1
|
Esberg A, Kindstedt E, Isehed C, Lindquist S, Holmlund A, Lundberg P. LIGHT protein: A novel gingival crevicular fluid biomarker associated with increased probing depth after periodontal surgery. J Clin Periodontol 2024; 51:852-862. [PMID: 38390754 DOI: 10.1111/jcpe.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
AIM To evaluate the protein profiles in gingival crevicular fluid (GCF) in relation to clinical outcomes after periodontal surgery and examine if any selected proteins affect the mRNA expression of pro-inflammatory cytokines in human gingival fibroblasts. MATERIALS AND METHODS This exploratory study included 21 consecutive patients with periodontitis. GCF was collected, and the protein pattern (n = 92) and clinical parameters were evaluated prior to surgery and 3, 6 and 12 months after surgery. Fibroblastic gene expression was analysed by real-time quantitative polymerase chain reaction. RESULTS Surgical treatment reduced periodontal pocket depth (PPD) and changed the GCF protein pattern. Twelve months after surgery, 17% of the pockets showed an increase in PPD. Levels of a number of proteins in the GCF decreased after surgical treatment but increased with early signs of tissue destruction, with LIGHT being one of the proteins that showed the strongest association. Furthermore, LIGHT up-regulated the mRNA expression of pro-inflammatory cytokines interleukin (IL)-6, IL-8 and MMP9 in human gingival fibroblasts. CONCLUSIONS LIGHT can potentially detect subjects at high risk of periodontitis recurrence after surgical treatment. Moreover, LIGHT induces the expression of inflammatory cytokines and tissue-degrading enzymes in gingival fibroblasts.
Collapse
Affiliation(s)
- Anders Esberg
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Elin Kindstedt
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Catrine Isehed
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
- Department of Periodontology, Public Dental Health County Council of Gävleborg, Gävle County Hospital, Gävle, Sweden
- Center for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
| | - Susanne Lindquist
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Anders Holmlund
- Department of Periodontology, Public Dental Health County Council of Gävleborg, Gävle County Hospital, Gävle, Sweden
- Center for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
| | - Pernilla Lundberg
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Obesity and Bone Health: A Complex Relationship. Int J Mol Sci 2022; 23:ijms23158303. [PMID: 35955431 PMCID: PMC9368241 DOI: 10.3390/ijms23158303] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023] Open
Abstract
Recent scientific evidence has shown an increased risk of fractures in patients with obesity, especially in those with a higher visceral adipose tissue content. This contradicts the old paradigm that obese patients were more protected than those with normal weight. Specifically, in older subjects in whom there is a redistribution of fat from subcutaneous adipose tissue to visceral adipose tissue and an infiltration of other tissues such as muscle with the consequent sarcopenia, obesity can accentuate the changes characteristic of this age group that predisposes to a greater risk of falls and fractures. Other factors that determine a greater risk in older subjects with obesity are chronic proinflammatory status, altered adipokine secretion, vitamin D deficiency, insulin resistance and reduced mobility. On the other hand, diagnostic tests may be influenced by obesity and its comorbidities as well as by body composition, and risk scales may underestimate the risk of fractures in these patients. Weight loss with physical activity programs and cessation of high-fat diets may reduce the risk. Finally, more research is needed on the efficacy of anti-osteoporotic treatments in obese patients.
Collapse
|
3
|
Terkawi MA, Matsumae G, Shimizu T, Takahashi D, Kadoya K, Iwasaki N. Interplay between Inflammation and Pathological Bone Resorption: Insights into Recent Mechanisms and Pathways in Related Diseases for Future Perspectives. Int J Mol Sci 2022; 23:1786. [PMID: 35163708 PMCID: PMC8836472 DOI: 10.3390/ijms23031786] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Bone is a mineralized and elastic connective tissue that provides fundamental functions in the human body, including mechanical support to the muscles and joints, protection of vital organs and storage of minerals. Bone is a metabolically active organ that undergoes continuous remodeling processes to maintain its architecture, shape, and function throughout life. One of the most important medical discoveries of recent decades has been that the immune system is involved in bone remodeling. Indeed, chronic inflammation has been recognized as the most significant factor influencing bone homeostasis, causing a shift in the bone remodeling process toward pathological bone resorption. Bone osteolytic diseases typified by excessive bone resorption account for one of the greatest causes of disability worldwide, with significant economic and public health burdens. From this perspective, we discuss the recent findings and discoveries highlighting the cellular and molecular mechanisms that regulate this process in the bone microenvironment, in addition to the current therapeutic strategies for the treatment of osteolytic bone diseases.
Collapse
Affiliation(s)
- M Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Gen Matsumae
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Ken Kadoya
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| |
Collapse
|
4
|
Liu W, Chou TF, Garrett-Thomson SC, Seo GY, Fedorov E, Ramagopal UA, Bonanno JB, Wang Q, Kim K, Garforth SJ, Kakugawa K, Cheroutre H, Kronenberg M, Almo SC. HVEM structures and mutants reveal distinct functions of binding to LIGHT and BTLA/CD160. J Exp Med 2021; 218:e20211112. [PMID: 34709351 PMCID: PMC8558838 DOI: 10.1084/jem.20211112] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/20/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022] Open
Abstract
HVEM is a TNF (tumor necrosis factor) receptor contributing to a broad range of immune functions involving diverse cell types. It interacts with a TNF ligand, LIGHT, and immunoglobulin (Ig) superfamily members BTLA and CD160. Assessing the functional impact of HVEM binding to specific ligands in different settings has been complicated by the multiple interactions of HVEM and HVEM binding partners. To dissect the molecular basis for multiple functions, we determined crystal structures that reveal the distinct HVEM surfaces that engage LIGHT or BTLA/CD160, including the human HVEM-LIGHT-CD160 ternary complex, with HVEM interacting simultaneously with both binding partners. Based on these structures, we generated mouse HVEM mutants that selectively recognized either the TNF or Ig ligands in vitro. Knockin mice expressing these muteins maintain expression of all the proteins in the HVEM network, yet they demonstrate selective functions for LIGHT in the clearance of bacteria in the intestine and for the Ig ligands in the amelioration of liver inflammation.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Crystallography, X-Ray
- Drosophila/cytology
- Drosophila/genetics
- Female
- GPI-Linked Proteins/chemistry
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Multiprotein Complexes/chemistry
- Multiprotein Complexes/metabolism
- Mutation
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/chemistry
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 14/chemistry
- Tumor Necrosis Factor Ligand Superfamily Member 14/genetics
- Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
- Yersinia Infections/genetics
- Yersinia Infections/pathology
- Mice
Collapse
Affiliation(s)
- Weifeng Liu
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | | | | | | | - Elena Fedorov
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Udupi A. Ramagopal
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | | | - Kenneth Kim
- La Jolla Institute for Immunology, La Jolla, CA
| | - Scott J. Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Kiyokazu Kakugawa
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hilde Cheroutre
- La Jolla Institute for Immunology, La Jolla, CA
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
5
|
Yang Y, Lv W, Xu S, Shi F, Shan A, Wang J. Molecular and Clinical Characterization of LIGHT/TNFSF14 Expression at Transcriptional Level via 998 Samples With Brain Glioma. Front Mol Biosci 2021; 8:567327. [PMID: 34513918 PMCID: PMC8430338 DOI: 10.3389/fmolb.2021.567327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
LIGHT, also termed TNFSF14, has been reported to play a vital role in different tumors. However, its role in glioma remains unknown. This study is aimed at unveiling the characterization of the transcriptional expression profiling of LIGHT in glioma. We selected 301 glioma patients with mRNA microarray data from the CGGA dataset and 697 glioma patients with RNAseq data from the TCGA dataset. Transcriptome data and clinical data of 998 samples were analyzed. Statistical analyses and figure generation were performed with R language. LIGHT expression showed a positive correlation with WHO grade of glioma. LIGHT was significantly increased in mesenchymal molecular subtype. Gene Ontology analysis demonstrated that LIGHT was profoundly involved in immune response. Moreover, LIGHT was found to be synergistic with various immune checkpoint members, especially HVEM, PD1/PD-L1 pathway, TIM3, and B7-H3. To get further understanding of LIGHT-related immune response, we put LIGHT together with seven immune signatures into GSVA and found that LIGHT was particularly correlated with HCK, LCK, and MHC-II in both datasets, suggesting a robust correlation between LIGHT and activities of macrophages, T-cells, and antigen-presenting cells (APCs). Finally, higher LIGHT indicated significantly shorter survival for glioma patients. Cox regression models revealed that LIGHT expression was an independent variable for predicting survival. In conclusion, LIGHT was upregulated in more malignant gliomas including glioblastoma, IDH wildtype, and mesenchymal subtype. LIGHT was mainly involved in the immune function of macrophages, T cells, and APCs and served as an independent prognosticator in glioma.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pediatrics, Futian Women and Children Institute, Shenzhen, China
| | - Wen Lv
- Emergency Department, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Shihai Xu
- Emergency Department, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Fei Shi
- Emergency Department, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Aijun Shan
- Emergency Department, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Jin Wang
- Emergency Department, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
6
|
Andrews RE, Brown JE, Lawson MA, Chantry AD. Myeloma Bone Disease: The Osteoblast in the Spotlight. J Clin Med 2021; 10:jcm10173973. [PMID: 34501423 PMCID: PMC8432062 DOI: 10.3390/jcm10173973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Lytic bone disease remains a life-altering complication of multiple myeloma, with up to 90% of sufferers experiencing skeletal events at some point in their cancer journey. This tumour-induced bone disease is driven by an upregulation of bone resorption (via increased osteoclast (OC) activity) and a downregulation of bone formation (via reduced osteoblast (OB) activity), leading to phenotypic osteolysis. Treatments are limited, and currently exclusively target OCs. Despite existing bone targeting therapies, patients successfully achieving remission from their cancer can still be left with chronic pain, poor mobility, and reduced quality of life as a result of bone disease. As such, the field is desperately in need of new and improved bone-modulating therapeutic agents. One such option is the use of bone anabolics, drugs that are gaining traction in the osteoporosis field following successful clinical trials. The prospect of using these therapies in relation to myeloma is an attractive option, as they aim to stimulate OBs, as opposed to existing therapeutics that do little to orchestrate new bone formation. The preclinical application of bone anabolics in myeloma mouse models has demonstrated positive outcomes for bone repair and fracture resistance. Here, we review the role of the OB in the pathophysiology of myeloma-induced bone disease and explore whether novel OB targeted therapies could improve outcomes for patients.
Collapse
Affiliation(s)
- Rebecca E. Andrews
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
- Correspondence:
| | - Janet E. Brown
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| | - Michelle A. Lawson
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
| | - Andrew D. Chantry
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| |
Collapse
|
7
|
Matsumae G, Shimizu T, Tian Y, Takahashi D, Ebata T, Alhasan H, Yokota S, Kadoya K, Terkawi MA, Iwasaki N. Targeting thymidine phosphorylase as a potential therapy for bone loss associated with periprosthetic osteolysis. Bioeng Transl Med 2021; 6:e10232. [PMID: 34589604 PMCID: PMC8459589 DOI: 10.1002/btm2.10232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Macrophages are generally thought to play a key role in the pathogenesis of aseptic loosening through initiating periprosthetic inflammation and pathological bone resorption. The aim of this study was to identify macrophage-derived factors that promote osteoclast differentiation and periprosthetic bone destruction. To achieve this, we examined the effects of 12 macrophage-derived factors that were identified by RNA-seq analysis of stimulated macrophages on osteoclast differentiation. Surprisingly, thymidine phosphorylase (TYMP) was found to trigger significant number of osteoclasts that exhibited resorbing activities on dentine slices. Functionally, TYMP knockdown reduced the number of osteoclasts in macrophages that had been stimulated with polyethylene debris. TYMP were detected in serum and synovial tissues of patients that had been diagnosed with aseptic loosening. Moreover, the administration of TYMP onto calvariae of mice induced pathological bone resorption that was accompanied by an excessive infiltration of inflammatory cells and osteoclasts. The RNA-seq for TYMP-induced-osteoclasts was then performed in an effort to understand action mode of TYMP. TYMP stimulation appeared to activate the tyrosine kinase FYN signaling associated with osteoclast formation. Oral administration of saracatinib, a FYN kinase inhibitor, significantly suppressed formation of bone osteolytic lesions in a polyethylene debris-induced osteolysis model. Our findings highlight a novel molecular target for therapeutic intervention in periprosthetic osteolysis.
Collapse
Affiliation(s)
- Gen Matsumae
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Yuan Tian
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Taku Ebata
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Hend Alhasan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Shunichi Yokota
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Ken Kadoya
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Mohamad Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
- Global Institution for Collaborative Research and Education (GI‐CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2. Hokkaido UniversitySapporoJapan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
- Global Institution for Collaborative Research and Education (GI‐CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2. Hokkaido UniversitySapporoJapan
| |
Collapse
|
8
|
Maiso P, Mogollón P, Ocio EM, Garayoa M. Bone Marrow Mesenchymal Stromal Cells in Multiple Myeloma: Their Role as Active Contributors to Myeloma Progression. Cancers (Basel) 2021; 13:2542. [PMID: 34067236 PMCID: PMC8196907 DOI: 10.3390/cancers13112542] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy of plasma cells that proliferate and accumulate within the bone marrow (BM). Work from many groups has made evident that the complex microenvironment of the BM plays a crucial role in myeloma progression and response to therapeutic agents. Within the cellular components of the BM, we will specifically focus on mesenchymal stromal cells (MSCs), which are known to interact with myeloma cells and the other components of the BM through cell to cell, soluble factors and, as more recently evidenced, through extracellular vesicles. Multiple structural and functional abnormalities have been found when characterizing MSCs derived from myeloma patients (MM-MSCs) and comparing them to those from healthy donors (HD-MSCs). Other studies have identified differences in genomic, mRNA, microRNA, histone modification, and DNA methylation profiles. We discuss these distinctive features shaping MM-MSCs and propose a model for the transition from HD-MSCs to MM-MSCs as a consequence of the interaction with myeloma cells. Finally, we review the contribution of MM-MSCs to several aspects of myeloma pathology, specifically to myeloma growth and survival, drug resistance, dissemination and homing, myeloma bone disease, and the induction of a pro-inflammatory and immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Patricia Maiso
- University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria, 39008 Santander, Spain
| | - Pedro Mogollón
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (P.M.); (M.G.)
| | - Enrique M. Ocio
- University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria, 39008 Santander, Spain
| | - Mercedes Garayoa
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (P.M.); (M.G.)
| |
Collapse
|
9
|
Brunetti G, Mori G, Faienza MF. Editorial: Special Issue on "Molecular Mechanisms Regulating Osteoclastogenesis". Int J Mol Sci 2020; 21:ijms21207643. [PMID: 33076553 PMCID: PMC7589872 DOI: 10.3390/ijms21207643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70124 Bari, Italy
- Correspondence: ; Tel.: +39-080-0547-8306
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia Medical School, 71122 Foggia, Italy;
| | - Maria Felicia Faienza
- Department of Biomedical Science and Human Oncology, Paediatric Unit, University of Bari, 70100 Bari, Italy;
| |
Collapse
|
10
|
Brunetti G, Faienza MF, Piacente L, Storlino G, Oranger A, D’Amato G, De Filippo G, Colucci S, Grano M. Shedding "LIGHT" on the Link between Bone and Fat in Obese Children and Adolescents. Int J Mol Sci 2020; 21:E4739. [PMID: 32635185 PMCID: PMC7370129 DOI: 10.3390/ijms21134739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity may affect bone health, but literature reports are contradictory about the correlation of body mass index (BMI) and bone markers. LIGHT, one of the immunostimulatory cytokines regulating the homeostasis of bone and adipose tissue, could be involved in obesity. The study involved 111 obese subjects (12.21 ± 3.71 years) and 45 controls. Patients underwent the evaluation of bone status by quantitative ultrasonography (QUS). LIGHT amounts were evaluated in sera by ELISA, whereas its expression on peripheral blood cells was evaluated by flow cytometry. Osteoclastogenesis was performed by culturing peripheral blood mononuclear cells (PBMCs) with or without anti-LIGHT antibodies. Obese patients showed significant high BMI-standard deviation score (SDS), weight-SDS, and Homeostatic model assessment for insulin resistance (HOMA-IR) that negatively correlated with the reduced Amplitude Dependent Speed of Sound (AD-SoS)-Z-score and Bone Transmission Time (BTT-Z)-score. They displayed significantly higher serum levels of LIGHT compared with controls (497.30 ± 363.45 pg/mL vs. 186.06 ± 101.41 pg/mL, p < 0.001). LIGHT expression on monocytes, CD3+-T-cells, and neutrophils was also higher in obese patients than in the controls. Finally, in PBMC cultures, the addition of anti-LIGHT antibodies induced a significant osteoclastogenesis inhibition. Our study highlighted the high serum levels of LIGHT in obese children and adolescents, and its relationship with both the grade of obesity and bone impairment.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy;
| | - Maria Felicia Faienza
- Department of Biomedical Science and Human Oncology, Paediatric Unit, University of Bari, 70100 Bari, Italy; (M.F.F.); (L.P.)
| | - Laura Piacente
- Department of Biomedical Science and Human Oncology, Paediatric Unit, University of Bari, 70100 Bari, Italy; (M.F.F.); (L.P.)
| | - Giuseppina Storlino
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy; (G.S.); (A.O.); (M.G.)
| | - Angela Oranger
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy; (G.S.); (A.O.); (M.G.)
| | - Gabriele D’Amato
- Neonatal Intensive Care Unit, Di Venere Hospital, 70131 Bari, Italy;
| | - Gianpaolo De Filippo
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Service d’Endocrinologie Diabétologie Pédiatrique, 75019 Paris, France;
| | - Silvia Colucci
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy;
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy; (G.S.); (A.O.); (M.G.)
| |
Collapse
|
11
|
Brunetti G, Belisario DC, Bortolotti S, Storlino G, Colaianni G, Faienza MF, Sanesi L, Alliod V, Buffoni L, Centini E, Voena C, Pulito R, Novello S, Ingravallo G, Rizzi R, Mori G, Reseland JE, Ware CF, Colucci S, Ferracini R, Grano M, Roato I. LIGHT/TNFSF14 Promotes Osteolytic Bone Metastases in Non-small Cell Lung Cancer Patients. J Bone Miner Res 2020; 35:671-680. [PMID: 31826304 DOI: 10.1002/jbmr.3942] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 12/24/2022]
Abstract
Tumor necrosis factor superfamily member 14 (TNFSF14), LIGHT, is a component of the cytokine network that regulates innate and adaptive immune responses, which promote homeostasis of lymphoid organs, liver, and bone. Metastatic tumors often disrupt the tissue microenvironment, thus altering the homeostasis of the invaded organ; however, the underlying mechanisms required further studies. We investigated the role of LIGHT in osteolytic bone disease induced by metastatic non-small cell lung cancer (NSCLC). Patients diagnosed with NSCLC bone metastasis show significantly higher levels of LIGHT expressed in monocytes compared with non-bone metastatic tumors and healthy controls. Serum LIGHT levels were also higher in patients with bone metastases than in controls, suggesting a role for LIGHT in stimulating osteoclast precursors. In bone metastatic patients, we also detected increased RNA expression and serum RANKL levels, thus by adding anti-LIGHT or RANK-fragment crystallizable region (RANK-Fc) in PBMC cultures, a significant inhibition of osteoclastogenesis was observed. To model this observation in mice, we used the mouse lung cancer cell line LLC-1. After intratibial implantation, wild-type mice showed an increased number of osteoclasts but reduced numbers of osteoblasts and decreased osteoid formation. In contrast, Tnfsf14-/- mice showed no significant bone loss or other changes in bone homeostasis associated with this model. These data indicate LIGHT is a key control mechanism for regulating bone homeostasis during metastatic invasion. Thus, LIGHT may be a novel therapeutic target in osteolytic bone metastases. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Dimas C Belisario
- Center for Experimental Research and Medical Studies (CeRMS), A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Sara Bortolotti
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giuseppina Storlino
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Maria F Faienza
- Department of Biomedical Science and Human Oncology, University of Bari, Bari, Italy
| | - Lorenzo Sanesi
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Valentina Alliod
- Department of Oncological Sciences, University of Turin Medical School, Turin, Italy
| | - Lucio Buffoni
- Department of Oncological Sciences, University of Turin Medical School, Turin, Italy
| | - Elisa Centini
- Center for Experimental Research and Medical Studies (CeRMS), A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Claudia Voena
- Center for Experimental Research and Medical Studies (CeRMS), A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Roberta Pulito
- Center for Experimental Research and Medical Studies (CeRMS), A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Silvia Novello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Giuseppe Ingravallo
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Rita Rizzi
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Janne E Reseland
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo Blindern, Oslo, Norway
| | - Carl F Ware
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Silvia Colucci
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Riccardo Ferracini
- Department of Surgical Sciences (DISC), Orthopaedic Clinic-IRCCS, A.O.U. San Martino, Genoa, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Ilaria Roato
- Center for Experimental Research and Medical Studies (CeRMS), A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| |
Collapse
|
12
|
Brunetti G, Storlino G, Oranger A, Colaianni G, Faienza MF, Ingravallo G, Di Comite M, Reseland JE, Celi M, Tarantino U, Passeri G, Ware CF, Grano M, Colucci S. LIGHT/TNFSF14 regulates estrogen deficiency-induced bone loss. J Pathol 2020; 250:440-451. [PMID: 31990039 DOI: 10.1002/path.5385] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/24/2019] [Accepted: 01/15/2020] [Indexed: 12/30/2022]
Abstract
Bone loss induced by ovariectomy is due to the direct activity on bone cells and mesenchymal cells and to the dysregulated activity of bone marrow cells, including immune cells and stromal cells, but the underlying mechanisms are not completely known. Here, we demonstrate that ovariectomy induces the T-cell co-stimulatory cytokine LIGHT, which stimulates both osteoblastogenesis and osteoclastogenesis by modulating osteoclastogenic cytokine expression, including TNF, osteoprotegerin, and the receptor activator of nuclear factor-κB ligand (RANKL). Predictably, LIGHT-deficient (Tnfsf14-/- ) mice are protected from ovariectomy-dependent bone loss, whereas trabecular bone mass increases in mice deficient in both LIGHT and T and B lymphocytes (Rag -/- Tnfsf14 -/- ) and is associated with an inversion of the TNF and RANKL/OPG ratio. Furthermore, women with postmenopausal osteoporosis display high levels of LIGHT in circulating T cells and monocytes. Taken together, these results indicate that LIGHT mediates bone loss induced by ovariectomy, suggesting that patients with postmenopausal osteoporosis may benefit from LIGHT antagonism. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giuseppina Storlino
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Angela Oranger
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Maria F Faienza
- Department of Biomedical Science and Human Oncology, Paediatric Unit, University of Bari, Bari, Italy
| | - Giuseppe Ingravallo
- Department of Emergency and Organ Transplantation, Pathology Section, University of Bari, Bari, Italy
| | - Mariasevera Di Comite
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Janne E Reseland
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Blindern, Oslo, Norway
| | - Monica Celi
- Department of Orthopedics and Traumatology, Tor Vergata University of Rome, Rome, Italy
| | - Umberto Tarantino
- Department of Orthopedics and Traumatology, Tor Vergata University of Rome, Rome, Italy
| | - Giovanni Passeri
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Carl F Ware
- Laboratory of Molecular Immunology, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Silvia Colucci
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| |
Collapse
|
13
|
Dyskova T, Kriegova E, Slobodova Z, Zehnalova S, Kudelka M, Schneiderova P, Fillerova R, Gallo J. Inflammation time-axis in aseptic loosening of total knee arthroplasty: A preliminary study. PLoS One 2019; 14:e0221056. [PMID: 31469844 PMCID: PMC6716666 DOI: 10.1371/journal.pone.0221056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Aseptic loosening (AL) is the most frequent long-term reason for revision of total knee arthroplasty (TKA) affecting about 15-20% patients within 20 years after the surgery. Although there is a solid body of evidence about the crucial role of inflammation in the AL pathogenesis, scared information on inflammation signature and its time-axis in tissues around TKA exists. DESIGN The inflammation protein signatures in pseudosynovial tissues collected at revision surgery from patients with AL (AL, n = 12) and those with no clinical/radiographic signs of AL (non-AL, n = 9) were investigated by Proximity Extension Assay (PEA)-Immunoassay and immunohistochemistry. RESULTS AL tissues had elevated levels of TNF-family members sTNFR2, TNFSF14, sFasL, sBAFF, cytokines/chemokines IL8, CCL2, IL1RA/IL36, sIL6R, and growth factors sAREG, CSF1, comparing to non-AL. High interindividual variability in protein levels was evident particularly in non-AL. Levels of sTNFR2, sBAFF, IL8, sIL6R, and MPO discriminated between AL and non-AL and were associated with the time from index surgery, suggesting the cumulative character of inflammatory osteolytic response to prosthetic byproducts. The source of elevated inflammatory molecules was macrophages and multinucleated osteoclast-like cells in AL and histiocytes and osteoclast-like cells in non-AL tissues, respectively. All proteins were present in higher levels in osteoclast-like cells than in macrophages. CONCLUSIONS Our study revealed a differential inflammation signature between AL and non-AL stages of TKA. It also highlighted the unique patient's response to TKA in non-AL stages. Further confirmation of our preliminary results on a larger cohort is needed. Analysis of the time-axis of processes ongoing around TKA implantation may help to understand the mechanisms driving periprosthetic bone resorption needed for diagnostic/preventative strategies.
Collapse
Affiliation(s)
- Tereza Dyskova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Zuzana Slobodova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Sarka Zehnalova
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Milos Kudelka
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Petra Schneiderova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Regina Fillerova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
14
|
Kleber M, Ntanasis-Stathopoulos I, Dimopoulos MA, Terpos E. Monoclonal antibodies against RANKL and sclerostin for myeloma-related bone disease: can they change the standard of care? Expert Rev Hematol 2019; 12:651-663. [PMID: 31268745 DOI: 10.1080/17474086.2019.1640115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Over 80% of the patients with multiple myeloma (MM) develop myeloma bone disease (MBD) during the disease course. The clinical consequences include serious skeletal-related events (SRE) that impact survival and quality of life. Bisphosphonates are the mainstay in the treatment of MBD. Currently, new therapeutic strategies are being introduced and broaden the therapeutic options in MBD. Areas covered: The purpose of this review is to summarize the current clinical management of MBD and present novel data regarding monoclonal antibodies against the receptor activator of NF-kappa B ligand (RANKL) and sclerostin that may change the clinical practice. Expert opinion: Our better understanding of the pathophysiology of MBD has identified several factors as potential therapeutic targets. Recent data have shown that the RANKL inhibitor denosumab constitutes a new promising option. The non-inferiority compared with bisphosphonates in terms of SRE prevention, the potential survival benefit, the convenience of subcutaneous administration, and the favorable toxicity profile makes denosumab a valuable alternative for physicians in the current treatment of MBD. Anti-sclerostin antibodies are currently under clinical development. Further investigations are needed to address open questions in the field including the value of anabolic agents combined with anti-resorptive and anti-MM drugs in MBD.
Collapse
Affiliation(s)
- Martina Kleber
- a Division of Hematology, Department of Medicine, University Hospital Basel , Basel , Switzerland.,b Division of Internal Medicine, Department of Medicine, University Hospital Basel , Basel , Switzerland
| | - Ioannis Ntanasis-Stathopoulos
- c Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Meletios A Dimopoulos
- c Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Evangelos Terpos
- c Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
15
|
An S, Raju I, Surenkhuu B, Kwon JE, Gulati S, Karaman M, Pradeep A, Sinha S, Mun C, Jain S. Neutrophil extracellular traps (NETs) contribute to pathological changes of ocular graft-vs.-host disease (oGVHD) dry eye: Implications for novel biomarkers and therapeutic strategies. Ocul Surf 2019; 17:589-614. [PMID: 30965123 PMCID: PMC6721977 DOI: 10.1016/j.jtos.2019.03.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE To investigate the role of neutrophil extracellular traps (NETs) and NET-associated proteins in the pathogenesis of oGVHD and whether dismantling of NETs with heparin reduces those changes. METHODS Ocular surface washings from oGVHD patients and healthy subjects were analyzed. Isolated peripheral blood human neutrophils were stimulated to generate NETs and heparinized NETs. We performed in vitro experiments using cell lines (corneal epithelial, conjunctival fibroblast, meibomian gland (MG) epithelial and T cells), and in vivo experiments using murine models, and compared the effects of NETs, heparinized NETs, NET-associated proteins and neutralizing antibodies to NET-associated proteins. RESULTS Neutrophils, exfoliated epithelial cells, NETs and NET-associated proteins (extracellular DNA, Neutrophil Elastase, Myeloperoxidase, Oncostatin M (OSM), Neutrophil gelatinase-associated lipocalin (NGAL) and LIGHT/TNFSF14) are present in ocular surface washings (OSW) and mucocellular aggregates (MCA). Eyes with high number of neutrophils in OSW have more severe signs and symptoms of oGVHD. NETs (and OSM) cause epitheliopathy in murine corneas. NETs (and LIGHT/TNFSF14) increase proliferation of T cells. NETs (and NGAL) inhibit proliferation and differentiation of MG epithelial cells. NETs enhance proliferation and myofibroblast transformation of conjunctival fibroblasts. Sub-anticoagulant dose Heparin (100 IU/mL) dismantles NETs and reduces epithelial, fibroblast, T cell and MG cell changes induced by NETs. CONCLUSION NETs and NET-associated proteins contribute to the pathological changes of oGVHD (corneal epitheliopathy, conjunctival cicatrization, ocular surface inflammation and meibomian gland disease). Our data points to the potential of NET-associated proteins (OSM or LIGHT/TNFSF14) to serve as biomarkers and NET-dismantling biologics (heparin eye drops) as treatment for oGVHD.
Collapse
Affiliation(s)
- Seungwon An
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ilangovan Raju
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bayasgalan Surenkhuu
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ji-Eun Kwon
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Shilpa Gulati
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Muge Karaman
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Anubhav Pradeep
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | - Christine Mun
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sandeep Jain
- Cornea Translational Biology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
16
|
Brunetti G, D'Amato G, Chiarito M, Tullo A, Colaianni G, Colucci S, Grano M, Faienza MF. An update on the role of RANKL-RANK/osteoprotegerin and WNT-ß-catenin signaling pathways in pediatric diseases. World J Pediatr 2019; 15:4-11. [PMID: 30343446 DOI: 10.1007/s12519-018-0198-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bone remodeling is a lifelong process due to the balanced activity of osteoclasts (OCs), the bone-reabsorbing cells, and osteoblasts (OBs), and the bone-forming cells. This equilibrium is regulated by numerous cytokines, but it has been largely demonstrated that the RANK/RANKL/osteoprotegerin and Wnt/β-catenin pathways play a key role in the control of osteoclastogenesis and osteoblastogenesis, respectively. The pro-osteoblastogenic activity of the Wnt/β-catenin can be inhibited by sclerostin and Dickkopf-1 (DKK-1). RANKL, sclerostin and DKKs-1 are often up-regulated in bone diseases, and they are the target of new monoclonal antibodies. DATA SOURCES The authors performed a systematic literature search in PubMed and EMBASE to June 2018, reviewed and selected articles, based on pre-determined selection criteria. RESULTS We re-evaluated the role of RANKL, osteoprotegerin, sclerostin and DKK-1 in altered bone remodeling associated with some inherited and acquired pediatric diseases, such as type 1 diabetes mellitus (T1DM), alkaptonuria (AKU), hemophilia A, osteogenesis imperfecta (OI), 21-hydroxylase deficiency (21OH-D) and Prader-Willi syndrome (PWS). To do so, we considered recent clinical studies done on pediatric patients in which the roles of RANKL-RANK/osteoprotegerin and WNT-ß-catenin signaling pathways have been investigated, and for which innovative therapies for the treatment of osteopenia/osteoporosis are being developed. CONCLUSIONS The case studies taken into account for this review demonstrated that quite frequently both bone reabsorbing and bone deposition are impaired in pediatric diseases. Furthermore, for some of them, bone damage began in childhood but only manifested with age. The use of denosumab could represent a valid alternative therapeutic approach to improve bone health in children, although further studies need to be carried out.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Section of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University "A. Moro" of Bari, Piazza G. Cesare 11, 70124, Bari, Italy
| | | | - Mariangela Chiarito
- Pediatric Section, Department of Biomedical Sciences and Human Oncology, University "A. Moro" of Bari, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies-IBIOM, CNR, 70126, Bari, Italy
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, University "A. Moro" of Bari, Bari, Italy
| | - Silvia Colucci
- Section of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University "A. Moro" of Bari, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University "A. Moro" of Bari, Bari, Italy
| | - Maria Felicia Faienza
- Pediatric Section, Department of Biomedical Sciences and Human Oncology, University "A. Moro" of Bari, Piazza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
17
|
Faienza MF, D'Amato G, Chiarito M, Colaianni G, Colucci S, Grano M, Corbo F, Brunetti G. Mechanisms Involved in Childhood Obesity-Related Bone Fragility. Front Endocrinol (Lausanne) 2019; 10:269. [PMID: 31130918 PMCID: PMC6509993 DOI: 10.3389/fendo.2019.00269] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/11/2019] [Indexed: 01/11/2023] Open
Abstract
Childhood obesity is one of the major health problems in western countries. The excessive accumulation of adipose tissue causes inflammation, oxidative stress, apoptosis, and mitochondrial dysfunctions. Thus, obesity leads to the development of severe co-morbidities including type 2 diabetes mellitus, liver steatosis, cardiovascular, and neurodegenerative diseases which can develop early in life. Furthermore, obese children have low bone mineral density and a greater risk of osteoporosis and fractures. The knowledge about the interplay bone tissue and between adipose is still growing, although recent findings suggest that adipose tissue activity on bone can be fat-depot specific. Obesity is associated to a low-grade inflammation that alters the expression of adiponectin, leptin, IL-6, Monocyte Chemotactic Protein 1 (MCP1), TRAIL, LIGHT/TNFSF14, OPG, and TNFα. These molecules can affect bone metabolism, thus resulting in osteoporosis. The purpose of this review was to deepen the cellular mechanisms by which obesity may facilitate osteoporosis and bone fractures.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | | | - Mariangela Chiarito
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Silvia Colucci
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Filomena Corbo
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Giacomina Brunetti
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Giacomina Brunetti
| |
Collapse
|
18
|
Abstract
Somatic mutations in cancer cells may influence tumor growth, survival, or immune interactions in their microenvironment. The tumor necrosis factor receptor family member HVEM (TNFRSF14) is frequently mutated in cancers and has been attributed a tumor suppressive role in some cancer contexts. HVEM functions both as a ligand for the lymphocyte checkpoint proteins BTLA and CD160, and as a receptor that activates NF-κB signaling pathways in response to BTLA and CD160 and the TNF ligands LIGHT and LTα. BTLA functions to inhibit lymphocyte activation, but has also been ascribed a role in stimulating cell survival. CD160 functions to co-stimulate lymphocyte function, but has also been shown to activate inhibitory signaling in CD4+ T cells. Thus, the role of HVEM within diverse cancers and in regulating the immune responses to these tumors is likely context specific. Additionally, development of therapeutics that target proteins within this network of interacting proteins will require a deeper understanding of how these proteins function in a cancer-specific manner. However, the prominent role of the HVEM network in anti-cancer immune responses indicates a promising area for drug development.
Collapse
|
19
|
Cafiero C, Gigante M, Brunetti G, Simone S, Chaoul N, Oranger A, Ranieri E, Colucci S, Pertosa GB, Grano M, Gesualdo L. Inflammation induces osteoclast differentiation from peripheral mononuclear cells in chronic kidney disease patients: crosstalk between the immune and bone systems. Nephrol Dial Transplant 2018; 33:65-75. [PMID: 28992140 DOI: 10.1093/ndt/gfx222] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Background Inflammation and immune system alterations contribute to bone damage in many pathologies by inducing the differentiation of osteoclasts (OCs), the bone resorbing cells. This link is largely unexplored in chronic kidney disease (CKD) and haemodialysis (HD) patients, in which reduced renal function is accompanied by an increased inflammatory state and skeletal abnormality. Methods We used ex vivo culture experiments to investigate the osteoclastogenic potential of peripheral blood mononuclear cells (PBMCs) of CKD and HD patients, focusing on immune cell subsets and inflammatory cytokines such as LIGHT and receptor activator of nuclear factor κB ligand (RANKL). Results We observed spontaneous osteoclastogenesis with a significant increase in OC formation and bone resorbing activity in late-stage CKD and HD patients when compared with early-stage CKD patients and healthy donors, likely due to an increased expression of RANKL and LIGHT (homologous to Lymphotoxins exhibiting Inducible expression and competing with herpes simplex virus Glycoprotein D for herpes virus entry mediator [HVEM], a receptor expressed by T lymphocytes) in PBMCs. Specific inhibition of these cytokines in PBMCs isolated from CKD stages 3b-5 and HD patients induced the reduction of OC formation in vitro. The phenotypic characterization of peripheral blood cells revealed a significant increase of OC precursors (CD14+CD11b+CD51/61+) and CD14+CD16+ monocytes in advanced CKD and HD patients compared with the control group. Conclusions Our results suggest that circulating inflammatory monocytes from advanced CKD or HD patients trans differentiate into OCs in vitro and play a relevant role in mineral bone disorders and that LIGHT and RANKL represent new potential therapeutic targets in these settings.
Collapse
Affiliation(s)
- Cesira Cafiero
- Department of Emergency and Organ Transplantation Nephrology, Dialysis and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Margherita Gigante
- Department of Emergency and Organ Transplantation Nephrology, Dialysis and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Simona Simone
- Department of Emergency and Organ Transplantation Nephrology, Dialysis and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Nada Chaoul
- Department of Emergency and Organ Transplantation Nephrology, Dialysis and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Angela Oranger
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Elena Ranieri
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Silvia Colucci
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giovanni B Pertosa
- Department of Emergency and Organ Transplantation Nephrology, Dialysis and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation Nephrology, Dialysis and Kidney Transplantation Unit, University of Bari, Bari, Italy
| |
Collapse
|
20
|
Brunetti G, Rizzi R, Storlino G, Bortolotti S, Colaianni G, Sanesi L, Lippo L, Faienza MF, Mestice A, Curci P, Specchia G, Grano M, Colucci S. LIGHT/TNFSF14 as a New Biomarker of Bone Disease in Multiple Myeloma Patients Experiencing Therapeutic Regimens. Front Immunol 2018; 9:2459. [PMID: 30405638 PMCID: PMC6206078 DOI: 10.3389/fimmu.2018.02459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/04/2018] [Indexed: 11/13/2022] Open
Abstract
We have previously shown that through the production of high LIGHT levels, immune cells contribute to both osteoclastogenesis and bone destruction in Multiple Myeloma (MM)-related bone disease. With the aim of further exploring the mechanisms underlying the development of MM-related bone disease, here we focused on a possible role of LIGHT in MM patients with active bone disease despite the treatment received. We detected LIGHT over-expression by circulating CD14+ monocytes from MM patients still showing active bone disease, despite the treatment. In addition, we found over-expression of receptor activator of nuclear factor kappa-B ligand (RANKL), whose pro-osteoclastogenic role is well-known, in T-lymphocytes isolated from the same patients. Although the percentages of circulating osteoclast progenitors, CD14+CD16+ monocytes, were higher in all the MM patients than in the controls spontaneous osteoclastogenesis occurred only in the cultures derived from PBMCs of MM patients with unresponsive bone disease. Of note, in the same cultures osteoclastogenesis was partially or completely inhibited, in a dose-dependent manner, by the addition of RANK-Fc or anti-LIGHT neutralizing antibody, demonstrating the contribution of both LIGHT and RANKL to the enhanced osteoclast formation observed. In addition, high serum levels of TRAP5b and CTX, the two markers of osteoclast activity, were detected in MM patients with bone disease not responsive to treatment. In conclusion, our study indicates a prominent role of LIGHT in the crosstalk among osteoclasts and immune cells, co-involved together with RANKL in the pathophysiological mechanisms leading to MM-related bone disease. This TNF superfamily member may thus be a possible new therapeutic target in MM-related bone disease.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Section of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, School of Medicine, University of Bari, Bari, Italy
| | - Rita Rizzi
- Section of Hematology, Department of Emergency and Organ Transplantation, School of Medicine, University of Bari, Bari, Italy
| | - Giuseppina Storlino
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, School of Medicine, University of Bari, Bari, Italy
| | - Sara Bortolotti
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, School of Medicine, University of Bari, Bari, Italy
| | - Graziana Colaianni
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, School of Medicine, University of Bari, Bari, Italy
| | - Lorenzo Sanesi
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, School of Medicine, University of Bari, Bari, Italy
| | - Luciana Lippo
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, School of Medicine, University of Bari, Bari, Italy
| | - Maria Felicia Faienza
- Paediatric Unit, Department of Biomedical Science and Human Oncology, University of Bari, Bari, Italy
| | - Anna Mestice
- Section of Hematology, Department of Emergency and Organ Transplantation, School of Medicine, University of Bari, Bari, Italy
| | - Paola Curci
- Section of Hematology, Department of Emergency and Organ Transplantation, School of Medicine, University of Bari, Bari, Italy
| | - Giorgina Specchia
- Section of Hematology, Department of Emergency and Organ Transplantation, School of Medicine, University of Bari, Bari, Italy
| | - Maria Grano
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, School of Medicine, University of Bari, Bari, Italy
| | - Silvia Colucci
- Section of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, School of Medicine, University of Bari, Bari, Italy
| |
Collapse
|
21
|
Wang S, Zuo S, Liu Z, Ji X, Yao Z, Wang X. Study on the efficacy and mechanism of triptolide on treating TNF transgenic mice with rheumatoid arthritis. Biomed Pharmacother 2018; 106:813-820. [DOI: 10.1016/j.biopha.2018.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022] Open
|
22
|
Tai YT, Cho SF, Anderson KC. Osteoclast Immunosuppressive Effects in Multiple Myeloma: Role of Programmed Cell Death Ligand 1. Front Immunol 2018; 9:1822. [PMID: 30147691 PMCID: PMC6095980 DOI: 10.3389/fimmu.2018.01822] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
Immunomodulatory drugs and monoclonal antibody-based immunotherapies have significantly improved the prognosis of the patients with multiple myeloma (MM) in the recent years. These new classes of reagents target malignant plasma cells (PCs) and further modulate the immune microenvironment, which prolongs anti-MM responses and may prevent tumor occurrence. Since MM remains an incurable cancer for most patients, there continues to be a need to identify new tumor target molecules and investigate alternative cellular approaches using gene therapeutic strategies and novel treatment mechanisms. Osteoclasts (OCs), as critical multi-nucleated large cells responsible for bone destruction in >80% MM patients, have become an attractive cellular target for the development of novel MM immunotherapies. In MM, OCs are induced and activated by malignant PCs in a reciprocal manner, leading to osteolytic bone disease commonly associated with this malignancy. Significantly, bidirectional interactions between OCs and MM cells create a positive feedback loop to promote MM cell progression, increase angiogenesis, and inhibit immune surveillance via both cell-cell contact and abnormal production of multiple cytokines/chemokines. Most recently, hyper-activated OCs have been associated with activation of programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway, which impairs T cell proliferation and cytotoxicity against MM cells. Importantly, therapeutic anti-CD38 monoclonal antibodies and checkpoint inhibitors can alleviate OC-induced immune suppression. Furthermore, a proliferation-inducing ligand, abundantly secreted by OCs and OC precursors, significantly upregulates PD-L1 expression on MM cells, in addition to directly promoting MM cell proliferation and survival. Coupled with increased PD-L1 expression in other immune-suppressive cells, i.e., myeloid-derived suppressor cells and tumor-associated macrophages, these results strongly suggest that OCs contribute to the immunosuppressive MM BM microenvironment. Based on these findings and ongoing osteoimmunology studies, therapeutic interventions targeting OC number and function are under development to diminish both MM bone disease and related immune suppression. In this review, we discuss the classical and novel roles of OCs in the patho-immunology of MM. We also describe novel therapeutic strategies simultaneously targeting OCs and MM interactions, including PD-1/PD-L1 axis, to overcome the immune-suppressive microenvironment and improve patient outcome.
Collapse
Affiliation(s)
- Yu-Tzu Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Shih-Feng Cho
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.,Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Brunetti G, Faienza MF, Colaianni G, Gigante I, Oranger A, Pignataro P, Ingravallo G, Di Benedetto A, Bortolotti S, Di Comite M, Storlino G, Lippo L, Ward-Kavanagh L, Mori G, Reseland JE, Passeri G, Schipani E, Tamada K, Ware CF, Colucci S, Grano M. Impairment of Bone Remodeling in LIGHT/TNFSF14-Deficient Mice. J Bone Miner Res 2018; 33:704-719. [PMID: 29178458 DOI: 10.1002/jbmr.3345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/08/2017] [Accepted: 11/21/2017] [Indexed: 12/19/2022]
Abstract
Multiple cytokines produced by immune cells induce remodeling and aid in maintaining bone homeostasis through differentiation of bone-forming osteoblasts and bone-resorbing osteoclasts. Here, we investigate bone remodeling controlled by the tumor necrosis factor (TNF) superfamily cytokine LIGHT. LIGHT-deficient mice (Tnfsf14-/- ) exhibit spine deformity and reduced femoral cancellous bone mass associated with an increase in the osteoclast number and a slight decrease of osteoblasts compared with WT mice. The effect of LIGHT in bone cells can be direct or indirect, mediated by both the low expression of the anti-osteoclastogenic osteoprotegerin (OPG) in B and T cells and reduced levels of the pro-osteoblastogenic Wnt10b in CD8+ T cells in Tnfsf14-/- mice. LIGHT stimulation increases OPG levels in B, CD8+ T, and osteoblastic cells, as well as Wnt10b expression in CD8+ T cells. The high bone mass in Light and T- and B-cell-deficient mice (Rag- /Tnfsf14- ) supports the cooperative role of the immune system in bone homeostasis. These results implicate LIGHT as a potential target in bone disease. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Maria Felicia Faienza
- Department of Biomedical Science and Human Oncology, Paediatric Unit, University of Bari, Bari, Italy
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Isabella Gigante
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Angela Oranger
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Paolo Pignataro
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giuseppe Ingravallo
- Department of Emergency and Organ Transplantation, Pathology Section, University of Bari, Bari, Italy
| | - Adriana Di Benedetto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Sara Bortolotti
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Mariasevera Di Comite
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giuseppina Storlino
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Luciana Lippo
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Lindsay Ward-Kavanagh
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Janne E Reseland
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Blindern, Oslo, Norway
| | - Giovanni Passeri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ernestina Schipani
- Departments of Medicine and Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Koji Tamada
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carl F Ware
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Silvia Colucci
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| |
Collapse
|
24
|
Bolzoni M, Toscani D, Storti P, Marchica V, Costa F, Giuliani N. Possible targets to treat myeloma-related osteoclastogenesis. Expert Rev Hematol 2018; 11:325-336. [PMID: 29495905 DOI: 10.1080/17474086.2018.1447921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Bone destruction is the hallmark of multiple myeloma (MM). About 80% of MM patients at diagnosis presents myeloma bone disease (MBD) leading to bone pain and pathological fractures, significantly affecting patients' quality of life. Bisphosphonates are the treatment of choice for MBD, but osteolytic lesions remain a critical issue in the current management of MM patients. Several studies clarified the mechanisms involved in MM-induced osteoclast formation and activation, leading to the identification of new possible targets and the development of better bone-directed therapies, that are discussed in this review. Areas covered: This review summarizes the latest advances in the knowledge of the pathophysiology of the osteoclast formation and activation induced by MM cells, and the new therapeutic targets identified. Recently, neutralizing antibodies (i.e. denosumab, siltuximab, daratumumab), as well as recombinant fusion proteins, and receptor molecular inhibitors, have been developed to block these targets. Clinical trials testing their anti-MBD potential are ongoing. The emerging role of exosomes and microRNAs in the regulation of osteoclast differentiation has been also discussed. Expert commentary: Although further studies are needed to arrive at a clinical approving, the basis for the development of better bone-directed therapies has been established.
Collapse
Affiliation(s)
- Marina Bolzoni
- a Department Medicine and Surgery , University of Parma , Parma , Italy
| | - Denise Toscani
- a Department Medicine and Surgery , University of Parma , Parma , Italy
| | - Paola Storti
- a Department Medicine and Surgery , University of Parma , Parma , Italy
| | | | - Federica Costa
- a Department Medicine and Surgery , University of Parma , Parma , Italy
| | - Nicola Giuliani
- a Department Medicine and Surgery , University of Parma , Parma , Italy.,b Hematology and BMT Center , "Azienda Ospedaliero-Universitaria di Parma" , Parma , Italy
| |
Collapse
|
25
|
Jiang F, Liu H, Liu Z, Yan S, Chen J, Shao Q, Li L, Song J, Wang G, Shao Z, Fu R. Deficient invariant natural killer T cells had impaired regulation on osteoclastogenesis in myeloma bone disease. J Cell Mol Med 2018; 22:2706-2716. [PMID: 29473714 PMCID: PMC5908096 DOI: 10.1111/jcmm.13554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/04/2018] [Indexed: 12/23/2022] Open
Abstract
Recent research showed that invariant natural killer T (iNKT) cells take part in the regulation of osteoclastogenesis. While the role of iNKT cells in myeloma bone disease (MBD) remains unclear. In our study, the quantity of iNKT cells and the levels of cytokines produced by them were measured by flow cytometry. iNKT cells and osteoclasts were induced from peripheral blood mononuclear cells after activation by α‐GalCer or RANKL in vitro. Then, gene expressions and the levels of cytokines were determined by RT‐PCR and ELISA, respectively. The results showed that the quantity of iNKT and production of IFN‐γ by iNKT cells were significantly decreased in newly diagnosed MM (NDMM), and both negatively related with severity of bone disease. Then, the osteoclasts from healthy controls were cultured in vitro and were found to be down‐regulated after α‐GalCer‐stimulated, while there was no significant change with or without α‐GalCer in NDMM patients, indicating that the regulation of osteoclastogenesis by iNKT cells was impaired. Furthermore, the inhibition of osteoclastogenesis by iNKT cells was regulated by IFN‐γ production, which down‐regulated osteoclast‐associated genes. In conclusion, the role of α‐GalCer‐stimulated iNKT cells in regulation of osteoclastogenesis was impaired in MBD, as a result of iNKT cell dysfunction.
Collapse
Affiliation(s)
- Fengjuan Jiang
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Siyang Yan
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Jin Chen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lijuan Li
- Department of Graduate School, Tianjin Medical University, Tianjin, China.,Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jia Song
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojin Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghong Shao
- Department of Graduate School, Tianjin Medical University, Tianjin, China.,Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Fu
- Department of Graduate School, Tianjin Medical University, Tianjin, China.,Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
26
|
Brunetti G, Tummolo A, D'Amato G, Gaeta A, Ortolani F, Piacente L, Giordano P, Colucci S, Grano M, Papadia F, Faienza MF. Mechanisms of Enhanced Osteoclastogenesis in Alkaptonuria. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1059-1068. [PMID: 29353057 DOI: 10.1016/j.ajpath.2017.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/19/2017] [Accepted: 12/19/2017] [Indexed: 12/27/2022]
Abstract
Alkaptonuria (AKU) is a rare disorder characterized by the deficiency of the enzyme homogentisate 1,2-dioxygenase and consequent homogentisate accumulation, which leads to progressive and severe osteoarthopathy starting from the second decade of life. Thus, in AKU patients, bone involvement represents an important clinical issue, which we investigated. Serum levels of receptor activator of NF-κB ligand (RANKL), osteoprotegerin, sclerostin, Dickkopf-1, and bone remodeling markers were measured in nine AKU patients (two children and seven adults) and 22 controls, together with lumbar spine bone mineral density (LS-BMD) and femoral-BMD. In the two AKU children, the average of LS-BMD and femoral-BMD Z-scores were within the normal range, but reduced with respect to the controls. Otherwise, in the adult AKU patients, LS-BMD T-score was inside the normal range, but femoral-BMD T-score reached osteopenic levels. Consistently, in AKU adults, higher RANKL and C-terminal telopeptide of collagen type 1 and lower osteoprotegerin levels were observed than in controls. Otherwise, spontaneous osteoclastogenesis was already evident in peripheral blood mononuclear cell cultures from AKU children, together with a high percentage of circulating osteoclast precursors. Osteoclastogenesis was sustained by the high levels of tumor necrosis factor-α, RANK, RANKL, and LIGHT. In conclusion, the altered osteoclastogenesis was observed already in AKU children, despite the absence of evident injury. Thus, a preventive approach in young patients, targeting osteoclast activity, may prevent the macroscopic bone disease that appears in adult AKU.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University "Aldo Moro" of Bari, Bari, Italy.
| | - Albina Tummolo
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children's Hospital, Bari, Italy
| | | | - Alberto Gaeta
- Radiology Unit, Giovanni XXIII Children's Hospital, Bari, Italy
| | - Federica Ortolani
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children's Hospital, Bari, Italy
| | - Laura Piacente
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "Aldo Moro" of Bari, Bari, Italy
| | - Paola Giordano
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "Aldo Moro" of Bari, Bari, Italy
| | - Silvia Colucci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University "Aldo Moro" of Bari, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University "Aldo Moro" of Bari, Bari, Italy
| | - Francesco Papadia
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children's Hospital, Bari, Italy
| | - Maria F Faienza
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "Aldo Moro" of Bari, Bari, Italy.
| |
Collapse
|
27
|
Terpos E, Ntanasis-Stathopoulos I, Gavriatopoulou M, Dimopoulos MA. Pathogenesis of bone disease in multiple myeloma: from bench to bedside. Blood Cancer J 2018; 8:7. [PMID: 29330358 PMCID: PMC5802524 DOI: 10.1038/s41408-017-0037-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 12/29/2022] Open
Abstract
Osteolytic bone disease is the hallmark of multiple myeloma, which deteriorates the quality of life of myeloma patients, and it affects dramatically their morbidity and mortality. The basis of the pathogenesis of myeloma-related bone disease is the uncoupling of the bone-remodeling process. The interaction between myeloma cells and the bone microenvironment ultimately leads to the activation of osteoclasts and suppression of osteoblasts, resulting in bone loss. Several intracellular and intercellular signaling cascades, including RANK/RANKL/OPG, Notch, Wnt, and numerous chemokines and interleukins are implicated in this complex process. During the last years, osteocytes have emerged as key regulators of bone loss in myeloma through direct interactions with the myeloma cells. The myeloma-induced crosstalk among the molecular pathways establishes a positive feedback that sustains myeloma cell survival and continuous bone destruction, even when a plateau phase of the disease has been achieved. Targeted therapies, based on the better knowledge of the biology, constitute a promising approach in the management of myeloma-related bone disease and several novel agents are currently under investigation. Herein, we provide an insight into the underlying pathogenesis of bone disease and discuss possible directions for future studies.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
28
|
Saunders BM, Rudnicka C, Filipovska A, Davies S, Ward N, Hricova J, Schlaich MP, Matthews VB. Shining LIGHT on the metabolic role of the cytokine TNFSF14 and the implications on hepatic IL-6 production. Immunol Cell Biol 2017; 96:41-53. [DOI: 10.1111/imcb.1002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Bernadette M Saunders
- School of Life Sciences; Faculty of Science; University of Technology Sydney; New South Wales Australia
- Tuberculosis Research Program; Centenary Institute; Newtown New South Wales Australia
| | - Caroline Rudnicka
- Research Centre; Royal Perth Hospital; Perth Western Australia Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research; Nedlands Western Australia Australia
- School of Molecular Sciences; University of Western Australia; Nedlands Western Australia Australia
| | - Stefan Davies
- Harry Perkins Institute of Medical Research; Nedlands Western Australia Australia
| | - Natalie Ward
- School of Medicine; University of Western Australia; Perth Western Australia Australia
- Curtin Health and Innovation Research Institute; Curtin University; Perth Western Australia Australia
| | - Jana Hricova
- Royal Perth Hospital Unit; Dobney Hypertension Centre; School of Biomedical Sciences; University of Western Australia; Perth Western Australia Australia
| | - Markus P Schlaich
- Royal Perth Hospital Unit; Dobney Hypertension Centre; School of Biomedical Sciences; University of Western Australia; Perth Western Australia Australia
- Department of Cardiology and Department of Nephrology; Royal Perth Hospital; Perth Western Australia Australia
| | - Vance B Matthews
- Royal Perth Hospital Unit; Dobney Hypertension Centre; School of Biomedical Sciences; University of Western Australia; Perth Western Australia Australia
| |
Collapse
|
29
|
Faienza MF, Chiarito M, D'amato G, Colaianni G, Colucci S, Grano M, Brunetti G. Monoclonal antibodies for treating osteoporosis. Expert Opin Biol Ther 2017; 18:149-157. [PMID: 29113523 DOI: 10.1080/14712598.2018.1401607] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Osteoporosis is the most widespread skeletal disease requiring innovative therapeutic strategies for its management. The understanding of receptor activator of nuclear factor kappa-B ligand (RANKL) and sclerostin's role in bone cell biology is completely changing the therapeutic landscape. RANKL supports osteoclast formation and activity and is mainly produced by cells of osteoblastic lineage. Sclerostin, an antagonist of the Wnt pathway, has a key role in bone formation and is mainly secreted by osteocytes. High levels of RANKL and sclerostin have been detected in osteoporosis, leading to the production of antibodies able to neutralize their activity. AREAS COVERED In this review, the authors give an overview and discuss the literature and data on denosumab and romosozumab to treat osteoporosis. Clinical studies indicate that long-term treatment with denosumab causes a continuous increase in bone mineral density with low incidence of adverse effects. Romosozumab treatment gives increases bone formation and improves bone mineral density (BMD) though further studies are needed to better evaluate the adverse effects. EXPERT OPINION Denosumab and romosozumab show promise in the treatment of osteoporosis. Furthermore, their different mechanisms of action compared to existing anti-osteoporotic drugs may permit alternative strategies for osteoporosis treatment down the line
Collapse
Affiliation(s)
- Maria Felicia Faienza
- a Department of Biomedical Sciences and Human Oncology, Pediatric Section , University 'A. Moro' of Bari , Bari , Italy
| | - Mariangela Chiarito
- a Department of Biomedical Sciences and Human Oncology, Pediatric Section , University 'A. Moro' of Bari , Bari , Italy
| | - Gabriele D'amato
- b Neonatal Intensive Care Unit , Di Venere Hospital , Bari , Italy
| | - Graziana Colaianni
- c Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology , University 'A. Moro' of Bari , Bari , Italy
| | - Silvia Colucci
- d Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology , University 'A. Moro' of Bari , Bari , Italy
| | - Maria Grano
- c Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology , University 'A. Moro' of Bari , Bari , Italy
| | - Giacomina Brunetti
- d Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology , University 'A. Moro' of Bari , Bari , Italy
| |
Collapse
|
30
|
Brunetti G, Faienza MF, Colaianni G, Grano M, Colucci S. Mechanisms of Altered Bone Remodeling in Multiple Myeloma. Clin Rev Bone Miner Metab 2017. [DOI: 10.1007/s12018-017-9236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Li B, Qian M, Cao H, Jia Q, Wu Z, Yang X, Ma T, Wei H, Chen T, Xiao J. TGF-β2-induced ANGPTL4 expression promotes tumor progression and osteoclast differentiation in giant cell tumor of bone. Oncotarget 2017; 8:54966-54977. [PMID: 28903395 PMCID: PMC5589634 DOI: 10.18632/oncotarget.18629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/29/2017] [Indexed: 11/25/2022] Open
Abstract
Although emerging studies have implicated that Aiopoietin-like 4 Protein (ANGPTL4) is related to the aggressiveness and metastasis of many tumors, the role of ANGPLT4 in giant cell tumor (GCT) of bone was rarely investigated. The mechanism of ANGPLT4 in tumor-induced osteoclastogenesis still remains unclear. In this study, we first demonstrated that ANGPTL4 was highly expressed in GCT compared to normal tissues, while we showed that TGF-β2 released by osteoclasts induced bone resorption could increase the expression of ANGPTL4 in GCTSCs. By using the luciferase reporter assay, we found that two downstreams of TGF-β2, Smad3 and Smad4, could directly activate the promoter of ANGPTL4, which might explain the mechanism of TGF-β2-induced ANGPLT4 expression. Moreover, knockout of ANGPTL4 by TALENs in GCTSCs inhibited tumor growth, angiogenesis and osteoclastogenesis in GCT in vitro. By using the chick chorio-allantoic membrane (CAM) models, we further showed that inhibition of ANGPTL4 suppressed tumor growth and giant cell formation in vivo. In addition, some new pathways involved in ANGPTL4 application were identified through microarray assay, which may partly explain the mechanism of ANGPTL4 in GCT. Taken together, our study for the first time identified the role of ANGPLT4 in GCT of bone, which may provide a new target for the diagnosis and treatment of GCT.
Collapse
Affiliation(s)
- Bo Li
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ming Qian
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Qi Jia
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhipeng Wu
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xinghai Yang
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tianyi Ma
- Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, China
| | - Haifeng Wei
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tianrui Chen
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianru Xiao
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
32
|
Sabokbar A, Afrough S, Mahoney DJ, Uchihara Y, Swales C, Athanasou NA. Role of LIGHT in the pathogenesis of joint destruction in rheumatoid arthritis. World J Exp Med 2017; 7:49-57. [PMID: 28589079 PMCID: PMC5439172 DOI: 10.5493/wjem.v7.i2.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/01/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To characterise the role of substitutes for receptor-activator nuclear factor kappa-B ligand (RANKL) in rheumatoid arthritis (RA) joint destruction.
METHODS Synovial fluid (SF) macrophages isolated from the knee joint of RA patients were incubated with 25 ng/mL macrophage-colony stimulating factor (M-CSF) and 50 ng/mL LIGHT (lymphotoxin-like, exhibits inducible expression and competes with herpes simplex virus glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes) in the presence and absence of 25 ng/mL RANKL and 100 ng/mL osteoprotegerin (OPG) on glass coverslips and dentine slices. Osteoclastogenesis was assessed by the formation of multinucleated cells (MNCs) expressing tartrate-resistant acid phosphatase (TRAP) on coverslips and the extent of lacunar resorption pit formation on dentine slices. The concentration of LIGHT in RA and osteoarthritis (OA) synovial fluid was measured by an enzyme-linked immunosorbent assay (ELISA) and the expression of LIGHT in RA and OA synovium was determined by immunohistochemistry using an indirect immunoperoxidase technique.
RESULTS In cultures of RA SF macrophages treated with LIGHT and M-CSF, there was significant formation of TRAP + MNCs on coverslips and extensive lacunar resorption pit formation on dentine slices. SF-macrophage-osteoclast differentiation was not inhibited by the addition of OPG, a decoy receptor for RANKL. Resorption pits were smaller and less confluent than in RANKL-treated cultures but the overall percentage area of the dentine slice resorbed was comparable in LIGHT- and RANKL-treated cultures. LIGHT significantly stimulated RANKL-induced lacunar resorption compared with RA SF macrophages treated with either RANKL or LIGHT alone. LIGHT was strongly expressed by synovial lining cells, subintimal macrophages and endothelial cells in RA synovium and the concentration of LIGHT was much higher in RA compared with OA SF.
CONCLUSION LIGHT is highly expressed in RA synovium and SF, stimulates RANKL-independent/dependent osteoclastogenesis from SF macrophages and may contribute to marginal erosion formation.
Collapse
|
33
|
Bone Regeneration Induced by Bone Porcine Block with Bone Marrow Stromal Stem Cells in a Minipig Model of Mandibular "Critical Size" Defect. Stem Cells Int 2017; 2017:9082869. [PMID: 28553359 PMCID: PMC5434233 DOI: 10.1155/2017/9082869] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/02/2016] [Accepted: 03/19/2017] [Indexed: 12/23/2022] Open
Abstract
Introduction. Adding stem cells to biodegradable scaffolds to enhance bone regeneration is a valuable option. Different kinds of stem cells with osteoblastic activity were tested, such as bone marrow stromal stem cells (BMSSCs). Aim. To assess a correct protocol for osteogenic stem cell differentiation, so BMSSCs were seeded on a bone porcine block (BPB). Materials and Methods. Bone marrow from six minipigs was extracted from tibiae and humeri and treated to isolate BMSSCs. After seeding on BPB, critical-size defects were created on each mandible of the minipigs and implanted with BPB and BPB/BMSSCs. After three months, histomorphometric analysis was performed. Results. Histomorphometric analysis provided percentages of the three groups. Tissues present in control defects were 23 ± 2% lamellar bone, 28 ± 1% woven bone, and 56 ± 4% marrow spaces; in BPB defects were 20 ± 5% BPB, 32 ± 2% lamellar bone, 24 ± 1% woven bone, and 28 ± 2% marrow spaces; in BPB/BMSSCs defects were 17 ± 4% BPB/BMSSCs, 42 ± 2% lamellar bone, 12 ± 1% woven bone, and 22 ± 3% marrow spaces. Conclusion. BPB used as a scaffold to induce bone regeneration may benefit from the addition of BDPSCs in the tissue-engineered constructs.
Collapse
|
34
|
Sabokbar A, Mahoney DJ, Hemingway F, Athanasou NA. Non-Canonical (RANKL-Independent) Pathways of Osteoclast Differentiation and Their Role in Musculoskeletal Diseases. Clin Rev Allergy Immunol 2017; 51:16-26. [PMID: 26578261 DOI: 10.1007/s12016-015-8523-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Osteoclasts are multinucleated cells derived from mononuclear phagocyte precursors (monocytes, macrophages); in the canonical pathway of osteoclastogenesis, these cells fuse and differentiate to form specialised bone-resorbing osteoclasts in the presence of receptor activator for nuclear factor kappa B ligand (RANKL). Non-canonical pathways of osteoclastogenesis have been described in which several cytokines and growth factors are able to substitute for RANKL. These humoral factors can generally be divided into those which, like RANKL, are tumour necrosis family (TNF) superfamily members and those which are not; the former include TNFα lymphotoxin exhibiting inducible expression and competing with herpes simplex virus glycoprotein D for herpesvirus entry mediator, a receptor expressed by T lymphocytes (LIGHT), a proliferation inducing ligand (APRIL) and B cell activating factor (BAFF); the latter include transforming growth factor beta (TGF-β), interleukin-6 (IL-6), IL-8, IL-11, nerve growth factor (NGF), insulin-like growth factor-I (IGF-I) and IGF-II. This review summarises the evidence for these RANKL substitutes in inducing osteoclast differentiation from tissue-derived and circulating mononuclear phagocytes. It also assesses the role these factors are likely to play in promoting the pathological bone resorption seen in many inflammatory and neoplastic lesions of bone and joint including rheumatoid arthritis, aseptic implant loosening and primary and secondary tumours of bone.
Collapse
Affiliation(s)
- A Sabokbar
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - D J Mahoney
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - F Hemingway
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - N A Athanasou
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
35
|
Gavriatopoulou M, Dimopoulos MA, Kastritis E, Terpos E. Emerging treatment approaches for myeloma-related bone disease. Expert Rev Hematol 2017; 10:217-228. [PMID: 28092987 DOI: 10.1080/17474086.2017.1283213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Multiple myeloma is characterized by the presence of osteolytic lesions that leads to devastating skeletal-related events in the majority of patients. Myeloma bone disease is attributed to increased osteoclastic and suppressed osteoblastic activity. Areas covered: Bisphosphonates remain the main treatment option, however they have limitations on their own. Understanding the pathogenesis of myeloma bone disease may provide a roadmap for new therapeutic approaches. The pathway of RANKRANKLOPG pathway has revealed denosumab, a monoclonal antibody targeting RANKL as a novel emerging therapy for myeloma-related bone disease. Furthermore, the Wnt signaling inhibitors dicckopf-1 and sclerostin that are implicated in the pathogenesis of bone destruction of myeloma are now targeted by novel monoclonal antibodies. Activin-A is a TGF-beta superfamily member which increases osteoclast activity and inhibits osteoblast function in myeloma; sotatercept and other molecules targeting activin-A have entered into clinical development. Several other molecules and pathways that play an important role in the pathogenesis of bone destruction in myeloma, such as periostin, adiponectin, Notch and BTK signaling are also targeted in an attempt to develop novel therapies for myeloma-related bone disease. Expert commentary: We summarize the current advances in the biology of myeloma bone disease and the potential therapeutic targets.
Collapse
Affiliation(s)
- Maria Gavriatopoulou
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens School of Medicine , Athens , Greece
| | - Meletios A Dimopoulos
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens School of Medicine , Athens , Greece
| | - Efstathios Kastritis
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens School of Medicine , Athens , Greece
| | - Evangelos Terpos
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens School of Medicine , Athens , Greece
| |
Collapse
|
36
|
Collins FL, Schepper JD, Rios-Arce ND, Steury MD, Kang HJ, Mallin H, Schoenherr D, Camfield G, Chishti S, McCabe LR, Parameswaran N. Immunology of Gut-Bone Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1033:59-94. [PMID: 29101652 PMCID: PMC5749247 DOI: 10.1007/978-3-319-66653-2_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years a link between the gastrointestinal tract and bone health has started to gain significant attention. Dysbiosis of the intestinal microbiota has been linked to the pathology of a number of diseases which are associated with bone loss. In addition modulation of the intestinal microbiota with probiotic bacteria has revealed to have both beneficial local and systemic effects. In the present chapter, we discuss the intestinal and bone immune systems, explore how intestinal disease affects the immune system, and examine how these pathologic changes could adversely impact bone health.
Collapse
Affiliation(s)
- Fraser L Collins
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - Naiomy Deliz Rios-Arce
- Department of Physiology, Michigan State University, East Lansing, MI, USA
- Comparative Medicine and Integrative Biology Program, East Lansing, MI, USA
| | - Michael D Steury
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Ho Jun Kang
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Heather Mallin
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Daniel Schoenherr
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Glen Camfield
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Saima Chishti
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Laura R McCabe
- Department of Physiology and Department of Radiology, Biomedical Imaging Research Centre, Michigan State University, East Lansing, MI, USA.
| | - Narayanan Parameswaran
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
- Comparative Medicine and Integrative Biology Program, East Lansing, MI, USA.
| |
Collapse
|
37
|
Wang J, Liu Y, Wang L, Sun X, Wang Y. Clinical prognostic significance and pro-metastatic activity of RANK/RANKL via the AKT pathway in endometrial cancer. Oncotarget 2016; 7:5564-75. [PMID: 26734994 PMCID: PMC4868706 DOI: 10.18632/oncotarget.6795] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/08/2015] [Indexed: 01/13/2023] Open
Abstract
RANK/RANKL plays a key role in metastasis of certain malignant tumors, which makes it a promising target for developing novel therapeutic strategies for cancer. However, the prognostic value and pro-metastatic activity of RANK in endometrial cancer (EC) remain to be determined. Thus, the present study investigated the effect of RANK on the prognosis of EC patients, as well as the pro-metastatic activity of EC cells. The results indicated that those with high expression of RANK showed decreased overall survival and progression-free survival. Statistical analysis revealed the positive correlations between RANK/RANKL expression and metastasis-related factors. Additionally, RANK/RANKL significantly promoted cell migration/invasion via activating AKT/β-catenin/Snail pathway in vitro. However, RANK/RANKL-induced AKT activation could be suppressed after osteoprotegerin (OPG) treatment. Furthermore, the combination of medroxyprogesterone acetate (MPA) and RANKL could in turn attenuate the effect of RANKL alone. Similarly, MPA could partially inhibit the RANK-induced metastasis in an orthotopic mouse model via suppressing AKT/β-catenin/Snail pathway. Therefore, therapeutic inhibition of MPA in RANK/RANKL-induced metastasis was mediated by AKT/β-catenin/Snail pathway both in vitro and in vivo, suggesting a potential target of RANK for gene-based therapy for EC.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Liu
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Sun
- Laboratory for Gynecologic Oncology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yudong Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Roato I, Alotto D, Belisario DC, Casarin S, Fumagalli M, Cambieri I, Piana R, Stella M, Ferracini R, Castagnoli C. Adipose Derived-Mesenchymal Stem Cells Viability and Differentiating Features for Orthopaedic Reparative Applications: Banking of Adipose Tissue. Stem Cells Int 2016; 2016:4968724. [PMID: 28018432 PMCID: PMC5153503 DOI: 10.1155/2016/4968724] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/24/2016] [Accepted: 11/02/2016] [Indexed: 01/05/2023] Open
Abstract
Osteoarthritis is characterized by loss of articular cartilage also due to reduced chondrogenic activity of mesenchymal stem cells (MSCs) from patients. Adipose tissue is an attractive source of MSCs (ATD-MSCs), representing an effective tool for reparative medicine, particularly for treatment of osteoarthritis, due to their chondrogenic and osteogenic differentiation capability. The treatment of symptomatic knee arthritis with ATD-MSCs proved effective with a single infusion, but multiple infusions could be also more efficacious. Here we studied some crucial aspects of adipose tissue banking procedures, evaluating ATD-MSCs viability, and differentiation capability after cryopreservation, to guarantee the quality of the tissue for multiple infusions. We reported that the presence of local anesthetic during lipoaspiration negatively affects cell viability of cryopreserved adipose tissue and cell growth of ATD-MSCs in culture. We observed that DMSO guarantees a faster growth of ATD-MSCs in culture than trehalose. At last, ATD-MSCs derived from fresh and cryopreserved samples at -80°C and -196°C showed viability and differentiation ability comparable to fresh samples. These data indicate that cryopreservation of adipose tissue at -80°C and -196°C is equivalent and preserves the content of ATD-MSCs in Stromal Vascular Fraction (SVF), guaranteeing the differentiation ability of ATD-MSCs.
Collapse
Affiliation(s)
- Ilaria Roato
- CeRMS, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - Daniela Alotto
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | | | - Stefania Casarin
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - Mara Fumagalli
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - Irene Cambieri
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - Raimondo Piana
- Department of Orthopaedic Oncology, CTO Hospital, Torino, Italy
| | - Maurizio Stella
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | | | - Carlotta Castagnoli
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Torino, Italy
| |
Collapse
|
39
|
Heo SK, Noh EK, Gwon GD, Kim JY, Jo JC, Choi Y, Koh S, Baek JH, Min YJ, Kim H. LIGHT (TNFSF14) Increases the Survival and Proliferation of Human Bone Marrow-Derived Mesenchymal Stem Cells. PLoS One 2016; 11:e0166589. [PMID: 27835685 PMCID: PMC5106019 DOI: 10.1371/journal.pone.0166589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022] Open
Abstract
LIGHT (HVEM-L, TNFSF14, or CD258), an entity homologous to lymphotoxins, with inducible nature and the ability to compete with herpes simplex virus glycoprotein D for herpes virus entry mediator (HVEM)/tumor necrosis factor (TNF)-related 2, is a member of the TNF superfamily. It is expressed as a homotrimer on activated T cells and dendritic cells (DCs), and has three receptors: HVEM, LT-β receptor (LTβR), and decoy receptor 3 (DcR3). So far, three receptors with distinct cellular expression patterns are known to interact with LIGHT. Follicular DCs and stromal cells bind LIGHT through LTβR. We monitored the effects of LIGHT on human bone marrow-derived mesenchymal stem cells (BM-MSCs). At first, we checked the negative and positive differentiation markers of BM-MSCs. And we confirmed the quality of MSCs by staining cells undergoing adipogenesis (Oil Red O staining), chondrogenesis (Alcian blue staining), and osteogenesis (Alizarin red staining). After rhLIGHT treatment, we monitored the count, viability, and proliferation of cells and cell cycle distribution. PDGF and TGFβ production by rhLIGHT was examined by ELISA, and the underlying biological mechanisms were studied by immunoblotting by rhLIGHT treatment. LTβR was constitutively expressed on the surface of human BM-MSCs. Cell number and viability increased after rhLIGHT treatment. BM-MSC proliferation was induced by an increase in the S/G2/M phase. The expression of not only diverse cyclins such as cyclin B1, D1, D3, and E, but also CDK1 and CDK2, increased, while that of p27 decreased, after rhLIGHT treatment. RhLIGHT-induced PDGF and TGFβ production mediated by STAT3 and Smad3 activation accelerated BM-MSC proliferation. Thus, LIGHT and LTβR interaction increases the survival and proliferation of human BM-MSCs, and therefore, LIGHT might play an important role in stem cell therapy.
Collapse
Affiliation(s)
- Sook-Kyoung Heo
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 682-060, Republic of Korea
| | - Eui-Kyu Noh
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 682-714, Republic of Korea
| | - Gi-Dong Gwon
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 682-060, Republic of Korea
| | - Jeong Yi Kim
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 682-060, Republic of Korea
| | - Jae-Cheol Jo
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 682-714, Republic of Korea
| | - Yunsuk Choi
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 682-714, Republic of Korea
| | - SuJin Koh
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 682-714, Republic of Korea
| | - Jin Ho Baek
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 682-714, Republic of Korea
| | - Young Joo Min
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 682-714, Republic of Korea
| | - Hawk Kim
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 682-060, Republic of Korea
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 682-714, Republic of Korea
- * E-mail:
| |
Collapse
|
40
|
Matthews GM, de Matos Simoes R, Dhimolea E, Sheffer M, Gandolfi S, Dashevsky O, Sorrell JD, Mitsiades CS. NF-κB dysregulation in multiple myeloma. Semin Cancer Biol 2016; 39:68-76. [PMID: 27544796 DOI: 10.1016/j.semcancer.2016.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/29/2022]
Abstract
The nuclear factor-κB (NF-κB) transcription factor family plays critical roles in the pathophysiology of hematologic neoplasias, including multiple myeloma. The current review examines the roles that this transcription factor system plays in multiple myeloma cells and the nonmalignant accessory cells of the local microenvironment; as well as the evidence indicating that a large proportion of myeloma patients harbor genomic lesions which perturb diverse genes regulating the activity of NF-κB. This article also discusses the therapeutic targeting of the NF-κB pathway using proteasome inhibitors, a pharmacological class that has become a cornerstone in the therapeutic management of myeloma; and reviews some of the future challenges and opportunities for NF-κB-related research in myeloma.
Collapse
Affiliation(s)
- Geoffrey M Matthews
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Ricardo de Matos Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Eugen Dhimolea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Sara Gandolfi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Jeffrey D Sorrell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States.
| |
Collapse
|
41
|
Xi H, An R, Li L, Wang G, Tao Y, Gao L. Myeloma bone disease: Progress in pathogenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:149-155. [PMID: 27496181 DOI: 10.1016/j.pbiomolbio.2016.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/31/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022]
Abstract
Myeloma bone disease (MBD) is one of the most serious complications of multiple myeloma (MM) and the most severe cause of MM morbidity. Dysregulation of osteoblast and osteoclast cells plays key roles in MBD. In the bone marrow microenvironment, myeloma cells, osteoblasts, osteoclasts and bone marrow stromal cells can secrete multiple cytokines, categorized as osteoclast cell activating factors (OAFs) and osteoblast cell inactivating factors, which have been discovered to participate in bone metabolism and contribute to the pathogenesis of MBD. Several signaling pathways related to these cytokines were also revealed in the MBD pathogenesis. To better understand the pathogenesis of MBD and therefore the potential therapeutic targets of this disease, we will summarize recent study progress in the factors and underlying signaling pathways involved in the occurrence and development of MBD.
Collapse
Affiliation(s)
- Hao Xi
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ran An
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lu Li
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Gang Wang
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Yi Tao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Lu Gao
- Department of Physiology, Second Military Medical University, Shanghai, China.
| |
Collapse
|
42
|
Buondonno I, Gazzano E, Jean SR, Audrito V, Kopecka J, Fanelli M, Salaroglio IC, Costamagna C, Roato I, Mungo E, Hattinger CM, Deaglio S, Kelley SO, Serra M, Riganti C. Mitochondria-Targeted Doxorubicin: A New Therapeutic Strategy against Doxorubicin-Resistant Osteosarcoma. Mol Cancer Ther 2016; 15:2640-2652. [PMID: 27466354 DOI: 10.1158/1535-7163.mct-16-0048] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/23/2016] [Indexed: 11/16/2022]
Abstract
Doxorubicin is one of the leading drugs for osteosarcoma standard chemotherapy. A total of 40% to 45% of high-grade osteosarcoma patients are unresponsive, or only partially responsive, to doxorubicin (Dox), due to the overexpression of the drug efflux transporter ABCB1/P-glycoprotein (Pgp). The aim of this work is to improve Dox-based regimens in resistant osteosarcomas. We used a chemically modified mitochondria-targeted Dox (mtDox) against Pgp-overexpressing osteosarcomas with increased resistance to Dox. Unlike Dox, mtDox accumulated at significant levels intracellularly, exerted cytotoxic activity, and induced necrotic and immunogenic cell death in Dox-resistant/Pgp-overexpressing cells, fully reproducing the activities exerted by anthracyclines in drug-sensitive tumors. mtDox reduced tumor growth and cell proliferation, increased apoptosis, primed tumor cells for recognition by the host immune system, and was less cardiotoxic than Dox in preclinical models of drug-resistant osteosarcoma. The increase in Dox resistance was paralleled by a progressive upregulation of mitochondrial metabolism. By widely modulating the expression of mitochondria-related genes, mtDox decreased mitochondrial biogenesis, the import of proteins and metabolites within mitochondria, mitochondrial metabolism, and the synthesis of ATP. These events were paralleled by increased reactive oxygen species production, mitochondrial depolarization, and mitochondria-dependent apoptosis in resistant osteosarcoma cells, where Dox was completely ineffective. We propose mtDox as a new effective agent with a safer toxicity profile compared with Dox that may be effective for the treatment of Dox-resistant/Pgp-positive osteosarcoma patients, who strongly need alternative and innovative treatment strategies. Mol Cancer Ther; 15(11); 2640-52. ©2016 AACR.
Collapse
Affiliation(s)
| | - Elena Gazzano
- Department of Oncology, University of Torino, Torino, Italy
| | - Sae Rin Jean
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Department of Chemistry, Faculty of Arts and Science, University of Toronto, Toronto, Ontario, Canada
| | - Valentina Audrito
- Human Genetics Foundation (HuGeF), Torino, Italy.,Department of Medical Sciences, University of Torino, Torino, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Torino, Italy
| | - Marilù Fanelli
- Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | | | | | - Ilaria Roato
- Center for Research and Experimental Medicine (Ce.R.M.S.), San Giovanni Battista Hospital, Torino, Italy
| | - Eleonora Mungo
- Department of Oncology, University of Torino, Torino, Italy
| | - Claudia M Hattinger
- Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Silvia Deaglio
- Human Genetics Foundation (HuGeF), Torino, Italy.,Department of Medical Sciences, University of Torino, Torino, Italy
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Department of Chemistry, Faculty of Arts and Science, University of Toronto, Toronto, Ontario, Canada
| | - Massimo Serra
- Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy.
| |
Collapse
|
43
|
Yang H, Xing H, Wang Z, Xia J, Wan Y, Hou B, Zhang J. Effects of Intermittent Lighting on Broiler Growth Performance, Slaughter Performance, Serum Biochemical Parameters and Tibia Parameters. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2015.4143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
del Rio ML, Fernandez-Renedo C, Chaloin O, Scheu S, Pfeffer K, Shintani Y, Perez-Simon JA, Schneider P, Rodriguez-Barbosa JI. Immunotherapeutic targeting of LIGHT/LTβR/HVEM pathway fully recapitulates the reduced cytotoxic phenotype of LIGHT-deficient T cells. MAbs 2016; 8:478-90. [PMID: 26752542 DOI: 10.1080/19420862.2015.1132130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor necrosis factor (TNF)/TNF receptor (TNFR) superfamily members play essential roles in the development of the different phases of the immune response. Mouse LIGHT (TNFSF14) is a type II transmembrane protein with a C-terminus extracellular TNF homology domain (THD) that assembles in homotrimers and regulates the course of the immune responses by signaling through 2 receptors, the herpes virus entry mediator (HVEM, TNFRSF14) and the lymphotoxin β receptor (LTβR, TNFRSF3). LIGHT is a membrane-bound protein transiently expressed on activated T cells, natural killer (NK) cells and immature dendritic cells that can be proteolytically cleaved by a metalloprotease and released to the extracellular milieu. The immunotherapeutic potential of LIGHT blockade was evaluated in vivo. Administration of an antagonist of LIGHT interaction with its receptors attenuated the course of graft-versus-host reaction and recapitulated the reduced cytotoxic activity of LIGHT-deficient T cells adoptively transferred into non-irradiated semiallogeneic recipients. The lack of LIGHT expression on donor T cells or blockade of LIGHT interaction with its receptors slowed down the rate of T cell proliferation and decreased the frequency of precursor alloreactive T cells, retarding T cell differentiation toward effector T cells. The blockade of LIGHT/LTβR/HVEM pathway was associated with delayed downregulation of interleukin-7Rα and delayed upregulation of inducible costimulatory molecule expression on donor alloreactive CD8 T cells that are typical features of impaired T cell differentiation. These results expose the relevance of LIGHT/LTβR/HVEM interaction for the potential therapeutic control of the allogeneic immune responses mediated by alloreactive CD8 T cells that can contribute to prolong allograft survival.
Collapse
Affiliation(s)
- Maria-Luisa del Rio
- a Transplantation Immunobiology Section, Institute of Biomedicine, University of Leon and Castilla and Leon Regional Transplantation Coordination, Leon University Hospital , Leon , Spain
| | - Carlos Fernandez-Renedo
- a Transplantation Immunobiology Section, Institute of Biomedicine, University of Leon and Castilla and Leon Regional Transplantation Coordination, Leon University Hospital , Leon , Spain
| | - Olivier Chaloin
- b CNRS UPR 3572, IBMC, Immunopathologie et Chimie Thérapeutique, 15 rue René Descartes , Strasbourg , France
| | - Stefanie Scheu
- c Institute of Medical Microbiology and Hospital Hygiene, University of Duesseldorf, Universitaetsstr. 1, Geb. 22.21 , Duesseldorf , D-40225 Germany
| | - Klaus Pfeffer
- c Institute of Medical Microbiology and Hospital Hygiene, University of Duesseldorf, Universitaetsstr. 1, Geb. 22.21 , Duesseldorf , D-40225 Germany
| | - Yasushi Shintani
- d Department of International Affairs , Japan Science and Technology Agency, K´s Gobancho 7 , Gobancho Chiyoda-Ku , Tokyo , 102-0076 , Japan
| | - Jose-Antonio Perez-Simon
- e Department of Hematology , University Hospital Virgen del Rocio / Institute of Biomedicine (IBIS / CSIC) , Sevilla , Spain
| | - Pascal Schneider
- f Department of Biochemistry , University of Lausanne , 1066 Epalinges , Switzerland
| | - Jose-Ignacio Rodriguez-Barbosa
- a Transplantation Immunobiology Section, Institute of Biomedicine, University of Leon and Castilla and Leon Regional Transplantation Coordination, Leon University Hospital , Leon , Spain
| |
Collapse
|
45
|
Falank C, Fairfield H, Reagan MR. Signaling Interplay between Bone Marrow Adipose Tissue and Multiple Myeloma cells. Front Endocrinol (Lausanne) 2016; 7:67. [PMID: 27379019 PMCID: PMC4911365 DOI: 10.3389/fendo.2016.00067] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/03/2016] [Indexed: 01/04/2023] Open
Abstract
In the year 2000, Hanahan and Weinberg (1) defined the six Hallmarks of Cancer as: self-sufficiency in growth signals, evasion of apoptosis, insensitivity to antigrowth mechanisms, tissue invasion and metastasis, limitless replicative potential, and sustained angiogenesis. Eleven years later, two new Hallmarks were added to the list (avoiding immune destruction and reprograming energy metabolism) and two new tumor characteristics (tumor-promoting inflammation and genome instability and mutation) (2). In multiple myeloma (MM), a destructive cancer of the plasma cell that grows predominantly in the bone marrow (BM), it is clear that all these hallmarks and characteristics are in play, contributing to tumor initiation, drug resistance, disease progression, and relapse. Bone marrow adipose tissue (BMAT) is a newly recognized contributor to MM oncogenesis and disease progression, potentially affecting MM cell metabolism, immune action, inflammation, and influences on angiogenesis. In this review, we discuss the confirmed and hypothetical contributions of BMAT to MM development and disease progression. BMAT has been understudied due to technical challenges and a previous lack of appreciation for the endocrine function of this tissue. In this review, we define the dynamic, responsive, metabolically active BM adipocyte. We then describe how BMAT influences MM in terms of: lipids/metabolism, hypoxia/angiogenesis, paracrine or endocrine signaling, and bone disease. We then discuss the connection between BMAT and systemic inflammation and potential treatments to inhibit the feedback loops between BM adipocytes and MM cells that support MM progression. We aim for researchers to use this review to guide and help prioritize their experiments to develop better treatments or a cure for cancers, such as MM, that associate with and may depend on BMAT.
Collapse
Affiliation(s)
- Carolyne Falank
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Heather Fairfield
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Michaela R. Reagan
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, USA
- School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- School of Medicine, Tufts University, Boston, MA, USA
- *Correspondence: Michaela R. Reagan,
| |
Collapse
|
46
|
Mori G, D'Amelio P, Faccio R, Brunetti G. Bone-immune cell crosstalk: bone diseases. J Immunol Res 2015; 2015:108451. [PMID: 26000310 PMCID: PMC4427089 DOI: 10.1155/2015/108451] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/22/2015] [Accepted: 01/25/2015] [Indexed: 01/14/2023] Open
Abstract
Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma.
Collapse
Affiliation(s)
- Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Patrizia D'Amelio
- Department of Medical Science, Section of Gerontology and Bone Metabolism Diseases, University of Torino, 10126 Torino, Italy
| | - Roberta Faccio
- Department of Orthopedics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy
| |
Collapse
|