1
|
Bonada M, Pittarello M, De Fazio E, Gans A, Alimonti P, Slika H, Legnani F, Di Meco F, Tyler B. Pediatric Hemispheric High-Grade Gliomas and H3.3-G34 Mutation: A Review of the Literature on Biological Features and New Therapeutic Strategies. Genes (Basel) 2024; 15:1038. [PMID: 39202398 PMCID: PMC11353413 DOI: 10.3390/genes15081038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Pediatric high-grade glioma (pHGG) encompasses a wide range of gliomas with different genomic, epigenomic, and transcriptomic features. Almost 50% of pHGGs present a mutation in genes coding for histone 3, including the subtype harboring the H3.3-G34 mutation. In this context, histone mutations are frequently associated with mutations in TP53 and ATRX, along with PDGFRA and NOTCH2NL amplifications. Moreover, the H3.3-G34 histone mutation induces epigenetic changes in immune-related genes and exerts modulatory functions on the microenvironment. Also, the functionality of the blood-brain barrier (BBB) has an impact on treatment response. The prognosis remains poor with conventional treatments, thus eliciting the investigation of additional and alternative therapies. Promising molecular targets include PDGFRA amplification, BRAF mutation, EGFR amplification, NF1 loss, and IDH mutation. Considering that pHGGs harboring the H3.3-G34R mutation appear to be more susceptible to immunotherapies (ITs), different options have been recently explored, including immune checkpoint inhibitors, antibody mediated IT, and Car-T cells. This review aims to summarize the knowledge concerning cancer biology and cancer-immune cell interaction in this set of pediatric gliomas, with a focus on possible therapeutic options.
Collapse
Affiliation(s)
- Marta Bonada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
| | - Matilde Pittarello
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
| | - Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy;
| | - Alessandro Gans
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
- ASST Ovest Milanese, Neurology and Stroke Unit, Neuroscience Department, 20025 Legnano, Italy
| | - Paolo Alimonti
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02120, USA;
| | - Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Federico Legnani
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
2
|
Boewe AS, Wrublewsky S, Hoppstädter J, Götz C, Kiemer AK, Menger MD, Laschke MW, Ampofo E. C-Myc/H19/miR-29b axis downregulates nerve/glial (NG)2 expression in glioblastoma multiforme. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102120. [PMID: 38318212 PMCID: PMC10839451 DOI: 10.1016/j.omtn.2024.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
Nerve/glial antigen (NG)2 is highly expressed in glioblastoma multiforme (GBM). However, the underlying mechanisms of its upregulated expression are largely unknown. In silico analyses reveal that the tumor-suppressive miR-29b targets NG2. We used GBM-based data from The Cancer Genome Atals databases to analyze the expression pattern of miR-29b and different target genes, including NG2. Moreover, we investigated the regulatory function of miR-29b on NG2 expression and NG2-related signaling pathways. We further studied upstream mechanisms affecting miR-29b-dependent NG2 expression. We found that miR-29b downregulates NG2 expression directly and indirectly via the transcription factor Sp1. Furthermore, we identified the NG2 coreceptor platelet-derived growth factor receptor (PDGFR)α as an additional miR-29b target. As shown by a panel of functional cell assays, a reduced miR-29b-dependent NG2 expression suppresses tumor cell proliferation and migration. Signaling pathway analyses revealed that this is associated with a decreased ERK1/2 activity. In addition, we found that the long noncoding RNA H19 and c-Myc act as upstream repressors of miR-29b in GBM cells, resulting in an increased NG2 expression. These findings indicate that the c-Myc/H19/miR-29b axis crucially regulates NG2 expression in GBM and, thus, represents a target for the development of future GBM therapies.
Collapse
Affiliation(s)
- Anne S. Boewe
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Alexandra K. Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
3
|
Panditharatna E, Marques JG, Wang T, Trissal MC, Liu I, Jiang L, Beck A, Groves A, Dharia NV, Li D, Hoffman SE, Kugener G, Shaw ML, Mire HM, Hack OA, Dempster JM, Lareau C, Dai L, Sigua LH, Quezada MA, Stanton ACJ, Wyatt M, Kalani Z, Goodale A, Vazquez F, Piccioni F, Doench JG, Root DE, Anastas JN, Jones KL, Conway AS, Stopka S, Regan MS, Liang Y, Seo HS, Song K, Bashyal P, Jerome WP, Mathewson ND, Dhe-Paganon S, Suvà ML, Carcaboso AM, Lavarino C, Mora J, Nguyen QD, Ligon KL, Shi Y, Agnihotri S, Agar NY, Stegmaier K, Stiles CD, Monje M, Golub TR, Qi J, Filbin MG. BAF Complex Maintains Glioma Stem Cells in Pediatric H3K27M Glioma. Cancer Discov 2022; 12:2880-2905. [PMID: 36305736 PMCID: PMC9716260 DOI: 10.1158/2159-8290.cd-21-1491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 08/03/2022] [Accepted: 09/15/2022] [Indexed: 01/12/2023]
Abstract
Diffuse midline gliomas are uniformly fatal pediatric central nervous system cancers that are refractory to standard-of-care therapeutic modalities. The primary genetic drivers are a set of recurrent amino acid substitutions in genes encoding histone H3 (H3K27M), which are currently undruggable. These H3K27M oncohistones perturb normal chromatin architecture, resulting in an aberrant epigenetic landscape. To interrogate for epigenetic dependencies, we performed a CRISPR screen and show that patient-derived H3K27M-glioma neurospheres are dependent on core components of the mammalian BAF (SWI/SNF) chromatin remodeling complex. The BAF complex maintains glioma stem cells in a cycling, oligodendrocyte precursor cell-like state, in which genetic perturbation of the BAF catalytic subunit SMARCA4 (BRG1), as well as pharmacologic suppression, opposes proliferation, promotes progression of differentiation along the astrocytic lineage, and improves overall survival of patient-derived xenograft models. In summary, we demonstrate that therapeutic inhibition of the BAF complex has translational potential for children with H3K27M gliomas. SIGNIFICANCE Epigenetic dysregulation is at the core of H3K27M-glioma tumorigenesis. Here, we identify the BRG1-BAF complex as a critical regulator of enhancer and transcription factor landscapes, which maintain H3K27M glioma in their progenitor state, precluding glial differentiation, and establish pharmacologic targeting of the BAF complex as a novel treatment strategy for pediatric H3K27M glioma. See related commentary by Beytagh and Weiss, p. 2730. See related article by Mo et al., p. 2906.
Collapse
Affiliation(s)
- Eshini Panditharatna
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Joana G. Marques
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Tingjian Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Maria C. Trissal
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ilon Liu
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Alexander Beck
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andrew Groves
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Neekesh V. Dharia
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Deyao Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Samantha E. Hoffman
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Guillaume Kugener
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - McKenzie L. Shaw
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Hafsa M. Mire
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Olivia A. Hack
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Joshua M. Dempster
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Caleb Lareau
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Pathology, Stanford University, Stanford, California
| | - Lingling Dai
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Logan H. Sigua
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Michael A. Quezada
- Department of Neurology, Stanford University School of Medicine, Stanford, California
| | - Ann-Catherine J. Stanton
- Department of Neurosurgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Meghan Wyatt
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Zohra Kalani
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Amy Goodale
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Francisca Vazquez
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Federica Piccioni
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
- Merck Research Laboratories, Cambridge, Massachusetts
| | - John G. Doench
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - David E. Root
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jamie N. Anastas
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Neurosurgery and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Kristen L. Jones
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amy Saur Conway
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Sylwia Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael S. Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yu Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Kijun Song
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Puspalata Bashyal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - William P. Jerome
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Nathan D. Mathewson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Microbiology and Immunobiology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Mario L. Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Klarman Cell Observatory, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Angel M. Carcaboso
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Keith L. Ligon
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts
- Ludwig Institute for Cancer Research, Oxford Branch, Oxford University, Oxford, United Kingdom
| | - Sameer Agnihotri
- Department of Neurosurgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nathalie Y.R. Agar
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Charles D. Stiles
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Todd R. Golub
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Mariella G. Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
4
|
Kline C, Jain P, Kilburn L, Bonner ER, Gupta N, Crawford JR, Banerjee A, Packer RJ, Villanueva-Meyer J, Luks T, Zhang Y, Kambhampati M, Zhang J, Yadavilli S, Zhang B, Gaonkar KS, Rokita JL, Kraya A, Kuhn J, Liang W, Byron S, Berens M, Molinaro A, Prados M, Resnick A, Waszak SM, Nazarian J, Mueller S. Upfront Biology-Guided Therapy in Diffuse Intrinsic Pontine Glioma: Therapeutic, Molecular, and Biomarker Outcomes from PNOC003. Clin Cancer Res 2022; 28:3965-3978. [PMID: 35852795 PMCID: PMC9475246 DOI: 10.1158/1078-0432.ccr-22-0803] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 07/15/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE PNOC003 is a multicenter precision medicine trial for children and young adults with newly diagnosed diffuse intrinsic pontine glioma (DIPG). PATIENTS AND METHODS Patients (3-25 years) were enrolled on the basis of imaging consistent with DIPG. Biopsy tissue was collected for whole-exome and mRNA sequencing. After radiotherapy (RT), patients were assigned up to four FDA-approved drugs based on molecular tumor board recommendations. H3K27M-mutant circulating tumor DNA (ctDNA) was longitudinally measured. Tumor tissue and matched primary cell lines were characterized using whole-genome sequencing and DNA methylation profiling. When applicable, results were verified in an independent cohort from the Children's Brain Tumor Network (CBTN). RESULTS Of 38 patients enrolled, 28 patients (median 6 years, 10 females) were reviewed by the molecular tumor board. Of those, 19 followed treatment recommendations. Median overall survival (OS) was 13.1 months [95% confidence interval (CI), 11.2-18.4] with no difference between patients who followed recommendations and those who did not. H3K27M-mutant ctDNA was detected at baseline in 60% of cases tested and associated with response to RT and survival. Eleven cell lines were established, showing 100% fidelity of key somatic driver gene alterations in the primary tumor. In H3K27-altered DIPGs, TP53 mutations were associated with worse OS (TP53mut 11.1 mo; 95% CI, 8.7-14; TP53wt 13.3 mo; 95% CI, 11.8-NA; P = 3.4e-2), genome instability (P = 3.1e-3), and RT resistance (P = 6.4e-4). The CBTN cohort confirmed an association between TP53 mutation status, genome instability, and clinical outcome. CONCLUSIONS Upfront treatment-naïve biopsy provides insight into clinically relevant molecular alterations and prognostic biomarkers for H3K27-altered DIPGs.
Collapse
Affiliation(s)
- Cassie Kline
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Payal Jain
- Division of Neurosurgery, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lindsay Kilburn
- Department of Hematology and Oncology, Children's National Hospital, Washington, DC
| | - Erin R. Bonner
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
- Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, California
| | - John R. Crawford
- Department of Neuroscience, University of California, San Diego, California
- Rady Children's Hospital San Diego, San Diego, California
| | - Anu Banerjee
- Department of Neurological Surgery, University of California, San Francisco, California
- Department of Pediatrics, University of California, San Francisco, California
| | - Roger J. Packer
- Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington, DC
| | - Javier Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Tracy Luks
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Yalan Zhang
- Department of Neurological Surgery, University of California, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Madhuri Kambhampati
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
| | - Jie Zhang
- Department of Neurology, University of California, San Francisco, California
| | - Sridevi Yadavilli
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
| | - Bo Zhang
- Division of Neurosurgery, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Krutika S. Gaonkar
- Division of Neurosurgery, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jo Lynne Rokita
- Division of Neurosurgery, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Adam Kraya
- Division of Neurosurgery, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - John Kuhn
- College of Pharmacy, University of Texas Health Science Center, San Antonio, Texas
| | - Winnie Liang
- Translational Genomic Research Institute (TGEN), Phoenix, Arizona
| | - Sara Byron
- Translational Genomic Research Institute (TGEN), Phoenix, Arizona
| | - Michael Berens
- Translational Genomic Research Institute (TGEN), Phoenix, Arizona
| | - Annette Molinaro
- Department of Neurological Surgery, University of California, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Michael Prados
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Adam Resnick
- Division of Neurosurgery, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sebastian M. Waszak
- Department of Neurology, University of California, San Francisco, California
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Division of Pediatric and Adolescent Medicine, Department of Pediatric Research, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
- Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Sabine Mueller
- Department of Neurological Surgery, University of California, San Francisco, California
- Department of Pediatrics, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Przystal JM, Cianciolo Cosentino C, Yadavilli S, Zhang J, Laternser S, Bonner ER, Prasad R, Dawood AA, Lobeto N, Chin Chong W, Biery MC, Myers C, Olson JM, Panditharatna E, Kritzer B, Mourabit S, Vitanza NA, Filbin MG, de Iuliis GN, Dun MD, Koschmann C, Cain JE, Grotzer MA, Waszak SM, Mueller S, Nazarian J. Imipridones affect tumor bioenergetics and promote cell lineage differentiation in diffuse midline gliomas. Neuro Oncol 2022; 24:1438-1451. [PMID: 35157764 PMCID: PMC9435508 DOI: 10.1093/neuonc/noac041] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pediatric diffuse midline gliomas (DMGs) are incurable childhood cancers. The imipridone ONC201 has shown early clinical efficacy in a subset of DMGs. However, the anticancer mechanisms of ONC201 and its derivative ONC206 have not been fully described in DMGs. METHODS DMG models including primary human in vitro (n = 18) and in vivo (murine and zebrafish) models, and patient (n = 20) frozen and FFPE specimens were used. Drug-target engagement was evaluated using in silico ChemPLP and in vitro thermal shift assay. Drug toxicity and neurotoxicity were assessed in zebrafish models. Seahorse XF Cell Mito Stress Test, MitoSOX and TMRM assays, and electron microscopy imaging were used to assess metabolic signatures. Cell lineage differentiation and drug-altered pathways were defined using bulk and single-cell RNA-seq. RESULTS ONC201 and ONC206 reduce viability of DMG cells in nM concentrations and extend survival of DMG PDX models (ONC201: 117 days, P = .01; ONC206: 113 days, P = .001). ONC206 is 10X more potent than ONC201 in vitro and combination treatment was the most efficacious at prolonging survival in vivo (125 days, P = .02). Thermal shift assay confirmed that both drugs bind to ClpP, with ONC206 exhibiting a higher binding affinity as assessed by in silico ChemPLP. ClpP activation by both drugs results in impaired tumor cell metabolism, mitochondrial damage, ROS production, activation of integrative stress response (ISR), and apoptosis in vitro and in vivo. Strikingly, imipridone treatment triggered a lineage shift from a proliferative, oligodendrocyte precursor-like state to a mature, astrocyte-like state. CONCLUSION Targeting mitochondrial metabolism and ISR activation effectively impairs DMG tumorigenicity. These results supported the initiation of two pediatric clinical trials (NCT05009992, NCT04732065).
Collapse
Affiliation(s)
- Justyna M Przystal
- Department of Oncology, Children’s Research Center, University Children’s HospitalZurich, Zurich, Switzerland
| | - Chiara Cianciolo Cosentino
- Department of Oncology, Children’s Research Center, University Children’s HospitalZurich, Zurich, Switzerland
| | - Sridevi Yadavilli
- Department of Oncology, Children’s Research Center, University Children’s HospitalZurich, Zurich, Switzerland
- Research Center for Genetic Medicine, Children’s National Hospital, Washington, DC, USA
| | - Jie Zhang
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Sandra Laternser
- Department of Oncology, Children’s Research Center, University Children’s HospitalZurich, Zurich, Switzerland
| | - Erin R Bonner
- Research Center for Genetic Medicine, Children’s National Hospital, Washington, DC, USA
| | - Rachna Prasad
- Department of Oncology, Children’s Research Center, University Children’s HospitalZurich, Zurich, Switzerland
| | - Adam A Dawood
- Research Center for Genetic Medicine, Children’s National Hospital, Washington, DC, USA
| | - Nina Lobeto
- Department of Oncology, Children’s Research Center, University Children’s HospitalZurich, Zurich, Switzerland
| | - Wai Chin Chong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia and Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Matt C Biery
- The Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Carrie Myers
- The Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - James M Olson
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Eshini Panditharatna
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Bettina Kritzer
- Department of Oncology, Children’s Research Center, University Children’s HospitalZurich, Zurich, Switzerland
| | - Sulayman Mourabit
- Department of Oncology, Children’s Research Center, University Children’s HospitalZurich, Zurich, Switzerland
| | - Nicholas A Vitanza
- The Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Geoffry N de Iuliis
- Reproductive Science Group, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Carl Koschmann
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia and Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Michael A Grotzer
- Department of Oncology, Children’s Research Center, University Children’s HospitalZurich, Zurich, Switzerland
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Sabine Mueller
- Department of Oncology, Children’s Research Center, University Children’s HospitalZurich, Zurich, Switzerland
- Department of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Javad Nazarian
- Department of Oncology, Children’s Research Center, University Children’s HospitalZurich, Zurich, Switzerland
- Research Center for Genetic Medicine, Children’s National Hospital, Washington, DC, USA
| |
Collapse
|
6
|
Chen S, Deng X, Sheng H, Rong Y, Zheng Y, Zhang Y, Lin J. Noncoding RNAs in pediatric brain tumors: Molecular functions and pathological implications. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:417-431. [PMID: 34552822 PMCID: PMC8426460 DOI: 10.1016/j.omtn.2021.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain tumors are common solid pediatric malignancies and the main reason for cancer-related death in the pediatric setting. Recently, evidence has revealed that noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), play a critical role in brain tumor development and progression. Therefore, in this review article, we describe the functions and molecular mechanisms of ncRNAs in multiple types of cancer, including medulloblastoma, pilocytic astrocytoma, ependymoma, atypical teratoid/rhabdoid tumor, glioblastoma, diffuse intrinsic pontine glioma, and craniopharyngioma. We also mention the limitations of using ncRNAs as therapeutic targets because of the nonspecificity of ncRNA targets and the delivery methods of ncRNAs. Due to the critical role of ncRNAs in brain oncogenesis, targeting aberrantly expressed ncRNAs might be an effective strategy to improve the outcomes of pediatric patients with brain tumors.
Collapse
Affiliation(s)
- Shaohuai Chen
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Deng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxi Rong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanhao Zheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yusong Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Ehteda A, Simon S, Franshaw L, Giorgi FM, Liu J, Joshi S, Rouaen JRC, Pang CNI, Pandher R, Mayoh C, Tang Y, Khan A, Ung C, Tolhurst O, Kankean A, Hayden E, Lehmann R, Shen S, Gopalakrishnan A, Trebilcock P, Gurova K, Gudkov AV, Norris MD, Haber M, Vittorio O, Tsoli M, Ziegler DS. Dual targeting of the epigenome via FACT complex and histone deacetylase is a potent treatment strategy for DIPG. Cell Rep 2021; 35:108994. [PMID: 33852836 DOI: 10.1016/j.celrep.2021.108994] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/24/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an aggressive and incurable childhood brain tumor for which new treatments are needed. CBL0137 is an anti-cancer compound developed from quinacrine that targets facilitates chromatin transcription (FACT), a chromatin remodeling complex involved in transcription, replication, and DNA repair. We show that CBL0137 displays profound cytotoxic activity against a panel of patient-derived DIPG cultures by restoring tumor suppressor TP53 and Rb activity. Moreover, in an orthotopic model of DIPG, treatment with CBL0137 significantly extends animal survival. The FACT subunit SPT16 is found to directly interact with H3.3K27M, and treatment with CBL0137 restores both histone H3 acetylation and trimethylation. Combined treatment of CBL0137 with the histone deacetylase inhibitor panobinostat leads to inhibition of the Rb/E2F1 pathway and induction of apoptosis. The combination of CBL0137 and panobinostat significantly prolongs the survival of mice bearing DIPG orthografts, suggesting a potential treatment strategy for DIPG.
Collapse
Affiliation(s)
- Anahid Ehteda
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Sandy Simon
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Laura Franshaw
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Jie Liu
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Swapna Joshi
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Jourdin R C Rouaen
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Chi Nam Ignatius Pang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ruby Pandher
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Yujie Tang
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aaminah Khan
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Caitlin Ung
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Ornella Tolhurst
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Anne Kankean
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Elisha Hayden
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Rebecca Lehmann
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Sylvie Shen
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Anjana Gopalakrishnan
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Peter Trebilcock
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia; Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia.
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia; Kid's Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia.
| |
Collapse
|
8
|
Uranowska K, Kalic T, Valtsanidis V, Kitzwögerer M, Breiteneder H, Hafner C. Expression of chondroitin sulfate proteoglycan 4 (CSPG4) in melanoma cells is downregulated upon inhibition of BRAF. Oncol Rep 2021; 45:14. [PMID: 33649790 PMCID: PMC7876987 DOI: 10.3892/or.2021.7965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
Chondroitin sulfate proteoglycan 4 (CSPG4) is a multifunctional transmembrane proteoglycan involved in spreading, migration and invasion of melanoma. In addition to the activating BRAF V600E mutation, CSPG4 was shown to promote MAPK signaling by mediating the growth-factor induced activation of receptor tyrosine kinases. However, it remains elusive which factors regulate CSPG4 expression. Therefore, the aim of the present study was to examine whether BRAF and MEK inhibitors have an effect on the expression of CSPG4. We exposed a panel of BRAF-mutant CSPG4-positive or -negative melanoma cell lines to BRAF and MEK inhibitors. Protein levels of CSPG4 were analyzed by flow cytometry (FACS), immunofluorescence microscopy (IF), and western blotting. CSPG4 mRNA levels were determined by quantitative PCR (qPCR). The prolonged exposure of cells to BRAF and MEK inhibitors resulted in markedly reduced levels of the CSPG4 protein in permanent resistant melanoma cells as well as decreased levels of its mRNA. We did not observe increasing levels of CSPG4 shedding into the culture supernatants. In addition, patient-derived matched tumor samples following therapy with kinase inhibitors showed decreased numbers of CSPG4-positive cells as compared to pre-therapy tumor samples. Our results indicate that BRAF and MEK inhibition downregulates CSPG4 expression until the cells have developed permanent resistance. Our findings provide the basis for further investigation of the role of CSPG4 in the development of drug-resistance in melanoma cells.
Collapse
Affiliation(s)
- Karolina Uranowska
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, 3100 St. Poelten, Austria
| | - Tanja Kalic
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, 3100 St. Poelten, Austria
| | - Veronika Valtsanidis
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Melitta Kitzwögerer
- Department of Pathology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, 3100 St. Poelten, Austria
| | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, 3100 St. Poelten, Austria
| |
Collapse
|
9
|
Srikanthan D, Taccone MS, Van Ommeren R, Ishida J, Krumholtz SL, Rutka JT. Diffuse intrinsic pontine glioma: current insights and future directions. Chin Neurosurg J 2021; 7:6. [PMID: 33423692 PMCID: PMC7798267 DOI: 10.1186/s41016-020-00218-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a lethal pediatric brain tumor and the leading cause of brain tumor–related death in children. As several clinical trials over the past few decades have led to no significant improvements in outcome, the current standard of care remains fractionated focal radiation. Due to the recent increase in stereotactic biopsies, tumor tissue availabilities have enabled our advancement of the genomic and molecular characterization of this lethal cancer. Several groups have identified key histone gene mutations, genetic drivers, and methylation changes in DIPG, providing us with new insights into DIPG tumorigenesis. Subsequently, there has been increased development of in vitro and in vivo models of DIPG which have the capacity to unveil novel therapies and strategies for drug delivery. This review outlines the clinical characteristics, genetic landscape, models, and current treatments and hopes to shed light on novel therapeutic avenues and challenges that remain.
Collapse
Affiliation(s)
- Dilakshan Srikanthan
- Cell Biology Program, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Michael S Taccone
- Cell Biology Program, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, The Ottawa Hospital, Ottawa, ON, Canada
| | - Randy Van Ommeren
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada
| | - Joji Ishida
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada
| | - Stacey L Krumholtz
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada
| | - James T Rutka
- Cell Biology Program, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada. .,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada. .,Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Suite 1503, 555, University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
10
|
Uddin MS, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM. Epigenetics of glioblastoma multiforme: From molecular mechanisms to therapeutic approaches. Semin Cancer Biol 2020; 83:100-120. [PMID: 33370605 DOI: 10.1016/j.semcancer.2020.12.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain cancer and one of the most aggressive cancers found in humans. Most of the signs and symptoms of GBM can be mild and slowly aggravated, although other symptoms might demonstrate it as an acute ailment. However, the precise mechanisms of the development of GBM remain unknown. Due to the improvement of molecular pathology, current researches have reported that glioma progression is strongly connected with different types of epigenetic phenomena, such as histone modifications, DNA methylation, chromatin remodeling, and aberrant microRNA. Furthermore, the genes and the proteins that control these alterations have become novel targets for treating glioma because of the reversibility of epigenetic modifications. In some cases, gene mutations including P16, TP53, and EGFR, have been observed in GBM. In contrast, monosomies, including removals of chromosome 10, particularly q23 and q25-26, are considered the standard markers for determining the development and aggressiveness of GBM. Recently, amid the epigenetic therapies, histone deacetylase inhibitors (HDACIs) and DNA methyltransferase inhibitors have been used for treating tumors, either single or combined. Specifically, HDACIs are served as a good choice and deliver a novel pathway to treat GBM. In this review, we focus on the epigenetics of GBM and the consequence of its mutations. We also highlight various treatment approaches, namely gene editing, epigenetic drugs, and microRNAs to combat GBM.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687, Reims Cedex 2, France
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
11
|
Medved J, Wood WM, van Heyst MD, Sherafat A, Song JY, Sakya S, Wright DL, Nishiyama A. Novel guanidine compounds inhibit platelet-derived growth factor receptor alpha transcription and oligodendrocyte precursor cell proliferation. Glia 2020; 69:792-811. [PMID: 33098183 DOI: 10.1002/glia.23930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Oligodendrocyte precursor cells (OPCs), also known as NG2 cells or polydendrocytes, are distributed widely throughout the developing and mature central nervous system. They remain proliferative throughout life and are an important source of myelinating cells in normal and demyelinating brain as well as a source of glioma, the most common type of primary brain tumor with a poor prognosis. OPC proliferation is dependent on signaling mediated by platelet-derived growth factor (PDGF) AA binding to its alpha receptor (PDGFRα). Here, we describe a group of structurally related compounds characterized by the presence of a basic guanidine group appended to an aromatic core that is effective in specifically repressing the transcription of Pdgfra but not the related beta receptor (Pdgfrb) in OPCs. These compounds specifically and dramatically reduced proliferation of OPCs but not that of astrocytes and did not affect signal transduction by PDGFRα. These findings suggest that the compounds could be further developed for potential use in combinatorial treatment strategies for neoplasms with dysregulated PDGFRα function.
Collapse
Affiliation(s)
- Jelena Medved
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - William M Wood
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Michael D van Heyst
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Ju-Young Song
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Sagune Sakya
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Dennis L Wright
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Mansfield, Connecticut, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Mansfield, Connecticut, USA
| |
Collapse
|
12
|
Mellai M, Annovazzi L, Bisogno I, Corona C, Crociara P, Iulini B, Cassoni P, Casalone C, Boldorini R, Schiffer D. Chondroitin Sulphate Proteoglycan 4 (NG2/CSPG4) Localization in Low- and High-Grade Gliomas. Cells 2020; 9:E1538. [PMID: 32599896 PMCID: PMC7349878 DOI: 10.3390/cells9061538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Neuron glial antigen 2 or chondroitin sulphate proteoglycan 4 (NG2/CSPG4) is expressed by immature precursors/progenitor cells and is possibly involved in malignant cell transformation. The aim of this study was to investigate its role on the progression and survival of sixty-one adult gliomas and nine glioblastoma (GB)-derived cell lines. METHODS NG2/CSPG4 protein expression was assessed by immunohistochemistry and immunofluorescence. Genetic and epigenetic alterations were detected by molecular genetic techniques. RESULTS NG2/CSPG4 was frequently expressed in IDH-mutant/1p19q-codel oligodendrogliomas (59.1%) and IDH-wild type GBs (40%) and rarely expressed in IDH-mutant or IDH-wild type astrocytomas (14.3%). Besides tumor cells, NG2/CSPG4 immunoreactivity was found in the cytoplasm and/or cell membranes of reactive astrocytes and vascular pericytes/endothelial cells. In GB-derived neurospheres, it was variably detected according to the number of passages of the in vitro culture. In GB-derived adherent cells, a diffuse positivity was found in most cells. NG2/CSPG4 expression was significantly associated with EGFR gene amplification (p = 0.0005) and poor prognosis (p = 0.016) in astrocytic tumors. CONCLUSION The immunoreactivity of NG2/CSPG4 provides information on the timing of the neoplastic transformation and could have prognostic and therapeutic relevance as a promising tumor-associated antigen for antibody-based immunotherapy in patients with malignant gliomas.
Collapse
Affiliation(s)
- Marta Mellai
- Dipartimento di Scienze della Salute, Scuola di Medicina, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (M.M.); (R.B.)
- Centro Interdipartimentale di Ricerca Traslazionale sulle Malattie Autoimmuni e Allergiche (CAAD), Università del Piemonte Orientale (UPO), Corso Trieste 15A, 28100 Novara, Italy
- Fondazione Edo ed Elvo Tempia Valenta—ONLUS, Via Malta 3, 13900 Biella, Italy
| | - Laura Annovazzi
- Ex Centro Ricerche/Fondazione Policlinico di Monza, Via P. Micca 29, 13100 Vercelli, Italy; (L.A.); (I.B.); (D.S.)
| | - Ilaria Bisogno
- Ex Centro Ricerche/Fondazione Policlinico di Monza, Via P. Micca 29, 13100 Vercelli, Italy; (L.A.); (I.B.); (D.S.)
| | - Cristiano Corona
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (C.C.); (P.C.); (B.I.)
| | - Paola Crociara
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (C.C.); (P.C.); (B.I.)
| | - Barbara Iulini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (C.C.); (P.C.); (B.I.)
| | - Paola Cassoni
- Dipartimento di Scienze Mediche, Università di Torino/Città della Salute e della Scienza, Via Santena 7, 10126 Torino, Italy;
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (C.C.); (P.C.); (B.I.)
| | - Renzo Boldorini
- Dipartimento di Scienze della Salute, Scuola di Medicina, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (M.M.); (R.B.)
| | - Davide Schiffer
- Ex Centro Ricerche/Fondazione Policlinico di Monza, Via P. Micca 29, 13100 Vercelli, Italy; (L.A.); (I.B.); (D.S.)
| |
Collapse
|
13
|
Lee S, Kambhampati M, Yadavilli S, Gordish-Dressman H, Santi M, Cruz CR, Packer RJ, Almira-Suarez MI, Hwang EI, Nazarian J. Differential Expression of Wilms' Tumor Protein in Diffuse Intrinsic Pontine Glioma. J Neuropathol Exp Neurol 2020; 78:380-388. [PMID: 30990879 PMCID: PMC6467196 DOI: 10.1093/jnen/nlz021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) are deadly tumors comprising 10%–15% of all childhood CNS cancers. Standard treatment is considered palliative and prognosis is near universal mortality. DIPGs have been classified into genomic subtypes based on histone variants with the lysine to methionine mutation on position 27 of histone tails (K27M). Given the increasing promise of immunotherapy, there have been ongoing efforts to identify tumor-specific antigens to serve as immunologic targets. We evaluated a large cohort of CNS specimens for Wilms’ tumor protein (WT1) expression. These specimens include primary pediatric CNS tumors (n = 38 midline gliomas and n = 3 non-midline gliomas; n = 23 DIPG, n = 10 low-grade gliomas, n = 8 high-grade gliomas), and DIPG primary cells. Here, we report the validation of WT1 as a tumor-associated antigen in DIPGs. We further report that WT1 expression is significantly correlated with specific oncohistone variants, with the highest expression detected in the H3.3K27M subgroup. WT1 expression was absent in all control specimens (n = 21). Western blot assays using DIPG primary cells (n = 6) showed a trend of higher WT1 expression in H3.3K27M cells when compared with H3.1 K27M cells and H3 wildtype cells. Our data are the first indication of the association between WT1 and DIPG, with specific upregulation in those harboring oncohistone H3.3K27M.
Collapse
Affiliation(s)
- Sulgi Lee
- Children's National Health System, Center for Genetic Medicine Research, Washington, District of Columbia.,The George Washington University School of Medicine and Health Sciences, Institute for Biomedical Sciences, Washington
| | - Madhuri Kambhampati
- Children's National Health System, Center for Genetic Medicine Research, Washington, District of Columbia
| | - Sridevi Yadavilli
- Children's National Health System, Center for Genetic Medicine Research, Washington, District of Columbia
| | - Heather Gordish-Dressman
- Children's National Health System, Center for Genetic Medicine Research, Washington, District of Columbia
| | - Mariarita Santi
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Conrad R Cruz
- Children's National Health System, Center for Cancer and Immunology Research, Washington, District of Columbia
| | - Roger J Packer
- Children's National Health System, Brain Tumor Institute, Washington, District of Columbia
| | - M Isabel Almira-Suarez
- Department of Pathology and Laboratory Medicine, Children's National Health System, Washington, District of Columbia (MIA-S)
| | - Eugene I Hwang
- Children's National Health System, Brain Tumor Institute, Washington, District of Columbia
| | - Javad Nazarian
- Children's National Health System, Center for Genetic Medicine Research, Washington, District of Columbia.,The George Washington University School of Medicine and Health Sciences, Institute for Biomedical Sciences, Washington.,Children's National Health System, Brain Tumor Institute, Washington, District of Columbia.,Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
14
|
Abstract
Even though the treatment of childhood cancer has evolved significantly in recent decades, aggressive central nervous system (CNS) tumors are still a leading cause of morbidity and mortality in this population. Consequently, the identification of molecular targets that can be incorporated into diagnostic practice, effectively predict prognosis, follow treatment response, and materialize into potential targeted therapeutic approaches are still warranted. Since the first evidence of the participation of miRNAs in cancer development and progression 20 years ago, notable progress has been made in the basic understanding of the contribution of their dysregulation as epigenetic driver of tumorigenesis. Nevertheless, among the plethora of articles in the literature, microRNA profiling of pediatric tumors are scarce. This article gives an overview of the recent advances in the diagnostic/prognostic potential of miRNAs in a selection of pediatric CNS tumors: medulloblastoma, ependymoma, pilocytic astrocytoma, glioblastoma, diffuse intrinsic pontine glioma, atypical teratoid/rhabdoid tumors, and choroid plexus tumors.
Collapse
|
15
|
Chondroitin Sulphate Proteoglycans in the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:73-92. [PMID: 32845503 DOI: 10.1007/978-3-030-48457-6_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteoglycans are macromolecules that are essential for the development of cells, human diseases and malignancies. In particular, chondroitin sulphate proteoglycans (CSPGs) accumulate in tumour stroma and play a key role in tumour growth and invasion by driving multiple oncogenic pathways in tumour cells and promoting crucial interactions in the tumour microenvironment (TME). These pathways involve receptor tyrosine kinase (RTK) signalling via the mitogen-activated protein kinase (MAPK) cascade and integrin signalling via the activation of focal adhesion kinase (FAK), which sustains the activation of extracellular signal-regulated kinases 1/2 (ERK1/2).Human CSPG4 is a type I transmembrane protein that is associated with the growth and progression of human brain tumours. It regulates cell signalling and migration by interacting with components of the extracellular matrix, extracellular ligands, growth factor receptors, intracellular enzymes and structural proteins. Its overexpression by tumour cells, perivascular cells and precursor/progenitor cells in gliomas suggests that it plays a role in their origin, progression and neo-angiogenesis and its aberrant expression in tumour cells may be a promising biomarker to monitor malignant progression and patient survival.The aim of this chapter is to review and discuss the role of CSPG4 in the TME of human gliomas, including its potential as a druggable therapeutic target.
Collapse
|
16
|
Abstract
Gliomas are heterogeneous tumours derived from glial cells and remain the deadliest form of brain cancer. Although the glioma stem cell sits at the apex of the cellular hierarchy, how it produces the vast cellular constituency associated with frank glioma remains poorly defined. We explore glioma tumorigenesis through the lens of glial development, starting with the neurogenic-gliogenic switch and progressing through oligodendrocyte and astrocyte differentiation. Beginning with the factors that influence normal glial linage progression and diversity, a pattern emerges that has useful parallels in the development of glioma and may ultimately provide targetable pathways for much-needed new therapeutics.
Collapse
|
17
|
Meel MH, Kaspers GJL, Hulleman E. Preclinical therapeutic targets in diffuse midline glioma. Drug Resist Updat 2019; 44:15-25. [PMID: 31202081 DOI: 10.1016/j.drup.2019.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022]
Abstract
Diffuse midline gliomas (DMG) are rapidly fatal tumors of the midbrain in children, characterized by a diffuse growing pattern and high levels of intrinsic resistance to therapy. The location of these tumors, residing behind the blood-brain barrier (BBB), and the limited knowledge about the biology of these tumors, has hindered the development of effective treatment strategies. However, the introduction of diagnostic biopsies and the implementation of autopsy protocols in several large centers world-wide has allowed for a detailed characterization of these rare tumors. This has resulted in the identification of novel therapeutic targets, as well as major advances in understanding the biology of DMG in relation to therapy resistance. We here provide an overview of the cellular pathways and tumor-specific aberrations that have been targeted in preclinical DMG research, and discuss the advantages and limitations of these therapeutic strategies in relation to therapy resistance and BBB-penetration. Therewith, we aim to provide researchers with a framework for successful preclinical therapy development.
Collapse
Affiliation(s)
- Michaël Hananja Meel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, the Netherlands
| | - Gertjan J L Kaspers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, the Netherlands
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Welby JP, Kaptzan T, Wohl A, Peterson TE, Raghunathan A, Brown DA, Gupta SK, Zhang L, Daniels DJ. Current Murine Models and New Developments in H3K27M Diffuse Midline Gliomas. Front Oncol 2019; 9:92. [PMID: 30873381 PMCID: PMC6400847 DOI: 10.3389/fonc.2019.00092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/31/2019] [Indexed: 01/24/2023] Open
Abstract
Diffuse Midline Gliomas with Histone 3-Lysine-27-Methionine (H3K27M) mutation constitute the majority of Diffuse Intrinsic Pontine Glioma (DIPG), which is the most aggressive form of pediatric glioma with a dire prognosis. DIPG are lethal tumors found in younger children with a median survival <1 year from diagnosis. Discovery of the characteristic H3K27M mutations offers opportunity and hope for development of targeted therapies for this deadly disease. The H3K27M mutation, likely through epigenetic alterations in specific H3 lysine trimethylation levels and subsequent gene expression, plays a significant role in pathogenesis of DIPG. Animal models accurately depicting molecular characteristics of H3K27M DIPG are important to elucidate underlying pathologic events and for preclinical drug evaluation. Here we review the past and present DIPG models and describe our efforts developing patient derived cell lines and xenografts from pretreated surgical specimens. Pre-treated surgical samples retain the characteristic genomic and phenotypic hallmarks of DIPG and establish orthotopic tumors in the mouse brainstem that recapitulate radiographic and morphological features of the original human DIPG tumor. These models that contain the H3K27M mutation constitute a valuable tool to further study this devastating disease and ultimately may uncover novel therapeutic vulnerabilities.
Collapse
Affiliation(s)
- John P Welby
- Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Tatiana Kaptzan
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Anton Wohl
- Department of Neurosurgery, Chaim Sheba Medical Center, Tel-HaShomer, Ramat-Gan, Israel
| | | | - Aditya Raghunathan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Desmond A Brown
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - Shiv K Gupta
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Liang Zhang
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - David J Daniels
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
19
|
Moscote-Salazar L, Padilla-Zambrano H, Garcia-Ballestas E, Agrawal A, Paez-Nova M, Pacheco-Hernandez A. Pediatric diffuse intrinsic pontine gliomas. GLIOMA 2019. [DOI: 10.4103/glioma.glioma_50_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Zang L, Kondengaden SM, Che F, Wang L, Heng X. Potential Epigenetic-Based Therapeutic Targets for Glioma. Front Mol Neurosci 2018; 11:408. [PMID: 30498431 PMCID: PMC6249994 DOI: 10.3389/fnmol.2018.00408] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Glioma is characterized by a high recurrence rate, short survival times, high rates of mortality and treatment difficulties. Surgery, chemotherapy and radiation (RT) are the standard treatments, but outcomes rarely improve even after treatment. With the advancement of molecular pathology, recent studies have found that the development of glioma is closely related to various epigenetic phenomena, including DNA methylation, abnormal microRNA (miRNA), chromatin remodeling and histone modifications. Owing to the reversibility of epigenetic modifications, the proteins and genes that regulate these changes have become new targets in the treatment of glioma. In this review, we present a summary of the potential therapeutic targets of glioma and related effective treating drugs from the four aspects mentioned above. We further illustrate how epigenetic mechanisms dynamically regulate the pathogenesis and discuss the challenges of glioma treatment. Currently, among the epigenetic treatments, DNA methyltransferase (DNMT) inhibitors and histone deacetylase inhibitors (HDACIs) can be used for the treatment of tumors, either individually or in combination. In the treatment of glioma, only HDACIs remain a good option and they provide new directions for the treatment. Due to the complicated pathogenesis of glioma, epigenetic applications to glioma clinical treatment are still limited.
Collapse
Affiliation(s)
- Lanlan Zang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shukkoor Muhammed Kondengaden
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Fengyuan Che
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Lijuan Wang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Xueyuan Heng
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| |
Collapse
|
21
|
The Significance of Chondroitin Sulfate Proteoglycan 4 (CSPG4) in Human Gliomas. Int J Mol Sci 2018; 19:ijms19092724. [PMID: 30213051 PMCID: PMC6164575 DOI: 10.3390/ijms19092724] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
Neuron glial antigen 2 (NG2) is a chondroitin sulphate proteoglycan 4 (CSPG4) that occurs in developing and adult central nervous systems (CNSs) as a marker of oligodendrocyte precursor cells (OPCs) together with platelet-derived growth factor receptor α (PDGFRα). It behaves variably in different pathological conditions, and is possibly involved in the origin and progression of human gliomas. In the latter, NG2/CSPG4 induces cell proliferation and migration, is highly expressed in pericytes, and plays a role in neoangiogenesis. NG2/CSPG4 expression has been demonstrated in oligodendrogliomas, astrocytomas, and glioblastomas (GB), and it correlates with malignancy. In rat tumors transplacentally induced by N-ethyl-N-nitrosourea (ENU), NG2/CSPG4 expression correlates with PDGFRα, Olig2, Sox10, and Nkx2.2, and with new vessel formation. In this review, we attempt to summarize the normal and pathogenic functions of NG2/CSPG4, as well as its potential as a therapeutic target.
Collapse
|
22
|
Wells E, Kambhampati M, Damsker JM, Gordish-Dressman H, Yadavilli S, Becher OJ, Gittens J, Stampar M, Packer RJ, Nazarian J. Vamorolone, a dissociative steroidal compound, reduces pro-inflammatory cytokine expression in glioma cells and increases activity and survival in a murine model of cortical tumor. Oncotarget 2018; 8:9366-9374. [PMID: 28030841 PMCID: PMC5354737 DOI: 10.18632/oncotarget.14070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022] Open
Abstract
Corticosteroids, such as dexamethasone, are routinely used as palliative care in neuro-oncology for their anti-inflammatory benefits, however many patients experience dose limiting side effects caused by glucocorticoid response element (GRE)-mediated transcription. The purpose of this study was to use a murine model to investigate a new steroid alternative, vamorolone, which promises to reduce side effects through dissociating GRE-mediated transcription and NF-κB -mediated anti-inflammatory actions. To compare vamorolone to dexamethasone in reducing pro-inflammatory signals in vitro, murine glioma cells were treated with dexamethasone, vamorolone or vehicle control. Changes in mRNA expression were assessed using the nanostring inflammatory platform. Furthermore, drug efficacy, post-treatment behavioral activity and side effects were assessed by treating two cohorts of brain tumor bearing mice with dexamethasone, vamorolone, or vehicle control. Our investigation showed that treatment with vamorolone resulted in a reduction of pro-inflammatory signals in tumor cells in vitro similar to treatment with dexamethasone. Treatment with vamorolone resulted in a better safety profile in comparison to dexamethasone treatment. Vamorolone- treated mice showed similar or better activity and survival when compared to dexamethasone-treated mice. Our data indicate vamorolone is a potential steroid-sparing alternative for treating patients with brain tumors.
Collapse
Affiliation(s)
- Elizabeth Wells
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA.,Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, Washington, DC, USA
| | - Madhuri Kambhampati
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | | | | | - Sridevi Yadavilli
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | | | - Jamila Gittens
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Mojca Stampar
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Roger J Packer
- Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, Washington, DC, USA
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA.,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
23
|
Ilieva KM, Cheung A, Mele S, Chiaruttini G, Crescioli S, Griffin M, Nakamura M, Spicer JF, Tsoka S, Lacy KE, Tutt ANJ, Karagiannis SN. Chondroitin Sulfate Proteoglycan 4 and Its Potential As an Antibody Immunotherapy Target across Different Tumor Types. Front Immunol 2018; 8:1911. [PMID: 29375561 PMCID: PMC5767725 DOI: 10.3389/fimmu.2017.01911] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
Overexpression of the chondroitin sulfate proteoglycan 4 (CSPG4) has been associated with the pathology of multiple types of such as melanoma, breast cancer, squamous cell carcinoma, mesothelioma, neuroblastoma, adult and pediatric sarcomas, and some hematological cancers. CSPG4 has been reported to exhibit a role in the growth and survival as well as in the spreading and metastasis of tumor cells. CSPG4 is overexpressed in several malignant diseases, while it is thought to have restricted and low expression in normal tissues. Thus, CSPG4 has become the target of numerous anticancer treatment approaches, including monoclonal antibody-based therapies. This study reviews key potential anti-CSPG4 antibody and immune-based therapies and examines their direct antiproliferative/metastatic and immune activating mechanisms of action.
Collapse
Affiliation(s)
- Kristina M Ilieva
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Silvia Mele
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom
| | - Giulia Chiaruttini
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom
| | - Merope Griffin
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom
| | - Mano Nakamura
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom.,Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - James F Spicer
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom
| | - Andrew N J Tutt
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom.,Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| |
Collapse
|
24
|
Zhu W, Krishna S, Garcia C, Lin CCJ, Mitchell BD, Scott KL, Mohila CA, Creighton CJ, Yoo SH, Lee HK, Deneen B. Daam2 driven degradation of VHL promotes gliomagenesis. eLife 2017; 6. [PMID: 29053101 PMCID: PMC5650470 DOI: 10.7554/elife.31926] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 01/01/2023] Open
Abstract
Von Hippel-Landau (VHL) protein is a potent tumor suppressor regulating numerous pathways that drive cancer, but mutations in VHL are restricted to limited subsets of malignancies. Here we identified a novel mechanism for VHL suppression in tumors that do not have inactivating mutations. Using developmental processes to uncover new pathways contributing to tumorigenesis, we found that Daam2 promotes glioma formation. Protein expression screening identified an inverse correlation between Daam2 and VHL expression across a host of cancers, including glioma. These in silico insights guided corroborating functional studies, which revealed that Daam2 promotes tumorigenesis by suppressing VHL expression. Furthermore, biochemical analyses demonstrate that Daam2 associates with VHL and facilitates its ubiquitination and degradation. Together, these studies are the first to define an upstream mechanism regulating VHL suppression in cancer and describe the role of Daam2 in tumorigenesis. Glioblastoma is the deadliest form of brain cancer, and the rate of patient survival has not significantly improved over the past 70 years. This cancer arises when glial cells, which provide support and insulation to nerve cells, develop mutations that alter the activity of certain genes or alter the role they play in cells. However, there are also several key genes linked to glioblastomas that don’t exhibit mutations, such as the gene that encodes the Von Hippel Landau protein (or VHL for short). This protein normally helps to protect us from developing cancer, but it is not clear how this protein is prevented from performing this role in glioblastomas. One possibility is that proteins that regulate how cells grow and develop may control VHL. For example, a protein called Daam2 plays a critical role in a signaling pathway that is required for glial cell development. Zhu et al. used biochemical techniques to study Daam2 and VHL in both human cells and mouse models of glioblastoma. The experiments show that glioblastoma cells have lower levels of VHL compared to normal cells. This decrease is caused by Daam 2, which interacts with VHL and promotes its degradation. Further experiments found that in several different types of cancer, higher levels of Daam2 are linked with the presence of lower levels of VHL. These findings indicate that the interaction between Daam2 and VHL could be a new target for drugs to treat glioblastoma and possibly other forms of cancer. Daam2 and VHL have also been linked to multiple sclerosis, cerebral palsy and other diseases that affect the nervous system. Therefore, understanding how these proteins interact may also help to develop new treatments for these conditions.
Collapse
Affiliation(s)
- Wenyi Zhu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States.,The Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, United States
| | - Saritha Krishna
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
| | - Cristina Garcia
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
| | - Chia-Ching John Lin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
| | - Bartley D Mitchell
- Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| | - Kenneth L Scott
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, United States
| | - Carrie A Mohila
- Department of Pathology, Texas Children's Hospital, Houston, United States
| | - Chad J Creighton
- Dan L Duncan Cancer Center, Division of Biostatistics, Baylor College of Medicine, Houston, United States.,Department of Medicine, Baylor College of Medicine, Houston, United States
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Heath Science Center at Houston, Houston, United States
| | - Hyun Kyoung Lee
- Department of Pediatrics, Division of Neurology, Baylor College of Medicine, Houston, United States.,Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States.,The Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, United States.,Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
25
|
Miyahara H, Yadavilli S, Natsumeda M, Rubens JA, Rodgers L, Kambhampati M, Taylor IC, Kaur H, Asnaghi L, Eberhart CG, Warren KE, Nazarian J, Raabe EH. The dual mTOR kinase inhibitor TAK228 inhibits tumorigenicity and enhances radiosensitization in diffuse intrinsic pontine glioma. Cancer Lett 2017; 400:110-116. [PMID: 28450157 DOI: 10.1016/j.canlet.2017.04.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/13/2017] [Accepted: 04/19/2017] [Indexed: 11/18/2022]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an invasive and treatment-refractory pediatric brain tumor. Primary DIPG tumors harbor a number of mutations including alterations in PTEN, AKT, and PI3K and exhibit activation of mammalian Target of Rapamycin Complex 1 and 2 (mTORC1/2). mTORC1/2 regulate protein translation, cell growth, survival, invasion, and metabolism. Pharmacological inhibition of mTORC1 is minimally effective in DIPG. However, the activity of dual TORC kinase inhibitors has not been examined in this tumor type. Nanomolar levels of the mTORC1/2 inhibitor TAK228 reduced expression of p-AKTS473 and p-S6S240/244 and suppressed the growth of DIPG lines JHH-DIPG1, SF7761, and SU-DIPG-XIII. TAK228 induced apoptosis in DIPG cells and cooperated with radiation to further block proliferation and enhance apoptosis. TAK228 monotherapy inhibited the tumorigenicity of a murine orthotopic model of DIPG, more than doubling median survival (p = 0.0017) versus vehicle. We conclude that dual mTOR inhibition is a promising potential candidate for DIPG treatment.
Collapse
Affiliation(s)
- Hiroaki Miyahara
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sridevi Yadavilli
- Research Center for Genetic Medicine, Children's National Health System, Washington, District of Columbia 20010, USA
| | - Manabu Natsumeda
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey A Rubens
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Louis Rodgers
- National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Madhuri Kambhampati
- Research Center for Genetic Medicine, Children's National Health System, Washington, District of Columbia 20010, USA
| | - Isabella C Taylor
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harpreet Kaur
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura Asnaghi
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles G Eberhart
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katherine E Warren
- National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children's National Health System, Washington, District of Columbia 20010, USA; Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia 20052, USA
| | - Eric H Raabe
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Ampofo E, Schmitt BM, Menger MD, Laschke MW. The regulatory mechanisms of NG2/CSPG4 expression. Cell Mol Biol Lett 2017; 22:4. [PMID: 28536635 PMCID: PMC5415841 DOI: 10.1186/s11658-017-0035-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/22/2017] [Indexed: 12/24/2022] Open
Abstract
Neuron-glial antigen 2 (NG2), also known as chondroitin sulphate proteoglycan 4 (CSPG4), is a surface type I transmembrane core proteoglycan that is crucially involved in cell survival, migration and angiogenesis. NG2 is frequently used as a marker for the identification and characterization of certain cell types, but little is known about the mechanisms regulating its expression. In this review, we provide evidence that the regulation of NG2 expression underlies inflammation and hypoxia and is mediated by methyltransferases, transcription factors, including Sp1, paired box (Pax) 3 and Egr-1, and the microRNA miR129-2. These regulatory factors crucially determine NG2-mediated cellular processes such as glial scar formation in the central nervous system (CNS) or tumor growth and metastasis. Therefore, they are potential targets for the establishment of novel NG2-based therapeutic strategies in the treatment of CNS injuries, cancer and other conditions of these types.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Beate M Schmitt
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
27
|
Yadavilli S, Hwang EI, Packer RJ, Nazarian J. The Role of NG2 Proteoglycan in Glioma. Transl Oncol 2016; 9:57-63. [PMID: 26947882 PMCID: PMC4800061 DOI: 10.1016/j.tranon.2015.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/09/2015] [Accepted: 12/22/2015] [Indexed: 01/08/2023] Open
Abstract
Neuron glia antigen-2 ((NG2), also known as chondroitin sulphate proteoglycan 4, or melanoma-associated chondroitin sulfate proteoglycan) is a type-1 membrane protein expressed by many central nervous system (CNS) cells during development and differentiation and plays a critical role in proliferation and angiogenesis. ‘NG2’ often references either the protein itself or the highly proliferative and undifferentiated glial cells expressing high levels of NG2 protein. NG2 glia represent the fourth major type of neuroglia in the mammalian nervous system and are classified as oligodendrocyte progenitor cells by virtue of their committed oligodendrocyte generation in developing and adult brain. Here, we discuss NG2 glial cells as well as NG2 protein and its expression and role with regards to CNS neoplasms as well as its potential as a therapeutic target for treating childhood CNS cancers.
Collapse
Affiliation(s)
- Sridevi Yadavilli
- Research Center for Genetic Medicine, Children's National Health System, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Eugene I Hwang
- Division of Oncology, Children's National Health System, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Roger J Packer
- Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, Washington, DC 20010, USA
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children's National Health System, 111 Michigan Ave. NW, Washington, DC 20010, USA; Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA.
| |
Collapse
|