1
|
Meng F, Qi T, Liu X, Wang Y, Yu J, Lu Z, Cai X, Li A, Jung D, Duan J. Enhanced pharmacological activities of AKR1C3-activated prodrug AST-3424 in cancer cells with defective DNA repair. Int J Cancer 2025; 156:417-430. [PMID: 39243400 DOI: 10.1002/ijc.35170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024]
Abstract
AST-3424 is a novel and highly tumor-selective prodrug. AST-3424 is activated by AKR1C3 to release a toxic bis-alkylating moiety, AST 2660. In this study, we have investigated the essential role of DNA repair in AST-3424 mediated pharmacological activities in vitro and in vivo. We show here that AST-3424 is effective as a single therapeutic agent against cancer cells to induce cytotoxicity, DNA damage, apoptosis and cell cycle arrest at G2 phase in a dose- and AKR1C3-dependent manner in both p53-proficient H460 (RRID:CVCL_0459) and p53-deficient HT-29 cells (RRID:CVCL_0320). The combination of abrogators of G2 checkpoint with AST-3424 was only synergistic in HT-29 but not in H460 cells. The enhanced activity of AST-3424 in HT-29 cells was due to impaired DNA repair ability via the attenuation of cell cycle G2 arrest and reduced RAD51 expression. Furthermore, we utilized a BRCA2 deficient cell line and two PDX models with BRCA deleterious mutations to study the increased activity of AST-3424. The results showed that AST-3424 exhibited enhanced in vitro cytotoxicity and superior and durable in vivo anti-tumor effects in cells deficient of DNA repair protein BRCA2. In summary, we report here that when DNA repair capacity is reduced, the in vitro and in vivo activity of AST-3424 can be further enhanced, thus providing supporting evidence for the further evaluation of AST-3424 in the clinic.
Collapse
Affiliation(s)
- Fanying Meng
- Ascentawits Pharmaceuticals, LTD, Shenzhen, China
| | - Tianyang Qi
- Ascentawits Pharmaceuticals, LTD, Shenzhen, China
| | - Xing Liu
- Ascentawits Pharmaceuticals, LTD, Shenzhen, China
| | - Yizhi Wang
- Ascentawits Pharmaceuticals, LTD, Shenzhen, China
| | - Jibing Yu
- Ascentawits Pharmaceuticals, LTD, Shenzhen, China
| | - Zhaoqiang Lu
- Ascentawits Pharmaceuticals, LTD, Shenzhen, China
| | - Xiaohong Cai
- Ascentawits Pharmaceuticals, LTD, Shenzhen, China
| | - Anrong Li
- Ascentawits Pharmaceuticals, LTD, Shenzhen, China
| | - Don Jung
- Ascentawits Pharmaceuticals, LTD, Shenzhen, China
| | - Jianxin Duan
- Ascentawits Pharmaceuticals, LTD, Shenzhen, China
| |
Collapse
|
2
|
Hernández-Suárez B, Gillespie DA, Dejnaka E, Kupczyk P, Obmińska-Mrukowicz B, Pawlak A. Studying the DNA damage response pathway in hematopoietic canine cancer cell lines, a necessary step for finding targets to generate new therapies to treat cancer in dogs. Front Vet Sci 2023; 10:1227683. [PMID: 37655260 PMCID: PMC10467447 DOI: 10.3389/fvets.2023.1227683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Background Dogs present a significant opportunity for studies in comparative oncology. However, the study of cancer biology phenomena in canine cells is currently limited by restricted availability of validated antibody reagents and techniques. Here, we provide an initial characterization of the expression and activity of key components of the DNA Damage Response (DDR) in a panel of hematopoietic canine cancer cell lines, with the use of commercially available antibody reagents. Materials and methods The techniques used for this validation analysis were western blot, qPCR, and DNA combing assay. Results Substantial variations in both the basal expression (ATR, Claspin, Chk1, and Rad51) and agonist-induced activation (p-Chk1) of DDR components were observed in canine cancer cell lines. The expression was stronger in the CLBL-1 (B-cell lymphoma) and CLB70 (B-cell chronic lymphocytic leukemia) cell lines than in the GL-1 (B-cell leukemia) cell line, but the biological significance of these differences requires further investigation. We also validated methodologies for quantifying DNA replication dynamics in hematopoietic canine cancer cell lines, and found that the GL-1 cell line presented a higher replication fork speed than the CLBL-1 cell line, but that both showed a tendency to replication fork asymmetry. Conclusion These findings will inform future studies on cancer biology, which will facilitate progress in developing novel anticancer therapies for canine patients. They can also provide new knowledge in human oncology.
Collapse
Affiliation(s)
- Beatriz Hernández-Suárez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - David A. Gillespie
- Facultad de Medicina, Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife, Spain
| | - Ewa Dejnaka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Piotr Kupczyk
- Division of General and Experimental Pathology, Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
3
|
Ahmed S, Alam W, Aschner M, Alsharif KF, Albrakati A, Saso L, Khan H. Natural products targeting the ATR-CHK1 signaling pathway in cancer therapy. Biomed Pharmacother 2022; 155:113797. [PMID: 36271573 PMCID: PMC9590097 DOI: 10.1016/j.biopha.2022.113797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
Cancer is one of the most severe medical conditions in the world, causing millions of deaths each year. Chemotherapy and radiotherapy are critical for treatment approaches, but both have numerous adverse health effects. Furthermore, the resistance of cancerous cells to anticancer medication leads to treatment failure. The rising burden of cancer requires novel efficacious treatment modalities. Natural remedies offer feasible alternative options against malignancy in contrast to available synthetic medication. Selective killing of cancer cells is privileged mainstream in cancer treatment, and targeted therapy represents the new tool with the potential to pursue this aim. The discovery of innovative therapies targeting essential components of DNA damage signaling and repair pathways such as ataxia telangiectasia mutated and Rad3 related Checkpoint kinase 1 (ATR-CHK1)has offered a possibility of significant therapeutic improvement in oncology. The activation and inhibition of this pathway account for chemopreventive and chemotherapeutic activity, respectively. Targeting this pathway can also aid to overcome the resistance of conventional chemo- or radiotherapy. This review enlightens the anticancer role of natural products by ATR-CHK1 activation and inhibition. Additionally, these compounds have been shown to have chemotherapeutic synergistic potential when used in combination with other anticancer drugs. Ideally, this review will trigger interest in natural products targeting ATR-CHK1 and their potential efficacy and safety as cancer lessening agents.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue Bronx, NY 10461, USA
| | - Khalaf F Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer"Sapienza University, Rome 00185, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
4
|
Khattak S, Rauf MA, Khan NH, Zhang QQ, Chen HJ, Muhammad P, Ansari MA, Alomary MN, Jahangir M, Zhang CY, Ji XY, Wu DD. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules 2022; 27:3389. [PMID: 35684331 PMCID: PMC9181954 DOI: 10.3390/molecules27113389] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous biologically active gas produced in mammalian tissues. It plays a very critical role in many pathophysiological processes in the body. It can be endogenously produced through many enzymes analogous to the cysteine family, while the exogenous source may involve inorganic sulfide salts. H2S has recently been well investigated with regard to the onset of various carcinogenic diseases such as lung, breast, ovaries, colon cancer, and neurodegenerative disorders. H2S is considered an oncogenic gas, and a potential therapeutic target for treating and diagnosing cancers, due to its role in mediating the development of tumorigenesis. Here in this review, an in-detail up-to-date explanation of the potential role of H2S in different malignancies has been reported. The study summarizes the synthesis of H2S, its roles, signaling routes, expressions, and H2S release in various malignancies. Considering the critical importance of this active biological molecule, we believe this review in this esteemed journal will highlight the oncogenic role of H2S in the scientific community.
Collapse
Affiliation(s)
- Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Qian-Qian Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Hao-Jie Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Muhammad Jahangir
- Department of Psychiatric and Mental Health, Central South University, Changsha 410078, China;
| | - Chun-Yang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of General Thoracic Surgery, Hami Central Hospital, Hami 839000, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|
5
|
Isono M, Okubo K, Asano T, Sato A. Ataxia telangiectasia and Rad3-related inhibition by AZD6738 enhances gemcitabine-induced cytotoxic effects in bladder cancer cells. PLoS One 2022; 17:e0266476. [PMID: 35413091 PMCID: PMC9004738 DOI: 10.1371/journal.pone.0266476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/18/2022] [Indexed: 11/19/2022] Open
Abstract
The ataxia telangiectasia and rad3-related-checkpoint kinase 1 (ATR-CHK1) pathway is involved in DNA damage responses in many cancer cells. ATR inhibitors have been used in clinical trials in combination with radiation or chemotherapeutics; however, their effects against bladder cancer remain unclear. Here, the efficacy of combining gemcitabine with the novel ATR inhibitor AZD6738 was investigated in vitro in three bladder cancer cell lines (J82, T24, and UM-UC-3 cells). The effects of gemcitabine and AZD6738 on cell viability, clonogenicity, cell cycle, and apoptosis were examined. The combined use of gemcitabine and AZD6738 inhibited the viability and colony formation of bladder cancer cells compared to either treatment alone. Gemcitabine (5 nM) and AZD6738 (1 μM) inhibited cell cycle progression, causing cell accumulation in the S phase. Moreover, combined treatment enhanced cleaved poly[ADP-ribose]-polymerase expression alongside the number of annexin V-positive cells, indicating apoptosis induction. Mechanistic investigations showed that AZD6738 treatment inhibited the repair of gemcitabine-induced double-strand breaks by interfering with CHK1. Combining AZD6738 with gemcitabine could therefore be useful for bladder cancer therapy.
Collapse
Affiliation(s)
- Makoto Isono
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
- * E-mail:
| | - Kazuki Okubo
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Takako Asano
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Akinori Sato
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
6
|
Shackelford RE, Li Y, Ghali GE, Kevil CG. Bad Smells and Broken DNA: A Tale of Sulfur-Nucleic Acid Cooperation. Antioxidants (Basel) 2021; 10:1820. [PMID: 34829691 PMCID: PMC8614844 DOI: 10.3390/antiox10111820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/19/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter that exerts numerous physiologic and pathophysiologic effects. Recently, a role for H2S in DNA repair has been identified, where H2S modulates cell cycle checkpoint responses, the DNA damage response (DDR), and mitochondrial and nuclear genomic stability. In addition, several DNA repair proteins modulate cellular H2S concentrations and cellular sulfur metabolism and, in turn, are regulated by cellular H2S concentrations. Many DDR proteins are now pharmacologically inhibited in targeted cancer therapies. As H2S and the enzymes that synthesize it are increased in many human malignancies, it is likely that H2S synthesis inhibition by these therapies is an underappreciated aspect of these cancer treatments. Moreover, both H2S and DDR protein activities in cancer and cardiovascular diseases are becoming increasingly apparent, implicating a DDR-H2S signaling axis in these pathophysiologic processes. Taken together, H2S and DNA repair likely play a central and presently poorly understood role in both normal cellular function and a wide array of human pathophysiologic processes. Here, we review the role of H2S in DNA repair.
Collapse
Affiliation(s)
- Rodney E. Shackelford
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; (Y.L.); (C.G.K.)
| | - Yan Li
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; (Y.L.); (C.G.K.)
| | - Ghali E. Ghali
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA;
| | - Christopher G. Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; (Y.L.); (C.G.K.)
| |
Collapse
|
7
|
Arnoff TE, El-Deiry WS. CDKN1A/p21 WAF1, RB1, ARID1A, FLG, and HRNR mutation patterns provide insights into urinary tract environmental exposure carcinogenesis and potential treatment strategies. Am J Cancer Res 2021; 11:5452-5471. [PMID: 34873472 PMCID: PMC8640812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023] Open
Abstract
Bladder carcinoma has a 6% 5-year survival-rate for metastatic disease, with poorly understood links between genetic and environmental drivers of disease development, progression, and treatment response. Rhode Island has among the highest annual age-adjusted incidence rate of bladder cancer at 26.0/100,000, compared to 20.0 in the US, with a paucity of known driver genes for targeted therapies or predictive biomarkers. Bladder carcinomas have the highest frequency of alterations in CDKN1A/p21WAF1 (10%) across all cancer types analyzed in The Cancer Genome Atlas (TCGA) PanCancer Atlas Studies, displaying a predominance of truncating mutations (86%). We found that lung carcinomas lack CDKN1A truncating mutations, despite the shared role of tobacco as a risk factor for bladder cancer. Bladder carcinomas also have the highest frequency of RB1 alterations in TCGA (25%). We find that chromophobe renal cell carcinomas with CDKN1A and RB1 mutations are 100% truncating. Analysis of 1,868 bladder tumors demonstrated that truncating CDKN1A mutations co-occur with truncating RB1 mutations, suggesting an environmental exposure signature. Moreover, we found that HRNR and FLG mutations are enriched in tumors with CDKN1A alteration, suggesting potential novel roles in promoting bladder tumorigenesis. Association of HRNR with AKT activation offers possible therapeutic avenues, and FLG may provide insight into carcinogen exposure within the bladder. We suggest that because APOBEC mutations largely shape the bladder cancer mutational landscape, these events likely contribute to dysfunctional DNA repair genes, leading to frameshifts and the predominance of truncations in CDKN1A, RB1, ARID1A, or other drivers. We propose that patients with co-occurrence of CDKN1A and RB1 truncations may display enhanced responsiveness to targeted therapies combining cisplatin with ATR, ATM, CHK1, and CHK2 inhibitors, expanding therapeutic options for patients in need of improved precision treatments.
Collapse
Affiliation(s)
- Taylor E Arnoff
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown UniversityProvidence, RI, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown UniversityProvidence, RI, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and The Warren Alpert Medical School, Brown UniversityProvidence, RI, USA
- The Joint Program in Cancer Biology, Lifespan Health System and The Warren Alpert Medical School, Brown UniversityProvidence, RI, USA
- Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Lifespan Health System and The Warren Alpert Medical School, Brown UniversityProvidence, RI, USA
| |
Collapse
|
8
|
Molecular Functions of Hydrogen Sulfide in Cancer. PATHOPHYSIOLOGY 2021; 28:437-456. [PMID: 35366284 PMCID: PMC8830448 DOI: 10.3390/pathophysiology28030028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter that exerts a multitude of functions in both physiologic and pathophysiologic processes. H2S-synthesizing enzymes are increased in a variety of human malignancies, including colon, prostate, breast, renal, urothelial, ovarian, oral squamous cell, and thyroid cancers. In cancer, H2S promotes tumor growth, cellular and mitochondrial bioenergetics, migration, invasion, angiogenesis, tumor blood flow, metastasis, epithelia–mesenchymal transition, DNA repair, protein sulfhydration, and chemotherapy resistance Additionally, in some malignancies, increased H2S-synthesizing enzyme expression correlates with a worse prognosis and a higher tumor stage. Here we review the role of H2S in cancer, with an emphasis on the molecular mechanisms by which H2S promotes cancer development, progression, dedifferentiation, and metastasis.
Collapse
|
9
|
Isono M, Okubo K, Asano T, Sato A. Inhibition of checkpoint kinase 1 potentiates anticancer activity of gemcitabine in bladder cancer cells. Sci Rep 2021; 11:10181. [PMID: 33986399 PMCID: PMC8119486 DOI: 10.1038/s41598-021-89684-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Checkpoint kinases (CHKs) are involved in the DNA damage response in many cancer cells. CHK inhibitors have been used in clinical trials in combination with chemotherapeutics; however, their effect against bladder cancer remains unclear. Here, we investigated the efficacy of combining gemcitabine with MK-8776, a novel CHK1 inhibitor, in four bladder cancer cell lines. The effects of gemcitabine and MK-8776 on cell viability, clonogenicity, cell cycle, and apoptosis were examined alongside in vivo efficacy using murine xenograft tumor models. Combined treatment inhibited the viability and colony formation of bladder cancer cells compared to either single treatment. Although gemcitabine (10 nM) alone increased the cell number in S-phase, it increased the cell number in sub-G1 phase when combined with MK-8776 (0.5 µM). Combined treatment enhanced cleaved poly[ADP-ribose]-polymerase expression alongside the number of annexin-V-positive cells, indicating the induction of apoptosis. In vivo, administration of gemcitabine and MK-8776 was well tolerated and suppressed tumor growth. Mechanistically, the combined treatment elevated γH2A.X and suppressed Rad51 expression. Our study demonstrates that MK-8776 and gemcitabine combined induces apoptosis and suppresses proliferation in bladder cancer cells by inhibiting CHKs and DNA repair. Therefore, CHK1 inhibition combined with gemcitabine may be a potential treatment for bladder cancer.
Collapse
Affiliation(s)
- Makoto Isono
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Kazuki Okubo
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Takako Asano
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Akinori Sato
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
10
|
Gachechiladze M, Skarda J, Bouchalova K, Soltermann A, Joerger M. Predictive and Prognostic Value of DNA Damage Response Associated Kinases in Solid Tumors. Front Oncol 2020; 10:581217. [PMID: 33224881 PMCID: PMC7670868 DOI: 10.3389/fonc.2020.581217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
Dysfunctional DNA repair with subsequent genome instability and high mutational burden represents a major hallmark of cancer. In established malignant tumors, increased DNA repair capacity mediates resistance to DNA-damaging therapeutics, including cytotoxic drugs, radiotherapy, and selected small molecules including inhibitors of poly (ADP-ribose) polymerase (PARP), Ataxia Telangiectasia Mutated (ATM), ataxia telangiectasia and Rad3-related protein (ATR), and Wee1 kinase (Wee1). In addition, DNA repair deficiency is not only associated with sensitivity to selected anticancer drugs, but also with increased mutagenicity and increased neoantigen load on tumor cells, resulting in increased immunogenicity and improved response to CTLA4- or PD-(L)1 targeting monoclonal antibodies. DNA damage response (DDR) is composed of complex signalling pathways, including the sensing of the DNA damage, signal transduction, cellular response pathways to DNA damage, and activation of DNA repair. DNA double strand breaks (DSBs) are the most dangerous form of DNA damage. Tumor cells are characterised by frequent accumulation of DSBs caused by either endogenous replication stress or the impact of cancer treatment, most prominently chemotherapy and radiotherapy. Therefore, response of cancer cells to DSBs represents a crucial mechanism for how tumors respond to systemic treatment or radiotherapy, and how resistance develops. Ample clinical evidence supports the importance of DDR associated kinases as predictive and prognostic biomarkers in cancer patients. The ATM-CHK2 and ATR-CHK1-WEE1 pathways initiate DNA DSB repair. In the current review, we focus on major DDR associated kinases including ATM, ATR, CHK1, CHK2, and WEE1, and discuss their potential prognostic and predictive value in solid malignancies.
Collapse
Affiliation(s)
- Mariam Gachechiladze
- Department of Clinical and Molecular Pathology, Institute of Translational and Molecular Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Josef Skarda
- Department of Clinical and Molecular Pathology, Institute of Translational and Molecular Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | | | | | - Markus Joerger
- Department of Medical Oncology and Haematology, Cantonal Hospital, St. Gallen, Switzerland
| |
Collapse
|
11
|
Yeh BW, Yu LE, Li CC, Yang JC, Li WM, Wu YC, Wei YC, Lee HT, Kung ML, Wu WJ. The protoapigenone analog WYC0209 targets CD133+ cells: A potential adjuvant agent against cancer stem cells in urothelial cancer therapy. Toxicol Appl Pharmacol 2020; 402:115129. [PMID: 32673656 DOI: 10.1016/j.taap.2020.115129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 01/08/2023]
Abstract
Urothelial carcinoma (UC) is one of the highest incidence cancers that rank the fourth commonly diagnosed tumors worldwide. The unresectable lesions that are resistant to therapeutic interventions is the major cause leading to death. Previous studies had shown that the resistance and metastatic consequence may arise from cancer stem-like cells population. The phytochemical flavonoids have promised bioactivity and potent anti-carcinogenic effects, and trap great attentions for cancer chemoprevention and/or adjuvant chemotherapy. However, the mechanisms of flavonoids on cancer stemness is still obscured. In this study, we analyzed the biofunctional effects of as-prepared flavonoid derivative-WYC0209 on T24, BFTC905 and BFTC909 human UC cell lines. Our results demonstrated that WYC0209 significantly induced anti-cell viability on UC cells through decreased Akt/NFkB signaling. Moreover, WYC0209 enhanced the cell apoptosis through activated the caspase-3 activity and inactivated Bcl-xL expression. Interestingly, WYC0209 dramatically inhibited the cancer stem cells (CSCs) traits, including attenuation of side population and tumorsphere formation in which were through declined EMT-CSCs markers including MDR1, ABCG2 and BMI-1. We further validated the effects of WYC0209 on several CSC surface markers including CD133, CD44, SOX-2 and Nanog. Our results showed that WYC0209 markedly inhibited CD133 expressions in both transcriptional and translational levels. High expression levels of CD133 was also demonstrated in human upper tract UC specimens. In summary, our study showed that WYC0209 may potentially as an adjuvant agent to against CD133-driven UC CSCs and provide a beneficial strategy to against UC cancer therapeutics resistant.
Collapse
Affiliation(s)
- Bi-Wen Yeh
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Liang-En Yu
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chia Li
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Juan-Cheng Yang
- Graduate institute of natural products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Ming Li
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan
| | - Yang-Chang Wu
- Graduate institute of natural products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Ching Wei
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Te Lee
- Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| | - Wen-Jeng Wu
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
12
|
Kim PR, Koon YL, Lee RTC, Azizan F, Koh DHZ, Chiam KH, Koh CG. Phosphatase POPX2 interferes with cell cycle by interacting with Chk1. Cell Cycle 2020; 19:405-418. [PMID: 31944151 DOI: 10.1080/15384101.2020.1711577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Protein-protein interaction network analysis plays critical roles in predicting the functions of target proteins. In this study, we used a combination of SILAC-MS proteomics and bioinformatic approaches to identify Checkpoint Kinase 1 (Chk1) as a possible POPX2 phosphatase interacting protein. POPX2 is a PP2C phosphatase that has been implicated in cancer cell invasion and migration. From the Domain-Domain Interaction (DDI) database, we first determined that the PP2C phosphatase domain interacts with Pkinase domain. Subsequently, 46 proteins with Pkinase domain were identified from POPX2 SILAC-MS data. We then narrowed down the leads and confirmed the biological interaction between Chk1 and POPX2. We also found that Chk1 is a substrate of POPX2. Chk1 is a key regulator of the cell cycle and is activated when the cell suffers DNA damage. Our approach has led us to identify POPX2 as a regulator of Chk1 and can interfere with the normal function of Chk1 at G1-S transition of the cell cycle in response to DNA damage.
Collapse
Affiliation(s)
- Pu Rum Kim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yen Ling Koon
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore.,ASTAR, Biopolis, Bioinformatics Institute, Singapore, Singapore
| | | | - Farouq Azizan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Dylan Hong Zheng Koh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Keng-Hwee Chiam
- ASTAR, Biopolis, Bioinformatics Institute, Singapore, Singapore
| | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
13
|
JMJD2 promotes acquired cisplatin resistance in non-small cell lung carcinoma cells. Oncogene 2019; 38:5643-5657. [PMID: 30967636 DOI: 10.1038/s41388-019-0814-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/19/2019] [Accepted: 03/23/2019] [Indexed: 12/11/2022]
Abstract
Platinum-based drugs such as cisplatin (CP) are the first-line chemotherapy for non-small-cell lung carcinoma (NSCLC). Unfortunately, NSCLC has a low response rate to CP and acquired resistance always occurs. Histone methylation regulates chromatin structure and is implicated in DNA repair. We hypothesize histone methylation regulators are involved in CP resistance. We therefore screened gene expression of known histone methyltransferases and demethylases in three NSCLC cell lines with or without acquired resistance to CP. JMJD2s are a family of histone demethylases that remove tri-methyl groups from H3K9 and H3K36. We found expression of several JMJD2 family genes upregulated in CP-resistant cells, with JMJD2B expression being upregulated in all three CP-resistant NSCLC cell lines. Further analysis showed increased JMJD2 protein expression coincided with decreased H3K9me3 and H3K36me3. Chemical inhibitors of JMJD2-family proteins increased H3K9me3 and H3K36me3 levels and sensitized resistant cells to CP. Mechanistic studies showed that JMJD2 inhibition decreased chromatin association of ATR and Chk1 and inhibited the ATR-Chk1 replication checkpoint. Our results reveal that JMJD2 demethylases are potential therapeutic targets to overcome CP resistance in NSCLC.
Collapse
|
14
|
Ubhi T, Brown GW. Exploiting DNA Replication Stress for Cancer Treatment. Cancer Res 2019; 79:1730-1739. [PMID: 30967400 DOI: 10.1158/0008-5472.can-18-3631] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Complete and accurate DNA replication is fundamental to cellular proliferation and genome stability. Obstacles that delay, prevent, or terminate DNA replication cause the phenomena termed DNA replication stress. Cancer cells exhibit chronic replication stress due to the loss of proteins that protect or repair stressed replication forks and due to the continuous proliferative signaling, providing an exploitable therapeutic vulnerability in tumors. Here, we outline current and pending therapeutic approaches leveraging tumor-specific replication stress as a target, in addition to the challenges associated with such therapies. We discuss how replication stress modulates the cell-intrinsic innate immune response and highlight the integration of replication stress with immunotherapies. Together, exploiting replication stress for cancer treatment seems to be a promising strategy as it provides a selective means of eliminating tumors, and with continuous advances in our knowledge of the replication stress response and lessons learned from current therapies in use, we are moving toward honing the potential of targeting replication stress in the clinic.
Collapse
Affiliation(s)
- Tajinder Ubhi
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada. .,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
van Jaarsveld MTM, Deng D, Wiemer EAC, Zi Z. Tissue-Specific Chk1 Activation Determines Apoptosis by Regulating the Balance of p53 and p21. iScience 2019; 12:27-40. [PMID: 30665195 PMCID: PMC6348202 DOI: 10.1016/j.isci.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/16/2018] [Accepted: 12/31/2018] [Indexed: 12/11/2022] Open
Abstract
The DNA damage response (DDR) protects cells against genomic instability. Surprisingly, little is known about the differences in DDR across tissues, which may affect cancer evolutionary trajectories and chemotherapy response. Using mathematical modeling and quantitative experiments, we found that the DDR is regulated differently in human breast and lung primary cells. Equal levels of cisplatin-DNA lesions caused stronger Chk1 activation in lung cells, leading to resistance. In contrast, breast cells were more resistant and showed more Chk2 activation in response to doxorubicin. Further analyses indicate that Chk1 activity played a regulatory role in p53 phosphorylation, whereas Chk2 activity was essential for p53 activation and p21 expression. We propose a novel “friction model,” in which the balance of p53 and p21 levels contributes to the apoptotic response in different tissues. Our results suggest that modulating the balance of p53 and p21 dynamics could optimize the response to chemotherapy. Breast and lung cells show different sensitivities to chemotherapeutic drugs Lung cells activate Chk1 more strongly than breast cells with chemotherapeutic drugs Active Chk1 plays a regulatory role in p53 activation and apoptosis responses The balance of p53 and p21 dynamics drives the apoptosis response to DNA damage
Collapse
Affiliation(s)
- Marijn T M van Jaarsveld
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Difan Deng
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Erik A C Wiemer
- Erasmus University Medical Center, Erasmus MC Cancer Institute, Department of Medical Oncology, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Zhike Zi
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory, Ihnestr. 63-73, 14195 Berlin, Germany.
| |
Collapse
|
16
|
Nam AR, Jin MH, Park JE, Bang JH, Oh DY, Bang YJ. Therapeutic Targeting of the DNA Damage Response Using an ATR Inhibitor in Biliary Tract Cancer. Cancer Res Treat 2018; 51:1167-1179. [PMID: 30514066 PMCID: PMC6639230 DOI: 10.4143/crt.2018.526] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/02/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The DNA damage response (DDR) is a multi-complex network of signaling pathways involved in DNA damage repair, cell cycle checkpoints, and apoptosis. In the case of biliary tract cancer (BTC), the strategy of DDR targeting has not been evaluated, even though many patients have DNA repair pathway alterations. The purpose of this study was to test the DDR-targeting strategy in BTC using an ataxia-telangiectasia and Rad3-related (ATR) inhibitor. MATERIALS AND METHODS A total of nine human BTC cell lines were used for evaluating anti-tumor effect of AZD6738 (ATR inhibitor) alone or combination with cytotoxic chemotherapeutic agents through MTT assay, colony-forming assays, cell cycle analyses, and comet assays. We established SNU478-mouse model for in vivo experiments to confirm our findings. RESULTS Among nine human BTC cell lines, SNU478 and SNU869 were the most sensitive to AZD6738, and showed low expression of both ataxia-telangiectasia mutated (ATM) and p53. AZD6738 blocked p-Chk1 and p-glycoprotein and increased γH2AX, a marker of DNA damage, in sensitive cells. AZD6738 significantly increased apoptosis, G2/M arrest and p21, and decreased CDC2. Combinations of AZD6738 and cytotoxic chemotherapeutic agents exerted synergistic effects in colony-forming assays, cell cycle analyses, and comet assays. In our mouse models, AZD6738 monotherapy decreased tumor growth and the combination with cisplatin showed more potent effects on growth inhibition, decreased Ki-67, and increased terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling than monotherapy with each drug. CONCLUSION In BTC, DDR targeting strategy using ATR inhibitor demonstrated promising antitumor activity alone or in combination with cytotoxic chemotherapeutic agents. This supports further clinical development of DDR targeting strategy in BTC.
Collapse
Affiliation(s)
- Ah-Rong Nam
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Mei Hua Jin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Eun Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ju-Hee Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
17
|
Jung JH, You S, Oh JW, Yoon J, Yeon A, Shahid M, Cho E, Sairam V, Park TD, Kim KP, Kim J. Integrated proteomic and phosphoproteomic analyses of cisplatin-sensitive and resistant bladder cancer cells reveal CDK2 network as a key therapeutic target. Cancer Lett 2018; 437:1-12. [PMID: 30145203 PMCID: PMC6181132 DOI: 10.1016/j.canlet.2018.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Cisplatin-based chemotherapy is currently part of the standard of care for bladder cancer (BC). Unfortunately, some patients respond poorly to chemotherapy and have acquired or developed resistance. The molecular mechanisms underlying this resistance remain unclear. Here, we introduce a multidimensional proteomic analysis of a cisplatin-resistant BC model that provides different levels of protein information, including that of the global proteome and phosphoproteome. METHODS To characterize the global proteome and phosphoproteome in cisplatin-resistant BC cells, liquid chromatography-mass spectrometry/mass spectrometry experiments combined with comprehensive bioinformatics analysis were performed. Perturbed expression and phosphorylation levels of key kinases associated with cisplatin resistance were further studied using various cell biology assays, including western blot analysis. RESULTS Analyses of protein expression and phosphorylation identified significantly altered proteins, which were also EGF-dependent and independent. This suggests that protein phosphorylation plays a significant role in cisplatin-resistant BC. Additional network analysis of significantly altered proteins revealed CDK2, CHEK1, and ERBB2 as central regulators mediating cisplatin resistance. In addition to this, we identified the CDK2 network, which consists of CDK2 and its 5 substrates, as being significantly associated with poor survival after cisplatin chemotherapy. CONCLUSIONS Collectively, these findings potentially provide a novel way of classifying higher-risk patients and may guide future research in developing therapeutic targets.
Collapse
Affiliation(s)
- Jae Hun Jung
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea
| | - Sungyong You
- Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jae Won Oh
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea
| | - Junhee Yoon
- Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Austin Yeon
- Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Muhammad Shahid
- Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eunho Cho
- Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; University of California, Los Angeles, CA, USA
| | - Vikram Sairam
- Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; University of California, Los Angeles, CA, USA
| | - Taeeun D Park
- Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; University of California, Berkeley, CA, USA
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea.
| | - Jayoung Kim
- Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; University of California, Los Angeles, CA, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Bing Y, Wund Z, Abratte T, Borlle L, Kang S, Southard T, Hume KR. Biological indicators of chemoresistance: an ex vivo analysis of γH2AX and p53 expression in feline injection-site sarcomas. Cancer Cell Int 2018; 18:192. [PMID: 30498397 PMCID: PMC6251226 DOI: 10.1186/s12935-018-0690-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/16/2018] [Indexed: 01/24/2023] Open
Abstract
Background The response of soft tissue sarcomas to cytotoxic chemotherapy is inconsistent. Biomarkers of chemoresistance or chemosensitivity are needed in order to identify appropriate patients for treatment. Given that many chemotherapeutics kill cells through direct DNA interactions, we hypothesized that upregulation of DNA damage response mechanisms would confer resistance to cytotoxic chemotherapy in sarcomas. To study this, we used spontaneously-occurring feline injection-site sarcomas (FISS). Methods γH2AX and p53 expression were determined in biopsy samples of FISS. γH2AX expression was determined via immunohistochemistry whereas p53 expression was determined via qRT-PCR. Cell lines derived from these sarcoma biopsies were then treated with carboplatin (N = 11) or doxorubicin (N = 5) and allowed to grow as colonies. Colony forming-ability of cells exposed to chemotherapy was compared to matched, untreated cells and expressed as percent survival relative to controls. ImageJ was used for quantification. A mixed model analysis was performed to determine if an association existed between relative survival of the treated cells and γH2AX or p53 expression in the original tumors. Cell lines were validated via vimentin expression or growth as subcutaneous sarcomas in nude mice. Results An association was detected between γH2AX expression and relative survival in cells exposed to carboplatin (P = 0.0250). In the 11 FISS tumors evaluated, γH2AX expression ranged from 2.2 to 18.8% (mean, 13.3%). Cells from tumors with γH2AX expression higher than the sample population mean had fourfold greater relative survival after carboplatin exposure than cells from tumors with γH2AX expression less than the mean. There was no association between relative survival after carboplatin exposure and p53 expression (P = 0.1608), and there was no association between relative survival after doxorubicin exposure and either γH2AX (P = 0.6124) or p53 (P = 0.8645) expression. Four cell lines were validated via growth as sarcomas in nude mice. Vimentin expression was confirmed in the other 7 cell lines. Conclusions γH2AX expression, but not wild type p53, may potentially serve as a biomarker of resistance to platinum therapeutics in soft tissue sarcomas. To further investigate this finding, prospective, in vivo studies are indicated in animal models.
Collapse
Affiliation(s)
- Yike Bing
- 1Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY USA
| | - Zacharie Wund
- 1Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY USA
| | - Tina Abratte
- 1Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY USA
| | - Lucia Borlle
- 1Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY USA
| | - Susie Kang
- 1Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY USA
| | - Teresa Southard
- 2Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY USA
| | - Kelly R Hume
- 1Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY USA
| |
Collapse
|
19
|
Abstract
The chemical treatment of cancer started with the realization that DNA damaging agents such as mustard gas present notable antitumoural properties. Consequently, early drug development focused on genotoxic chemicals, some of which are still widely used in the clinic. However, the efficacy of such therapies is often limited by the side effects of these drugs on healthy cells. A refinement to this approach is to use compounds that can exploit the presence of DNA damage in cancer cells. Given that replication stress (RS) is a major source of genomic instability in cancer, targeting the RS-response kinase ataxia telangiectasia and Rad3-related protein (ATR) has emerged as a promising alternative. With ATR inhibitors now entering clinical trials, we here revisit the biology behind this strategy and discuss potential biomarkers that could be used for a better selection of patients who respond to therapy.
Collapse
Affiliation(s)
- Emilio Lecona
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
20
|
Shi Q, Shen LY, Dong B, Fu H, Kang XZ, Yang YB, Dai L, Yan WP, Xiong HC, Liang Z, Chen KN. The identification of the ATR inhibitor VE-822 as a therapeutic strategy for enhancing cisplatin chemosensitivity in esophageal squamous cell carcinoma. Cancer Lett 2018; 432:56-68. [PMID: 29890208 DOI: 10.1016/j.canlet.2018.06.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/12/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022]
Abstract
Inducing DNA damage is known to be one of the mechanisms of cytotoxic chemotherapy agents for cancer such as cisplatin. The endogenous DNA damage response confers chemoresistance to these agents by repairing DNA damage. The initiation and transduction of the DNA damage response (DDR) signaling pathway, which is dependent on the activation of ATM (ataxia-telangiectasia mutated) and ATR (ataxia telangiectasia and Rad3-related), is essential for DNA damage repair, the maintenance of genomic stability and cell survival. Therefore, ATM or ATR inhibition is considered as a promising strategy for sensitizing cancer cells to chemotherapy. This study is aimed to explore the effect of ATR inhibitor on sensitizing ESCC (esophageal squamous cell carcinoma) cells to cisplatin, and whether ATM deficiency could impact the sensitization. We found that 21.5% of ESCC cases had ATM deficiency and that patients with ATR activation after neoadjuvant chemotherapy had worse chemotherapy response and poorer overall survival than that without ATR activation (32 mons vs. >140mons). Then, it was shown that VE-822 inhibited ATR-CHK1 pathway activation, leading to the accumulation of cisplatin-modified DNA. And it inhibited cell proliferation, induced cell cycle arrest in G1 phase and enhanced cell apoptosis. Moreover, VE-822 significantly sensitized ESCC cells to cisplatin, and these two drugs had synergistic effects, especially in ATM-deficient cells, in vitro and in vivo. Our results suggest that ATR inhibition combining with cisplatin is a new strategy for managing patients with ESCC, especially those with ATM-deficiency. However, this is an idea that requires further validation.
Collapse
Affiliation(s)
- Qi Shi
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Lu-Yan Shen
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Bin Dong
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Hao Fu
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Xiao-Zheng Kang
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Yong-Bo Yang
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Liang Dai
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Wan-Pu Yan
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Hong-Chao Xiong
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Zhen Liang
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Ke-Neng Chen
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.
| |
Collapse
|
21
|
Meng Y, Chen CW, Yung MMH, Sun W, Sun J, Li Z, Li J, Li Z, Zhou W, Liu SS, Cheung ANY, Ngan HYS, Braisted JC, Kai Y, Peng W, Tzatsos A, Li Y, Dai Z, Zheng W, Chan DW, Zhu W. DUOXA1-mediated ROS production promotes cisplatin resistance by activating ATR-Chk1 pathway in ovarian cancer. Cancer Lett 2018; 428:104-116. [PMID: 29704517 DOI: 10.1016/j.canlet.2018.04.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/16/2023]
Abstract
The acquisition of resistance is a major obstacle to the clinical use of platinum drugs for ovarian cancer treatment. Increase of DNA damage response is one of major mechanisms contributing to platinum-resistance. However, how DNA damage response is regulated in platinum-resistant ovarian cancer cells remains unclear. Using quantitative high throughput combinational screen (qHTCS) and RNA-sequencing (RNA-seq), we show that dual oxidase maturation factor 1 (DUOXA1) is overexpressed in platinum-resistant ovarian cancer cells, resulting in over production of reactive oxygen species (ROS). Elevated ROS level sustains the activation of ATR-Chk1 pathway, leading to resistance to cisplatin in ovarian cancer cells. Moreover, using qHTCS we identified two Chk1 inhibitors (PF-477736 and AZD7762) that re-sensitize resistant cells to cisplatin. Blocking this novel pathway by inhibiting ROS, DUOXA1, ATR or Chk1 effectively overcomes cisplatin resistance in vitro and in vivo. Significantly, the clinical studies also confirm the activation of ATR and DOUXA1 in ovarian cancer patients, and elevated DOUXA1 or ATR-Chk1 pathway correlates with poor prognosis. Taken together, our findings not only reveal a novel mechanism regulating cisplatin resistance, but also provide multiple combinational strategies to overcome platinum-resistance in ovarian cancer.
Collapse
Affiliation(s)
- Yunxiao Meng
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA; GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Chi-Wei Chen
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA; GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Mingo M H Yung
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wei Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jing Sun
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA; GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Zhuqing Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA; GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Jing Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA; GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Zongzhu Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA; GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Wei Zhou
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA; GW Cancer Center, The George Washington University, Washington, DC, 20052, USA; Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Stephanie S Liu
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Annie N Y Cheung
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - John C Braisted
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yan Kai
- GW Cancer Center, The George Washington University, Washington, DC, 20052, USA; Department of Physics, The George Washington University Columbian College of Arts & Sciences, Washington, DC, 20052, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University Columbian College of Arts & Sciences, Washington, DC, 20052, USA
| | - Alexandros Tzatsos
- GW Cancer Center, The George Washington University, Washington, DC, 20052, USA; Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - David W Chan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA; GW Cancer Center, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
22
|
Significant expression of CHK1 and p53 in bladder urothelial carcinoma as potential therapeutic targets and prognosis. Oncol Lett 2017; 15:568-574. [PMID: 29391889 DOI: 10.3892/ol.2017.7344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
Checkpoint kinase 1 (CHK1) and p53 are involved in cell-cycle checkpoint, and cellular response to DNA damage. CHK1 and p53 are overexpressed in bladder urothelial carcinoma (BUC); however, a clear elucidation on their interaction and influence in the progress of BUC is absent. The aim of the present study was to examine the correlation between CHK1 and p53 in BUC, and analyze their value as therapeutic targets and prognostic indicators in BUC. A clinically annotated cohort of 110 patients with BUC was identified retrospectively. EnVision-based immunohistochemistry and western blot analysis of the aforementioned DNA repair proteins were conducted on formalin-fixed-paraffin-embedded or frozen tissues from the primary tumor. A total of 45 peritumoral tissue cases were assessed similarly as the control group. In the cohort of 110 patients with BUC, a significant overexpression of CHK1 and p53 was observed in primary compared with the peritumoral tissues (P<0.05). CHK1 and p53 demonstrated a positive correlation in BUC, and both were positively associated with the histological grade, clinical pathological staging, lymphatic metastasis and the 5-year survival rate (P<0.05). However, CHK1 and p53 were not associated with sex, age, tumor diameter, single/multiple sites or incipient/recurrence. The overexpression of CHK1 and p53, and their synergistic interaction were putatively correlated with the physiology of BUC that may be deemed as potential therapeutic targets and prognostic indicators.
Collapse
|
23
|
DNA Repair Pathway Alterations in Bladder Cancer. Cancers (Basel) 2017; 9:cancers9040028. [PMID: 28346378 PMCID: PMC5406703 DOI: 10.3390/cancers9040028] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/30/2022] Open
Abstract
Most bladder tumors have complex genomes characterized by a high mutation burden as well as frequent copy number alterations and chromosomal rearrangements. Alterations in DNA repair pathways—including the double-strand break (DSB) and nucleotide excision repair (NER) pathways—are present in bladder tumors and may contribute to genomic instability and drive the tumor phenotype. DNA damaging such as cisplatin, mitomycin C, and radiation are commonly used in the treatment of muscle-invasive or metastatic bladder cancer, and several recent studies have linked specific DNA repair pathway defects with sensitivity to DNA damaging-based therapy. In addition, tumor DNA repair defects have important implications for use of immunotherapy and other targeted agents in bladder cancer. Therefore, efforts to further understand the landscape of DNA repair alterations in bladder cancer will be critical in advancing treatment for bladder cancer. This review summarizes the current understanding of the role of DNA repair pathway alterations in bladder tumor biology and response to therapy.
Collapse
|
24
|
Carlucci G, Carney B, Sadique A, Vansteene A, Tang J, Reiner T. Evaluation of [ 18F]-ATRi as PET tracer for in vivo imaging of ATR in mouse models of brain cancer. Nucl Med Biol 2017; 48:9-15. [PMID: 28157626 DOI: 10.1016/j.nucmedbio.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/28/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
Abstract
RATIONALE Ataxia telangiectasia and Rad3-related (ATR) threonine serine kinase is one of the key elements in orchestrating the DNA damage response (DDR). As such, inhibition of ATR can amplify the effects of chemo- and radiation-therapy, and several ATR inhibitors (ATRi) have already undergone clinical testing in cancer. For more accurate patient selection, monitoring and staging, real-time in vivo imaging of ATR could be invaluable; the development of appropriate imaging agents has remained a major challenge. METHODS 3-amino-N-(4-[18F]phenyl)-6-(4-(methylsulfonyl)phenyl)pyrazine-2-carboxamide ([18F]-ATRi), a close analogue of Ve-821, (a clinical ATRi candidate), was readily accomplished similarly to already established synthetic procedures. Structurally, 18F was introduced at the 4-position of the aromatic ring of Ve-821 for generating a labeled ATR inhibitor. In vitro experiments were conducted in U251 MG glioblastoma cell lines and ex vivo biodistribution were performed in subcutaneous U251 MG xenograft bearing athymic nude mice following microPET imaging. RESULTS [18F]-ATRi has a similar pharmacokinetic profile to that of Ve-821. Using an U251 MG glioblastoma mouse model, we evaluated the in vivo binding efficiency of [18F]-ATRi. Blood and tumor showed a statistically significant difference between mice injected with only the probe or following blocking experiment with Ve-821 (1.48±0.40%ID/g vs. 0.46±0.12%ID/g in tumor and 1.85±0.47%ID/g vs. 0.84±0.3%ID/g in blood respectively). CONCLUSIONS [18F]-ATRi represents the first 18F positron emission tomography (PET) ATR imaging agent, and is designed on a low nanomolar and clinically relevant ATR inhibitor.
Collapse
Affiliation(s)
- Giuseppe Carlucci
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Brandon Carney
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Chemistry, Hunter College and PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10018, USA
| | - Ahmad Sadique
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Axel Vansteene
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jun Tang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|