T, Zeng X, Tang Q. Andrographolide Protects Against Adverse Cardiac Remodeling After Myocardial Infarction through Enhancing Nrf2 Signaling Pathway. Int J Biol Sci 2020; 16:12-26. [PMID: 31892842 PMCID: PMC6930369 DOI: 10.7150/ijbs.37269] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022] Open
Abstract
Adverse cardiac remodeling after myocardial infarction (MI) is associated with extremely high mortality rates worldwide. Although optimized medical therapy, Preservation of lusitropic and inotropic function and protection against adverse remodeling in ventricular structure remain relatively frequent. This study demonstrated that Andrographolide (Andr) significantly ameliorated adverse cardiac remodeling induced by myocardial infarction and improves contractile function in mice with LAD ligation compared with the control group. Briefly, Andr markedly attenuated cardiac fibrosis and relieved inflammation after myocardial infarction. Specifically, Andr significantly blocked oxidative stress and the nuclear translocation of p-P65 following myocardial infarction. At the mechanistic level, antioxidant effect of Andr was achieved through strengthening antioxidative stress capacity and attributed to the activation of Nrf2/HO-1 Signaling. Consistently, H9C2 administrated with Andr showed a decreased oxidative stress caused by hypoxia precondition, but treatment with specific Nrf2 inhibitor (ML385) or the silence of Nrf2 blunted the activation of Nrf2/HO-1 Signaling and removed the protective effects of Andr in vitro. Thus, we suggest that Andr alleviates adverse cardiac remodeling following myocardial infarction through enhancing Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Jiaojiao Chen
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
| | - Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Hongjian Li
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Juan Wang
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Li Wei
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
| | - Chen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Mingxia Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Zhulan Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Qingwen Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Tongtong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Xiaofeng Zeng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| |
Collapse
|
22
|
Andrographolide, a Natural Antioxidant: An Update. Antioxidants (Basel) 2019; 8:antiox8120571. [PMID: 31756965 PMCID: PMC6943416 DOI: 10.3390/antiox8120571] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Traditionally, Andrographis paniculata has been used as an herbal remedy for lung infection treatments. Its leaves contain a diterpenoid labdane called andrographolide responsible for a wide range of biological activities such as antioxidant, anti-inflammatory, and anti-cancer properties. This manuscript is a brief review of the antioxidant mechanisms and the regulation of the Nrf2 (nuclear factor (erythroid-derived 2)-like 2) signaling pathway by andrographolide.
Collapse
|
23
|
Lyu Z, Ji X, Chen G, An B. Atractylodin ameliorates lipopolysaccharide and d-galactosamine-induced acute liver failure via the suppression of inflammation and oxidative stress. Int Immunopharmacol 2019; 72:348-357. [DOI: 10.1016/j.intimp.2019.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022]
|
24
|
Zhu Y, Chen X, Rao X, Zheng C, Peng X. Saikosaponin a ameliorates lipopolysaccharide and d‑galactosamine-induced liver injury via activating LXRα. Int Immunopharmacol 2019; 72:131-137. [PMID: 30981078 DOI: 10.1016/j.intimp.2019.03.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022]
Abstract
Saikosaponin a (SSa), one of the major active components of Bupleurum falcatum, has antioxidant and anti-inflammatory pharmacological properties. However, the effects of SSa on liver injury have not been reported. In the present study, we evaluated the protective effects and mechanisms of SSa on lipopolysaccharide (LPS)/d‑galactosamine (D-GalN)-induced liver injury. The mice were pretreated with SSa 1 h before LPS/D-GalN treatment. The liver MPO, MDA, and the serum AST and ALT levels were tested by specific determination kits. The pro-inflammatory cytokines TNF-α and IL-1β were tested by ELISA kits. The expression of NF-κB signaling pathway and LXRα were tested by western blot analysis. The results showed that SSa significantly reduced the levels of liver MPO, MDA, and serum AST, ALT levels induced by LPS/D-GalN. SSa also dose-dependently inhibited LPS/D-GalN-induced pro-inflammatory cytokines TNF-α and IL-1β production. Furthermore, we found that SSa inhibited NF-κB signaling pathway activation induced by LPS/D-GalN. In addition, SSa dose-dependently increased the expression of LXRα. In conclusion, the results demonstrated that SSa had protective effect on liver injury and the anti-inflammatory mechanisms of SSa on LPS/D-GalN-induced liver injury may be due to its ability to increase LXRα expression. SSa might be a potential treatment for liver injury.
Collapse
Affiliation(s)
- Yinhong Zhu
- Department of Infecious Diseases, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 321012, China.
| | - Xiaobei Chen
- Department of Infecious Diseases, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 321012, China
| | - Xianlin Rao
- Department of Infecious Diseases, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 321012, China
| | - Chunhua Zheng
- Department of Infecious Diseases, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 321012, China
| | - Xiaomou Peng
- Department of Infectious Diseases, The Fifth Affiliated Hospital SUN YAT-SEN University, Guangzhou, China
| |
Collapse
|
25
|
Xu D, Xu M, Jeong S, Qian Y, Wu H, Xia Q, Kong X. The Role of Nrf2 in Liver Disease: Novel Molecular Mechanisms and Therapeutic Approaches. Front Pharmacol 2019; 9:1428. [PMID: 30670963 PMCID: PMC6331455 DOI: 10.3389/fphar.2018.01428] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress and inflammation are the most important pathogenic events in the development and progression of liver diseases. Nuclear erythroid 2-related factor 2 (Nrf2) is the master regulator of the cellular protection via induction of anti-inflammatory, antioxidant, and cyto-protective genes expression. Multiple studies have shown that activation or suppression of this transcriptional factor significantly affect progression of liver diseases. Comprehensive understanding the roles of Nrf2 activation/expression and the outcomes of its activators/inhibitors are indispensable for defining the mechanisms and therapeutic strategies against liver diseases. In this current review, we discussed recent advances in the function and principal mechanisms by regulating Nrf2 in liver diseases, including acute liver failure, hepatic ischemia-reperfusion injury (IRI), alcoholic liver disease (ALD), viral hepatitis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Dongwei Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Seogsong Jeong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yihan Qian
- School of Pharmacy, Fudan University, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory for Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoni Kong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Zhang QL, Yang JJ, Zhang HS. Carvedilol (CAR) combined with carnosic acid (CAA) attenuates doxorubicin-induced cardiotoxicity by suppressing excessive oxidative stress, inflammation, apoptosis and autophagy. Biomed Pharmacother 2018; 109:71-83. [PMID: 30396094 DOI: 10.1016/j.biopha.2018.07.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/07/2018] [Accepted: 07/07/2018] [Indexed: 01/10/2023] Open
Abstract
Doxorubicin (DOX) is a wide spectrum antitumor drug. However, its clinical application is limited due to the cardiotoxicity. Carvedilol (CAR) is a β-blocker used to treat high blood pressure and heart failure. Accordingly, supplementation with natural antioxidants or plant extracts exerts protective effects against various injury in vivo. Carnosic acid (CAA), the principal constituent of rosemary, has various biological activities, including antioxidant, antitumor, and anti-inflammatory. Here, heart injury mouse model was established using DOX (20 mg/kg) in vivo. And cardiac muscle cell line of H9C2 was subjected to 0.5 μM of DOX for 24 h in vitro. Then, the protective effects of CAA and CAR alone, or the two in combination on DOX-induced cardiotoxicity in vivo and in vitro were explored. The results indicated that both CAA and CAR, when used alone, were moderately effective in attenuating DOX-induced cardiotoxicity. The combination of two drugs functioned synergistically to ameliorate cardiac injury caused by DOX, as evidenced by the significantly reduced collagen accumulation and improved dysfunction of heart. CAA and CAR exhibited stronger anti-oxidative role in DOX-treated mice partly by augmenting the expression and activities of the anti-oxidative enzymes. In addition, inflammatory response was significantly suppressed by the two in combination, proved by the decreased pro-inflammatory cytokines (COX2, TNF-α, IL-6, IL-1β and IL-18), which was associated with the inactivation of nuclear factor κB (NF-κB). Furthermore, DOX-stirred apoptosis and autophagy were dramatically attenuated by the co-treatments of CAA and CAR through down-regulating cleaved Caspase-3 and LC3B signaling pathways. The effects of CAA and CAR combination against cardiotoxicity were observed in H9C2 cells with DOX stimulation. Our findings above suggested that the use of CAR and CAA in combination could be expected to have synergistic efficacy and significant potential against cardiotoxicity induced by DOX.
Collapse
Affiliation(s)
- Qiu-Lan Zhang
- Department of Cardiology, Jining Second People's Hospital, Jining 272000, China
| | - Jing-Jie Yang
- Department of Emergency, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Hong-Sheng Zhang
- Department of Cardiology, Affiliated Hospital of Jining Medical University, 272000, China.
| |
Collapse
|
27
|
Iranshahy M, Iranshahi M, Abtahi SR, Karimi G. The role of nuclear factor erythroid 2-related factor 2 in hepatoprotective activity of natural products: A review. Food Chem Toxicol 2018; 120:261-276. [DOI: 10.1016/j.fct.2018.07.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
|
28
|
Dai Y, Chen SR, Chai L, Zhao J, Wang Y, Wang Y. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit Rev Food Sci Nutr 2018; 59:S17-S29. [PMID: 30040451 DOI: 10.1080/10408398.2018.1501657] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Andrographis paniculata (A. paniculata) is a medicinal plant traditionally used as anti-inflammation and anti-bacteria herb. Andrographolide, the major active component of A. paniculata, exhibits diverse pharmacological activities, including anti-inflammation, anti-cancer, anti-obesity, anti-diabetes, and other activities. In this article, we comprehensively review the therapeutic potential of A. paniculata and andrographolide focusing on the mechanisms of action and clinical application. We systemically discuss the structure-activity relationship of andrographolide and derivatives. Despite the various pharmacological activities and formula of A. paniculata and andrographolide, we propose further development of more structural derivatives of andrographolide with reduced toxicity and increased therapeutic efficacy is still needed for the clinical application of this ancient mighty herb and its major component.
Collapse
Affiliation(s)
- Yan Dai
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences , University of Macau , Avenida da Universidade , Taipa, Macao SAR , China
| | - Shao-Ru Chen
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences , University of Macau , Avenida da Universidade , Taipa, Macao SAR , China
| | - Ling Chai
- b Guangxi Institute of Traditional Medical and Pharmaceutical Sciences and Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards , Nanning 530022 , China
| | - Jing Zhao
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences , University of Macau , Avenida da Universidade , Taipa, Macao SAR , China
| | - Yitao Wang
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences , University of Macau , Avenida da Universidade , Taipa, Macao SAR , China
| | - Ying Wang
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences , University of Macau , Avenida da Universidade , Taipa, Macao SAR , China
| |
Collapse
|
29
|
Li L, Huang W, Wang S, Sun K, Zhang W, Ding Y, Zhang L, Tumen B, Ji L, Liu C. Astragaloside IV Attenuates Acetaminophen-Induced Liver Injuries in Mice by Activating the Nrf2 Signaling Pathway. Molecules 2018; 23:molecules23082032. [PMID: 30110942 PMCID: PMC6222748 DOI: 10.3390/molecules23082032] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 01/15/2023] Open
Abstract
Acetaminophen (APAP) is a well-known antipyretic and analgesic drug. However, the accidental or intentional APAP overdose will induce liver injury and even acute liver failure. Astragaloside IV (AS-IV), a bioactive compound isolated from Astragali Radix, has been reported to have protective effects on the digestive and immune systems because of its anti-oxidant and anti-inflammatory properties. This study aims to observe whether AS-IV pretreatment provides protection against APAP-induced liver failure. The results of serum alanine/aspartate aminotransferases (ALT/AST) analysis, hepatic glutathione (GSH), and malondialdehyde (MDA) amounts, and liver superoxide dismutase (SOD) activity showed that AS-IV protected against APAP-induced hepatotoxicity. Liver histological observation further evidenced this protection provided by AS-IV. AS-IV was found to reverse the APAP-induced increased amounts of pro-inflammatory cytokines, including interleukin 1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α). Western-blot analysis showed that AS-IV increased the transcriptional activation of nuclear factor erythroid 2-related factor 2 (Nrf2), and enhanced the expression of heme oxygenase 1 (HO-1) and reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H): quinone oxidoreductase 1 (NQO1) in the presence of APAP. AS-IV also decreased the expression of kelch-like ECH-associated protein-1 (Keap1). In conclusion, we demonstrated that AS-IV exerted a strong protection against APAP-induced hepatotoxicity by activating Nrf2 antioxidant signaling pathways.
Collapse
Affiliation(s)
- Lei Li
- The Shanghai Key Laboratory of Compound Chinese Medicines and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China.
| | - Wenxiang Huang
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China.
- Key Laboratory of Animal Virology of Ministry of Agriculture and Rural, College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| | - Shoukai Wang
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China.
| | - Kecheng Sun
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China.
| | - Wenxue Zhang
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China.
| | - Yanmei Ding
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China.
| | - Le Zhang
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China.
| | - Bayaer Tumen
- Veterinary Laboratory, Shanxi Animal Disease Control Center, Taiyuan 030027, China.
| | - Lili Ji
- The Shanghai Key Laboratory of Compound Chinese Medicines and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Chang Liu
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China.
| |
Collapse
|
30
|
Li F, Li H, Luo S, Ran Y, Xie X, Wang Y, Zheng M, Wang M, Zhao Z, Li X. Evaluation of the effect of andrographolide and methotrexate combined therapy in complete Freund's adjuvant induced arthritis with reduced hepatotoxicity. Biomed Pharmacother 2018; 106:637-645. [PMID: 29990853 DOI: 10.1016/j.biopha.2018.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/23/2018] [Accepted: 07/01/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Methotrexate is one of the most widely used disease-modifying anti-rheumatic drugs. The hepatotoxicity of methotrexate resulted in poor compliance with therapy. The current study was designed to analyse the combined therapy of andrographolide (AD) and methotrexate (MTX) for complete Freund's adjuvant (CFA)-induced arthritis, focusing on hepatoprotective effects, oxidative stress and arthritic-related cytokines. METHOD Wistar rats were injected with CFA into the right hind paw. Ten days post-CFA injection, the Wistar rats were administered with 1% CMC-Na solution, methotrexate (2 mg/kg/week), AD (50 mg/kg/d) and combined therapy for 35 days. The anti-arthritic effect was assessed by paw volume, X-ray and serum tumour necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β levels. Serum samples were also analysed for glutamic oxaloacetic transaminases (GOT), serum glutamic pyruvic transaminase (GPT), alkaline phosphatase (AKP) and lactate dehydrogenase (LDH). Liver tissue samples were used to examine the cellular antioxidant defence activities using catalase activity (CAT) and GSH as well as GSH-Px and MDA. Histopathology analysis was conducted to evaluate liver damage. RESULTS AD treatment strengthened the anti-arthritic capacity of MTX. AD and MTX-combined therapy additively reduced the inflammatory symptoms in CFA rats. The combined therapy of AD and MTX showed hepatoprotective effect indicated by an improvement in the serum marker, possibly due to antioxidant action and confirmed by liver histopathological changes. Furthermore, the combined therapy significantly reduced serum TNF-α, IL-6 and IL-1β levels. CONCLUSIONS A combined therapy of AD and methotrexate significantly alleviated MTX-induced hepatocellular injury and strengthened the anti-arthritic effect. Further clinical studies should be done to further verify the possibility of combined its clinical usage.
Collapse
Affiliation(s)
- Fenfen Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue, Zhengzhou 450001, Henan Province, PR China; Department of Pathophysiology, College of Basic Medical Sciences, Zhengzhou University, 100 Kexue, Zhengzhou 450001, Henan Province, PR China
| | - He Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue, Zhengzhou 450001, Henan Province, PR China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan Province, PR China
| | - Shasha Luo
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue, Zhengzhou 450001, Henan Province, PR China
| | - Yantao Ran
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue, Zhengzhou 450001, Henan Province, PR China
| | - Xiaoqian Xie
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue, Zhengzhou 450001, Henan Province, PR China
| | - Yale Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue, Zhengzhou 450001, Henan Province, PR China
| | - Ming Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue, Zhengzhou 450001, Henan Province, PR China
| | - Mengzhen Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue, Zhengzhou 450001, Henan Province, PR China
| | - Zeyue Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue, Zhengzhou 450001, Henan Province, PR China
| | - Xiaotian Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
31
|
Lin X, Cui M, Xu D, Hong D, Xia Y, Xu C, Li R, Zhang X, Lou Y, He Q, Lv P, Chen Y. Liver-specific deletion of Eva1a/Tmem166 aggravates acute liver injury by impairing autophagy. Cell Death Dis 2018; 9:768. [PMID: 29991758 PMCID: PMC6039435 DOI: 10.1038/s41419-018-0800-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
Acute liver failure (ALF) is an inflammation-mediated hepatocellular injury process associated with cellular autophagy. However, the mechanism by which autophagy regulates ALF remains undefined. Herein, we demonstrated that Eva1a (eva-1 homolog A)/Tmem166 (transmembrane protein 166), an autophagy-related gene, can protect mice from ALF induced by d-galactosamine (D-GalN)/lipopolysaccharide (LPS) via autophagy. Our findings indicate that a hepatocyte-specific deletion of Eva1a aggravated hepatic injury in ALF mice, as evidenced by increased levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), myeloperoxidase (MPO), and inflammatory cytokines (e.g., TNFα and IL-6), which was associated with disordered liver architecture exhibited by Eva1a−/− mouse livers with ALF. Moreover, we found that the decreased autophagy in Eva1a−/− mouse liver resulted in the substantial accumulation of swollen mitochondria in ALF, resulting in a lack of ATP generation, and consequently hepatocyte apoptosis or death. The administration of Adeno-Associated Virus Eva1a (AAV-Eva1a) or antophagy-inducer rapamycin increased autophagy and provided protection against liver injury in Eva1a−/− mice with ALF, suggesting that defective autophagy is a significant mechanism of ALF in mice. Collectively, for the first time, we have demonstrated that Eva1a-mediated autophagy ameliorated liver injury in mice with ALF by attenuating inflammatory responses and apoptosis, indicating a potential therapeutic application for ALF.
Collapse
Affiliation(s)
- Xin Lin
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Ming Cui
- Department of Cardiology, Peking University Third Hospital, 100191, Beijing, China
| | - Dong Xu
- Department of Clinical Laboratory, Peking University First Hospital, 100034, Beijing, China
| | - Dubeiqi Hong
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Yan Xia
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Chentong Xu
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Riyong Li
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Xuan Zhang
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Yaxin Lou
- Medical and Healthy Analytical Center, Peking University, 100191, Beijing, China
| | - Qihua He
- Medical and Healthy Analytical Center, Peking University, 100191, Beijing, China
| | - Ping Lv
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China.
| |
Collapse
|
32
|
Wang W, Wu L, Li Q, Zhang Z, Xu L, Lin C, Gao L, Zhao K, Liang F, Zhang Q, Zhou M, Jiang W. Madecassoside prevents acute liver failure in LPS/D-GalN-induced mice by inhibiting p38/NF-κB and activating Nrf2/HO-1 signaling. Biomed Pharmacother 2018; 103:1137-1145. [PMID: 29715757 DOI: 10.1016/j.biopha.2018.04.162] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022] Open
Abstract
Madecassoside (MA), a triterpenoid saponin isolated from Centella asiatica, exerts various pharmacological activities including antioxidative and anti-inflammatory effects. The aim of this study was to explore the protective effect of MA in the treatment of lipopolysaccharide (LPS) and D-galactosamine (D-GalN)-induced acute liver failure(ALF) in mice. We hypothesized that MA administration may decrease the degree of liver injury caused by LPS/D-GalN. In this study, we investigated this hypothesis by treating a mouse model of LPS/D-GalN-induced liver injury with MA. Our study demonstrated that MA (20 mg/kg and 40 mg/kg) treatment for 10 days attenuated LPS/D-GalN-induced liver injury by protecting liver function, suppressing the production of inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, and recovering antioxidant enzyme activity. MA also significantly suppressed LPS-stimulated protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 by blocking the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and eukaryotic transcription factor nuclear factor-kappa B (NF-κB). In addition, MA treatment enhanced protein levels of heme oxygenase (HO)-1 and anti-oxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) through the upregulation of nuclear factor E2-related factor 2 (Nrf2) in LPS-stimulated liver injury. These results suggest that MA is a promising agent for the treatment of LPS/D-GalN-induced liver injury that could serve as a candidate for the development of a hepatoprotective drug against ALF.
Collapse
Affiliation(s)
- Wei Wang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Lingling Wu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Qing Li
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Zhuo Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Liba Xu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Caixia Lin
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Ling Gao
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Kaili Zhao
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Fei Liang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Qing Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Mei Zhou
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Weizhe Jiang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
33
|
Wang YY, Diao BZ, Zhong LH, Lu BL, Cheng Y, Yu L, Zhu LY. Maslinic acid protects against lipopolysaccharide/d-galactosamine-induced acute liver injury in mice. Microb Pathog 2018; 119:49-53. [PMID: 29627448 DOI: 10.1016/j.micpath.2018.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Acute liver injury is a life-threatening syndrome that often caused by hepatocyte damage. In this study, we investigated the protective effects of maslinic acid (MA) on lipopolysaccharide (LPS)/d-galactosamine (D-gal)-induced acute liver injury and clarified its mechanism. Mice acute liver injury model was induced by given LPS and D-gal and MA was given intraperitoneally 1 h before LPS and D-gal. Our results showed that MA protected against liver injury by attenuating liver histopathologic changes, serum AST and ALT levels. The increased inflammatory cytokines TNF-α and IL-6 in serum and liver tissues were also inhibited by MA. The level of MDA and the activity of MPO in liver tissues were up-regulated by LPS/D-gal and dose-dependently inhibited by MA. Furthermore, MA attenuated hepatic NF-κB protein expression and increased hepatic Nrf2 and HO-1 protein expression. Taken together, MA offers a protective role against LPS/D-gal-induced liver injury through suppressing NF-κB and activating Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Bao-Zhong Diao
- Department of Pharmaceutical Preparations, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, China
| | - Li-Hua Zhong
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Bao-Ling Lu
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yu Cheng
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Lei Yu
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| | - Li-Ying Zhu
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
34
|
Yan H, Huang Z, Bai Q, Sheng Y, Hao Z, Wang Z, Ji L. Natural product andrographolide alleviated APAP-induced liver fibrosis by activating Nrf2 antioxidant pathway. Toxicology 2018; 396-397:1-12. [PMID: 29355602 DOI: 10.1016/j.tox.2018.01.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 01/07/2023]
Abstract
As a well-known analgesic drug, acetaminophen (APAP) is commonly used to relieve pain for patients with chronic painful diseases. Our previous study has shown that long-term ingestion of APAP caused liver fibrosis in mice. This study further investigated the critical role of nuclear factor erythroid 2-related factor 2 (Nrf2) in regulating APAP-induced liver fibrosis in mice and the anti-fibrotic effect of natural compound andrographolide (Andro). Our results showed that hepatic collagen deposition and hepatic stellate cells (HSCs) activation induced by APAP were more serious in Nrf2 knock-out mice than in normal wild-type mice. Andro reduced HSCs activation in vitro, and also decreased hepatic collagen deposition and HSCs activation induced by APAP in mice. Andro alleviated liver oxidative stress injury induced by APAP in mice and reduced cellular formation of reactive oxygen species (ROS) in HSCs. Andro enhanced Nrf2 nuclear translocation and increased the expression of Nrf2 downstream antioxidant genes both in vitro and in vivo. Furthermore, the Andro-provided protection against APAP-induced liver fibrosis was diminished in Nrf2 knock-out mice. In summary, Nrf2 is critically involved in preventing liver fibrosis induced by long-term administration of APAP in mice, and Andro alleviates APAP-induced liver fibrosis by attenuating liver oxidative stress injury via inducing Nrf2 activation. This study points out the potential application of Andro in the treatment of liver fibrosis in clinic.
Collapse
Affiliation(s)
- Hongyu Yan
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingyun Bai
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuchen Sheng
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhanxia Hao
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
35
|
Peng X, Dai C, Liu Q, Li J, Qiu J. Curcumin Attenuates on Carbon Tetrachloride-Induced Acute Liver Injury in Mice via Modulation of the Nrf2/HO-1 and TGF-β1/Smad3 Pathway. Molecules 2018; 23:E215. [PMID: 29351226 PMCID: PMC6017508 DOI: 10.3390/molecules23010215] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 01/14/2023] Open
Abstract
This study aimed to investigate the protective effect of curcumin against carbon tetrachloride (CCl₄)-induced acute liver injury in a mouse model, and to explain the underlying mechanism. Curcumin at doses of 50, 100 and 200 mg/kg/day were administered orally once daily for seven days prior to CCl₄ exposure. At 24 h, curcumin-attenuated CCl₄ induced elevated serum transaminase activities and histopathological damage in the mouse's liver. Curcumin pre-treatment at 50, 100 and 200 mg/kg significantly ameliorated CCl₄-induced oxidative stress, characterized by decreased malondialdehyde (MDA) formations, and increased superoxide dismutase (SOD), catalase (CAT) activities and glutathione (GSH) content, followed by a decrease in caspase-9 and -3 activities. Curcumin pre-treatment significantly decreased CCl₄-induced inflammation. Furthermore, curcumin pre-treatment significantly down-regulated the expression of TGF-β1 and Smad3 mRNAs (both p < 0.01), and up-regulated the expression of nuclear-factor erythroid 2-related factor 2 (Nrf2) and HO-1 mRNA (both p < 0.01) in the liver. Inhibition of HO-1 attenuated the protective effect of curcumin on CCl₄-induced acute liver injury. Given these outcomes, curcumin could protect against CCl₄-induced acute liver injury by inhibiting oxidative stress and inflammation, which may partly involve the activation of Nrf2/HO-1 and inhibition of TGF-β1/Smad3 pathways.
Collapse
Affiliation(s)
- Xinyan Peng
- College of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai 264025, China.
| | - Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Quanwen Liu
- College of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai 264025, China.
| | - Junke Li
- College of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai 264025, China.
| | - Jingru Qiu
- College of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai 264025, China.
| |
Collapse
|
36
|
Wu QQ, Ni J, Zhang N, Liao HH, Tang QZ, Deng W. Andrographolide Protects against Aortic Banding-Induced Experimental Cardiac Hypertrophy by Inhibiting MAPKs Signaling. Front Pharmacol 2017; 8:808. [PMID: 29184496 PMCID: PMC5694538 DOI: 10.3389/fphar.2017.00808] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Despite therapeutic advances, heart failure-related mortality rates remain high. Therefore, understanding the pathophysiological mechanisms involved in the remodeling process is crucial for the development of new therapeutic strategies. Andrographolide (Andr), a botanical compound, has potent cardio-protective effects due to its ability to inhibit mitogen-activated protein kinases (MAPKs). Andr has also been shown to inhibit inflammation and apoptosis, which are factors related to cardiac hypertrophy. Our aim was to evaluate the effects of Andr on cardiac hypertrophy and MAPKs activation. Thus, mice were subjected to aortic banding (AB) with/without Andr administration (25 mg/kg/day, orally). Cardiac function was accessed by echocardiography and hemodynamic parameters. Our results showed that Andr administration for 7 weeks decreased cardiac dysfunction and attenuated cardiac hypertrophy and fibrosis in AB mice. Andr treatment induced a strong reduction in the transcription of both hypertrophy (ANP, BNP, and β-MHC) and fibrosis related genes (collagen I, collagen III, CTGF, and TGFβ). In addition, cardiomyocytes treated with Andr showed a reduced hypertrophic response to angiotensin II. Andr significantly inhibited MAPKs activation in both mouse hearts and cardiomyocytes. Treatment with a combination of MAPKs activators abolished the protective effects of Andr in cardiomyocytes. Furthermore, we found that Andr also inhibited the activation of cardiac fibroblasts via the MAPKs pathway, which was confirmed by the application of MAPKs inhibitors. In conclusion, Andr was found to confer a protective effect against experimental cardiac hypertrophy in mice, suggesting its potential as a novel therapeutic drug for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Qing Q Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jian Ni
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ning Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hai H Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qi Z Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China.,Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| |
Collapse
|