1
|
Rathore M, Curry K, Huang W, Wright M, Martin D, Baek J, Taylor D, Miyagi M, Tang W, Feng H, Li Y, Wang Z, Graor H, Willis J, Bryson E, Boutros CS, Desai O, Islam BN, Ellis LM, Moss SE, Winter JM, Greenwood J, Wang R. Leucine-Rich Alpha-2-Glycoprotein 1 Promotes Metastatic Colorectal Cancer Growth Through Human Epidermal Growth Factor Receptor 3 Signaling. Gastroenterology 2024:S0016-5085(24)05566-5. [PMID: 39393543 DOI: 10.1053/j.gastro.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND & AIMS Therapy failure in patients with metastatic colorectal cancer (mCRC, ∼80% occur in the liver) remains an overarching challenge. Preclinical studies demonstrated that human epidermal growth factor receptor 3 (HER3) promotes colorectal cancer (CRC) cell survival, but therapies blocking the neuregulin-induced canonical HER3 signaling have made little impact in the clinic. Recent studies suggest that the liver microenvironment promotes CRC growth by activating HER3 in a neuregulin-independent fashion, thus elucidation of these mechanisms may reveal new strategies for treating patients with mCRC. METHODS Patient-derived primary liver endothelial cells (ECs) were used to interrogate EC-CRC crosstalk. We conducted proteomic analysis to identify EC-secreted factor(s) that triggers noncanonical HER3 activation in CRC and determined the subsequent effects on mCRC using diverse murine mCRC models. In vitro studies with genetic and pharmacological interventions were used to map the noncanonical HER3 pathway. RESULTS We demonstrated that EC-secreted leucine-rich alpha-2-glycoprotein 1 (LRG1) directly binds and activates HER3 and promotes CRC growth distinct from neuregulin, the canonical HER3 ligand. Blocking host-derived LRG1 by gene knockout or a neutralizing antibody impaired mCRC outgrowth in the liver and prolonged mouse survival. We identified protein synthesis activated by the PI3K-PDK1-RSK-eIF4B axis as the biologically relevant signaling cascade downstream of the LRG1-HER3 interaction, which was not blocked by conventional HER3-specific antibodies that failed in prior clinical trials. CONCLUSIONS LRG1 is a novel HER3 ligand and mediates liver-mCRC crosstalk. The LRG1-HER3 signaling axis is distinct from canonical HER3 signaling and represents a new therapeutic opportunity to treat patients with mCRC, and potentially other types of liver metastases.
Collapse
Affiliation(s)
- Moeez Rathore
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Kimberly Curry
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Michel'le Wright
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Daniel Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Jiyeon Baek
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Derek Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio; Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Wen Tang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Hao Feng
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Yamu Li
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Zhenghe Wang
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Hallie Graor
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Joseph Willis
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Elizabeth Bryson
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Christina S Boutros
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Omkar Desai
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Bianca N Islam
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio; Department of Medicine, Division of Gastroenterology and Liver Disease, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Lee M Ellis
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Jordan M Winter
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - John Greenwood
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Rui Wang
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| |
Collapse
|
2
|
Cheng W, Song Q, Zhou A, Lin L, Zhao Y, Duan J, Zhou Z, Peng Y, Liu C, Zeng Y, Chen P. LRG1 promotes the apoptosis of pulmonary microvascular endothelial cells through KLK10 in chronic obstructive pulmonary disease. Tob Induc Dis 2024; 22:TID-22-72. [PMID: 38707515 PMCID: PMC11069109 DOI: 10.18332/tid/186404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/16/2023] [Accepted: 03/23/2024] [Indexed: 05/07/2024] Open
Abstract
INTRODUCTION Cigarette smoking is one of the most important causes of COPD and could induce the apoptosis of pulmonary microvascular endothelial cells (PMVECs). The conditional knockout of LRG1 from endothelial cells reduced emphysema in mice. However, the mechanism of the deletion of LRG1 from endothelial cells rescued by cigarette smoke (CS) induced emphysema remains unclear. This research aimed to demonstrate whether LRG1 promotes the apoptosis of PMVECs through KLK10 in COPD. METHODS Nineteen patients were divided into three groups: control non-COPD (n=7), smoker non-COPD (n=7), and COPD (n=5). The emphysema mouse model defined as the CS exposure group was induced by CS exposure plus cigarette smoke extract (CSE) intraperitoneal injection for 28 days. Primary PMVECs were isolated from the mouse by magnetic bead sorting method via CD31-Dynabeads. Apoptosis was detected by western blot and flow cytometry. RESULTS LRG1 was increased in lung tissue of COPD patients and CS exposure mice, and CSE-induced PMVECs apoptosis model. KLK10 was over-expressed in lung tissue of COPD patients and CS exposure mice, and CSE-induced PMVECs apoptosis model. LRG1 promoted apoptosis in PMVECs. LRG1 knockdown reversed CSE-induced apoptosis in PMVECs. The mRNA and protein expression of KLK10 were increased after over-expressed LRG1 in PMVECs isolated from mice. Similarly, both the mRNA and protein levels of KLK10 were decreased after LRG1 knockdown in PMVECs. The result of co-immunoprecipitation revealed a protein-protein interaction between LRG1 and KLK10 in PMVECs. KLK10 promoted apoptosis via the down-regulation of Bcl-2/Bax in PMVECs. KLK10 knockdown could reverse CSE-induced apoptosis in PMVECs. CONCLUSIONS LRG1 promotes apoptosis via up-regulation of KLK10 in PMVECs isolated from mice. KLK10 promotes apoptosis via the down-regulation of Bcl-2/Bax in PMVECs. There was a direct protein-protein interaction between LRG1 and KLK10 in PMVECs. Our novel findings provide insights into the understanding of LRG1/KLK10 function as a potential molecule in COPD.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Qing Song
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Aiyuan Zhou
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Lin
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Yiyang Zhao
- Department of Diagnostic Ultrasound, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaxi Duan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Yating Peng
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Cong Liu
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Yuqin Zeng
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
3
|
Park HN, Song MJ, Choi YE, Lee DH, Chung JH, Lee ST. LRG1 Promotes ECM Integrity by Activating the TGF-β Signaling Pathway in Fibroblasts. Int J Mol Sci 2023; 24:12445. [PMID: 37569820 PMCID: PMC10418909 DOI: 10.3390/ijms241512445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Leucine-rich alpha-2-glycoprotein 1 (LRG1) mediates skin repair and fibrosis by stimulating the transforming growth factor-beta (TGF-β) signaling pathway. In the present study, we investigated the effect of LRG1 on extracellular matrix (ECM) integrity in fibroblasts, as well as on skin aging. The treatment of dermal fibroblasts with purified recombinant human LRG1 increased type I collagen secretion and decreased matrix metalloproteinase-1 secretion. Additionally, LRG1 promoted SMAD2/SMAD3 phosphorylation in a pattern similar to that of TGF-β1 treatment. An inhibitor of TGF-β receptor 1 abolished LRG1-induced SMAD2 phosphorylation. RNA sequencing identified "extracellular region", "extracellular space", and "extracellular matrix" as the main Gene Ontology terms in the differentially expressed genes of fibroblasts treated with or without LRG1. LRG1 increased TGF-β1 mRNA levels, suggesting that LRG1 partially transactivates the expression of TGF-β1. Furthermore, an increased expression of type I collagen was also observed in fibroblasts grown in three-dimensional cultures on a collagen gel mimicking the dermis. LRG1 mRNA and protein levels were significantly reduced in elderly human skin tissues with weakened ECM integrity compared to in young human skin tissues. Taken together, our results suggest that LRG1 could retard skin aging by activating the TGF-β signaling pathway, increasing ECM deposition while decreasing its degradation.
Collapse
Affiliation(s)
- Han Na Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (H.N.P.); (Y.E.C.)
| | - Min Ji Song
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (M.J.S.); (D.H.L.); (J.H.C.)
| | - Young Eun Choi
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (H.N.P.); (Y.E.C.)
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (M.J.S.); (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (M.J.S.); (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
- Institute on Aging, Seoul National University, Seoul 03080, Republic of Korea
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (H.N.P.); (Y.E.C.)
| |
Collapse
|
4
|
Ho CK, Zheng D, Sun J, Wen D, Wu S, Yu L, Gao Y, Zhang Y, Li Q. LRG-1 promotes fat graft survival through the RAB31-mediated inhibition of hypoxia-induced apoptosis. J Cell Mol Med 2022; 26:3153-3168. [PMID: 35322540 PMCID: PMC9170820 DOI: 10.1111/jcmm.17280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 11/29/2022] Open
Abstract
Autologous adipose tissue is an ideal soft tissue filling material, and its biocompatibility is better than that of artificial tissue substitutes, foreign bodies and heterogeneous materials. Although autologous fat transplantation has many advantages, the low retention rate of adipose tissue limits its clinical application. Here, we identified a secretory glycoprotein, leucine‐rich‐alpha‐2‐glycoprotein 1 (LRG‐1), that could promote fat graft survival through RAB31‐mediated inhibition of hypoxia‐induced apoptosis. We showed that LRG‐1 injection significantly increased the maintenance of fat volume and weight compared with the control. In addition, higher fat integrity, more viable adipocytes and fewer apoptotic cells were observed in the LRG‐1‐treated groups. Furthermore, we discovered that LRG‐1 could reduce the ADSC apoptosis induced by hypoxic conditions. The mechanism underlying the LRG‐1‐mediated suppression of the ADSC apoptosis induced by hypoxia was mediated by the upregulation of RAB31 expression. Using LRG‐1 for fat grafts may prove to be clinically successful for increasing the retention rate of transplanted fat.
Collapse
Affiliation(s)
- Chia-Kang Ho
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Danning Zheng
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaming Sun
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dongsheng Wen
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Wu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li Yu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ya Gao
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Zhang
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Majek P, Sovova Z, Pecankova K, Cermak J, Gasova Z, Pecherkova P, Ignjatovic V, Dyr JE. Mass spectrometry, data re-analysis, and homology modelling predict posttranslational modifications of leucine-rich alpha-2-glycoprotein as a marker of myelodysplastic syndrome. Cancer Biomark 2022; 34:485-492. [PMID: 35275518 DOI: 10.3233/cbm-210033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Leucine-rich alpha-2-glycoprotein (LRG) has been repeatedly proposed as a potential plasma biomarker for myelodysplastic syndrome (MDS). OBJECTIVE The goal of our work was to establish the total LRG plasma level and LRG posttranslational modifications (PTMs) as a suitable MDS biomarker. METHODS The total plasma LRG concentration was determined with ELISA, whilst the LRG-specific PTMs and their locations, were established using mass spectrometry and public mass spectrometry data re-analysis. Homology modelling and sequence analysis were used to establish the potential impact of PTMs on LRG functions via their impact on the LRG structure. RESULTS While the results showed that the total LRG plasma concentration is not a suitable MDS marker, alterations within two LRG sites correlated with MDS diagnosis (p= 0.0011). Sequence analysis and the homology model suggest the influence of PTMs within the two LRG sites on the function of this protein. CONCLUSIONS We report the presence of LRG proteoforms that correlate with diagnosis in the plasma of MDS patients. The combination of mass spectrometry, re-analysis of publicly available data, and homology modelling, represents an approach that can be used for any protein to predict clinically relevant protein sites for biomarker research despite the character of the PTMs being unknown.
Collapse
Affiliation(s)
- Pavel Majek
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zofie Sovova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Klara Pecankova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jaroslav Cermak
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zdenka Gasova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Pavla Pecherkova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Vera Ignjatovic
- Murdoch Children's Research Institute, Parkville Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Parkville Victoria, Australia
| | - Jan E Dyr
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
6
|
Camilli C, Hoeh AE, De Rossi G, Moss SE, Greenwood J. LRG1: an emerging player in disease pathogenesis. J Biomed Sci 2022; 29:6. [PMID: 35062948 PMCID: PMC8781713 DOI: 10.1186/s12929-022-00790-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
The secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1) was first described as a key player in pathogenic ocular neovascularization almost a decade ago. Since then, an increasing number of publications have reported the involvement of LRG1 in multiple human conditions including cancer, diabetes, cardiovascular disease, neurological disease, and inflammatory disorders. The purpose of this review is to provide, for the first time, a comprehensive overview of the LRG1 literature considering its role in health and disease. Although LRG1 is constitutively expressed by hepatocytes and neutrophils, Lrg1-/- mice show no overt phenotypic abnormality suggesting that LRG1 is essentially redundant in development and homeostasis. However, emerging data are challenging this view by suggesting a novel role for LRG1 in innate immunity and preservation of tissue integrity. While our understanding of beneficial LRG1 functions in physiology remains limited, a consistent body of evidence shows that, in response to various inflammatory stimuli, LRG1 expression is induced and directly contributes to disease pathogenesis. Its potential role as a biomarker for the diagnosis, prognosis and monitoring of multiple conditions is widely discussed while dissecting the mechanisms underlying LRG1 pathogenic functions. Emphasis is given to the role that LRG1 plays as a vasculopathic factor where it disrupts the cellular interactions normally required for the formation and maintenance of mature vessels, thereby indirectly contributing to the establishment of a highly hypoxic and immunosuppressive microenvironment. In addition, LRG1 has also been reported to affect other cell types (including epithelial, immune, mesenchymal and cancer cells) mostly by modulating the TGFβ signalling pathway in a context-dependent manner. Crucially, animal studies have shown that LRG1 inhibition, through gene deletion or a function-blocking antibody, is sufficient to attenuate disease progression. In view of this, and taking into consideration its role as an upstream modifier of TGFβ signalling, LRG1 is suggested as a potentially important therapeutic target. While further investigations are needed to fill gaps in our current understanding of LRG1 function, the studies reviewed here confirm LRG1 as a pleiotropic and pathogenic signalling molecule providing a strong rationale for its use in the clinic as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Carlotta Camilli
- Institute of Ophthalmology, University College London, London, UK.
| | - Alexandra E Hoeh
- Institute of Ophthalmology, University College London, London, UK
| | - Giulia De Rossi
- Institute of Ophthalmology, University College London, London, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, London, UK
| | - John Greenwood
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
7
|
O'Connor MN, Kallenberg DM, Camilli C, Pilotti C, Dritsoula A, Jackstadt R, Bowers CE, Watson HA, Alatsatianos M, Ohme J, Dowsett L, George J, Blackburn JWD, Wang X, Singhal M, Augustin HG, Ager A, Sansom OJ, Moss SE, Greenwood J. LRG1 destabilizes tumor vessels and restricts immunotherapeutic potency. MED 2021; 2:1231-1252.e10. [PMID: 35590198 PMCID: PMC7614757 DOI: 10.1016/j.medj.2021.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND A poorly functioning tumor vasculature is pro-oncogenic and may impede the delivery of therapeutics. Normalizing the vasculature, therefore, may be beneficial. We previously reported that the secreted glycoprotein leucine-rich α-2-glycoprotein 1 (LRG1) contributes to pathogenic neovascularization. Here, we investigate whether LRG1 in tumors is vasculopathic and whether its inhibition has therapeutic utility. METHODS Tumor growth and vascular structure were analyzed in subcutaneous and genetically engineered mouse models in wild-type and Lrg1 knockout mice. The effects of LRG1 antibody blockade as monotherapy, or in combination with co-therapies, on vascular function, tumor growth, and infiltrated lymphocytes were investigated. FINDINGS In mouse models of cancer, Lrg1 expression was induced in tumor endothelial cells, consistent with an increase in protein expression in human cancers. The expression of LRG1 affected tumor progression as Lrg1 gene deletion, or treatment with a LRG1 function-blocking antibody, inhibited tumor growth and improved survival. Inhibition of LRG1 increased endothelial cell pericyte coverage and improved vascular function, resulting in enhanced efficacy of cisplatin chemotherapy, adoptive T cell therapy, and immune checkpoint inhibition (anti-PD1) therapy. With immunotherapy, LRG1 inhibition led to a significant shift in the tumor microenvironment from being predominantly immune silent to immune active. CONCLUSIONS LRG1 drives vascular abnormalization, and its inhibition represents a novel and effective means of improving the efficacy of cancer therapeutics. FUNDING Wellcome Trust (206413/B/17/Z), UKRI/MRC (G1000466, MR/N006410/1, MC/PC/14118, and MR/L008742/1), BHF (PG/16/50/32182), Health and Care Research Wales (CA05), CRUK (C42412/A24416 and A17196), ERC (ColonCan 311301 and AngioMature 787181), and DFG (CRC1366).
Collapse
Affiliation(s)
- Marie N O'Connor
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - David M Kallenberg
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Carlotta Camilli
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Camilla Pilotti
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Athina Dritsoula
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Rene Jackstadt
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Chantelle E Bowers
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - H Angharad Watson
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Markella Alatsatianos
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Julia Ohme
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Laura Dowsett
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Jestin George
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Jack W D Blackburn
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Xiaomeng Wang
- Institute of Ophthalmology, University College London, London SE5 8BN, UK
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ann Ager
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, London SE5 8BN, UK.
| | - John Greenwood
- Institute of Ophthalmology, University College London, London SE5 8BN, UK.
| |
Collapse
|
8
|
Lázár J, Kovács A, Tornyi I, Takács L, Kurucz I. Detection of leucine-rich alpha-2-glycoprotein 1-containing immunocomplexes in the plasma of lung cancer patients with epitope-specific mAbs. Cancer Biomark 2021; 34:113-122. [PMID: 34744074 DOI: 10.3233/cbm-210164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. With the expectation of improved survival, tremendous efforts and resources have been invested in the discovery of specific biomarkers for early detection of the disease. Several investigators have reported the presence of cancer-associated autoantibodies in the plasma or serum of lung cancer patients. Previously, we used a monoclonal-antibody proteomics technology platform for the discovery of novel lung cancer-associated proteins. OBJECTIVE The identification of specific protein epitopes associated with various cancers is a promising method in biomarker discovery. Here, in a preliminary study, we aimed to detect autoantibody-leucine-rich alpha-2-glycoprotein 1 (LRG1) immunocomplexes using epitope-specific monoclonal antibodies (mAbs). METHODS We performed sandwich ELISA assays using the LRG1 epitope-specific capture mAbs, Bsi0352 and Bsi0392, and an IgG-specific polyclonal antibody coupled to a reporter system as the detection reagent. We tested the plasma of lung-cancer patients and apparently healthy controls. RESULTS Depending on the epitope specificity of the capture monoclonal mAb, we were either unable to distinguish the control from LC-groups or showed a higher level of LRG1 and IgG autoantibody containing immunocomplexes in the plasma of non-small cell lung cancer and small cell lung cancer subgroups of lung cancer patients than in the plasma of control subjects. CONCLUSIONS Our findings underline the importance of protein epitope-specific antibody targeted approaches in biomarker research, as this may increase the accuracy of previously described tests, which will need further validation in large clinical cohorts.
Collapse
Affiliation(s)
- József Lázár
- Biosystems International Kft., Debrecen, Hungary
| | | | - Ilona Tornyi
- Biosystems International Kft., Debrecen, Hungary.,Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Takács
- Biosystems International Kft., Debrecen, Hungary.,Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
9
|
Jemmerson R. Paradoxical Roles of Leucine-Rich α 2-Glycoprotein-1 in Cell Death and Survival Modulated by Transforming Growth Factor-Beta 1 and Cytochrome c. Front Cell Dev Biol 2021; 9:744908. [PMID: 34692699 PMCID: PMC8531642 DOI: 10.3389/fcell.2021.744908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Leucine-rich α2-glycoprotein-1 (LRG1) has been shown to impact both apoptosis and cell survival, pleiotropic effects similar to one of its known ligands, transforming growth factor-beta 1 (TGF-β1). Recent studies have given insight into the TGF-β1 signaling pathways involved in LRG1-mediated death versus survival signaling, i.e., canonical or non-canonical. Interaction of LRG1 with another ligand, extracellular cytochrome c (Cyt c), promotes cell survival, at least for lymphocytes. LRG1 has been shown to bind Cyt c with high affinity, higher than it binds TGF-β1, making it sensitive to small changes in the level of extracellular Cyt c within a microenvironment that may arise from cell death. Evidence is presented here that LRG1 can bind TGF-β1 and Cyt c simultaneously, raising the possibility that the ternary complex may present a signaling module with the net effect of signaling, cell death versus survival, determined by the relative extent to which the LRG1 binding sites are occupied by these two ligands. A possible role for LRG1 should be considered in studies where extracellular effects of TGF-β1 and Cyt c have been observed in media supplemented with LRG1-containing serum.
Collapse
Affiliation(s)
- Ronald Jemmerson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Serum biomarker discovery related to pathogenesis in acute coronary syndrome by proteomic approach. Biosci Rep 2021; 41:228672. [PMID: 34002800 PMCID: PMC8182988 DOI: 10.1042/bsr20210344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
Acute coronary syndrome (ACS) results from inadequate supply of blood flow from the coronary arteries to the heart or ischemia. ACS has an extremely high morbidity and mortality. The levels of biomarkers currently used for detection of ACS also increase in response to myocardial necrosis and other diseases and are not elevated immediately after symptoms appear, thus limiting their diagnostic capacity. Therefore, we aimed to discover new ACS diagnostic biomarkers with high sensitivity and specificity that are specifically related to ACS pathogenesis. Sera from 50 patients with ACS and healthy controls (discovery cohort) each were analyzed using mass spectrometry (MS) to identify differentially expressed proteins, and protein candidates were evaluated as ACS biomarkers in 120 people in each group (validation cohort). α-1-acid glycoprotein 1 (AGP1), complement C5 (C5), leucine-rich α-2-glycoprotein (LRG), and vitronectin (VN) were identified as biomarkers whose levels increase and gelsolin (GSN) as a biomarker whose levels decrease in patients with ACS. We concluded that these biomarkers are associated with the pathogenesis of ACS and can predict the onset of ACS prior to the appearance of necrotic biomarkers.
Collapse
|
11
|
Nakajima H, Nakajima K, Takaishi M, Ohko K, Serada S, Fujimoto M, Naka T, Sano S. The Skin-Liver Axis Modulates the Psoriasiform Phenotype and Involves Leucine-Rich α-2 Glycoprotein. THE JOURNAL OF IMMUNOLOGY 2021; 206:1469-1477. [PMID: 33648938 DOI: 10.4049/jimmunol.2000502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/27/2021] [Indexed: 01/04/2023]
Abstract
Leucine-rich α-2 glycoprotein (LRG), one of the acute phase proteins mainly produced by the liver, similar to C-reactive protein, has been recognized as an inflammatory biomarker for rheumatoid arthritis and inflammatory bowel diseases. We recently demonstrated that LRG was also increased in the sera of psoriasis patients and correlated well with disease activity with a sensitivity and specificity much higher than C-reactive protein; however, whether LRG mechanistically contributed to the pathogenesis of psoriasis remained unclear. In this study, we explored the role of LRG in psoriasiform inflammation using LRG-knockout (KO) mice in an imiquimod (IMQ)-mediated model. Following topical treatment with IMQ, serum levels of LRG and its expression in the liver were abruptly elevated. Similarly, an acute surge of proinflammatory cytokines was observed in the liver, including IL-1β, TNF-α, and IL-6, although LRG-KO mice showed delayed responses. LRG-KO mice showed less skin inflammation in the IMQ model than wild-type mice. K5.Stat3C mice developed psoriasis-like lesions following tape stripping, which also abruptly induced LRG expression in the liver. A deficiency of Lrg mitigated tape stripping-induced lesions, similar to the IMQ model. These results indicate that LRG modulates both feed-forward and feedback loops of cytokines in the skin-liver axis involved with psoriasiform inflammation.
Collapse
Affiliation(s)
- Hideki Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan; and
| | - Kimiko Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan; and
| | - Mikiro Takaishi
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan; and
| | - Kentaro Ohko
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan; and
| | - Satoshi Serada
- Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Minoru Fujimoto
- Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Tetsuji Naka
- Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan; and
| |
Collapse
|
12
|
Nakajima H, Nakajima K, Serada S, Fujimoto M, Naka T, Sano S. The involvement of leucine-rich α-2 glycoprotein in the progression of skin and lung fibrosis in bleomycin-induced systemic sclerosis model. Mod Rheumatol 2021; 31:1120-1128. [PMID: 33535851 DOI: 10.1080/14397595.2021.1883841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Systemc sclerosis (SSc) is an autoimmune disorder characterized by fibrosis of the skin and internal organs. Recently, it has been shown that leucine-rich α-2 glycoprotein (LRG) functions as a modulator of transforming growth factor-β (TGF-β) signaling in fibrosis. We aimed to characterize the effect of LRG in SSc model and SSc patients. METHODS Histological analysis was performed on LRG knockout (KO) and wild type (WT) mouse in the skin and the lung after bleomycin administration. Serum LRG levels were measured during the injection period. Gene expression analysis of the skin and lung tissue from LRG KO and WT mice was performed. In addition, serum LRG levels were determined in SSc patients and healthy controls. RESULTS LRG KO mice display an inhibition of fibrosis in the skin in association with a decrease of dermal thickness, collagen deposition, and phospho-Smad3 expression after bleomycin. Serum LRG concentration significantly increased in WT mice after bleomycin. There was also a suppression of inflammation and fibrosis in the LRG KO mouse lung indicated by a reduction of lung weight, collagen content, and phospho-Smad3 expression after bleomycin. Gene expressions of TGF-β and Smad2/3 were significantly reduced in LRG KO mice. Serum LRG levels in SSc patients were significantly higher than those in controls. CONCLUSION LRG promotes fibrotic processes in SSc model through TGF-β-Smad3 signaling, and LRG can be a biomarker for SSc in humans and also a potential therapeutic target for SSc.
Collapse
Affiliation(s)
- Hideki Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Kimiko Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Satoshi Serada
- Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Minoru Fujimoto
- Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Tetsuji Naka
- Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| |
Collapse
|
13
|
Intracellular leucine-rich alpha-2-glycoprotein-1 competes with Apaf-1 for binding cytochrome c in protecting MCF-7 breast cancer cells from apoptosis. Apoptosis 2021; 26:71-82. [PMID: 33386492 DOI: 10.1007/s10495-020-01647-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
Leucine-rich alpha-2-glycoprotein-1 (LRG1) has been shown to compete with apoptosis activating factor-1 (Apaf-1) for binding cytochrome c (Cyt c) and could play a role in inhibition of apoptosis. Employing MCF-7 breast cancer cells, we report that intracellular LRG1 does protect against apoptosis. Thus, cells transfected with the lrg1 gene and expressing higher levels of LRG1 were more resistant to hydrogen peroxide-induced apoptosis than parental cells, while cells in which LRG mRNA was knocked down by short hairpin (sh) RNA-induced degradation were more sensitive. The amount of Cyt c co-immunoprecipitated with Apaf-1 from the cytosol of apoptotic cells was inversely related to the level of LRG1 expression. In lrg1-transfected cells partially-glycosylated LRG1 was found in the cytosol and there was an increase in cytosolic Cyt c in live lrg1-transfected cells relative to parental cells. However, apoptosis was not spontaneously induced because Cyt c was bound to LRG1 and not to Apaf-1. Cyt c was the only detectable protein co-immunoprecipitated with LRG1. Following hydrogen peroxide treatment degradation of LRG1 allowed for induction of apoptosis. We propose that intracellular LRG1 raises the threshold of cytoplasmic Cyt c required to induce apoptosis and, thus, prevents onset of the intrinsic pathway in cells where Cyt c release from mitochondria does not result from committed apoptotic signaling. This mechanism of survival afforded by LRG1 is likely to be distinct from its extracellular survival function that has been reported by several research groups.
Collapse
|
14
|
Correlation of increased serum leucine-rich α2-glycoprotein levels with disease prognosis, progression, and activity of interstitial pneumonia in patients with dermatomyositis: A retrospective study. PLoS One 2020; 15:e0234090. [PMID: 32479560 PMCID: PMC7263588 DOI: 10.1371/journal.pone.0234090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To investigate whether leucine-rich α2-glycoprotein (LRG) can be a biomarker for the disease activity, progression, and prognosis of interstitial pneumonia (IP) in patients with dermatomyositis (DM). METHODS Correlations between the clinical findings and serum LRG levels were investigated in 46 patients with DM-IP (33 with acute/subacute IP [A/SIP] and 13 patients with chronic IP [CIP], including 10 fatal cases of IP). RESULTS The median serum LRG level of 18.4 (14.6-25.2) μg/mL in DM-IP patients was higher than that in healthy control subjects. The median levels of serum LRG at baseline and at 2 and 4 weeks after the initiation of treatment in the patients who died were significantly higher than those in the surviving patients (P = 0.026, 0.029, and 0.008, respectively). The median level of serum LRG in the DM-A/SIP patients was significantly higher than that in the DM-CIP patients (P = 0.0004), and that in the anti-MDA5-Ab-positive group was slightly higher than that in the anti-ARS-Ab-positive group. The serum LRG levels correlated significantly with the serum levels of LDH, C-reactive protein, ferritin, AaDO2, %DLco, and total ground-glass opacity score. The survival rate after 24 weeks in patients with an initial LRG level ≥ 17.6 μg/mL (survival rate: 40%) was significantly lower than that in patients with an initial LRG level < 17.6 μg/mL (100%) (P = 0.0009). CONCLUSION The serum LRG level may be a promising marker of disease activity, progression, and prognosis in patients with DM-IP.
Collapse
|
15
|
Yoshimura K, Saku A, Karayama M, Inui N, Sugimura H, Suda T. Leucine-Rich α 2-Glycoprotein as a Potential Biomarker for Immune-related Colitis After Anti-PD-L1 Therapy: A Report of a Case Series. Clin Lung Cancer 2020; 21:e516-e522. [PMID: 32389505 DOI: 10.1016/j.cllc.2020.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/29/2020] [Accepted: 04/03/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Katsuhiro Yoshimura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Aiko Saku
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
16
|
Zhang N, Ren Y, Wang Y, Zhao L, Wang B, Ma N, Gao Z, Cao B. LRG1 Suppresses Migration and Invasion of Esophageal Squamous Cell Carcinoma by Modulating Epithelial to Mesenchymal Transition. J Cancer 2020; 11:1486-1494. [PMID: 32047555 PMCID: PMC6995366 DOI: 10.7150/jca.36189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/08/2019] [Indexed: 01/01/2023] Open
Abstract
Background: Esophageal squamous cell carcinoma (ESCC) is a common cancer with poor prognosis. The molecular pathogenesis underlying ESCC remains to be explored. Leucine-rich ɑ-2-glycoprotein 1 (LRG1) has been implicated in the pathogenesis of various cancer types, however its role in ESCC is unknown. Materials and Methods: Data from the public database was analyzed to address the expression of LRG1 in ESCC. Gain-of-function studies were performed in select ESCC cell lines by over-expression or addition of recombinant LRG1, while loss-of-function studies achieved by small interfering RNA mediated knockdown. Wound healing and transwell assays were conducted to investigate ESCC cell migration and invasion upon manipulating LRG1 levels. Western blot and Immunofluorescence staining were used to examine the changes in epithelial to mesenchymal transition (EMT) and TGFβ signaling pathway. Results: LRG1 mRNA levels were found to be significantly down-regulated in patients with ESCC as well as in several ESCC cell lines. Silencing of LRG1 promoted, while overexpression of LRG1 inhibited ESCC cell migration and invasion. In line with this, Silencing of LRG1 enhanced, while overexpression of LRG1 reduced TGFβ signaling and EMT of ESCC cells. Conclusion/Significance: LRG1 suppresses ESCC cell migration and invasion via negative modulation of TGFβ signaling and EMT. Down-regulation of LRG1 in ESCC patients may favor tumor metastasis and disease progression.
Collapse
Affiliation(s)
- Ninggang Zhang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.,Shanxi Cancer Hospital Affiliated to Shanxi Medical University, No. 3 of Zhigong Xincun Street, Xinghualing District, Taiyuan, Shanxi 030013, China
| | - Yaqiong Ren
- Shanxi Cancer Hospital Affiliated to Shanxi Medical University, No. 3 of Zhigong Xincun Street, Xinghualing District, Taiyuan, Shanxi 030013, China
| | - Yusheng Wang
- Shanxi Cancer Hospital Affiliated to Shanxi Medical University, No. 3 of Zhigong Xincun Street, Xinghualing District, Taiyuan, Shanxi 030013, China
| | - Lei Zhao
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Bin Wang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Nina Ma
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhengxing Gao
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Bangwei Cao
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
17
|
Fukamachi K, Hagiwara Y, Futakuchi M, Alexander DB, Tsuda H, Suzui M. Evaluation of a biomarker for the diagnosis of pancreas cancer using an animal model. J Toxicol Pathol 2019; 32:135-141. [PMID: 31404387 PMCID: PMC6682554 DOI: 10.1293/tox.2018-0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/27/2019] [Indexed: 12/03/2022] Open
Abstract
Many approaches have been taken to identify new biomarkers of pancreatic ductal
carcinoma (PDC). Since animal models can be sampled under controlled conditions, better
standardization is possible compared with heterogeneous human studies. Transgenic rats
with conditional activation of oncogenic RAS in pancreatic tissue develop PDC that closely
resembles the biological and histopathological features of human PDC. Using this model, we
evaluated the usefulness of leucine-rich α2-glycoprotein-1 (LRG-1) as a serum marker. In
this study, we found that LRG-1 was overexpressed in rat PDC compared with normal pancreas
tissue of the control rats. Serum levels of LRG-1 were also significantly higher in rats
bearing PDC than in controls. Importantly, chronic pancreatitis in male Wistar Bonn/Kobori
rats, which is a widely accepted as a model of chronic pancreatitis, did not cause serum
levels of LRG-1 to become elevated. These results strongly support serum LRG-1 as a
candidate biomarker for noninvasive diagnosis of PDC. Our models of pancreas cancer
provide a useful strategy for evaluation of candidate markers applicable to human
cancer.
Collapse
Affiliation(s)
- Katsumi Fukamachi
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Yoshiaki Hagiwara
- Immuno-Biological Laboratories, 1091-1 Naka, Fujioka-shi, Gunma 375-0005, Japan
| | - Mitsuru Futakuchi
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - David B Alexander
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Masumi Suzui
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
18
|
Jin J, Sun H, Liu D, Wang H, Liu Q, Chen H, Zhong D, Li G. LRG1 Promotes Apoptosis and Autophagy through the TGFβ-smad1/5 Signaling Pathway to Exacerbate Ischemia/Reperfusion Injury. Neuroscience 2019; 413:123-134. [PMID: 31220542 DOI: 10.1016/j.neuroscience.2019.06.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
Abstract
Leucine-rich α2-glycoprotein1 (LRG1), a pleiotropic protein, plays a pathogenic role in multiple human diseases. However, its pathophysiological function in ischemia/reperfusion injury remains unclear. In this study, we discussed the function and mechanism of LRG1 in acute ischemic stroke from both basic and clinical research points of view. Mice underwent transient middle cerebral artery occlusion (tMCAO) surgery 2 weeks after LRG1 was overexpressed by the delivery of adeno-associated virus (AAV). For wild-type mice, both the protein and the transcript of LRG1 in the brain tissue were elevated after tMCAO. Meanwhile, the serum levels of LRG1 were decreased after tMCAO. The neuronal injury was shown aggravated in the AAV-LRG1 group (AAV-LRG1 mice with tMCAO) through infarction volume, neurological score, HE, and Nissl staining. Meanwhile, LRG1 significantly enhanced apoptosis and autophagy during tMCAO, as detected by caspase3, Bax, Bcl-2, LC3II/LC3I, Beclin1, p62, and a TUNEL assay. Furthermore, by overexpression of LRG1, the protein of ALK1 was upregulated and the TGFβ-smad1/5 signaling pathway was activated upon tMCAO. We also showed that patients with acute cerebral infarction had lower serum levels of LRG1 compared to healthy controls. In addition, LRG1 levels were associated with infarction volume, stroke severity, and prognosis in patients with supratentorial infarction. Taken together, the data from this study revealed that LRG1 promoted apoptosis and autophagy through the TGFβ-smad1/5 signaling pathway by up-regulating ALK1, which exacerbates ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jing Jin
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Hongxue Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Dan Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Haining Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Qingqing Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Hongping Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| |
Collapse
|
19
|
Otsuru T, Kobayashi S, Wada H, Takahashi T, Gotoh K, Iwagami Y, Yamada D, Noda T, Asaoka T, Serada S, Fujimoto M, Eguchi H, Mori M, Doki Y, Naka T. Epithelial-mesenchymal transition via transforming growth factor beta in pancreatic cancer is potentiated by the inflammatory glycoprotein leucine-rich alpha-2 glycoprotein. Cancer Sci 2019; 110:985-996. [PMID: 30575211 PMCID: PMC6398893 DOI: 10.1111/cas.13918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022] Open
Abstract
We previously showed that an inflammation‐related, molecule leucine‐rich alpha‐2 glycoprotein (LRG) enhances the transforming growth factor (TGF)‐β1‐induced phosphorylation of Smad proteins and is elevated in patients with pancreatic ductal adenocarcinoma (PDAC). As TGF‐β/Smad signaling is considered to play a key role in epithelial‐mesenchymal transition (EMT), we attempted to clarify the mechanism underlying LRG‐related EMT in relation to metastasis in PDAC. We cultured LRG‐overexpressing PDAC cells (Panc1/LRG) and evaluated the morphology, EMT‐related molecules and TGF‐β/Smad signaling pathway in these cells. We also assessed the LRG levels in plasma and resected specimens from patients with PDAC. Inflammatory cytokines induced LRG production in PDAC cells. A spindle‐like shape was visualized more frequently than other shapes in Panc1/LRG with TGF‐β1 exposure. The expression of E‐cadherin in Panc1/LRG was decreased with TGF‐β1 exposure. Invasion increased with TGF‐β1 stimulation of Panc1/LRG. The phosphorylation of smad2 in Panc1/LRG was increased in comparison with parental Panc1 under TGF‐β1 stimulation. In the plasma LRG‐high group, the recurrence rate tended to be higher and the recurrence‐free survival (RFS) tended to be worse in comparison with the plasma LRG‐low group. LRG enhanced EMT induced by TGF‐β signaling, thus indicating that LRG has a significant effect on the metastasis of PDAC.
Collapse
Affiliation(s)
- Toru Otsuru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Satoshi Serada
- Center for Intractable Immune Disease, Kochi University, Kochi, Japan
| | - Minoru Fujimoto
- Center for Intractable Immune Disease, Kochi University, Kochi, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Testuji Naka
- Center for Intractable Immune Disease, Kochi University, Kochi, Japan
| |
Collapse
|
20
|
Shen SJ, Zhang YH, Gu XX, Jiang SJ, Xu LJ. Yangfei Kongliu Formula, a compound Chinese herbal medicine, combined with cisplatin, inhibits growth of lung cancer cells through transforming growth factor-β1 signaling pathway. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 15:242-251. [PMID: 28494854 DOI: 10.1016/s2095-4964(17)60330-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the tumor inhibition effect of Yangfei Kongliu Formula (YKF), a compound Chinese herbal medicine, combined with cisplatin (DDP) and its action mechanisms. METHODS C57BL/6 mice with Lewis lung carcinoma were divided into six groups: control group (C), DDP group (2 mg/kg, DDP), low-dose YKF group (2.43 g/kg, L), high-dose YKF group (24.3 g/kg, H), low-dose YKF combined with DDP group (L + DDP) and high-dose YKF combined with DDP group (H + DDP). Transforming growth factor-β1 (TGF-β1), mothers against decapentaplegic homolog 3 (Smad3) and Smad7 levels were measured with quantitative real-time polymerase chain reaction (qPCR), Western blotting and immunohistochemistry. An enzyme-linked immunosorbent assay was used to analyze the expressions of interleukin-2 (IL-2) and tumor necrosis factor-α (TNF-α). RESULTS YKF combined with DDP significantly inhibited the growth and metastasis of tumors relative to the control group, and YKF groups (P < 0.05). There was no significant difference between high-dose YKF group and low-dose YKF group (P > 0.05). We also found that the expression levels of TGF-β1 and Smad3 were both significantly decreased by YKF relative to the control group (P < 0.05). Furthermore, after treatment with YKF combined with DDP, the expression levels of TGF-β1 and Smad3 were decreased but the expression level of Smad7 was increased relative to the DDP group (P < 0.05). Compared to the DDP group, the combination of YKF and DDP enhanced the effect of tumor inhibition (P < 0.05), showing obvious synergy between YKF and DDP. Treatment with DDP or YKF decreased serum levels of IL-2 and TNF-α relative to the control group (P < 0.05). Furthermore, the expression levels of IL-2 and TNF-α were significantly decreased when treated with YKF in combination with DDP. Co-treatment with YKF and DDP significantly inhibited tumor growth, decreased the expressions of TGF-β1, Smad3, IL-2 and TNF-α and increased the expression of Smad7; these differences were significant relative to both YKF groups and the control group (P < 0.05). CONCLUSION YKF can inhibit tumor growth synergistically with DDP, mainly through the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Shui-Jie Shen
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, Jiangsu Province, China.,Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nantong 226000, Jiangsu Province, China
| | - Yong-Hong Zhang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, Jiangsu Province, China
| | - Xiao-Xia Gu
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nantong 226000, Jiangsu Province, China
| | - Shui-Ju Jiang
- Department of Respiratory Medicine, Nantong Third People's Hospital, Nantong 226006, Jiangsu Province, China
| | - Ling-Jun Xu
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nantong 226000, Jiangsu Province, China
| |
Collapse
|
21
|
Naka T, Fujimoto M. LRG is a novel inflammatory marker clinically useful for the evaluation of disease activity in rheumatoid arthritis and inflammatory bowel disease. Immunol Med 2018; 41:62-67. [PMID: 30938267 DOI: 10.1080/13497413.2018.1481582] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
By proteomic screening of sera obtained from patients with rheumatoid arthritis (RA), we previously identified leucine rich α2 glycoprotein (LRG) as a possible marker for inflammation. Unlike C-reactive protein (CRP), a biomarker widely used to evaluate inflammation, LRG is induced not only by IL-6 but also by other proinflammatory cytokines. In addition, LRG is upregulated not only in liver but also in local inflammatory sites. Therefore, serum LRG is a novel inflammatory marker applicable to evaluate inflammation in many diseases including ulcerative colitis in which serum CRP often fails to reflect disease activity and RA to which IL-6-blocking biologic agents such as tocilizumab are given as a first line therapy. Interestingly, evidence indicates that LRG is functionally involved in pathogenesis of inflammation, by promoting cellular proliferation, differentiation and angiogenesis via modulating TGF-β signaling.
Collapse
Affiliation(s)
- Tetsuji Naka
- a Center for Intractable Immune Disease, Kochi Medical School , Kochi University , Nankoku , Japan
| | - Minoru Fujimoto
- a Center for Intractable Immune Disease, Kochi Medical School , Kochi University , Nankoku , Japan
| |
Collapse
|
22
|
Honda H, Fujimoto M, Serada S, Urushima H, Mishima T, Lee H, Ohkawara T, Kohno N, Hattori N, Yokoyama A, Naka T. Leucine-rich α-2 glycoprotein promotes lung fibrosis by modulating TGF- β signaling in fibroblasts. Physiol Rep 2017; 5:5/24/e13556. [PMID: 29279415 PMCID: PMC5742708 DOI: 10.14814/phy2.13556] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 11/24/2022] Open
Abstract
TGF‐β has an important role in fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Detailed analysis of TGF‐β signaling in pulmonary fibrosis at the molecular level is needed to identify novel therapeutic targets. Recently, leucine‐rich alpha‐2 glycoprotein (LRG) was reported to function as a modulator of TGF‐β signaling in angiogenesis and tumor progression. However, the involvement of LRG in fibrotic disorders, including IPF, has not yet been investigated. In this study, we investigated the role of LRG in fibrosis by analyzing LRG knockout (KO) mice with bleomycin‐induced lung fibrosis, an animal model of pulmonary fibrosis. The amount of LRG in the lungs of wild‐type (WT) mice was increased by bleomycin administration prior to fibrosis development. In LRG KO mice, lung fibrosis was significantly suppressed, as indicated by attenuated Masson's trichrome staining and lower collagen content than those in WT mice. Moreover, in the lungs of LRG KO mice, phosphorylation of Smad2 was reduced and expression of α‐SMA was decreased relative to those in WT mice. In vitro experiments indicated that LRG enhanced the TGF‐β‐induced phosphorylation of Smad2 and the expression of Serpine1 and Acta2, the downstream of Smad2, in fibroblasts. Although endoglin, an accessory TGF‐β receptor, is essential for LRG to promote TGF‐β signaling in endothelial cells during angiogenesis, we found that endoglin did not contribute to the ability of LRG to enhance Smad2 phosphorylation in fibroblasts. Taken together, our data suggest that LRG promotes lung fibrosis by modulating TGF‐β‐induced Smad2 phosphorylation and activating profibrotic responses in fibroblasts.
Collapse
Affiliation(s)
- Hiromi Honda
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Japan.,Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Minoru Fujimoto
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Satoshi Serada
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Hayato Urushima
- Department of Anatomy and Regenerative Biology, Osaka City University Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Takashi Mishima
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Hyun Lee
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Tomoharu Ohkawara
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Japan
| | | | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Science, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Akihito Yokoyama
- Department of Haematology and Respiratory Medicine, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Tetsuji Naka
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Japan.,Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| |
Collapse
|
23
|
Akiba C, Nakajima M, Miyajima M, Ogino I, Miura M, Inoue R, Nakamura E, Kanai F, Tada N, Kunichika M, Yoshida M, Nishimura K, Kondo A, Sugano H, Arai H. Leucine-rich α2-glycoprotein overexpression in the brain contributes to memory impairment. Neurobiol Aging 2017; 60:11-19. [PMID: 28917663 DOI: 10.1016/j.neurobiolaging.2017.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/28/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022]
Abstract
We previously reported increase in leucine-rich α2-glycoprotein (LRG) concentration in cerebrospinal fluid is associated with cognitive decline in humans. To investigate relationship between LRG expression in the brain and memory impairment, we analyzed transgenic mice overexpressing LRG in the brain (LRG-Tg) focusing on hippocampus. Immunostaining and Western blotting revealed age-related increase in LRG expression in hippocampal neurons in 8-, 24-, and 48-week-old controls and LRG-Tg. Y-maze and Morris water maze tests indicated retained spatial memory in 8- and 24-week-old LRG-Tg, while deteriorated in 48-week-old LRG-Tg compared with age-matched controls. Field excitatory postsynaptic potentials declined with age in LRG-Tg compared with controls at 8, 24, and 48 weeks. Paired-pulse ratio decreased with age in LRG-Tg, while increased in controls. As a result, long-term potentiation was retained in 8- and 24-week-old LRG-Tg, whereas diminished in 48-week-old LRG-Tg compared with age-matched controls. Electron microscopy observations revealed fewer synaptic vesicles and junctions in LRG-Tg compared with age-matched controls, which became significant with age. Hippocampal LRG overexpression contributes to synaptic dysfunction, which leads to memory impairment with advance of age.
Collapse
Affiliation(s)
- Chihiro Akiba
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masakazu Miyajima
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masami Miura
- Neurophysiology Research Group, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Ritsuko Inoue
- Neurophysiology Research Group, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Eri Nakamura
- Laboratory of Disease Model Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fumio Kanai
- Laboratory of Disease Model Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norihiro Tada
- Laboratory of Disease Model Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Miyuki Kunichika
- Laboratory of Morpheme Analysis Imaging Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsutaka Yoshida
- Laboratory of Morpheme Analysis Imaging Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kinya Nishimura
- Neurophysiology Research Group, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan; Department of Anesthesiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hidenori Sugano
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Urushima H, Fujimoto M, Mishima T, Ohkawara T, Honda H, Lee H, Kawahata H, Serada S, Naka T. Leucine-rich alpha 2 glycoprotein promotes Th17 differentiation and collagen-induced arthritis in mice through enhancement of TGF-β-Smad2 signaling in naïve helper T cells. Arthritis Res Ther 2017; 19:137. [PMID: 28615031 PMCID: PMC5471956 DOI: 10.1186/s13075-017-1349-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background Leucine-rich alpha 2 glycoprotein (LRG) has been identified as a serum protein elevated in patients with active rheumatoid arthritis (RA). Although the function of LRG is ill-defined, LRG binds with transforming growth factor (TGF)-β and enhances Smad2 phosphorylation. Considering that the imbalance between T helper 17 (Th17) cells and regulatory T cells (Treg) plays important roles in the pathogenesis of RA, LRG may affect arthritic pathology by enhancing the TGF-β-Smad2 pathway that is pivotal for both Treg and Th17 differentiation. The purpose of this study was to explore the contribution of LRG to the pathogenesis of arthritis, with a focus on the role of LRG in T cell differentiation. Methods The differentiation of CD4 T cells and the development of collagen-induced arthritis (CIA) were examined in wild-type mice and LRG knockout (KO) mice. To examine the influence of LRG on T cell differentiation, naïve CD4 T cells were isolated from LRG KO mice and cultured under Treg- or Th17-polarization condition in the absence or presence of recombinant LRG. Results In the CIA model, LRG deficiency led to ameliorated arthritis and reduced Th17 differentiation with no influence on Treg differentiation. By addition of recombinant LRG, the expression of IL-6 receptor (IL-6R) was enhanced through TGF-β-Smad2 signaling. In LRG KO mice, the IL-6R expression and IL-6-STAT3 signaling was attenuated in naïve CD4 T cells, compared to wild-type mice. Conclusions Our findings suggest that LRG upregulates IL-6R expression in naïve CD4 T cells by the enhancement of TGF-β-smad2 pathway and promote Th17 differentiation and arthritis development.
Collapse
Affiliation(s)
- Hayato Urushima
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Minoru Fujimoto
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan. .,Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan.
| | - Takashi Mishima
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Tomoharu Ohkawara
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Hiromi Honda
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Hyun Lee
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Hirohisa Kawahata
- Department of Medical Technology, Morinomiya University of medical science, Osaka, Japan
| | - Satoshi Serada
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.,Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tetsuji Naka
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.,Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
25
|
Wang Y, Chen C, Hua Q, Wang L, Li F, Li M, Mei Z, Zhou T, Xiao B, Tao Z. Downregulation of leucine-rich-α-2-glycoprotein 1 expression is associated with the tumorigenesis of head and neck squamous cell carcinoma. Oncol Rep 2017; 37:1503-1510. [DOI: 10.3892/or.2017.5377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/15/2016] [Indexed: 11/05/2022] Open
|
26
|
Meng H, Song Y, Zhu J, Liu Q, Lu P, Ye N, Zhang Z, Pang Y, Qi J, Wu H. LRG1 promotes angiogenesis through upregulating the TGF‑β1 pathway in ischemic rat brain. Mol Med Rep 2016; 14:5535-5543. [PMID: 27840991 PMCID: PMC5355675 DOI: 10.3892/mmr.2016.5925] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/05/2016] [Indexed: 11/25/2022] Open
Abstract
Stroke is a life-threatening disease that results in significant disability in the human population. Despite the advances in current stroke therapies, a host of patients do not benefit from the conventional treatments. Thus, more effective therapies are required. It has been previously reported that leucine-rich-α2-glycoprotein 1 (LRG1) is crucial during the formation of new blood vessels in retinal diseases. However, the function of LRG1 in the brain during the neovessel growth process following ischemic stroke has not been fully elucidated and the mechanism underlying its effect on angiogenesis remains unclear. The purpose of the current study was to demonstrate whether LRG1 may promote angiogenesis through the transforming growth factor (TGF)-β1 signaling pathway in ischemic rat brain following middle cerebral artery occlusion (MCAO). In the present study, the spatial and temporal expression of LRG1, TGF-β1, vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang-2) were detected in ischemic rat brain following MCAO using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunohistochemistry. CD34 immunohistochemistry staining was used as an indicator of microvessel density (MVD). The RT-qPCR and western blotting results revealed that the levels of LRG1 and TGF-β1 mRNA and protein expression were significantly increased as early as 6 and 12 h after MCAO (P<0.05), respectively, peaked at 3 days and persisted at significantly higher level until 14 days, in comparison with the control group. Additionally, VEGF and Ang-2 were also increased following MCAO. Furthermore, the immunohistochemistry results suggested that the MVD was increased following MCAO. In addition, the results also revealed that the percentage of LRG1-positive cells was positively correlated with the percentage of TGF-β1-positive cells, and the percentage of LRG1-positive and TGF-β1-positive cells had a positively correlation with the MVD. Taken together, the present study indicated that LRG1 may promote angiogenesis through upregulating the TGF-β1 signaling pathway in ischemic rat brain following MCAO. This may provide a potential therapeutic target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hongmei Meng
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuejia Song
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jiyuan Zhu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Pengtian Lu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Na Ye
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhen Zhang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuxin Pang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jiping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - He Wu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
27
|
Honda H, Fujimoto M, Miyamoto S, Ishikawa N, Serada S, Hattori N, Nomura S, Kohno N, Yokoyama A, Naka T. Sputum Leucine-Rich Alpha-2 Glycoprotein as a Marker of Airway Inflammation in Asthma. PLoS One 2016; 11:e0162672. [PMID: 27611322 PMCID: PMC5017625 DOI: 10.1371/journal.pone.0162672] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/27/2016] [Indexed: 11/18/2022] Open
Abstract
Background Asthma is a chronic inflammatory disease of airways, but an ideal biomarker that accurately reflects ongoing airway inflammation has not yet been established. The aim of this study was to examine the potential of sputum leucine-rich alpha-2 glycoprotein (LRG) as a new biomarker for airway inflammation in asthma. Methods We obtained induced sputum samples from patients with asthma (N = 64) and healthy volunteers (N = 22) and measured LRG concentration by sandwich enzyme-linked immunosorbent assay (ELISA). Ovalbumin (OVA)-induced asthma model mice were used to investigate the mechanism of LRG production during airway inflammation. The LRG concentrations in the bronchoalveolar lavage fluid (BALF) obtained from mice were determined by ELISA and mouse lung sections were stained with anti-LRG antibody and periodic acid-Schiff (PAS) reagent. Results Sputum LRG concentrations were significantly higher in patients with asthma than in healthy volunteers (p = 0.00686). Consistent with patients’ data, BALF LRG levels in asthma model mice were significantly higher than in control mice (p = 0.00013). Immunohistochemistry of lung sections from asthma model mice revealed that LRG was intensely expressed in a subpopulation of bronchial epithelial cells, which corresponded with PAS-positive mucus producing cells. Conclusion These findings suggest that sputum LRG is a promising biomarker of local inflammation in asthma.
Collapse
Affiliation(s)
- Hiromi Honda
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Minoru Fujimoto
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- * E-mail: (TN); (MF)
| | - Shintaro Miyamoto
- Department of Haematology and Respiratory Medicine, Kochi University, Nankoku-shi, Kochi, Japan
| | - Nobuhisa Ishikawa
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, Minami-ku, Hiroshima, Japan
| | - Satoshi Serada
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Science, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Shintaro Nomura
- Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Nobuoki Kohno
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Science, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Akihito Yokoyama
- Department of Haematology and Respiratory Medicine, Kochi University, Nankoku-shi, Kochi, Japan
| | - Tetsuji Naka
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Division of Translational Research, Integrated Center for Advanced Medical Technologies (ICAM-Tech), Kochi Medical School, Kochi University, Nankoku-shi, Kochi, Japan
- * E-mail: (TN); (MF)
| |
Collapse
|
28
|
Hara H, Takahashi T, Serada S, Fujimoto M, Ohkawara T, Nakatsuka R, Harada E, Nishigaki T, Takahashi Y, Nojima S, Miyazaki Y, Makino T, Kurokawa Y, Yamasaki M, Miyata H, Nakajima K, Takiguchi S, Morii E, Mori M, Doki Y, Naka T. Overexpression of glypican-1 implicates poor prognosis and their chemoresistance in oesophageal squamous cell carcinoma. Br J Cancer 2016; 115:66-75. [PMID: 27310703 PMCID: PMC4931380 DOI: 10.1038/bjc.2016.183] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022] Open
Abstract
Background: Despite the recent improvements in multimodal therapies for oesophageal squamous cell carcinoma (ESCC), the prognosis remains poor. The identification of suitable biomarkers for predicting the prognosis and chemo-sensitivity is required to develop targeted treatments and improve treatment results. Methods: Proteins highly expressed in ESCC cell lines compared with normal oesophageal cell lines were screened by isobaric tag for relative and absolute quantitation (iTRAQ). We identified glypican-1 (GPC1) as a novel molecule. The clinicopathological characteristics of GPC1 were evaluated by immunohistochemistry using ESCC specimens, and clinical parameters were assessed. The correlation between GPC1 expression levels and chemo-sensitivity were analysed in vitro. Results: In the immunohistochemical assessment of 175 ESCC patients, 98.8% expressed GPC1. These patients demonstrated significantly poorer prognosis compared with patients with low-GPC1 expression by survival assay (P<0.001). Higher chemoresistance was observed in the GPC1 high-expression group. GPC1 expression levels positively correlated with chemo-sensitivity against cis-Diammineplatinum (II) dichloride (CDDP), and are potentially associated with anti-apoptotic function based on alterations in the MAPK downstream signalling pathway and Bcl-2 family member proteins. Conclusions: GPC1 is an independent prognostic factor in ESCC and is a critical molecule for altering the threshold of chemoresistance to CDDP.
Collapse
Affiliation(s)
- Hisashi Hara
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Satoshi Serada
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Minoru Fujimoto
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Tomoharu Ohkawara
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Rie Nakatsuka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Emi Harada
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Takahiko Nishigaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yusuke Takahashi
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Miyata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuji Naka
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
29
|
Kumagai S, Nakayama H, Fujimoto M, Honda H, Serada S, Ishibashi-Ueda H, Kasai A, Obana M, Sakata Y, Sawa Y, Fujio Y, Naka T. Myeloid cell-derived LRG attenuates adverse cardiac remodelling after myocardial infarction. Cardiovasc Res 2015; 109:272-82. [PMID: 26678356 DOI: 10.1093/cvr/cvv273] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022] Open
Abstract
AIMS Leucine-rich α2-glycoprotein (LRG) is considered as a biomarker of the clinical activities of chronic inflammatory diseases, including heart failure. However, its pathophysiological roles in cardiac remodelling after myocardial infarction (MI) remain to be clarified. In this study, we have addressed functional roles of LRG in cardiac remodelling after MI. METHODS AND RESULTS MI was generated by ligating the left coronary artery in mice. Real-time reverse transcription (RT)-PCR and immunoblot analyses revealed that the expressions of LRG transcript and protein were up-regulated in post-infarct myocardium. LRG protein was produced by heart-infiltrating myeloid cells, such as macrophages and neutrophils. To elucidate functional roles of LRG in cardiac remodelling, we generated MI in wild-type (WT) and LRG-deficient (LRG(-/-)) mice and found that LRG gene ablation aggravated myocardial fibrosis with cardiac dysfunction after MI. Immunohistochemical analyses with anti-CD31 antibody revealed that capillary density decreased at border zone in LRG(-/-) mice compared with WT mice. Consistently, the expression of apelin receptor was reduced in LRG(-/-) mice, implying that the impaired angiogenic activity is associated with adverse cardiac remodelling in LRG(-/-) mice. Moreover, LRG gene ablation suppressed the activation of smad1/5/8, a pro-angiogenic signalling pathway. Finally, the transplantation of WT bone marrow cells into LRG(-/-) mice attenuated cardiac fibrosis with functional improvement after MI, accompanied by restoration of capillary density compared with the bone marrow transplantation from LRG(-/-) mice. CONCLUSION LRG, produced by heart-infiltrating myeloid cells, suppresses adverse cardiac remodelling after MI as a novel cardioprotective factor. LRG signalling could be a therapeutic target against cardiovascular diseases.
Collapse
Affiliation(s)
- Shohei Kumagai
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmacological Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, Japan
| | - Hiroyuki Nakayama
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmacological Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, Japan
| | - Minoru Fujimoto
- Laboratory of Immune Signals, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka, Japan
| | - Hiromi Honda
- Laboratory of Immune Signals, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka, Japan
| | - Satoshi Serada
- Laboratory of Immune Signals, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka, Japan
| | - Hatsue Ishibashi-Ueda
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmacological Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmacological Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, Japan
| | - Tetsuji Naka
- Laboratory of Immune Signals, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka, Japan
| |
Collapse
|