1
|
Patel NM, Patel PH, Bhogal RH, Harrington KJ, Singanayagam A, Kumar S. Altered Microbiome Promotes Pro-Inflammatory Pathways in Oesophago-Gastric Tumourigenesis. Cancers (Basel) 2024; 16:3426. [PMID: 39410045 PMCID: PMC11476036 DOI: 10.3390/cancers16193426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
INTRODUCTION The upper gastrointestinal microbiome is a dynamic entity that is involved in numerous processes including digestion, production of vitamins and protection against pathogens. Many external and intrinsic factors may cause changes in the proportions of bacteria within the microbial community, termed 'dysbiosis'. A number of these have been identified as risk factors for a range of diseases, including oesophago-gastric carcinoma. MATERIALS AND METHODS A narrative review was conducted to elucidate the current evidence on the role of the microbiome in promoting oesophago-gastric tumourigenesis. Significant causes of dysbiosis including age, medications and GORD were examined and key pro-inflammatory pathways implicated in tumourigenesis and their interaction with the microbiome were described. RESULTS AND DISCUSSION An association between microbial dysbiosis and development of oesophago-gastric cancer may be mediated via activation of pro-inflammatory pathways, the inflammasome and the innate immune system. Advances in sequencing technology allow microbial communities to be fingerprinted by sequencing the 16S rRNA gene, enabling a deeper understanding of the genera that may be implicated in driving tumourigenesis. CONCLUSIONS Developing a greater understanding of the influence of the microbiota on oesophago-gastric tumourigenesis may enable advances to be made in the early detection of malignancy and in the development of novel systemic therapies, leading to improved rates of survival.
Collapse
Affiliation(s)
- Nikhil Manish Patel
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Pranav Harshad Patel
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Ricky Harminder Bhogal
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Kevin Joseph Harrington
- Targeted Therapy Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Aran Singanayagam
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Sacheen Kumar
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
- Department of Upper Gastrointestinal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic London Hospital, London SW1X 7HY, UK
| |
Collapse
|
2
|
Talukdar J, Malik A, Kataki K, Choudhury BN, Baruah MN, Bhattacharyya M, Sarma MP, Bhattacharjee M, Basak M, Kashyap MP, Bhattacharjee S, Ali E, Keppen C, Kalita S, Kalita MJ, Das PP, Hazarika G, Deka AJ, Dutta K, Idris MG, Akhtar S, Medhi S. Expression of Interleukin-8, Interleukin-12 and Interleukin-13 in Esophageal Squamous Cell Carcinoma: Biomarker Potentiality and Prognostic Significance. J Gastrointest Cancer 2024; 55:1239-1255. [PMID: 38910194 DOI: 10.1007/s12029-024-01063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2024] [Indexed: 06/25/2024]
Abstract
PURPOSE Interleukin-8 (IL8), Interleukin-12 (IL12) and Interleukin-13 (IL13) are cytokines that play regulatory role in cancer pathogenesis. We analysed their expression profile to evaluate as molecular biomarkers of esophageal squamous cell carcinoma (ESCC) and their association with different parameters and patient survival. METHODS Expression analysis was performed by Real time quantitative polymerase chain reaction and receiver operating characteristic (ROC) curve analysis was done. The expression profiles were associated with different clinicopathological and dietary factors. Survival and hazard analysis were also performed. RESULTS IL8 expression showed upregulation in tissue (p = 0.000) and blood samples (p = 0.481), IL12 expression showed downregulation in tissue samples (p = 0.064) and upregulation in blood samples (p = 0.689) and IL13 expression showed upregulation in tissue (p = 0.000) and blood samples (p = 0.006). IL13 expression in tissue showed the highest area under the curve (AUC) value (0.773) for ESCC diagnosis, followed by IL8 expression in tissue (0.704) and IL13 expression in blood (0.643). This study also reveals the correlation of studied cytokines in tissue and blood level. Different clinicopathological and dietary factors showed significant association (p < 0.05) with IL8, IL12 and IL13 expression and with survival of ESCC patients. IL8 expression in blood and IL12 expression in tissue and blood showed significant association (p < 0.05) with patient survival. CONCLUSION Altered expression of IL8, IL12 and IL13 may be associated with ESCC progression. Overexpression of IL8 and IL13 in tissue samples may be potential biomarkers for ESCC screening. Additionally, both survival and hazard analysis data indicate the effects of different parameters on the prognosis of ESCC patients.
Collapse
Affiliation(s)
- Jayasree Talukdar
- Department of Bioengineering and Technology, Gauhati University, Gawahati, Assam, India
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Kangkana Kataki
- Department of Bioengineering and Technology, Gauhati University, Gawahati, Assam, India
| | | | - Munindra Narayan Baruah
- Department of Head and Neck Oncology, North East Cancer Hospital and Research Institute, Jorabat, Assam, India
| | - Mallika Bhattacharyya
- Department of Gastroentrology, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Manash Pratim Sarma
- Program of Biotechnology, Faculty of Science, Assam down town University, Guwahati, Assam, India
| | - Minakshi Bhattacharjee
- Program of Biotechnology, Faculty of Science, Assam down town University, Guwahati, Assam, India
| | - Mrinmoy Basak
- Faculty of Pharmaceutical Sciences, Assam down town University, Guwahati, Assam, India
| | - Manash Pratim Kashyap
- Program of Statistics, Faculty of Science, Assam down town University, Guwahati, Assam, India
| | | | - Eyashin Ali
- Department of Bioengineering and Technology, Gauhati University, Gawahati, Assam, India
| | - Chenole Keppen
- Department of Bioengineering and Technology, Gauhati University, Gawahati, Assam, India
| | - Simanta Kalita
- Department of Bioengineering and Technology, Gauhati University, Gawahati, Assam, India
- Multidisciplinary Research Unit, Diphu Medical College and Hospital, Karbi Anglong, Assam, India
| | - Manash Jyoti Kalita
- Department of Bioengineering and Technology, Gauhati University, Gawahati, Assam, India
| | - Partha Pratim Das
- Multidisciplinary Research Unit, Fakhruddin Ali Ahmed Medical College and Hospital, Barpeta, Assam, India
| | - Gautam Hazarika
- Department of Bioengineering and Technology, Gauhati University, Gawahati, Assam, India
| | - Ankur Jyoti Deka
- Department of Bioengineering and Technology, Gauhati University, Gawahati, Assam, India
| | - Kalpajit Dutta
- Department of Bioengineering and Technology, Gauhati University, Gawahati, Assam, India
| | | | - Suhail Akhtar
- A. T. Still University of Health Sciences, Kirksville, MO, USA
| | - Subhash Medhi
- Department of Bioengineering and Technology, Gauhati University, Gawahati, Assam, India.
| |
Collapse
|
3
|
Xiao X, Luo S, Huang J, Wan B, Bi N, Wang J. Synergistic effects of Ω-3 polyunsaturated fatty acid supplementation and programmed cell death protein 1 blockade on tumor growth and immune modulation in a xenograft model of esophageal cancer. Clin Nutr ESPEN 2024; 61:308-315. [PMID: 38777449 DOI: 10.1016/j.clnesp.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/16/2024] [Accepted: 03/29/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Esophageal cancer, especially esophageal squamous cell carcinoma (ESCC), remains a significant global health challenge with limited survival rates. This study aimed to elucidate the combined effects of immune-modulating nutrition (IMN) with Ω-3 polyunsaturated fatty acid (PUFA) supplementation and anti-programmed cell death protein 1 (PD-1) treatment on tumor growth and immune responses in a xenograft model of ESCC. METHODS A total of 36 C57BL/6 mice were used to construct a xenograft model using the mouse esophageal cancer cell line AKR. Mice were subjected to treatment with anti- PD-1 antibody combined with either Ω-3 PUFA-rich or Ω-3 PUFA-deficient nutrition. Tumor growth, immune markers, cytokine profiles, and metabolic changes were evaluated. RESULTS The combination of anti-PD-1 and Ω-3 PUFA supplementation significantly inhibited tumor growth more effectively than anti-PD-1 treatment alone. Enhanced expression of immune markers PD-L1 and CD3 was observed in Ω-3 PUFA-fed mice. Additionally, compared with anti-PD-1 therapy and anti-PD-1 plus Ω-3 PUFA-deficient nutrition, Ω-3 PUFAs intensified alterations in key chemokines and cytokines, including elevated IL-12, IFN-γ, and GM-CSF levels, and reduced CXCL12 levels. However, Ω-3 PUFAs did not significantly alter the glycolysis and tryptophan metabolic program induced by anti-PD-1. CONCLUSION Our findings indicated the potential synergetic therapeutic benefits of combining anti-PD-1 treatment with Ω-3 PUFA supplementation in ESCC, which offered promising avenue for further research.
Collapse
Affiliation(s)
- Xi Xiao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China; Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Shihong Luo
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Jianbing Huang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Bao Wan
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Jianyang Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Huang CG, Liu Q, Zheng ST, Liu T, Tan YY, Peng TY, Chen J, Lu XM. Chemokines and Their Receptors: Predictors of Therapeutic Potential in Tumor Microenvironment on Esophageal Cancer. Dig Dis Sci 2024; 69:1562-1570. [PMID: 38580886 PMCID: PMC11098888 DOI: 10.1007/s10620-024-08392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Esophageal carcinoma (ESCA) is an aggressive solid tumor. The 5-year survival rate for patients with ESCA is estimated to be less than 20%, mainly due to tumor invasion and metastasis. Therefore, it is urgent to improve early diagnostic tools and effective treatments for ESCA patients. Tumor microenvironment (TME) enhances the ability of tumor cells to proliferate, migrate, and escape from the immune system, thus promoting the occurrence and development of tumor. TME contains chemokines. Chemokines consist of four major families, which are mainly composed of CC and CXC families. The main purpose of this review is to understand the CC and CXC chemokines and their receptors in ESCA, to improve the understanding of tumorigenesis of ESCA and determine new biomarkers for the diagnosis and prognosis of ESCA. We reviewed the literature on CC and CXC chemokines and their receptors in ESCA identified by PubMed database. This article introduces the general structures and functions of CC, CXC chemokines and their receptors in TME, as well as their roles in the progress of ESCA. Chemokines are involved in the development of ESCA, such as cancer cell invasion, metastasis, angiogenesis, and radioresistance, and are key determinants of disease progression, which have a great impact on patient prognosis and treatment response. In addition, a full understanding of their mechanism of action is essential to further verify that these chemokines and their receptors may serve as biomarkers or therapeutic targets of ESCA.
Collapse
Affiliation(s)
- Cong-Gai Huang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of Luzhou, Luzhou, People's Republic of China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Shu-Tao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Tao Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yi-Yi Tan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Tian-Yuan Peng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiao Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xiao-Mei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
5
|
Strzelec B, Chmielewski PP, Kielan W. Esophageal cancer: current status and new insights from inflammatory markers - a brief review. POLISH JOURNAL OF SURGERY 2024; 96:83-87. [PMID: 38940245 DOI: 10.5604/01.3001.0054.4523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Esophageal cancer (EC) poses a significant challenge to the healthcare system due to its profound impact on cancer-related morbidity and mortality worldwide. This malignancy ranks among the most arduous conditions confronting the surgeon. EC arises from a complex interplay of genetic predispositions and environmental factors. While the incidence of esophageal adenocarcinoma (EAC) is on the rise in the West, esophageal squamous cell carcinoma (ESCC) remains prevalent in the East. Chronic inflammation plays a pivotal role in the initiation and progression of EC. Accordingly, serum inflammatory markers, growth factors, and cytokines have been shown to be clinically useful. Thus, evaluating serum cytokine levels for EC prediction is a safe and feasible screening method. Given the aggressive nature and poor prognosis of the disease, innovative approaches to diagnosis, prognosis, and management of EC are indispensable. This review discusses the major risk factors and the current landscape of EC, with a specific focus on the potential contributions of new inflammatory markers to enhance disease management and improve patient outcomes.
Collapse
Affiliation(s)
- Bartłomiej Strzelec
- 2nd Department of General and Oncological Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Paweł Chmielewski
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Kielan
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Wroclaw, Poland
| |
Collapse
|
6
|
Muthupalani S, Annamalai D, Feng Y, Ganesan SM, Ge Z, Whary MT, Nakagawa H, Rustgi AK, Wang TC, Fox JG. IL-1β transgenic mouse model of inflammation driven esophageal and oral squamous cell carcinoma. Sci Rep 2023; 13:12732. [PMID: 37543673 PMCID: PMC10404242 DOI: 10.1038/s41598-023-39907-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023] Open
Abstract
Chronic inflammation is integral to the development of esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC), although the latter has not been associated with reflux esophagitis. The L2-IL-1β transgenic mice, expressing human interleukin (IL)-1β in the oral, esophageal and forestomach squamous epithelia feature chronic inflammation and a stepwise development of Barrett's esophagus-like metaplasia, dysplasia and adenocarcinoma at the squamo-columnar junction. However, the functional consequences of IL-1β-mediated chronic inflammation in the oral and esophageal squamous epithelia remain elusive. We report for the first time that in addition to the previously described Barrett's esophagus-like metaplasia, the L2-IL-1β mice also develop squamous epithelial dysplasia with progression to squamous cell carcinoma (SCC) in the esophagus and the tongue. L2-IL-1β showed age-dependent progression of squamous dysplasia to SCC with approximately 40% (n = 49) and 23.5% (n = 17) incidence rates for esophageal and tongue invasive SCC respectively, by 12-15 months of age. Interestingly, SCC development and progression in L2-IL-1β was similar in both Germ Free (GF) and Specific Pathogen Free (SPF) conditions. Immunohistochemistry revealed a T cell predominant inflammatory profile with enhanced expression of Ki67, Sox2 and the DNA double-strand break marker, γ-H2AX, in the dysplastic squamous epithelia of L2-IL-1β mice. Pro-inflammatory cytokines, immunomodulatory players, chemoattractants for inflammatory cells (T cells, neutrophils, eosinophils, and macrophages) and oxidative damage marker, iNOS, were significantly increased in the esophageal and tongue tissues of L2-IL-1β mice. Our recent findings have expanded the translational utility of the IL-1β mouse model to aid in further characterization of the key pathways of inflammation driven BE and EAC as well as ESCC and Oral SCC.
Collapse
Affiliation(s)
- Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825C, Cambridge, MA, 02139, USA.
- StageBio, 5930 Main St, Mount Jackson, VA, 22842, USA.
| | - Damodaran Annamalai
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825C, Cambridge, MA, 02139, USA
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825C, Cambridge, MA, 02139, USA
| | - Suresh M Ganesan
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825C, Cambridge, MA, 02139, USA
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825C, Cambridge, MA, 02139, USA
| | - Mark T Whary
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825C, Cambridge, MA, 02139, USA
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Anil K Rustgi
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825C, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
ArefNezhad R, Rezaei-Tazangi F, Roghani-Shahraki H, Goleij P, Zare N, Motedayyen H, Aghazadeh E. Human umbilical cord mesenchymal stem cells: Heralding an effective treatment against esophageal cancer? Cell Biol Int 2023; 47:714-719. [PMID: 36718080 DOI: 10.1002/cbin.11991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
Esophageal cancer (EC), as one of the leading causes of cancer-associated mortality, influences a remarkable population of subjects globally and is histologically divided into two types, comprising esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC). Although several therapeutic approaches are present for EC, such as radiotherapy, chemotherapy, and surgery, these options have low success with serious side effects, for example, gastrointestinal toxicity, esophagitis, and pulmonary complications. Thus, utilizing an effective tool with low side effects is urgent. Newly, mesenchymal stem cells (MSCs) have received special interest for treating diverse diseases, such as cancer. Among different sources of MSCs, human umbilical cord MSCs have notable benefits, and reports expressed that they may be effective in EC treatment. For this purpose, in this review study, we aimed to summarize evidence regarding the effects of human umbilical cord MSCs on EC with a mechanistic insight.
Collapse
Affiliation(s)
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran.,International Network of Stem Cell (INSC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nabi Zare
- Coenzyme R Research Institute, Tehran, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Elaheh Aghazadeh
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Pharmacology-Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Abstract
BACKGROUND Esophageal cancer (EC) originates in the setting of chronic inflammation. Although previous studies have sought to understand the role of inflammatory signaling in EC, the effect of these immunologic changes on patient outcomes remains understudied. This study's objective was to identify relationships between cytokine levels and prognosis in a mixed cohort of esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC) patients. STUDY DESIGN A total of 37 serum cytokines were profiled at the time of resection using multiplex ELISA in 47 patients (42 esophageal adenocarcinoma, 5 esophageal squamous cell carcinoma). Cytokine levels were median-binarized and assessed using Cox regression models. Findings were validated at the RNA level using The Cancer Genome Atlas EC cohort (81 esophageal adenocarcinoma, 81 esophageal squamous cell carcinoma). RESULTS Univariable analysis revealed high serum interleukin 4 (IL4) and granulocyte-macrophage colony-stimulating factor (GMCSF) were negatively associated with overall survival (p = 0.046, p = 0.040). Multivariable analysis determined both high serum IL4 or high serum GMCSF were negatively associated with survival independent of important clinical factors (hazard ratio [HR] 7.55, p < 0.001; HR 5.24, p = 0.001). These findings were validated at the RNA level in The Cancer Genome Atlas EC cohort, where multivariable analysis identified high IL4 expression, high CSF2 expression (encodes GMCSF), and advanced pathologic stage as independent negative predictors of survival when controlled for clinical factors (HR 2.35, p = 0.012; HR 1.97, p = 0.040). CONCLUSIONS These results show that high IL4/GMCSF levels are negatively associated with survival in EC. These relationships are independent of pathologic stage and are identified across modalities, histologic subtypes, and the presence/absence of neoadjuvant therapy.
Collapse
|
9
|
Qi Q, Peng Y, Zhu M, Zhang Y, Bao Y, Zhang X, Zhang J, Liu Y. Association between serum levels of 12 different cytokines and short-term efficacy of anti-PD-1 monoclonal antibody combined with chemotherapy in advanced gastric cancer. Int Immunopharmacol 2023; 114:109553. [PMID: 36516540 DOI: 10.1016/j.intimp.2022.109553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Gastric cancer (GC) is characterized by aggressive tumor growth and poor prognosis. The benefits of targeted anti-programmed death receptor 1 (PD-1) monoclonal antibody combined with chemotherapy have not yet been characterized. The tumor microenvironment and circulating factors have garnered interest as possible predictors of response and prognosis. The aim of this study was to evaluate whether cytokine levels in the serum of patients were related to tumor response to anti-PD-1 monoclonal antibody combined with chemotherapy and survival in advanced GC. MATERIALS AND METHODS Preoperative serum samples were collected from patients with GC (n = 52) and healthy individuals (n = 31). The levels of 12 different cytokines were measured using a multiple microsphere flow immunofluorescence assay. The association between cytokine levels and clinical response was analyzed using nonparametric Wilcoxon matched-pair ranked tests. Progression-free survival (PFS) time for all patients was recorded via evaluation of imaging results and follow-up via telephone. Kaplan-Meier and log-rank tests were used to plot survival curves. RESULTS The levels of interleukin (IL)-6, IL-1β, interferon (IFN)-γ, IL-17, and IL-12p70 in the control group were significantly lower than those in the GC group (p = 0.0002, p = 0.0065, p = 0.0003, p = 0.0303, and p = 0.0295, respectively). The level of IL-4 was significantly higher in healthy individuals than that in patients with GC (p = 0.0201). The cytokine levels in the good responder group were higher than those in the poor responder group before therapy. Patients treated with immunochemotherapy showed an overall reduction in all cytokine levels after treatment initiation. A high baseline level of IFN-γ was associated with a better prognosis. However, high IL-6 levels in patients after two cycles of immunochemotherapy indicated resistance. High IL-4 levels in patients treated with four cycles of immunochemotherapy were associated with better PFS. CONCLUSIONS Our study suggests that low levels of IFN-γ before immune checkpoint inhibitor treatment may be useful for the detection of a poor immunological status. Hence, a reduction in IL-6 levels is predictive of a longer PFS, and increased IL-4 levels are predictive of a good response. IL-4 and IL-6 may, therefore, serve as promising circulating predictive biomarkers for patients who can benefit from anti-PD-1 monoclonal antibodies administered in combination with chemotherapy.
Collapse
Affiliation(s)
- Qiufeng Qi
- Clinical Oncology Laboratory, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, Jiangsu Province 213002, China
| | - Yun Peng
- Clinical Oncology Laboratory, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, Jiangsu Province 213002, China
| | - Ming Zhu
- Clinical Oncology Laboratory, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, Jiangsu Province 213002, China
| | - Yaping Zhang
- Clinical Oncology Laboratory, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, Jiangsu Province 213002, China
| | - Yanqing Bao
- Clinical Oncology Laboratory, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, Jiangsu Province 213002, China
| | - Xiaobin Zhang
- Clinical Oncology Laboratory, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, Jiangsu Province 213002, China
| | - Jianqing Zhang
- Clinical Oncology Laboratory, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, Jiangsu Province 213002, China
| | - Yongping Liu
- Clinical Oncology Laboratory, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, Jiangsu Province 213002, China; Department of Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, Jiangsu Province 213002, China.
| |
Collapse
|
10
|
He H, Zhang P, Li F, Zeng C, Liu D, Wu K. Predicting the prognosis of esophageal cancer based on extensive analysis of new inflammatory response‐related signature. J Biochem Mol Toxicol 2022; 37:e23291. [PMID: 36536508 DOI: 10.1002/jbt.23291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
The prognosis of esophageal cancer (ESCA) is very poor, with a 5-year survival rate of less than 20%. On the other hand, inflammation is the characteristic hallmark of ESCA; however, the prognostic relationship between inflammatory response-related genes and ESCA has not been clarified yet. Therefore, in the present manuscript, we intend to investigate the correlation and specific signature of inflammation for the prediction of the prognosis of ESCA. A total of 173 samples were obtained from The Cancer Genome Atlas (TCGA) database, including 162 tumors and 11 normal specimens. The prognostic signature was established by least absolute shrinkage and selection operator Cox regression analysis. The transcription factor regulatory network with genes of the prognostic signature was analyzed from the transcriptional regulatory relationships unravelled by sentence-based text-mining database. Chemotherapy sensitivity and immunotherapy analysis were also performed. Multivariate Cox analysis showed that the signature was an independent prognostic risk factor. The low-risk group had poorer outcomes than the high-risk group. In the high-risk group, the infiltration of most immune cells was high and strongly correlated with the riskScore. In chemotherapeutic drug sensitivity analysis, OSM, AHR, and BTG2 were significantly correlated with the current chemotherapeutic drugs of ESCA. We have demonstrated a valid prognostic signature of inflammatory response-related genes and found strong associations with immune cells, targeted genes, and chemotherapeutic agents.
Collapse
Affiliation(s)
- Hongbo He
- Department of Thoracic Surgery The First Affiliated Hospital of Zhengzhou University Henan Zhengzhou P. R. China
| | - Peng Zhang
- Department of Thoracic Surgery The First Affiliated Hospital of Zhengzhou University Henan Zhengzhou P. R. China
| | - Feng Li
- Department of Thoracic Surgery The First Affiliated Hospital of Zhengzhou University Henan Zhengzhou P. R. China
| | - Cheng Zeng
- Department of Thoracic Surgery The First Affiliated Hospital of Zhengzhou University Henan Zhengzhou P. R. China
| | - Donglei Liu
- Department of Thoracic Surgery The First Affiliated Hospital of Zhengzhou University Henan Zhengzhou P. R. China
| | - Kai Wu
- Department of Thoracic Surgery The First Affiliated Hospital of Zhengzhou University Henan Zhengzhou P. R. China
| |
Collapse
|
11
|
Lunina NA, Safina DR. Intercellular Interactions in the Tumor Stroma and Their Role in Oncogenesis. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2022. [DOI: 10.3103/s0891416822040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
12
|
Bottomley MJ, Harden PN, Wood KJ, Hester J, Issa F. Dampened Inflammatory Signalling and Myeloid-Derived Suppressor-Like Cell Accumulation Reduces Circulating Monocytic HLA-DR Density and May Associate With Malignancy Risk in Long-Term Renal Transplant Recipients. Front Immunol 2022; 13:901273. [PMID: 35844527 PMCID: PMC9283730 DOI: 10.3389/fimmu.2022.901273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Background Malignancy is a major cause of morbidity and mortality in transplant recipients. Identification of those at highest risk could facilitate pre-emptive intervention such as reduction of immunosuppression. Reduced circulating monocytic HLA-DR density is a marker of immune depression in the general population and associates with poorer outcome in critical illness. It has recently been used as a safety marker in adoptive cell therapy trials in renal transplantation. Despite its potential as a marker of dampened immune responses, factors that impact upon monocytic HLA-DR density and the long-term clinical sequelae of this have not been assessed in transplant recipients. Methods A cohort study of stable long-term renal transplant recipients was undertaken. Serial circulating monocytic HLA-DR density and other leucocyte populations were quantified by flow cytometry. Gene expression of monocytes was performed using the Nanostring nCounter platform, and 13-plex cytokine bead array used to quantify serum concentrations. The primary outcome was malignancy development during one-year follow-up. Risk of malignancy was calculated by univariate and multivariate proportionate hazards modelling with and without adjustment for competing risks. Results Monocytic HLA-DR density was stable in long-term renal transplant recipients (n=135) and similar to non-immunosuppressed controls (n=29), though was suppressed in recipients receiving prednisolone. Decreased mHLA-DRd was associated with accumulation of CD14+CD11b+CD33+HLA-DRlo monocytic myeloid-derived suppressor-like cells. Pathway analysis revealed downregulation of pathways relating to cytokine and chemokine signalling in monocytes with low HLA-DR density; however serum concentrations of major cytokines did not differ between these groups. There was an independent increase in malignancy risk during follow-up with decreased HLA-DR density. Conclusions Dampened chemokine and cytokine signalling drives a stable reduction in monocytic HLA-DR density in long-term transplant recipients and associates with subsequent malignancy risk. This may function as a novel marker of excess immunosuppression. Further study is needed to understand the mechanism behind this association.
Collapse
Affiliation(s)
- Matthew J. Bottomley
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- *Correspondence: Matthew J. Bottomley,
| | - Paul N. Harden
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kathryn J. Wood
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Joanna Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Huang WY, Lin YS, Lin YC, Nieh S, Chang YM, Lee TY, Chen SF, Yang KD. Cancer-Associated Fibroblasts Promote Tumor Aggressiveness in Head and Neck Cancer through Chemokine Ligand 11 and C-C Motif Chemokine Receptor 3 Signaling Circuit. Cancers (Basel) 2022; 14:cancers14133141. [PMID: 35804913 PMCID: PMC9264987 DOI: 10.3390/cancers14133141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Certain tumor aggressiveness-associated mediators from cancer-associated fibroblasts (CAFs) in tumor microenvironment have been reported. Using gene expression analysis, we identified that CAFs overexpress Chemokine ligand 11 (CCL11), which is associated with tumor migration and invasion, increased expression of cancer stem cell properties, and induction of the epithelial-to-mesenchymal transition. Neutralization of CAF-induced CCL11 reversed the aggressive phenotype of cancer cells. Based on the immunohistochemical staining of clinical samples, we found that increased co-expression of CCL11 and its receptor, C-C Motif Chemokine Receptor 3 (CCR3), was associated with poor overall survival. Our results suggest that targeting CCL11-CCR3 signaling is a potential therapeutic strategy for patients with aggressive head and neck cancer. Abstract The tumor microenvironment (TME) plays a crucial role in tumor progression. One of its key stromal components, cancer-associated fibroblasts (CAFs), may crosstalk with cancer cells by secreting certain cytokines or chemokines. However, which important mediator(s) are released by CAFs, and the underlying molecular mechanism, remain largely unknown. In the present study, we isolated patient-derived CAFs and normal fibroblasts (NFs). Using microarray analysis, we detected chemokine ligand 11 (CCL11) overexpression in CAFs compared to NFs. CCL11 administration promoted the migration and invasion of head and neck cancer (HNC) cells with enhanced cancer stem cell-like properties and induction of epithelial-to-mesenchymal transition. Furthermore, neutralization of CCL11 activity reversed the aggressive phenotype of CAF-induced cancer cells. Confocal microscopy showed colocalization of CCL11 and CC chemokine receptor 3 (CCR3) on HNC cells. Moreover, immunohistochemical analysis of clinical samples from 104 patients with HNC showed that expression of CCL11 and CCR3 were significantly correlated with poor overall survival (p = 0.003 and 0.044, respectively). Collectively, CCL11 expressed on CAFs promotes HNC invasiveness, and neutralization of CCL11 reverses this effect. We propose that the CCL11/CCR3 signaling circuit is a potential target for optimizing therapeutic strategies against HNC.
Collapse
Affiliation(s)
- Wen-Yen Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yaoh-Shiang Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
| | - Yu-Chun Lin
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.L.); (S.N.); (Y.-M.C.)
| | - Shin Nieh
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.L.); (S.N.); (Y.-M.C.)
| | - Yi-Ming Chang
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.L.); (S.N.); (Y.-M.C.)
- Department of Pathology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Tsai-Yu Lee
- Division of Colon and Rectum Surgery, Department of Surgery, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei 105, Taiwan;
| | - Su-Feng Chen
- Department of Dentistry, School of Dentistry, China Medical University, Taichung 406, Taiwan
- Correspondence: (S.-F.C.); (K.D.Y.)
| | - Kuender D. Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Division of Medical Research, MacKay Children’s Hospital, Taipei 104, Taiwan
- Department of Immunology & Microbiology, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (S.-F.C.); (K.D.Y.)
| |
Collapse
|
14
|
Huai Q, Guo W, Han L, Kong D, Zhao L, Song P, Peng Y, Gao S. Identification of prognostic genes and tumor-infiltrating immune cells in the tumor microenvironment of esophageal squamous cell carcinoma and esophageal adenocarcinoma. Transl Cancer Res 2022; 10:1787-1803. [PMID: 35116502 PMCID: PMC8797718 DOI: 10.21037/tcr-20-3078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/07/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Esophageal cancer (EC) is a highly aggressive malignancy that is classified as esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). Infiltrating stromal/immune cells, a major component of the tumor immune microenvironment (TIME), have prognostic significance in various cancers. METHODS In this study we investigated genes and immune factors in the tumor microenvironment (TME) of ESCC and EAC that can serve as prognostic biomarkers. Stromal and immune scores were calculated using the Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using Expression Data (ESTIMATE) algorithm based on gene expression profiles of patient-derived tumor tissues in The Cancer Genome Atlas database. The correlation between ESTIMATE scores and survival rates in EC were analyzed. A comparison of high and low stromal/immune score groups revealed multiple differentially expressed genes (DEGs) as candidate prognostic genes; their role in immune-related biological processes was evaluated by functional and protein-protein interaction (PPI) network analyses, and the genes were validated using Gene Expression Omnibus datasets. Additionally, 22 tumor-infiltrating immune cell (TIIC) subsets were analyzed using the CIBERSORT algorithm. RESULTS Median stromal score was higher whereas immune score was lower in ESCC than in EAC (both P<0.01). Stromal score was lower in female as compared to male ESCC patients (P<0.05), and was significantly correlated with T stage (P<0.05). In EAC, median immune score was higher in female as compared to male patients (P<0.05) and was correlated with tumor-node-metastasis stage (P<0.05). The identified DEGs were mainly involved in lymphocyte (especially T-lymphocyte) activation and carbohydrate binding. Moreover, the levels of infiltrating resting-stage dendritic cells, CD8+ T cells, naïve B cells, activated mast cells, and resting memory CD4+ T cells were significantly correlated with EC prognosis (P<0.05). CONCLUSIONS The immune microenvironment of ESCC and EAC are quite different. We have found genes with prognostic value in multiple tumor databases.
Collapse
Affiliation(s)
- Qilin Huai
- Department of Graduate School, Zunyi Medical University, Zunyi, China.,Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liankui Han
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Demiao Kong
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Liang Zhao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Song
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Peng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Cytokines in Renal Cell Carcinoma: A Step Towards Earlier Detection and Targeted Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1374:63-72. [DOI: 10.1007/5584_2021_700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Hassan MS, Cwidak N, Awasthi N, von Holzen U. Cytokine Interaction With Cancer-Associated Fibroblasts in Esophageal Cancer. Cancer Control 2022; 29:10732748221078470. [PMID: 35442094 PMCID: PMC9024076 DOI: 10.1177/10732748221078470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Esophageal cancer (EC) is a highly aggressive cancer with poor outcomes under current treatment regimens. More recent findings suggest stroma elements, specifically cancer-associated fibroblasts (CAFs), play a role in disease occurrence and progression. Cancer-associated fibroblasts are largely the product of converted fibroblasts, but a variety of other local cell types including epithelial cells, endothelial cells, and mesenchymal cells have also been shown to transform to CAFs under the correct conditions. Cancer-associated fibroblasts primarily function in the communication between the tumor microenvironment and cancer cells via cytokine and chemokine secretions that accentuate immunosuppression and cancer growth. Cancer-associated fibroblasts also pose issues for EC treatment by contributing to resistance of current chemotherapeutics like cisplatin. Targeting this cell type directly proves difficult given the heterogeneity between CAFs subpopulations, but emerging research provides hope that treatment is on the horizon. This review aims to unravel some of the complexities surrounding CAFs’ impact on EC growth and therapy.
Collapse
Affiliation(s)
- Md Sazzad Hassan
- Department of Surgery, 158720Indiana University School of Medicine, South Bend, IN 46617, USA.,Harper Cancer Research Institute, South Bend, IN 46617, USA
| | - Nicholas Cwidak
- Department of Surgery, 158720Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Niranjan Awasthi
- Department of Surgery, 158720Indiana University School of Medicine, South Bend, IN 46617, USA.,Harper Cancer Research Institute, South Bend, IN 46617, USA
| | - Urs von Holzen
- Department of Surgery, 158720Indiana University School of Medicine, South Bend, IN 46617, USA.,Harper Cancer Research Institute, South Bend, IN 46617, USA.,Goshen Center for Cancer Care, Goshen, Goshen, IN 46526, USA.,University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Kennedy SA, Annett SL, Dunne MR, Boland F, O'Neill LM, Guinan EM, Doyle SL, Foley EK, Elliott JA, Murphy CF, Bennett AE, Carey M, Hillary D, Robson T, Reynolds JV, Hussey J, O'Sullivan J. Effect of the Rehabilitation Program, ReStOre, on Serum Biomarkers in a Randomized Control Trial of Esophagogastric Cancer Survivors. Front Oncol 2021; 11:669078. [PMID: 34604026 PMCID: PMC8479183 DOI: 10.3389/fonc.2021.669078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
Background The Rehabilitation Strategies Following Esophagogastric cancer (ReStOre) randomized control trial demonstrated a significant improvement in cardiorespiratory fitness of esophagogastric cancer survivors. This follow-up, exploratory study analyzed the biological effect of exercise intervention on levels of 55 serum proteins, encompassing mediators of angiogenesis, inflammation, and vascular injury, from participants on the ReStOre trial. Methods Patients >6 months disease free from esophagogastric cancer were randomized to usual care or the 12-week ReStOre program (exercise training, dietary counselling, and multidisciplinary education). Serum was collected at baseline (T0), post-intervention (T1), and at 3-month follow up (T2). Serum biomarkers were quantified by enzyme-linked immunosorbent assay (ELISA). Results Thirty-seven patients participated in this study; 17 in the control arm and 20 in the intervention arm. Exercise intervention resulted in significant alterations in the level of expression of serum IP-10 (mean difference (MD): 38.02 (95% CI: 0.69 to 75.35)), IL-27 (MD: 249.48 (95% CI: 22.43 to 476.53)), and the vascular injury biomarkers, ICAM-1 (MD: 1.05 (95% CI: 1.07 to 1.66)), and VCAM-1 (MD: 1.51 (95% CI: 1.04 to 2.14)) at T1. A significant increase in eotaxin-3 (MD: 2.59 (95% CI: 0.23 to 4.96)), IL-15 (MD: 0.27 (95% CI: 0 to 0.54)) and decrease in bFGF (MD: 1.62 (95% CI: -2.99 to 0.26)) expression was observed between control and intervention cohorts at T2 (p<0.05). Conclusions Exercise intervention significantly altered the expression of a number of serum biomarkers in disease-free patients who had prior treatment for esophagogastric cancer. Impact Exercise rehabilitation causes a significant biological effect on serum biomarkers in esophagogastric cancer survivors. Clinical Trial Registration ClinicalTrials.gov (NCT03314311).
Collapse
Affiliation(s)
- Susan A Kennedy
- Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Stephanie L Annett
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons Ireland, Dublin, Ireland
| | - Margaret R Dunne
- Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Fiona Boland
- Data Science Centre, Royal College of Surgeons Ireland, Dublin, Ireland
| | - Linda M O'Neill
- Discipline of Physiotherapy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Emer M Guinan
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Suzanne L Doyle
- School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland
| | - Emma K Foley
- Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Jessie A Elliott
- Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Conor F Murphy
- Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Annemarie E Bennett
- Discipline of Physiotherapy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Michelle Carey
- School of Mathematics & Statistics, University College Dublin, Dublin, Ireland
| | - Daniel Hillary
- School of Mathematics & Statistics, University College Dublin, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons Ireland, Dublin, Ireland
| | - John V Reynolds
- Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Juliette Hussey
- Discipline of Physiotherapy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Jacintha O'Sullivan
- Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Veen LM, Skrabanja TLP, Derks S, de Gruijl TD, Bijlsma MF, van Laarhoven HWM. The role of transforming growth factor β in upper gastrointestinal cancers: A systematic review. Cancer Treat Rev 2021; 100:102285. [PMID: 34536730 DOI: 10.1016/j.ctrv.2021.102285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/02/2023]
Abstract
Esophageal and gastric malignancies are associated with poor prognosis, in part due to development of recurrences or metastases after curative treatment. The transforming growth factor β (TGF-β) pathway might play a role in the development of treatment resistance. In this systematic review, we provide an overview of preclinical studies investigating the role of TGF-β in esophageal and gastric malignancies. We systematically searched MEDLINE/PubMed and EMBASE for eligible preclinical studies describing the effect of TGF-β or TGF-β inhibition on hallmarks of cancer, such as proliferation, migration, invasion, angiogenesis and immune evasion. In total, 2107 records were screened and 45 articles were included, using mouse models and 45 different cell lines. TGF-β failed to induce apoptosis in twelve of sixteen tested cell lines. TGF-β could either decrease (five cell lines) or increase proliferation (seven cell lines) in gastric cancer cells, but had no effect in esophageal cancer cells. In all esophageal and all but two gastric cancer cell lines, TGF-β increased migratory, adhesive and invasive capacities. In vivo studies showed increased metastasis in response to TGF-β treatment. Additionally, TGF-β was shown to induce vascular endothelial growth factor production and differentiation of cancer-associated fibroblasts and regulatory T-cells. In conclusion, we found that TGF-β enhances hallmarks of cancer in most gastric and esophageal cancer cell lines, but not in all. Therefore, targeting the TGF-β pathway could be an attractive strategy in patients with gastric or esophageal cancer, but additional clinical trials are needed to define patient groups who would benefit most.
Collapse
Affiliation(s)
- Linde M Veen
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, De Boelelaan 1117-1118, 1081 HV Amsterdam, The Netherlands.
| | - Tim L P Skrabanja
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sarah Derks
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, De Boelelaan 1117-1118, 1081 HV Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, De Boelelaan 1117-1118, 1081 HV Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, De Boelelaan 1117-1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
19
|
Tumor Microenvironment of Esophageal Cancer. Cancers (Basel) 2021; 13:cancers13184678. [PMID: 34572905 PMCID: PMC8472305 DOI: 10.3390/cancers13184678] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Esophageal cancer is one of the top ten most deadly cancers. Even when diagnosed in a curable stage, patients prognosis poor. One of the parameters that is very relevant for long-term survival is response to radio(chemo)therapy prior surgery. Complete response rates are between 24 and 50 percent. This puts more than a half of every esophageal cancer patient that is diagnosed in a non-metastasized stage at high risk of recurrence. To improve response rates of treatment regimens prior curative surgery is, therefore, a major challenge in treating esophageal cancer. Not only the response of the cancer cell itself to cancer therapy is determining patients’ fate. Cells around the tumor cells called the tumor microenvironment that together with the cancer cell constitute a malignant tumor are also involved in tumor progression and therapy response. This review depicts the most important parts of the esophageal cancer microenvironment, evaluates chances and challenges of current already established therapeutic concepts that target this microenvironment. It furthermore elucidates specific pathways that are potential valuable targets in the future. Abstract Esophageal cancer is among the top ten most deadly cancers worldwide with adenocarcinomas of the esophagus showing increasing incidences over the last years. The prognosis is determined by tumor stage at diagnosis and in locally advanced stages by response to (radio-)chemotherapy followed by radical surgery. Less than a third of patients with esophageal adenocarcinomas completely respond to neoadjuvant therapies which urgently asks for further strategies to improve these rates. Aiming at the tumor microenvironment with novel targeted therapies can be one strategy to achieve this goal. This review connects experimental, translational, and clinical findings on each component of the esophageal cancer tumor microenvironment involving tumor angiogenesis, tumor-infiltrating immune cells, such as macrophages, T-cells, myeloid-derived suppressor cells, and cancer-associated fibroblasts. The review evaluates the current state of already approved concepts and depicts novel potentially targetable pathways related to esophageal cancer tumor microenvironment.
Collapse
|
20
|
Pisani S, Dorati R, Genta I, Benazzo M, Conti B, Prina Mello A. A study focused on macrophages modulation induced by the Polymeric Electrospun Matrices (EL-Ms) for application in tissue regeneration: In vitro proof of concept. Int J Pharm 2021; 603:120712. [PMID: 34015377 DOI: 10.1016/j.ijpharm.2021.120712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022]
Abstract
A successful regenerative process has to consider the role of immune system after surgical implantation of a polymer-based matrix due to the reaction of monocytes and macrophages cells after contact with biomaterial. Pro-inflammatory (TNF-alfa, IL-6 and IL-8) and anti-inflammatory (IL-10) cytokines released by macrophages cells are fundamental in acute inflammatory response (2-3 days) to destroy pathogens and help scaffold during regenerative process supporting the up-regulation of ECM and endothelial progenitor cells. Aim of this work was to evaluate the in vitro acute response induced by pre-optimized polymeric electrospun matrices (EL-Ms), after 3 days contact with macrophages (M0) and EL-Ms ability to modulate M1 and/or M2 macrophages polarization. Biological characterization included MTT, LDH and Live/Dead assays, immunological characterization by ELISA for cytokine-expression levels determination. Morphological characterization was carried out by Confocal Laser Scanning Microscopy and Scanning Electron Microscopy. The results showed an initial pro-inflammatory response (after 24 h) characterized by release of TNF-alfa, IL-6 and IL-8 cytokines. A preferential anti-inflammatory response was highlighted after 72 h, demonstrated by higher release of IL-10 and elongation of macrophages in contact with EL-Ms, that is typical of M2 cell polarization. EL-Ms could be used as eligible support to enhance tissue regeneration promoting an anti-inflammatory response.
Collapse
Affiliation(s)
- Silvia Pisani
- Immunology and Transplantation Laboratory, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy.
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Italy; Polymerix S.r.l., Via Taramelli 24, 27100 Pavia, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Italy; Polymerix S.r.l., Via Taramelli 24, 27100 Pavia, Italy
| | - Marco Benazzo
- Department of Surgery, Otolaryngologist Section, IRCCS Policlinico S. Matteo, 27100 Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Italy; Polymerix S.r.l., Via Taramelli 24, 27100 Pavia, Italy.
| | - Adriele Prina Mello
- LBCAM, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
21
|
Liu H, Jin D, Wang Q, Cui Z, Zhang L, Wei Y. Perioperative safety and short-term efficacy of functional minimally invasive esophagectomy. J Int Med Res 2021; 49:3000605211010081. [PMID: 33969734 PMCID: PMC8113928 DOI: 10.1177/03000605211010081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Standard minimally invasive McKeown three-field esophagectomy (SMIE) results
in high perioperative risk and poor postoperative quality of life owing to
considerable surgical damage and numerous postoperative complications. We
created a modified procedure, functional minimally invasive esophagectomy
(FMIE), which preserves the azygos arch, bronchial artery, pulmonary branch
of the vagus nerve, and the mediastinal pleura. Our aim was to evaluate the
efficacy and safety of FMIE and to determine whether it has limited
invasiveness. Methods Between 2018 and 2020, FMIE was performed for 48 patients who were compared
with 76 SMIE cases; 44 paired cases were matched using propensity score
matching. Results Operation time, extubation time, and postoperative hospital stay were
significantly lower in the FMIE group. FMIE was also associated with fewer
pulmonary infections. Postoperative drainage volume on postoperative day
(POD) 1 and POD 2, and white blood cell counts on POD 2 and POD 4 were also
significantly lower in the FMIE group. There was no statistically
significant difference in the number of dissected lymph nodes, short-term
recurrence, metastasis rates, or survival rate between the two groups. Conclusions FMIE is a less invasive procedure and may be a suitable alternative for lower
and early middle esophageal carcinoma.
Collapse
Affiliation(s)
- Huibing Liu
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong Province, China
| | - Defeng Jin
- Thoracic Surgery Department, Jining No. 1 People's Hospital, Jining, Shandong Province, China
| | - Qian Wang
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong Province, China
| | - Zhaoqing Cui
- Thoracic Surgery Department, Jining No. 1 People's Hospital, Jining, Shandong Province, China
| | - Luchang Zhang
- Thoracic Surgery Department, Jining No. 1 People's Hospital, Jining, Shandong Province, China
| | - Yutao Wei
- Thoracic Surgery Department, Jining No. 1 People's Hospital, Jining, Shandong Province, China
| |
Collapse
|
22
|
Yu H, Gu D, Yue C, Xu J, Yan F, He X. An Immune Cell-Based Signature Associating With EMT Phenotype Predicts Postoperative Overall Survival of ESCC. Front Oncol 2021; 11:636479. [PMID: 33869022 PMCID: PMC8047630 DOI: 10.3389/fonc.2021.636479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest solid malignancies and has a poor survival rate worldwide. In this study, we aimed to establish a tumor-infiltrating immune cell-based prognosis signature (IPS) to predict patients’ survival times and aid in the development of targeted therapies or immunotherapies. The abundances of 22 types of immune cells were determined by the CIBERSORT algorithm from ESCC patient gene expression data in the Gene Expression Omnibus (GEO) training set (n = 179) and The Cancer Genome Atlas (TCGA) validation set (n = 95). Then, the IPS was established by using the least absolute shrinkage and selection operator (LASSO) regression method. Kaplan-Meier analysis showed that patients with high IPS scores had significantly worse overall survival times than patients with low IPS scores in both the training set and the validation set (log-rank p = 0.001, and p = 0.050, respectively). Univariate and multivariate Cox regression analyses proved that the IPS was a robust prognostic factor for ESCC, independent of age, sex, tumor node metastasis (TNM) stage, pathology grade, and tumor location. In the mechanistic study, the epithelial-mesenchymal transition (EMT) process was identified by both gene set enrichment analysis (GSEA) and weighted correlation network analysis (WGCNA) as the underlying mechanism by which the IPS affects the prognosis of ESCC. After systematic correlation analyses, we found that M2 macrophages were the only cell type in the IPS significantly correlated with the EMT process. This relationship between M2 macrophage infiltration and the EMT phenotype was also confirmed by our preliminary immunochemistry (IHC) and multiplexed immunofluorescence study. In conclusion, we constructed an IPS that predicts the postoperative prognosis of ESCC patients and uncovered the critical role of M2 macrophages in the interplay between immune status and the EMT phenotype in ESCC.
Collapse
Affiliation(s)
- Hongliang Yu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Dayong Gu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Chao Yue
- Department of General Surgery, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jianhua Xu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Feng Yan
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xia He
- Department of Radiation Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
23
|
Myeloid-derived suppressor cells promote lung cancer metastasis by CCL11 to activate ERK and AKT signaling and induce epithelial-mesenchymal transition in tumor cells. Oncogene 2021; 40:1476-1489. [PMID: 33452453 DOI: 10.1038/s41388-020-01605-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) suppress antitumor immune activities and facilitate cancer progression. Although the concept of immunosuppressive MDSCs is well established, the mechanism that MDSCs regulate non-small cell lung cancer (NSCLC) progression through the paracrine signals is still lacking. Here, we reported that the infiltration of MDSCs within NSCLC tissues was associated with the progression of cancer status, and was positively correlated with the Patient-derived xenograft model establishment, and poor patient prognosis. Intratumoral MDSCs directly promoted NSCLC metastasis and highly expressed chemokines that promote NSCLC cells invasion, including CCL11. CCL11 was capable of activating the AKT and ERK signaling pathways to promote NSCLC metastasis through the epithelial-mesenchymal transition (EMT) process. Moreover, high expression of CCL11 was associated with a poor prognosis in lung cancer as well as other types of cancer. Our findings underscore that MDSCs produce CCL11 to promote NSCLC metastasis via activation of ERK and AKT signaling and induction of EMT, suggesting that the MDSCs-CCL11-ERK/AKT-EMT axis contains potential targets for NSCLC metastasis treatment.
Collapse
|
24
|
Bhat AA, Nisar S, Maacha S, Carneiro-Lobo TC, Akhtar S, Siveen KS, Wani NA, Rizwan A, Bagga P, Singh M, Reddy R, Uddin S, Grivel JC, Chand G, Frenneaux MP, Siddiqi MA, Bedognetti D, El-Rifai W, Macha MA, Haris M. Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy. Mol Cancer 2021; 20:2. [PMID: 33390169 PMCID: PMC7780621 DOI: 10.1186/s12943-020-01294-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023] Open
Abstract
Esophageal cancer (EC) is a disease often marked by aggressive growth and poor prognosis. Lack of targeted therapies, resistance to chemoradiation therapy, and distant metastases among patients with advanced disease account for the high mortality rate. The tumor microenvironment (TME) contains several cell types, including fibroblasts, immune cells, adipocytes, stromal proteins, and growth factors, which play a significant role in supporting the growth and aggressive behavior of cancer cells. The complex and dynamic interactions of the secreted cytokines, chemokines, growth factors, and their receptors mediate chronic inflammation and immunosuppressive TME favoring tumor progression, metastasis, and decreased response to therapy. The molecular changes in the TME are used as biological markers for diagnosis, prognosis, and response to treatment in patients. This review highlighted the novel insights into the understanding and functional impact of deregulated cytokines and chemokines in imparting aggressive EC, stressing the nature and therapeutic consequences of the cytokine-chemokine network. We also discuss cytokine-chemokine oncogenic potential by contributing to the Epithelial-Mesenchymal Transition (EMT), angiogenesis, immunosuppression, metastatic niche, and therapeutic resistance development. In addition, it discusses the wide range of changes and intracellular signaling pathways that occur in the TME. Overall, this is a relatively unexplored field that could provide crucial insights into tumor immunology and encourage the effective application of modulatory cytokine-chemokine therapy to EC.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Selma Maacha
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Nissar A Wani
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India
| | - Arshi Rizwan
- Department of Nephrology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Puneet Bagga
- Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Gyan Chand
- Department of Endocrine Surgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | - Mushtaq A Siddiqi
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India.
| | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
25
|
Zhou MH, Wang XK. Microenvironment-related prognostic genes in esophageal cancer. Transl Cancer Res 2020; 9:7531-7539. [PMID: 35117353 PMCID: PMC8797339 DOI: 10.21037/tcr-20-2288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022]
Abstract
Background Esophageal cancer is one of the most common malignant tumors. The role of tumor microenvironment in esophageal cancer is unclear. Methods The gene expression profiles and clinical data of 158 patients with esophageal cancer were extracted from The Cancer Genome Atlas database. Immune scores and stromal scores were calculated based on ESTIMATE algorithm. According to different immune/stromal scores, differentially expressed genes (DEGs) were identified. The function enrichment, protein interactions of shared DEGs and their associations with overall survival were analyzed. Results In regard to the association of the immune/stromal scores and disease stage, pathological type and overall survival, only the stromal scores among the different stages were significantly different (P=0.015). In the high immune and stromal score groups, 603 shared up-regulated genes were found. The related function and pathways included regulation of lymphocyte activation, cytokine binding and chemokine signaling pathway. Protein-protein interaction analysis showed that ITGAM had the most connections, followed by CXCL10 and CCR2. High expression of 11 genes, including MS4A7, TMIGD3, MS4A4A, EVI2A, MS4A6A, FCER1G, AIF1, GNGT2, LCP2, DNAJC5B and RNASE6, were found to be associated with shorter overall survival. Conclusions Microenvironment-associated functions and pathways were analyzed in esophageal cancer, and 11 microenvironment-associated genes were correlated to poor prognoses. Further studies on these genes may be helpful to understand the tumor microenvironment and provide new therapies for esophageal cancer.
Collapse
Affiliation(s)
- Min-Hang Zhou
- Department of Geriatric Oncology, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xin-Kun Wang
- Department of Radiology, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
26
|
Nienhüser H, Crnovrsanin N, Nerz D, Heckler M, Sisic L, Lasitschka F, Schneider M, Schmidt T. Expression of Angiogenic Proteins in Tumor and Stroma Affects Survival in Patients With Gastric Cancer. J Surg Res 2020; 255:172-180. [PMID: 32563757 DOI: 10.1016/j.jss.2020.05.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/20/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer is one of the most frequent malignancies worldwide. Angiogenic growth factors play a crucial role in mediating the crosstalk between cancer cells and the surrounding microenvironment. In this exploratory study, we investigate the impact of angiogenic proteins within the tumor cell or stroma compartment on survival of patients with gastric cancer. MATERIALS AND METHODS In 29 patients, tumor and stromal compartments were separated using laser capture microdissection. Angiogenic protein expression was measured using a bead-based immunoassay and correlated with tumor stage and overall survival. RESULTS Overall survival was significantly shorter in patients with a high stroma concentration of vascular endothelial growth factor (VEGF)-A (23.5 (±17.6) versus 33.6 (±21.0) mo; P = 0.009) and stem cell factor (22.2 (±18.5) versus 33.6 (±21.8) mo; P = 0.01) compared with patients with a low stroma concentration. High stromal VEGF-D showed a trend toward worse survival (26.8 (±22.0) versus 37.2 (±19.0) mo; P = 0.09). We did not observe any significant correlation between tumor-specific expression of angiogenic cytokines and survival. CONCLUSIONS This translational study highlights the difference in clinical impact between tumor and stromal expression of angiogenic proteins. Compartment-specific concentrations of VEGF-A and stem cell factor affect the clinical prognosis and help to identify the best therapy for patients with gastric cancer.
Collapse
Affiliation(s)
- Henrik Nienhüser
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Nerma Crnovrsanin
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Daniel Nerz
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Max Heckler
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Leila Sisic
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | | | - Martin Schneider
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
27
|
Karstens KF, Kempski J, Giannou AD, Freiwald E, Reeh M, Tachezy M, Izbicki JR, Lohse AW, Gagliani N, Huber S, Pelczar P. Systemic interleukin 10 levels indicate advanced stages while interleukin 17A levels correlate with reduced survival in esophageal adenocarcinomas. PLoS One 2020; 15:e0231833. [PMID: 32298379 PMCID: PMC7162521 DOI: 10.1371/journal.pone.0231833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/29/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Reflux promotes esophageal adenocarcinomas (EAC) creating a chronic inflammatory environment. EAC show an increasing incidence in the Western World and median survival rates are still low. The main reasons for poor prognosis despite new multimodal therapies are diagnosis of EACs at an already advanced stage and distant metastases. Hence, we wanted to investigate the presence of systemic inflammatory interleukins (IL) and their impact on patient prognosis. Material and methods Systemic expression levels of pro- and anti-inflammatory markers (IL-2, IL-4, IL-6, IL-10, IL-17A and IL-22) in the sera of 43 EAC patients without neoadjuvant radiochemotherapy were measured by flow cytometric analysis. A correlation to clinicopathological data was performed. Log-rank and Cox regression analysis were used to investigate the impact on patient survival. 43 sera of age and gender matched healthy volunteers were used as controls. Results Increased systemic IL-6 (p = 0.044) and lower IL-17A (p = 0.002) levels were found in EAC patients as opposed to controls. A correlation of IL-10 levels with an increased T stage was found (p = 0.020). Also, systemic IL-10 levels were highly elevated in patients with distant metastasis (p<0.001). However, only systemic IL-17A levels had an influence on patient survival in multivariate analysis. Conclusion Systemic IL-6 levels are increased, while IL-17A levels are reduced in EAC patients compared to healthy controls. In addition, circulating IL-10 might help to identify patients with advanced disease and high IL-17A might indicate a limited prognosis.
Collapse
Affiliation(s)
- Karl-Frederick Karstens
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Kempski
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasios D. Giannou
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Erik Freiwald
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Reeh
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W. Lohse
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Penelope Pelczar
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V, Lara-Riegos J, Ramírez-Camacho MA, Alvarez-Sánchez ME. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front Oncol 2019; 9:1370. [PMID: 31921634 PMCID: PMC6915110 DOI: 10.3389/fonc.2019.01370] [Citation(s) in RCA: 564] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
During angiogenesis, new vessels emerge from existing endothelial lined vessels to promote the degradation of the vascular basement membrane and remodel the extracellular matrix (ECM), followed by endothelial cell migration, and proliferation and the new generation of matrix components. Matrix metalloproteinases (MMPs) participate in the disruption, tumor neovascularization, and subsequent metastasis while tissue inhibitors of metalloproteinases (TIMPs) downregulate the activity of these MMPs. Then, the angiogenic response can be directly or indirectly mediated by MMPs through the modulation of the balance between pro- and anti-angiogenic factors. This review analyzes recent knowledge on MMPs and their participation in angiogenesis.
Collapse
Affiliation(s)
- Saray Quintero-Fabián
- Multidisciplinary Research Laboratory, Military School of Graduate of Health, Mexico City, Mexico
| | - Rodrigo Arreola
- Psychiatric Genetics Department, National Institute of Psychiatry "Ramón de la Fuente", Clinical Research Branch, Mexico City, Mexico
| | | | - Julio César Torres-Romero
- Biochemistry and Molecular Genetics Laboratory, Facultad de Química de la Universidad Autónoma de Yucatán, Merida, Mexico
| | - Victor Arana-Argáez
- Pharmacology Laboratory, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Julio Lara-Riegos
- Biochemistry and Molecular Genetics Laboratory, Facultad de Química de la Universidad Autónoma de Yucatán, Merida, Mexico
| | | | | |
Collapse
|
29
|
Abstract
Esophageal cancer (EC) seriously threatens human health, and a promising new avenue for EC treatment involves cancer immunotherapy. To improve the efficacy of EC immunotherapy and to develop novel strategies for EC prognosis prediction or clinical treatment, understanding the immune landscapes in EC is required. EC cells harbor abundant tumor antigens, including tumor-associated antigens and neoantigens, which have the ability to initiate dendritic cell-mediated tumor-killing cytotoxic T lymphocytes in the early stage of cancer development. As EC cells battle the immune system, they obtain an ability to suppress antitumor immunity through immune checkpoints, secreted factors, and negative regulatory immune cells. Cancer-associated fibroblasts also contribute to the immune evasion of EC cells. Some factors of the immune landscape in EC tumor microenvironment are associated with cancer development, patient survival, or treatment response. Based on the immune landscape, peptide vaccines, adoptive T cell therapy, and immune checkpoint blockade can be used for EC immunotherapy. Combined strategies are required for better clinical outcome in EC. This review provides directions to design novel and effective strategies for prognosis prediction and immunotherapy in EC.
Collapse
Affiliation(s)
- Tu-Xiong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology and Shenzhen International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, P. R. China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology and Shenzhen International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, P. R. China.
| |
Collapse
|
30
|
Shi J, Huo R, Li N, Li H, Zhai T, Li H, Shen B, Ye J, Fu R, Di W. CYR61, a potential biomarker of tumor inflammatory response in epithelial ovarian cancer microenvironment of tumor progress. BMC Cancer 2019; 19:1140. [PMID: 31766991 PMCID: PMC6878653 DOI: 10.1186/s12885-019-6321-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/31/2019] [Indexed: 01/14/2023] Open
Abstract
Background Recent studies have found that inflammatory response is involved in the pathogenesis of ovarian cancer. Advanced ovarian cancer is often presented with ascites that is rich in cytokines, inflammatory factors or cancer cells. Therefore, it is important to study the microenvironment of ascites in order to further clarify the occurrence and progression of ovarian cancer. As a pro-inflammatory factor, the Cyr61 expression patterns are inconsistent in human tumors. Although it has been reported that Cyr61 is related to the progression of ovarian cancer, its specific mechanism is not yet clear. This study sought to evaluate the Cyr61 levels of ascites, serum and different tissues of ovarian cancer to explore the potential association of Cyr61with the tumor-associated inflammatory microenvironment of EOC. Methods Tumor specimens were procured from patients with ovarian serous cystadenocarcinoma and ovarian serous cystadenoma. Cyr61 and IL-6 levels of serum or ascites were determined by ELISA (Enzyme-Linked ImmunoSorbent Assay), while Cyr61 expressions of different ovarian tumor tissues were evaluated by IHC (Immunohistochemistry). Then the correlation of Cyr61 level in ascites with clinicopathologic features was analyzed. And other laboratory data were obtained from medical records. Results Both in ascites and serum, significantly higher Cyr61 levels were found in ovarian serous cystadenocarcinoma. In malignant ascites, higher Cyr61 level of ovarian serous cystadenocarcinoma was more closely associated with FIGO stage, initial tumor size > 10 cm and the residual tumor size. And the increased IL-6 level was linearly related to Cyr61 level. Moreover, the serum levels of Cyr61, IL-6 and CRP in advanced stage of ovarian cancer were much higher than those in early stage. Lastly, the IHC data demonstrate that Cyr61 expression of ovarian serous adenocarcinoma was higher than that of ovarian serous cystadenoma, but it was lower than the paired metastatic lesions. Conclusions As a pro-inflammatory factor, increased ascites Cyr61 level is associated with FIGO stage, initial tumor size > 10 cm and the residual tumor size. Moreover, serum Cyr61 may be used as a potential marker for EOC inflammatory response. Finally, Cyr61 may be involved in the process of tumor metastasis and progression by producing IL-6 and CRP in the EOC inflammatory microenvironment.
Collapse
Affiliation(s)
- Jun Shi
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, People's Republic of China
| | - Rongfen Huo
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Ningli Li
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Haichuan Li
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Tianhang Zhai
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Huidan Li
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Baihua Shen
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jing Ye
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, People's Republic of China
| | - Ruojin Fu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, People's Republic of China
| | - Wen Di
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China. .,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
31
|
Wang Y, Chen L, Wu Y, Li P, Che G. The prognostic value of modified Glasgow prognostic score in patients with esophageal squamous cell cancer: a Meta-analysis. Nutr Cancer 2019; 72:1146-1154. [PMID: 31617767 DOI: 10.1080/01635581.2019.1677925] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective: To evaluate the prognostic value of modified Glasgow prognostic score (mGPS) asssessed prior to anticancer treatment in patients with esophageal squamous cell cancer (ESCC).Methods: A comprehensive search through PubMed, EMBASE, Web of Science and The Cochrane Library databases was performed to identify potential studies exploring the prognostic value of baseline mGPS in patients with ESCC. We combined the hazard ratios (HRs) with 95% confidence intervals (CIs) to assess the association of mGPS with overall survival (OS).Results: A total of 10 studies including 3415 patients were analyzed and all patients were from Japan or China. A significant correlation between elevated mGPS and poor OS (HR = 1.66, 95% CI: 1.14-2.41, P = 0.008) was observed. Subgroup analyses suggested that the country and therapy method may affect the effect of mGPS on predicting OS in ESCC and patients with mGPS 1 or two had poorer OS compared with those with mGPS 0 (HR = 2.91, 95% CI: 1.74-4.87, P<0.001; HR = 2.39, 95% CI: 1.44-3.97, P = 0.001).Conclusions: Baseline mGPS might serve as a promising indicator for the OS in Chinese and Japanese patients with ESCC. More well-designed prospective studies with large samples are needed to verify our findings.
Collapse
Affiliation(s)
- Yan Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Lu Chen
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yanming Wu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Pengfei Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
32
|
Matsunaga T, Saito H, Fukumoto Y, Shimizu S, Kono Y, Murakami Y, Shishido Y, Miyatani K, Yamamoto M, Tokuyasu N, Takano S, Sakamoto T, Honjo S, Fujiwara Y. The postoperative platelet distribution width is useful for predicting the prognosis in patients with esophageal squamous cell carcinoma. Surg Today 2019; 50:123-133. [DOI: 10.1007/s00595-019-01860-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
|
33
|
Qian L, Yu S, Yin C, Zhu B, Chen Z, Meng Z, Wang P. Plasma IFN-γ-inducible chemokines CXCL9 and CXCL10 correlate with survival and chemotherapeutic efficacy in advanced pancreatic ductal adenocarcinoma. Pancreatology 2019; 19:340-345. [PMID: 30685120 DOI: 10.1016/j.pan.2019.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Recent studies have suggested that the CXCL9, 10, 11/CXCR3 axis is significant in immune regulation and therapeutic efficacy in human cancers; however, its role in pancreatic ductal adenocarcinoma (PDAC) remains unknown. This study serves to evaluate the prognostic prediction value of plasma IFN-γ-inducible chemokines, CXCL9 and CXCL10, in advanced PDAC. METHODS Two hundred patients with advanced PDAC receiving palliative chemotherapy were retrospectively recruited. The association between Plasma CXCL9/CXCL10 levels and survival time was first analyzed in a test group of 110 patients and then confirmed in a validation group of 90 patients. RESULTS High levels of CXCL9 and CXCL10 were significantly correlated with longer overall survival (OS) in advanced PDAC patients (314 vs. 136 days for CXCL9, P < 0.0001, and 374 vs. 163 days for CXCL10, P < 0.0001, respectively) in the test group, which was consistent with the results derived from the validation group. In addition, high levels of CXCL9 and CXCL10 were associated with longer time to progression (TTP) in patients receiving chemotherapy (100 vs. 60 days for CXCL9, P = 0.0021, and 104 vs. 67 days for CXCL10, P = 0.0057, respectively). Multivariate analyses confirmed that CXCL9 and CXCL10 were independent prognostic predictors for OS (hazard ratio [HR]: 0.452, P < 0.001 for CXCL9; and HR: 0.586, P = 0.007 for CXCL10, respectively) and TTP (HR: 0.656, P = 0.015 for CXCL9; and HR: 0.687, P = 0.040 for CXCL10, respectively). CONCLUSIONS Plasma CXCL9 and CXCL10 can be used to predict survival of advanced PDAC patients receiving chemotherapy, allowing clinicians to potentially improve treatment outcomes by identifying candidates for aggressive therapy.
Collapse
Affiliation(s)
- Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai, 200032, China
| | - Shulin Yu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai, 200032, China
| | - Chengqian Yin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
| | - Bo Zhu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai, 200032, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai, 200032, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
34
|
Sun HB, Li Y, Liu XB, Wang ZF, Zhang RX, Lerut T, Zheng Y, Liu SL, Chen XK. Impact of an Early Oral Feeding Protocol on Inflammatory Cytokine Changes After Esophagectomy. Ann Thorac Surg 2018; 107:912-920. [PMID: 30403976 DOI: 10.1016/j.athoracsur.2018.09.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/04/2018] [Accepted: 09/24/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND The aim of the current study was to investigate the impact of early oral feeding (EOF) on inflammatory cytokine levels after McKeown minimally invasive esophagectomy (MIE) for cancer. METHODS This study was based on a randomized controlled trial (NCT01998230). Patients with esophageal cancer who received McKeown MIE were randomly allocated into a group that started oral feeding on postoperative day (POD) 1 (EOF group) or a second group that received nil by mouth until 7 days after operation (late oral feeding [LOF] group). We chose 86 patients, 46 patients in the EOF group and 40 patients in the LOF group, in which to analyze inflammatory cytokine levels (interleukin [IL]-6, IL-8, tumor necrosis factor-a [TNF-α], and monocyte chemotactic protein-1 [MCP-1]). RESULTS The EOF and LOF groups exhibited similar preoperative IL-6, IL-8 TNF-α, and MCP-1 levels. The levels of the four inflammatory cytokines at PODs 1 and 3 were significantly higher than the preoperative levels (all p < 0.001). At POD 5 the levels of all four inflammatory cytokines were decreased compared with those at PODs 1 and 3. At PODs 3 and 5 the levels of IL-6, IL-8, and TNF-α were significantly lower in the EOF group than in the LOF group (all p < 0.05). At POD 3 the MCP-1 levels in the EOF group were significantly lower than those in the LOF group (all p < 0.05). CONCLUSIONS Compared with conventional rehabilitation programs the EOF protocol may decrease stress response after McKeown MIE.
Collapse
Affiliation(s)
- Hai-Bo Sun
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan, P. R. China
| | - Yin Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan, P. R. China.
| | - Xian-Ben Liu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan, P. R. China
| | - Zong-Fei Wang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan, P. R. China
| | - Rui-Xiang Zhang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan, P. R. China
| | - Toni Lerut
- Department of Thoracic Surgery, Leuven University, Leuven, Belgium
| | - Yan Zheng
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan, P. R. China
| | - Shi-Lei Liu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan, P. R. China
| | - Xian-Kai Chen
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan, P. R. China
| |
Collapse
|
35
|
He WZ, Yang QX, Xie JY, Kong PF, Hu WM, Yang L, Yang YZ, Xie QK, Jiang C, Yin CX, Guo GF, Qiu HJ, Zhang B, Xia LP. Association of low skeletal muscle index with increased systematic inflammatory responses and interferon γ-induced protein 10 levels in patients with colon cancer. Cancer Manag Res 2018; 10:2499-2507. [PMID: 30122999 PMCID: PMC6086104 DOI: 10.2147/cmar.s160901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Skeletal muscle depletion is a prognostic factor in patients with cancer. Here, we evaluated the association between the skeletal muscle index (SMI) and local and systemic responses in patients with colon cancer. Patients and methods We analyzed the relationships of the SMI with neutrophil, lymphocyte, monocyte, and platelet counts; the neutrophil-to-lymphocyte ratio; albumin levels; and C-reactive protein levels in a cohort of 561 patients, and with the circulating levels of 39 cytokines in a cohort of 125 patients. We also studied the association between the SMI and tumor local inflammatory response and the effect of SMI on survival. Results The median SMIs for male and female subjects were 44.1 and 34.2 cm2/m2, respectively. We observed positive correlations of the SMI with neutrophil (p=0.022), lymphocyte (p=0.001), and monocyte counts (p=0.003). A low SMI correlated significantly with an increased platelet count (p=0.017), decreased albumin level (p=0.006), neutrophil-to-lymphocyte ratio >3 (p=0.021), and an increased interferon γ-induced protein 10 level (IP-10, r = -0.276, p=0.002). The SMI did not correlate significantly with local inflammatory reactions or the C-reactive protein level. Finally, the SMI was a significant prognosticator in patients with stage III colon cancer (3-year disease-free survival rates: 35.1% for the low SMI arms versus 46.0% in the high SMI arms; HR =2.036; p=0.034). Conclusion This study highlights the association of a low SMI with a high systematic inflammatory response and IP-10 levels. Furthermore, low SMI is a predictor of poor disease-free survival in patients with stage III colon cancer.
Collapse
Affiliation(s)
- Wen-Zhuo He
- VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Qiu-Xia Yang
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Jin-Ye Xie
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510060, People's Republic of China
| | - Peng-Fei Kong
- VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Wan-Ming Hu
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Lin Yang
- VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Yuan-Zhong Yang
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Qian-Kun Xie
- VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Chang Jiang
- VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Chen-Xi Yin
- VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Gui-Fang Guo
- VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Hui-Juan Qiu
- VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Bei Zhang
- VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Liang-Ping Xia
- VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| |
Collapse
|
36
|
Abe M, Shivappa N, Ito H, Oze I, Abe T, Shimizu Y, Hasegawa Y, Kiyohara C, Nomura M, Ogawa Y, Hebert JR, Matsuo K. Dietary inflammatory index and risk of upper aerodigestive tract cancer in Japanese adults. Oncotarget 2018; 9:24028-24040. [PMID: 29844870 PMCID: PMC5963633 DOI: 10.18632/oncotarget.25288] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 04/13/2018] [Indexed: 01/10/2023] Open
Abstract
Background The inflammatory potential of diet that has been shown to be associated with cancer risk. We examined the association between dietary inflammatory potential as measured by the dietary inflammatory index (DII®) and risk of upper aerodigestive tract cancers in a Japanese case-control study. Results A positive association was observed between increasing DII scores and overall upper aerodigestive tract cancers, and across anatomic subsites. For upper aerodigestive tract cancers, the ORQ4vsQ1 = 1.73 (95% CI: 1.37–2.20); head and neck cancer, the ORQ4vsQ1 was 1.92 (95% CI: 1.42–2.59); and for esophageal cancer, the ORQ4vsQ1 was1.71 (95% CI: 1.54–1.90). Risks for hypopharyngeal and nasopharyngeal cancers were greatly elevated: (ORQ4vsQ1 = 4.05 (95% CI: 1.24–13.25) for hypopharyngeal cancer and ORQ4vsQ1 = 4.99 (95% CI: 1.14–21.79) for nasopharyngeal cancer. Conclusion A more pro-inflammatory diet was associated with an elevated risk of upper aerodigestive tract cancers after accounting for important confounders. All anatomic subsites, except larynx, showed the consistently elevated risk with increasing DII score. Those subsites with known etiological associations with persistent infection showed the largest elevation in risk. These results warrant further evaluation in future studies. Materials and Methods This is a case-control study of 1,028 cases and 3,081 age- and sex-matched non-cancer controls recruited at Aichi Cancer Center. DII scores were computed based on estimates of macro- and micro-nutrients from a self-administered food frequency questionnaire. Scores were further categorized into quartiles (based on the distribution in controls). Conditional logistic regression models were fit to estimate odds ratio (OR) and 95% confidence intervals (CIs) adjusted for smoking, ethanol consumption, alcohol flushing, number of teeth, and occupation group.
Collapse
Affiliation(s)
- Makiko Abe
- Department of Preventive Medicine, Kyushu University Faculty of Medical Sciences, Fukuoka, 812-8582, Japan.,Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan.,Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Nitin Shivappa
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, 29208, USA.,Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA.,Connecting Health Innovations LLC, Columbia, SC, 29201, USA
| | - Hidemi Ito
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan.,Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Isao Oze
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Tetsuya Abe
- Department of Gastrointestinal Surgery, Aichi Cancer Center Hospital, Nagoya, 464-8681, Japan
| | - Yasuhiro Shimizu
- Department of Gastrointestinal Surgery, Aichi Cancer Center Hospital, Nagoya, 464-8681, Japan
| | - Yasuhisa Hasegawa
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, 464-8681, Japan
| | - Chikako Kiyohara
- Department of Preventive Medicine, Kyushu University Faculty of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Masatoshi Nomura
- Department of Endocrinology and Metabolism, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - James R Hebert
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, 29208, USA.,Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA.,Connecting Health Innovations LLC, Columbia, SC, 29201, USA
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan.,Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|
37
|
Dietary inflammatory index and risk of oesophageal cancer in Xinjiang Uyghur Autonomous Region, China. Br J Nutr 2018; 119:1068-1075. [PMID: 29502539 DOI: 10.1017/s0007114518000405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diet has been shown to have an effect on both inflammation and oesophageal cancer. This study investigated the association between the dietary inflammatory index (DII®) and the risk of oesophageal cancer in Xinjiang Uyghur Autonomous Region, China. A case-control study was conducted during 2008-2009 in Urumqi and Shihezi. DII scores were calculated based on dietary intake assessed by a validated FFQ administered to 359 incident oesophageal cancer patients and 380 hospital-based controls. Higher DII scores indicate more pro-inflammatory diets. Logistic regression analyses were performed to assess the association between DII scores and oesophageal cancer risk. Oesophageal cancer patients had a significantly higher median DII score (-0·35; interquartile range (IQR)=-2·25, 1·86) than that of controls (-1·41; IQR -3·07, 0·40). Multivariable logistic analysis revealed a positive association between higher DII scores and oesophageal cancer risk (ORQuartile 4 v. 1 2·55; 95 % CI 1·61, 4·06; P trend<0·001). A pro-inflammatory diet appears to be associated with an increased risk of oesophageal cancer in Xinjiang Uyghur Autonomous Region. Specific carcinogenic mechanisms are discussed. Accumulating evidence, to which the study contributes, indicates that encouraging the intake of more anti-inflammatory foods may be a strategy to protect against oesophageal cancer in this high-risk area of China.
Collapse
|
38
|
Nienhüser H, Schmidt T. Angiogenesis and Anti-Angiogenic Therapy in Gastric Cancer. Int J Mol Sci 2017; 19:ijms19010043. [PMID: 29295534 PMCID: PMC5795993 DOI: 10.3390/ijms19010043] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most frequent malignancies worldwide. Despite improvements in diagnosis and therapy, the overall prognosis remains poor. In the last decade, several anti-angiogenic drugs for cancer treatment have been approved and lately also introduced to gastric cancer treatment. While the initial trials focused only on unresectable or metastatic cancer, anti-angiogenic treatment is now also investigated in the perioperative and neoadjuvant setting. In this review, an overview of the role of angiogenesis and angiogenic factors in gastric cancer as well as anti-angiogenic treatment of gastric cancer is provided. Findings from in vitro and animal studies are summarized and put in a context with translational data on angiogenesis in gastric cancer. The most important angiogenic factors and their effect in gastric cancer are highlighted and clinical trials including anti-angiogenic drugs are discussed. Finally, an outlook of biomarkers for predicting response to anti-angiogenic treatment is presented, the ongoing trials on this topic are discussed and current challenges of anti-angiogenic therapy are outlined.
Collapse
Affiliation(s)
- Henrik Nienhüser
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| |
Collapse
|
39
|
Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S, McSkane M, Baba H, Lenz HJ. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy. Cancer Treat Rev 2017; 63:40-47. [PMID: 29207310 DOI: 10.1016/j.ctrv.2017.11.007] [Citation(s) in RCA: 869] [Impact Index Per Article: 108.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
Abstract
Chemokines are proteins which induce chemotaxis, promote differentiation of immune cells, and cause tissue extravasation. Given these properties, their role in anti-tumor immune response in the cancer environment is of great interest. Although immunotherapy has shown clinical benefit for some cancer patients, other patients do not respond. One of the mechanisms of resistance to checkpoint inhibitors may be chemokine signaling. The CXCL9, -10, -11/CXCR3 axis regulates immune cell migration, differentiation, and activation, leading to tumor suppression (paracrine axis). However, there are some reports that show involvements of this axis in tumor growth and metastasis (autocrine axis). Thus, a better understanding of CXCL9, -10, -11/CXCR3 axis is necessary to develop effective cancer control. In this article, we summarize recent evidence regarding CXCL9, CXCL10, CXCL11/CXCR3 axis in the immune system and discuss their potential role in cancer treatment.
Collapse
Affiliation(s)
- Ryuma Tokunaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Michelle McSkane
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 8608556, Japan
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States.
| |
Collapse
|
40
|
Li J, Li B, Zhou P, Zhao J, Wu Z, Yang X, Wei H, Chen T, Xiao J. Nomograms for prognostic factors of spinal giant cell tumor combining traditional clinical characteristics with inflammatory biomarkers after gross total resection. Oncotarget 2017; 8:86934-86946. [PMID: 29156848 PMCID: PMC5689738 DOI: 10.18632/oncotarget.21168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Giant cell tumor (GCT) of bone is a common primary bone tumor, which exhibits local aggressiveness and recurrent potential, especially for the spinal lesion. Increasing evidence indicates that inflammation plays a vital role in tumorigenesis and progression. The prognostic value of inflammatory biomarkers in GCT has not been established. A retrospective analysis was conducted in patients with spinal GCT in Changzheng Hospital Orthopedic Oncological Center (CHOOC) between January 2005 and October 2015 and 129 patients were identified eligible. Traditional clinical parameters and inflammatory indexes such as Neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), and albumin/globulin ratio (AGR) were concluded and analyzed. Kaplan-Meier analysis was used to calculate the disease-free survival (DFS). Cox regression analysis was performed to assess the prognostic factors. Nomograms were established to predict DFS quantitatively for the first time, and Harrell’s concordance index (c-index) was adopted to evaluate prediction accuracy. As results, the DFS was 78.3% in the cohort. Patients were stratified into 2 groups by NLR (≤ 2.70 and > 2.70), PLR (≤ 215.80 and > 215.80), LMR (≤ 2.80 and >2.80) and AGR (< 1.50 and ≥ 1.50). Patients with NLR > 2.70, PLR > 215.80, LMR ≤ 2.80 and AGR < 1.50 were significantly associated with decreased DFS (p < 0.05). Multivariate analysis indicated that treatment history, tumor length, bisphosphonate treatment, NLR and PLR were independent factors of DFS (p < 0.05, respectively). In addition, nomogram on DFS was established according to all significant factors, and c-index was 0.728 (95% CI: 0.710-0.743). Nomograms based on DFS can be recommended as practical models to evaluate prognosis for spinal GCT patients.
Collapse
Affiliation(s)
- Jialin Li
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bo Li
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pingting Zhou
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian Zhao
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhipeng Wu
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xinghai Yang
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Haifeng Wei
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tianrui Chen
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianru Xiao
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|