1
|
Holmes ML, Shine R, Waddle AW. Spontaneous reoccurrence of Batrachochytrium dendrobatidis infections in Australian green tree frogs (Litoria caerulea) following apparently successful heat therapy: Case report. Vet Res Commun 2024; 48:3229-3237. [PMID: 38951465 PMCID: PMC11442541 DOI: 10.1007/s11259-024-10449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/23/2024] [Indexed: 07/03/2024]
Abstract
Heat therapy has been reported as a safe, effective, and readily available treatment method for heat-tolerant frogs infected with Batrachochytrium dendrobatidis (Bd). We treated wild-caught Australian green tree frogs (Litoria caerulea) infected with Bd using two periods of elevated ambient room temperature (28.2-30.3 °C for 7 weeks followed by 28.9-34.1 °C for 4 weeks). Frogs exhibited persistent and even increasing infection loads in the first treatment period despite prolonged exposure to elevated temperatures, likely due to the presence of cooler microenvironments within their enclosure (25.5-27.0 °C). All frogs eventually returned negative qPCR tests for Bd at the end of the second treatment period, but detectable infections reoccurred one month after frogs were returned to standard housing temperatures (21.2-28.7 °C). Our findings suggest that elevated ambient temperature alone might not eliminate Bd in vivo but can reduce infections loads such that they are undetectable by qPCR analysis of skin swabs. Additional factors, such as cooler microenvironments within enclosures or relative humidity, may influence the success of heat therapy. We recommend further research into the combined effects of temperature and humidity during heat therapy and emphasize the importance of accurate temperature measurements as well as post-treatment monitoring at Bd-permissive temperatures to confirm successful clearance of infections.
Collapse
Affiliation(s)
- Madeleine L Holmes
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Richard Shine
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Anthony W Waddle
- Applied Biosciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
2
|
Cocciardi JM, Ohmer MEB. Drivers of Intraspecific Variation in Thermal Traits and Their Importance for Resilience to Global Change in Amphibians. Integr Comp Biol 2024; 64:882-899. [PMID: 39138058 DOI: 10.1093/icb/icae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Intraspecific variation can be as great as variation across species, but the role of intraspecific variation in driving local and large-scale patterns is often overlooked, particularly in the field of thermal biology. In amphibians, which depend on environmental conditions and behavior to regulate body temperature, recognizing intraspecific thermal trait variation is essential to comprehensively understanding how global change impacts populations. Here, we examine the drivers of micro- and macrogeographical intraspecific thermal trait variation in amphibians. At the local scale, intraspecific variation can arise via changes in ontogeny, body size, and between the sexes, and developmental plasticity, acclimation, and maternal effects may modulate predictions of amphibian performance under future climate scenarios. At the macrogeographic scale, local adaptation in thermal traits may occur along latitudinal and elevational gradients, with seasonality and range-edge dynamics likely playing important roles in patterns that may impact future persistence. We also discuss the importance of considering disease as a factor affecting intraspecific variation in thermal traits and population resilience to climate change, given the impact of pathogens on thermal preferences and critical thermal limits of hosts. Finally, we make recommendations for future work in this area. Ultimately, our goal is to demonstrate why it is important for researchers to consider intraspecific variation to determine the resilience of amphibians to global change.
Collapse
Affiliation(s)
| | - Michel E B Ohmer
- Department of Biology, University of Mississippi, Oxford, MS 38655, USA
| |
Collapse
|
3
|
Noelker JE, Abreu Ruozzi V, Spengler KD, Craig HM, Raffel TR. Dynamic effects of thermal acclimation on chytridiomycosis infection intensity and transmission potential in Xenopus laevis. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240789. [PMID: 39263447 PMCID: PMC11387059 DOI: 10.1098/rsos.240789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024]
Abstract
The pandemic amphibian pathogen Batrachochytrium dendrobatidis (Bd) can cause more severe infections with variable temperatures owing to delays in host thermal acclimation following temperature shifts. However, little is known about the timing of these acclimation effects or their consequences for Bd transmission. We measured how thermal acclimation affects Bd infection in Xenopus laevis, using a timing-of-exposure treatment to investigate acclimation effect persistence following a temperature shift. Consistent with a delay in host acclimation, warm-acclimated frogs exposed to Bd immediately following a temperature decrease (day 0) developed higher infection intensities than frogs already acclimated to the cool temperature. This acclimation effect was surprisingly persistent (five weeks). Acclimation did not affect infection intensity when Bd exposure occurred one week after the temperature shift, indicating that frogs fully acclimated to new temperatures within 7 days. This suggests that acclimation effect persistence beyond one week post-exposure was caused by carry-over from initially high infection loads, rather than an extended delay in host acclimation. In a second experiment, we replicated the persistent thermal acclimation effects on Bd infection but found no acclimation effects on zoospore production. This suggests that variable temperatures consistently exacerbate individual Bd infection but may not necessarily increase Bd transmission.
Collapse
Affiliation(s)
- James E Noelker
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | | | - Kyle D Spengler
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Hunter M Craig
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Thomas R Raffel
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| |
Collapse
|
4
|
Schrock SA, Walsman JC, DeMarchi J, LeSage EH, Ohmer ME, Rollins-Smith LA, Briggs CJ, Richards-Zawacki CL, Woodhams DC, Knapp RA, Smith TC, Haddad CF, Becker CG, Johnson PT, Wilber MQ. Do fungi look like macroparasites? Quantifying the patterns and mechanisms of aggregation for host-fungal parasite relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.609018. [PMID: 39257819 PMCID: PMC11384020 DOI: 10.1101/2024.08.29.609018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Most hosts contain few parasites, whereas few hosts contain many. This pattern, known as aggregation, is well-documented in macroparasites where parasite intensity distribution among hosts affects host-parasite dynamics. Infection intensity also drives fungal disease dynamics, but we lack a basic understanding of host-fungal aggregation patterns, how they compare to macroparasites, and if they reflect biological processes. To address these gaps, we characterized aggregation of the fungal pathogen Batrachochytrium dendrobatidis (Bd) in amphibian hosts. Utilizing the slope of Taylor's Power Law, we found Bd intensity distributions were more aggregated than macroparasites, conforming closely to lognormal distributions. We observed that Bd aggregation patterns are strongly correlated with known biological processes operating in amphibian populations, such as epizoological phase-invasion, post-invasion, and enzootic-and intensity-dependent disease mortality. Using intensity-dependent mathematical models, we found evidence of evolution of host resistance based on aggregation shifts in systems persisting with Bd following disease-induced declines. Our results show that Bd aggregation is highly conserved across disparate systems and is distinct from aggregation patterns in macroparasites, and contains signatures of potential biological processes of amphibian-Bd systems. Our work lays a foundation to unite host-fungal dynamics under a common theoretical framework and inform future modeling approaches that may elucidate host-fungus interactions.
Collapse
Affiliation(s)
- Sarah A.R. Schrock
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Jason C. Walsman
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Joseph DeMarchi
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Emily H. LeSage
- Biology Department, Skidmore College, Saratoga Springs, NY, USA
| | - Michel E.B. Ohmer
- Department of Biology, University of Mississippi, University, MS, USA
| | - Louise A. Rollins-Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Cheryl J. Briggs
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | | | | | - Roland A. Knapp
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, USA
- Earth Research Institute, University of California, Santa Barbara, CA, USA
| | - Thomas C. Smith
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, USA
- Earth Research Institute, University of California, Santa Barbara, CA, USA
| | - Célio F.B. Haddad
- Department of Biodiversity and Aquaculture Center (CAUNESP), Universidade Estadual Paulista, Rio Claro, SP, Brazil
| | - C. Guilherme Becker
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- One Health Microbiome Center, Center for Infectious Disease Dynamics, Ecology Institute, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Pieter T.J. Johnson
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Mark Q. Wilber
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| |
Collapse
|
5
|
Pfenning-Butterworth A, Buckley LB, Drake JM, Farner JE, Farrell MJ, Gehman ALM, Mordecai EA, Stephens PR, Gittleman JL, Davies TJ. Interconnecting global threats: climate change, biodiversity loss, and infectious diseases. Lancet Planet Health 2024; 8:e270-e283. [PMID: 38580428 PMCID: PMC11090248 DOI: 10.1016/s2542-5196(24)00021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 04/07/2024]
Abstract
The concurrent pressures of rising global temperatures, rates and incidence of species decline, and emergence of infectious diseases represent an unprecedented planetary crisis. Intergovernmental reports have drawn focus to the escalating climate and biodiversity crises and the connections between them, but interactions among all three pressures have been largely overlooked. Non-linearities and dampening and reinforcing interactions among pressures make considering interconnections essential to anticipating planetary challenges. In this Review, we define and exemplify the causal pathways that link the three global pressures of climate change, biodiversity loss, and infectious disease. A literature assessment and case studies show that the mechanisms between certain pairs of pressures are better understood than others and that the full triad of interactions is rarely considered. Although challenges to evaluating these interactions-including a mismatch in scales, data availability, and methods-are substantial, current approaches would benefit from expanding scientific cultures to embrace interdisciplinarity and from integrating animal, human, and environmental perspectives. Considering the full suite of connections would be transformative for planetary health by identifying potential for co-benefits and mutually beneficial scenarios, and highlighting where a narrow focus on solutions to one pressure might aggravate another.
Collapse
Affiliation(s)
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA, USA
| | - John M Drake
- School of Ecology, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | | | - Maxwell J Farrell
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada; School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Alyssa-Lois M Gehman
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada; Hakai Institute, Calvert, BC, Canada
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Patrick R Stephens
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - John L Gittleman
- School of Ecology, University of Georgia, Athens, GA, USA; Nicholas School for the Environment, Duke University, Durham, NC, USA
| | - T Jonathan Davies
- Department of Botany, University of British Columbia, Vancouver, BC, Canada; Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Belasen AM, Peek RA, Adams AJ, Russell ID, De León ME, Adams MJ, Bettaso J, Breedveld KGH, Catenazzi A, Dillingham CP, Grear DA, Halstead BJ, Johnson PG, Kleeman PM, Koo MS, Koppl CW, Lauder JD, Padgett-Flohr G, Piovia-Scott J, Pope KL, Vredenburg V, Westphal M, Wiseman K, Kupferberg SJ. Chytrid infections exhibit historical spread and contemporary seasonality in a declining stream-breeding frog. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231270. [PMID: 38298390 PMCID: PMC10827429 DOI: 10.1098/rsos.231270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
Species with extensive geographical ranges pose special challenges to assessing drivers of wildlife disease, necessitating collaborative and large-scale analyses. The imperilled foothill yellow-legged frog (Rana boylii) inhabits a wide geographical range and variable conditions in rivers of California and Oregon (USA), and is considered threatened by the pathogen Batrachochytrium dendrobatidis (Bd). To assess drivers of Bd infections over time and space, we compiled over 2000 datapoints from R. boylii museum specimens (collected 1897-2005) and field samples (2005-2021) spanning 9° of latitude. We observed a south-to-north spread of Bd detections beginning in the 1940s and increase in prevalence from the 1940s to 1970s, coinciding with extirpation from southern latitudes. We detected eight high-prevalence geographical clusters through time that span the species' geographical range. Field-sampled male R. boylii exhibited the highest prevalence, and juveniles sampled in autumn exhibited the highest loads. Bd infection risk was highest in lower elevation rain-dominated watersheds, and with cool temperatures and low stream-flow conditions at the end of the dry season. Through a holistic assessment of relationships between infection risk, geographical context and time, we identify the locations and time periods where Bd mitigation and monitoring will be critical for conservation of this imperilled species.
Collapse
Affiliation(s)
- A. M. Belasen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - R. A. Peek
- California Department of Fish and Wildlife, West Sacramento, CA, USA
| | - A. J. Adams
- Earth Research Institute, University of California, Santa Barbara, CA, USA
| | - I. D. Russell
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - M. E. De León
- Genome Center, University of California, Davis, CA, USA
| | - M. J. Adams
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, USA
| | - J. Bettaso
- Six Rivers National Forest, Lower Trinity Ranger District, USDA Forest Service, P.O. Box 68, Willow Creek, CA, USA
| | | | - A. Catenazzi
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | | | - D. A. Grear
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI, USA
| | - B. J. Halstead
- Point Reyes Field Station, U.S. Geological Survey, Western Ecological Research Center, Point Reyes Station, CA, USA
| | - P. G. Johnson
- Pinnacles National Park, National Park Service, Paicines, CA, USA
| | - P. M. Kleeman
- Point Reyes Field Station, U.S. Geological Survey, Western Ecological Research Center, Point Reyes Station, CA, USA
| | - M. S. Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, CA
| | - C. W. Koppl
- Plumas National Forest, USDA Forest Service, Quincy, CA, USA
| | | | | | - J. Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - K. L. Pope
- Pacific Southwest Research Station, USDA Forest Service, Arcata, CA, USA
| | - V. Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - M. Westphal
- Central Coast Field Office, United States Bureau of Land Management, Marina, CA, USA
| | - K. Wiseman
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - S. J. Kupferberg
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
7
|
Forrest MJ, Halstead BJ, Grear DA, Kleeman PM, Todd BD, Miano OJ, Urquhart KD. KEEPING THE HEAT ON: WEIGHTED SURVEILLANCE FOR CHYTRID FUNGUS (BATRACHOCHYTRIUM DENDROBATIDIS) IN DIXIE VALLEY TOADS (ANAXYRUS [= BUFO] WILLIAMSI). J Wildl Dis 2023; 59:557-568. [PMID: 37486870 DOI: 10.7589/jwd-d-22-00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/09/2023] [Indexed: 07/26/2023]
Abstract
Introduced fungal pathogens have caused declines and extinctions of naïve wildlife populations across vertebrate classes. Consequences of introduced pathogens to hosts with small ranges might be especially severe because of limited redundancy to rescue populations and lower abundance that may limit the resilience of populations to perturbations like disease introduction. As a complement to biosecurity measures to prevent the spread of pathogens, surveillance programs may enable early detection of pathogens, when management actions to limit the effects of pathogens on naïve hosts might be most beneficial. We analyzed surveillance data for the endangered and narrowly endemic Dixie Valley toad (Anaxyrus [= Bufo] williamsi) from two time periods (2011-2014 and 2019-2021) to estimate the minimum detectable prevalence of the amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd). We assessed if detection efficiency could be improved by using samples from both Dixie Valley toads and co-occurring introduced American bullfrogs (Lithobates catesbeianus) and literature-derived surveillance weights. We further evaluated a weighted surveillance design to increase the efficiency of surveillance efforts for Bd within the toad's small (<6 km2) range. We found that monitoring adult and larval American bullfrogs would probably detect Bd more efficiently than monitoring Dixie Valley toads alone. Given that no Bd was detected, minimum detectable prevalence of Bd was <3% in 2011-2014, and <5% (Dixie Valley toads only) and <10% (American bullfrogs only) in 2019-2021. Optimal management for Bd depends on the mechanisms underlying its apparent absence from the range of Dixie Valley toads, but a balanced surveillance scheme that includes sampling American bullfrogs to increase the likelihood of detecting Bd, and adult Dixie Valley toads to ensure broad spatial coverage where American bullfrogs do not occur, would probably result in efficient surveillance, which might permit timely management of Bd if it is detected.
Collapse
Affiliation(s)
- Matthew J Forrest
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
- Co-primary authors
| | - Brian J Halstead
- US Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, California 95620, USA
- Co-primary authors
| | - Daniel A Grear
- US Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison, Wisconsin 53711, USA
| | - Patrick M Kleeman
- US Geological Survey, Western Ecological Research Center, Point Reyes Field Station, 1 Bear Valley Road, Point Reyes Station, California 94956, USA
| | - Brian D Todd
- Department of Wildlife, Fish, and Conservation Biology, University of California-Davis, One Shields Avenue, Davis, California 95616, USA
| | - Oliver J Miano
- Department of Wildlife, Fish, and Conservation Biology, University of California-Davis, One Shields Avenue, Davis, California 95616, USA
| | - Kris D Urquhart
- Nevada Department of Wildlife, 380 West B Street, Fallon, Nevada 89406, USA
| |
Collapse
|
8
|
Mata-Guel EO, Soh MCK, Butler CW, Morris RJ, Razgour O, Peh KSH. Impacts of anthropogenic climate change on tropical montane forests: an appraisal of the evidence. Biol Rev Camb Philos Soc 2023; 98:1200-1224. [PMID: 36990691 DOI: 10.1111/brv.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023]
Abstract
In spite of their small global area and restricted distributions, tropical montane forests (TMFs) are biodiversity hotspots and important ecosystem services providers, but are also highly vulnerable to climate change. To protect and preserve these ecosystems better, it is crucial to inform the design and implementation of conservation policies with the best available scientific evidence, and to identify knowledge gaps and future research needs. We conducted a systematic review and an appraisal of evidence quality to assess the impacts of climate change on TMFs. We identified several skews and shortcomings. Experimental study designs with controls and long-term (≥10 years) data sets provide the most reliable evidence, but were rare and gave an incomplete understanding of climate change impacts on TMFs. Most studies were based on predictive modelling approaches, short-term (<10 years) and cross-sectional study designs. Although these methods provide moderate to circumstantial evidence, they can advance our understanding on climate change effects. Current evidence suggests that increasing temperatures and rising cloud levels have caused distributional shifts (mainly upslope) of montane biota, leading to alterations in biodiversity and ecological functions. Neotropical TMFs were the best studied, thus the knowledge derived there can serve as a proxy for climate change responses in under-studied regions elsewhere. Most studies focused on vascular plants, birds, amphibians and insects, with other taxonomic groups poorly represented. Most ecological studies were conducted at species or community levels, with a marked paucity of genetic studies, limiting understanding of the adaptive capacity of TMF biota. We thus highlight the long-term need to widen the methodological, thematic and geographical scope of studies on TMFs under climate change to address these uncertainties. In the short term, however, in-depth research in well-studied regions and advances in computer modelling approaches offer the most reliable sources of information for expeditious conservation action for these threatened forests.
Collapse
Affiliation(s)
- Erik O Mata-Guel
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Malcolm C K Soh
- National Park Boards, 1 Cluny Road, Singapore, 259569, Singapore
| | - Connor W Butler
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Rebecca J Morris
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Orly Razgour
- Biosciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Kelvin S-H Peh
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
9
|
Greenspan SE, Roznik EA, Edwards L, Duffy R, Berger L, Bower DS, Pike DA, Schwarzkopf L, Alford RA. Constant-temperature predictions underestimate growth of a fungal amphibian pathogen under individual host thermal profiles. J Therm Biol 2023; 111:103394. [PMID: 36585075 DOI: 10.1016/j.jtherbio.2022.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Ectotherm body temperatures fluctuate with environmental variability and host behavior, which may influence host-pathogen interactions. Fungal pathogens are a major threat to ectotherms and may be highly responsive to the fluctuating thermal profiles of individual hosts, especially cool-loving fungi exposed to high host temperatures. However, most studies estimate pathogen thermal performance based on averages of host or surrogate environmental temperatures, potentially missing effects of short-term host temperature shifts such as daily or hourly heat spikes. We recorded individual thermal profiles of Australian rainforest frogs using temperature-sensitive radio-transmitters. We then reproduced a subset of individual thermal profiles in growth chambers containing cultures of the near-global amphibian pathogen Batrachochytrium dendrobatidis (Bd) to investigate how realistic host temperature profiles affect Bd growth. We focused on thermal profiles that exceed the thermal optimum of Bd because the effects of realistic heat spikes on Bd growth are unresolved. Our laboratory incubation experiment revealed that Bd growth varied in response to relatively small differences in heat spike characteristics of individual frog thermal profiles, such as a single degree or a few hours, highlighting the importance of individual host behaviors in predicting population-level disease dynamics. The fungus also grew better than predicted under the most extreme and unpredictable frog temperature profile, recovering from two days of extreme (nearly 32 °C) heat spikes without negative effects on overall growth, suggesting we are underestimating the growth potential of the pathogen in nature. Combined with the previous finding that Bd reduces host heat tolerance, our study suggests that this pathogen may carry a competitive edge over hosts in the face of anthropogenic climate change.
Collapse
Affiliation(s)
- Sasha E Greenspan
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia; Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA.
| | | | - Lexie Edwards
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Richard Duffy
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Lee Berger
- One Health Research Group, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, 3030, Australia
| | - Deborah S Bower
- Zoology Discipline, University of New England, Armidale, New South Wales, 2350, Australia
| | - David A Pike
- Department of Biology, Rhodes College, Memphis, TN, 38112, USA
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Ross A Alford
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
10
|
Osman OA, Andersson J, Martin-Sanchez PM, Eiler A. National eDNA-based monitoring of Batrachochytrium dendrobatidis and amphibian species in Norway. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.85199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Freshwaters represent the most threatened environments with regard to biodiversity loss and, therefore, there is a need for national monitoring programs to effectively document species distribution and evaluate potential risks for vulnerable species. The monitoring of species for effective management practices is, however, challenged by insufficient data acquisition when using traditional methods. Here we present the application of environmental DNA (eDNA) metabarcoding of amphibians in combination with quantitative PCR (qPCR) assays for an invasive pathogenic chytrid species (Batrachochytrium dendrobatidis -Bd), a potential threat to endemic and endangered amphibian species. Statistical comparison of amphibian species detection using either traditional or eDNA-based approaches showed weak correspondence. By tracking the distribution of Bd over three years, we concluded that the risk for amphibian extinction is low since Bd was only detected at five sites where multiple amphibians were present over the sampled years. Our results show that eDNA-based detection can be used for simultaneous monitoring of amphibian diversity and the presence of amphibian pathogens at the national level in order to assess potential species extinction risks and establish effective management practices. As such our study represents suggestions for a national monitoring program based on eDNA.
Collapse
|
11
|
Schmeller DS, Cheng T, Shelton J, Lin CF, Chan-Alvarado A, Bernardo-Cravo A, Zoccarato L, Ding TS, Lin YP, Swei A, Fisher MC, Vredenburg VT, Loyau A. Environment is associated with chytrid infection and skin microbiome richness on an amphibian rich island (Taiwan). Sci Rep 2022; 12:16456. [PMID: 36180528 PMCID: PMC9525630 DOI: 10.1038/s41598-022-20547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
Growing evidence suggests that the origins of the panzootic amphibian pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) are in Asia. In Taiwan, an island hotspot of high amphibian diversity, no amphibian mass mortality events linked to Bd or Bsal have been reported. We conducted a multi-year study across this subtropical island, sampling 2517 individuals from 30 species at 34 field sites, between 2010 and 2017, and including 171 museum samples collected between 1981 and 2009. We analyzed the skin microbiome of 153 samples (6 species) from 2017 in order to assess any association between the amphibian skin microbiome and the probability of infection amongst different host species. We did not detect Bsal in our samples, but found widespread infection by Bd across central and northern Taiwan, both taxonomically and spatially. Museum samples show that Bd has been present in Taiwan since at least 1990. Host species, geography (elevation), climatic conditions and microbial richness were all associated with the prevalence of infection. Host life-history traits, skin microbiome composition and phylogeny were associated with lower prevalence of infection for high altitude species. Overall, we observed low prevalence and burden of infection in host populations, suggesting that Bd is enzootic in Taiwan where it causes subclinical infections. While amphibian species in Taiwan are currently threatened by habitat loss, our study indicates that Bd is in an endemic equilibrium with the populations and species we investigated. However, ongoing surveillance of the infection is warranted, as changing environmental conditions may disturb the currently stable equilibrium.
Collapse
Affiliation(s)
- Dirk S Schmeller
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, INPT, UPS, Toulouse, France
| | - Tina Cheng
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
- Bat Conservation International, Washington, DC, USA
| | - Jennifer Shelton
- Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK
| | - Chun-Fu Lin
- Zoology Division, Endemic Species Research Institute, Jiji, Nantou, Taiwan, ROC
| | - Alan Chan-Alvarado
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
| | - Adriana Bernardo-Cravo
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, INPT, UPS, Toulouse, France
| | - Luca Zoccarato
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, 16775, Stechlin, Germany
| | - Tzung-Su Ding
- School of Forestry and Resource Conservation, National Taiwan University, Taipei City, 106, Taiwan, ROC
| | - Yu-Pin Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Andrea Swei
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
| | - Matthew C Fisher
- Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Adeline Loyau
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, INPT, UPS, Toulouse, France.
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, 16775, Stechlin, Germany.
| |
Collapse
|
12
|
Zipkin EF, DiRenzo GV. Biodiversity is decimated by the cascading effects of the amphibian-killing chytrid fungus. PLoS Pathog 2022; 18:e1010624. [PMID: 35862362 PMCID: PMC9302726 DOI: 10.1371/journal.ppat.1010624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Elise F. Zipkin
- Department of Integrative Biology; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| | - Graziella V. DiRenzo
- U.S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research Unit, University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|
13
|
Kásler A, Ujszegi J, Holly D, Jaloveczki B, Gál Z, Hettyey A. In vitro thermal tolerance of a hypervirulent lineage of Batrachochytrium dendrobatidis: Growth arrestment by elevated temperature and recovery following thermal treatment. Mycologia 2022; 114:661-669. [PMID: 35666647 DOI: 10.1080/00275514.2022.2065443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chytridiomycosis, an emerging infectious disease caused by Batrachochytrium dendrobatidis (Bd), poses a serious threat to amphibians. The thermal optimum of Bd is lower than that of most amphibians, providing an opportunity to cure infected individuals with elevated temperature. However, this approach presupposes detailed knowledge about the thermal tolerance of the fungus. To determine the temperature that may effectively reduce infection burdens in vivo, detailed in vitro studies are needed to characterize thermal tolerance of the fungus without complexities introduced by the species-specific characteristics of hosts' immune systems. The aim of our study was to evaluate the thermal tolerance of a hypervirulent isolate of Bd, considering the limits of its thermal tolerance and its capacity to rebound following heat treatment. We incubated Bd cell cultures at five different temperatures (21, 25.5, 27, 29, or 30.5 C) for one of six exposure durations (3, 4, 5, 6, 7, or 8 days) and subsequently counted the number of zoospores to assess the temperature dependence of Bd growth. We observed intensive Bd growth at 21 C. At 25.5 C, the number of zoospores also increased over time, but the curve plateaued at about half of the maximum values observed in the lower temperature treatment. At temperatures of 27 C and above, the fungus showed no measurable growth. However, when we moved the cultures back to 21 C after the elevated temperature treatments, we observed recovery of Bd growth in all cultures previously treated at 27 C. At 29 C, a treatment duration of 8 days was necessary to prevent recovery of Bd growth, and at 30.5 C a treatment duration of 5 days was needed to achieve the same result, revealing that these moderately elevated temperatures applied for only a few days have merely a fungistatic rather than a fungicidal effect under in vitro conditions.
Collapse
Affiliation(s)
- Andrea Kásler
- Lendület Evolutionary Ecology Research Group, Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network, Nagykovácsi str. 26-30., Budapest 1029, Hungary.,Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | - János Ujszegi
- Lendület Evolutionary Ecology Research Group, Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network, Nagykovácsi str. 26-30., Budapest 1029, Hungary.,Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest 1117, Hungary
| | - Dóra Holly
- Lendület Evolutionary Ecology Research Group, Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network, Nagykovácsi str. 26-30., Budapest 1029, Hungary.,Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | - Boglárka Jaloveczki
- Department of Zoology, Centre for Agricultural Research, Plant Protection Institute, Budapest 1029, Hungary
| | - Zoltán Gál
- Institute of Genetics and Biotechnology, Animal Biotechnology Department, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network, Nagykovácsi str. 26-30., Budapest 1029, Hungary.,Department of Ecology, University of Veterinary Medicine, Budapest 1078, Hungary
| |
Collapse
|
14
|
Wilber MQ, Ohmer MEB, Altman KA, Brannelly LA, LaBumbard BC, Le Sage EH, McDonnell NB, Muñiz Torres AY, Nordheim CL, Pfab F, Richards-Zawacki CL, Rollins-Smith LA, Saenz V, Voyles J, Wetzel DP, Woodhams DC, Briggs CJ. Once a reservoir, always a reservoir? Seasonality affects the pathogen maintenance potential of amphibian hosts. Ecology 2022; 103:e3759. [PMID: 35593515 DOI: 10.1002/ecy.3759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022]
Abstract
Host species that can independently maintain a pathogen in a host community and contribute to infection in other species are important targets for disease management. However, the potential of host species to maintain a pathogen is not fixed over time, and an important challenge is understanding how within- and across-season variability in host maintenance potential affects pathogen persistence over longer time scales relevant for disease management (e.g., years). Here, we sought to understand the causes and consequences of seasonal infection dynamics in leopard frogs (Rana sphenocephala and R. pipiens) infected with the fungal pathogen Batrachochytrium dendrobatidis (Bd). We addressed three questions broadly applicable to seasonal host-parasite systems. First, to what degree are observed seasonal patterns in infection driven by temperature-dependent infection processes compared to seasonal host demographic processes? Second, how does seasonal variation in maintenance potential affect long-term pathogen persistence in multihost communities? Third, does high deterministic maintenance potential relate to the long-term stochastic persistence of pathogens in host populations with seasonal infection dynamics? To answer these questions, we used field data collected over three years on >1400 amphibians across four geographic locations, laboratory and mesocosm experiments, and a novel mathematical model. We found that the mechanisms that drive seasonal prevalence were different than those driving seasonal infection intensity. Seasonal variation in Bd prevalence was driven primarily by changes in host contact rates associated with breeding migrations to and from aquatic habitat. In contrast, seasonal changes in infection intensity were driven by temperature-induced changes in Bd growth rate. Using our model, we found that the maintenance potential of leopard frogs varied significantly throughout the year and that seasonal troughs in infection prevalence made it unlikely that leopard frogs were responsible for long-term Bd persistence in these seasonal amphibian communities, highlighting the importance of alternative pathogen reservoirs for Bd persistence. Our results have broad implications for management in seasonal host-pathogen systems, showing that seasonal changes in host and pathogen vital rates, rather than the depletion of susceptible hosts, can lead to troughs in pathogen prevalence and stochastic pathogen extirpation.
Collapse
Affiliation(s)
- Mark Q Wilber
- Department of Forestry, Wildlife, and Fisheries, University of Tennessee, Institute of Agriculture, Knoxville, TN.,Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA
| | - Michel E B Ohmer
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, MO.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Department of Biology, University of Mississippi, Oxford, MS
| | - Karie A Altman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Department of Biology, St. Bonaventure University, St Bonaventure, NY
| | - Laura A Brannelly
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Brandon C LaBumbard
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Emily H Le Sage
- Department of Pathology Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Nina B McDonnell
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Aura Y Muñiz Torres
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Caitlin L Nordheim
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Ferdinand Pfab
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA
| | | | - Louise A Rollins-Smith
- Department of Pathology Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Veronica Saenz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Jamie Voyles
- Department of Biology, University of Nevada, Reno, Reno, NV
| | - Daniel P Wetzel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Cheryl J Briggs
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA
| |
Collapse
|
15
|
Crawshaw L, Buchanan T, Shirose L, Palahnuk A, Cai HY, Bennett AM, Jardine CM, Davy CM. Widespread occurrence of
Batrachochytrium dendrobatidis
in Ontario, Canada, and predicted habitat suitability for the emerging
Batrachochytrium salamandrivorans. Ecol Evol 2022; 12:e8798. [PMID: 35475183 PMCID: PMC9020443 DOI: 10.1002/ece3.8798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 12/30/2022] Open
Abstract
Chytridiomycosis, caused by the fungi Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, is associated with massive amphibian mortality events worldwide and with some species’ extinctions. Previous ecological niche models suggest that B. dendrobatidis is not well‐suited to northern, temperate climates, but these predictions have often relied on datasets in which northern latitudes are underrepresented. Recent northern detections of B. dendrobatidis suggest that these models may have underestimated the suitability of higher latitudes for this fungus. We used qPCR to test for B. dendrobatidis in 1,041 non‐invasive epithelial swab samples from 18 species of amphibians collected across 735,345 km2 in Ontario and Akimiski Island (Nunavut), Canada. We detected the pathogen in 113 samples (10.9%) from 11 species. Only one specimen exhibited potential clinical signs of disease. We used these data to produce six Species Distribution Models of B. dendrobatidis, which classified half of the study area as potential habitat for the fungus. We also tested each sample for B. salamandrivorans, an emerging pathogen that is causing alarming declines in European salamanders, but is not yet detected in North America. We did not detect B. salamandrivorans in any of the samples, providing a baseline for future surveillance. We assessed the potential risk of future introduction by comparing salamander richness to temperature‐dependent mortality, predicted by a previous exposure study. Areas with the highest species diversity and predicted mortality risk extended 60,530 km2 across southern Ontario, highlighting the potential threat B. salamandrivorans poses to northern Nearctic amphibians. Preventing initial introduction will require coordinated, transboundary regulation of trade in amphibians (including frogs that can carry and disperse B. salamandrivorans), and surveillance of the pathways of introduction (e.g., water and wildlife). Our results can inform surveillance for both pathogens and efforts to mitigate the spread of chytridiomycosis through wild populations.
Collapse
Affiliation(s)
- Lauren Crawshaw
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry Wildlife Research and Monitoring Section Trent University Peterborough ON Canada
| | - Tore Buchanan
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry Wildlife Research and Monitoring Section Trent University Peterborough ON Canada
| | - Leonard Shirose
- Canadian Wildlife Health Cooperative Department of Pathobiology University of Guelph Guelph ON Canada
- Department of Pathobiology University of Guelph Guelph ON Canada
| | - Amanda Palahnuk
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry Wildlife Research and Monitoring Section Trent University Peterborough ON Canada
| | - Hugh Y. Cai
- Animal Health Laboratory University of Guelph Guelph ON Canada
| | | | - Claire M. Jardine
- Canadian Wildlife Health Cooperative Department of Pathobiology University of Guelph Guelph ON Canada
- Department of Pathobiology University of Guelph Guelph ON Canada
| | - Christina M. Davy
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry Wildlife Research and Monitoring Section Trent University Peterborough ON Canada
- Department of Biology Trent University Peterborough ON Canada
| |
Collapse
|
16
|
Haver M, Le Roux G, Friesen J, Loyau A, Vredenburg VT, Schmeller DS. The role of abiotic variables in an emerging global amphibian fungal disease in mountains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152735. [PMID: 34974000 DOI: 10.1016/j.scitotenv.2021.152735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The emergence of the chytridiomycete fungal pathogen Batrachochytrium dendrobatidis (Bd), causing the disease chytridiomycosis, has caused collapse of amphibian communities in numerous mountain systems. The health of amphibians and of mountain freshwater habitats they inhabit is also threatened by ongoing changes in environmental and anthropogenic factors such as climate, hydrology, and pollution. Climate change is causing more extreme climatic events, shifts in ice occurrence, and changes in the timing of snowmelt and pollutant deposition cycles. All of these factors impact both pathogen and host, and disease dynamics. Here we review abiotic variables, known to control Bd occurrence and chytridiomycosis severity, and discuss how climate change may modify them. We propose two main categories of abiotic variables that may alter Bd distribution, persistence, and physiology: 1) climate and hydrology (temperature, precipitation, hydrology, ultraviolet radiation (UVR); and, 2) water chemistry (pH, salinity, pollution). For both categories, we identify topics for further research. More studies on the relationship between global change, pollution and pathogens in complex landscapes, such as mountains, are needed to allow for accurate risk assessments for freshwater ecosystems and resulting impacts on wildlife and human health. Our review emphasizes the importance of using data of higher spatiotemporal resolution and uniform abiotic metrics in order to better compare study outcomes. Fine-scale temperature variability, especially of water temperature, variability of moisture conditions and water levels, snow, ice and runoff dynamics should be assessed as abiotic variables shaping the mountain habitat of pathogen and host. A better understanding of hydroclimate and water chemistry variables, as co-factors in disease, will increase our understanding of chytridiomycosis dynamics.
Collapse
Affiliation(s)
- Marilen Haver
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France.
| | - Gaël Le Roux
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | - Jan Friesen
- Environmental and Biotechnology Centre, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Adeline Loyau
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France; Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, Stechlin D-16775, Germany
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 94132, USA
| | - Dirk S Schmeller
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
17
|
Robinson KA, Prostak SM, Campbell Grant EH, Fritz-Laylin LK. Amphibian mucus triggers a developmental transition in the frog-killing chytrid fungus. Curr Biol 2022; 32:2765-2771.e4. [DOI: 10.1016/j.cub.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022]
|
18
|
Garnham JI, Bower DS, Stockwell MP, Pickett EJ, Pollard CJ, Clulow J, Mahony MJ. Seasonal variation in the prevalence of a fungal pathogen and unexpected clearance from infection in a susceptible frog species. DISEASES OF AQUATIC ORGANISMS 2022; 148:1-11. [PMID: 35142293 DOI: 10.3354/dao03628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) causes the disease chytridiomycosis, which is a primary driver for amphibian population declines and extinctions worldwide. For highly susceptible species, such as the green and golden bell frog Litoria aurea, large numbers of Bd-related mortalities are thought to occur during the colder season (winter), when low temperatures favour the growth of the pathogen. However, extant L. aurea populations are persisting with Bd. We measured Bd prevalence and infection levels of wild L. aurea using capture-mark-recapture and radio-tracking methods. Using this information, we sought to determine host and environmental correlates of Bd prevalence and infection load. Mean ± SE infection load was higher in frogs sampled in autumn (431.5 ± 310.4 genomic equivalents; GE) and winter (1147.5 ± 735.8 GE), compared to spring (21.8 ± 19.3 GE) and summer (0.9 ± 0.8 GE). Furthermore, prevalence of Bd infection in L. aurea was highest in winter (43.6%; 95% CI 33.1-54.7%) and lowest in summer (11.2%; 95% CI 6.8-17.9%). Both prevalence and infection load decreased with increasing temperature. Seven frogs cleared their fungal infection during the coolest months when Bd prevalence was highest; however, these clearances were not permanent, as 5 frogs became infected again. Understanding the factors that allow amphibians to clear their Bd infections when temperatures are optimal for Bd growth presents the potential for manipulating such factors and provides an important step in future research.
Collapse
Affiliation(s)
- James I Garnham
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Bielby J, Sausor C, Monsalve-Carcaño C, Bosch J. Temperature and duration of exposure drive infection intensity with the amphibian pathogen Batrachochytrium dendrobatidis. PeerJ 2022; 10:e12889. [PMID: 35186480 PMCID: PMC8830297 DOI: 10.7717/peerj.12889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023] Open
Abstract
The intensity of a pathogen infection plays a key role in determining how the host responds to infection. Hosts with high infections are more likely to transmit infection to others, and are may be more likely to experience progression from infection to disease symptoms, to being physiologically compromised by disease. Understanding how and why hosts exhibit variation in infection intensity therefore plays a major part in developing and implementing measures aimed at controlling infection spread, its effects, and its chance of persisting and circulating within a population of hosts. To track the relative importance of a number of variables in determining the level of infection intensity, we ran field-surveys at two breeding sites over a 12 month period using marked larvae of the common midwife toad (Alyes obstetricans) and their levels of infection with the amphibian pathogen Batrachochytrium dendrobatidis (Bd). At each sampling occasion we measured the density of larvae, the temperature of the water in the 48 h prior to sampling, the period of time the sampled individual had been in the water body, the developmental (Gosner) stage and the intensity of Bd infection of the individual. Overall our data suggest that the temperature and the duration of time spent in the water play a major role in determining the intensity of Bd infection within an individual host. However, although the duration of time spent in the water was clearly associated with infection intensity, the relationship was negative: larvae that had spent less than 3-6 months in the water had significantly higher infection intensities than those that had spent over 12 months, although this infection intensity peaked between 9 and 12 months. This could be due to animals with heavier infections developing more quickly, suffering increased mortality or, more likely, losing their mouthparts (the only part of anuran larvae that can be infected with Bd). Overall, our results identify drivers of infection intensity, and potentially transmissibility and spread, and we attribute these differences to both host and pathogen biology.
Collapse
Affiliation(s)
- Jon Bielby
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | | | | | - Jaime Bosch
- Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain,Biodiversity Research Institute (University of Oviedo-CSIC-Principality of Asturias), Mieres, Spain
| |
Collapse
|
20
|
Eck JL, Barrès B, Soubeyrand S, Sirén J, Numminen E, Laine AL. Strain Diversity and Spatial Distribution Are Linked to Epidemic Dynamics in Host Populations. Am Nat 2022; 199:59-74. [DOI: 10.1086/717179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Gajewski Z, Stevenson LA, Pike DA, Roznik EA, Alford RA, Johnson LR. Predicting the growth of the amphibian chytrid fungus in varying temperature environments. Ecol Evol 2021; 11:17920-17931. [PMID: 35003647 PMCID: PMC8717292 DOI: 10.1002/ece3.8379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 11/11/2022] Open
Abstract
Environmental temperature is a crucial abiotic factor that influences the success of ectothermic organisms, including hosts and pathogens in disease systems. One example is the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), which has led to widespread amphibian population declines. Understanding its thermal ecology is essential to effectively predict outbreaks. Studies that examine the impact of temperature on hosts and pathogens often do so in controlled constant temperatures. Although varying temperature experiments are becoming increasingly common, it is unrealistic to test every temperature scenario. Thus, reliable methods that use constant temperature data to predict performance in varying temperatures are needed. In this study, we tested whether we could accurately predict Bd growth in three varying temperature regimes, using a Bayesian hierarchical model fit with constant temperature Bd growth data. We fit the Bayesian hierarchical model five times, each time changing the thermal performance curve (TPC) used to constrain the logistic growth rate to determine how TPCs influence the predictions. We then validated the model predictions using Bd growth data collected from the three tested varying temperature regimes. Although all TPCs overpredicted Bd growth in the varying temperature regimes, some functional forms performed better than others. Varying temperature impacts on disease systems are still not well understood and improving our understanding and methodologies to predict these effects could provide insights into disease systems and help conservation efforts.
Collapse
Affiliation(s)
- Zachary Gajewski
- Department of Biological ScienceVirginia TechBlacksburgVirginiaUSA
- Department of StatisticsVirginia TechBlacksburgVirginiaUSA
| | - Lisa A. Stevenson
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
| | - David A. Pike
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
| | - Elizabeth A. Roznik
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
- North Carolina ZooAsheboroNorth CarolinaUSA
| | - Ross A. Alford
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
| | - Leah R. Johnson
- Department of Biological ScienceVirginia TechBlacksburgVirginiaUSA
- Department of StatisticsVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
22
|
INFECTION DYNAMICS OF BATRACHOCHYTRIUM DENDROBATIDIS IN TWO FROG SPECIES INHABITING QUITO'S METROPOLITAN GUANGÜILTAGUA PARK, ECUADOR. J Wildl Dis 2021; 57:749-760. [PMID: 34525187 DOI: 10.7589/jwd-d-20-00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 04/15/2021] [Indexed: 11/20/2022]
Abstract
Batrachochytrium dendrobatidis (Bd) infection is one of the principal causes of amphibian declines worldwide. The presence of Bd has been determined in Gastrotheca riobambae tadpoles that inhabit ponds in Quito's Metropolitan Guangüiltagua Park, Ecuador. This study sought to determine whether these tadpoles are infected and to determine the presence of chytridiomycosis in another frog species, Pristimantis unistrigatus, which also inhabits the park and has different reproductive biology and distinct behavioral habits. We used end-point and real-time PCR techniques to detect and quantify Bd infection. At 1 yr, samples were taken from the skin of P. unistrigatus using swabs and were also taken from the mouthparts of G. riobambae tadpoles. It was found that the two species were infected with a Bd prevalence of 39% (53/135) in G. riobambae tadpoles and 15% (57/382) in P. unistrigatus frogs. The two types of samples (tissue and swabs) from mouthparts showed differences in the zoospores per microliter loads (x̄=1,376.7±3,450.2 vs. x̄=285.0±652.3). Moreover, a correlation (r2=0.621) was discovered between the monthly mean maximum temperature of the pond with disease prevalence in G. riobambae tadpoles. Infection levels in the P. unistrigatus population varied significantly over time, and distance to the pond was a determinant factor for infection intensity.
Collapse
|
23
|
Fallahi M, Somma S, Javan-Nikkhah M, Saremi H, Stea G, Masiello M, Logrieco AF, Moretti A. Genetic structure of Fusarium verticillioides populations from maize in Iran. Fungal Genet Biol 2021; 156:103613. [PMID: 34332072 DOI: 10.1016/j.fgb.2021.103613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Fusarium verticillioides is one of the most important fungal pathogens of maize since it causes severe yield losses and produces the mycotoxins fumonisins that represent a major concern for human and animal health. Information about genetic diversity and population structure of fungal pathogens is essential for developing disease management strategies. The aim of this research was to investigate the genetic structure of F. verticillioides isolated from different provinces of Iran through determination of mating type idiomorphs, phylogenetic analyses based on translation elongation factor-1 alpha (EF-1α), RNA Polymerase II Subunit (RPB2), beta-tubulin (tub2) and Calmodulin (cmdA) genes and genetic diversity analyses based on 6 simple-sequence repeats (SSRs). Both mating types were detected in Iranian populations of F. verticillioides, particularly in Qazvin and Khuzestan, with equal frequency, which highlighted that sexual reproduction is favorable under field conditions. However, the linkage disequilibrium indices did not support the hypothesis of random mating in Khuzestan and Fars. Although assessment of nucleotide diversity based on housekeeping genes showed low level of variation among strains, genotype diversity based on SSRs revealed a high level of genetic diversity within Iranian populations. AMOVA analysis highlighted that the genetic variation of F. verticillioides in Iran was mainly distributed within population of a single area (97%), while a small proportion of genetic variation (3%) resided among populations. These patterns of variation are likely explained by the continuous gene flow among populations isolated from different areas. On the other hand, principal coordinate analysis indicated that the distribution of genetic variation among populations could be explained by the geographical distances. Consequently, to reduce pathogen gene flow among regions, the quarantine processes in Iran should be intensified.
Collapse
Affiliation(s)
- Maryam Fallahi
- Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran.
| | - Stefania Somma
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), via Amendola 122/O, 70126 Bari, Italy.
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran.
| | - Hossein Saremi
- Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran.
| | - Gaetano Stea
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), via Amendola 122/O, 70126 Bari, Italy; Institute for Biomedical Technologies, National Research Council (ITB-CNR), via Amendola 122/O, 70126 Bari, Italy(2).
| | - Mario Masiello
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), via Amendola 122/O, 70126 Bari, Italy.
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), via Amendola 122/O, 70126 Bari, Italy.
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
24
|
Sheets CN, Schmidt DR, Hurtado PJ, Byrne AQ, Rosenblum EB, Richards-Zawacki CL, Voyles J. Thermal Performance Curves of Multiple Isolates of Batrachochytrium dendrobatidis, a Lethal Pathogen of Amphibians. Front Vet Sci 2021; 8:687084. [PMID: 34239916 PMCID: PMC8258153 DOI: 10.3389/fvets.2021.687084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious disease is a key factor in the loss of amphibian diversity. In particular, the disease chytridiomycosis has caused severe declines around the world. The lethal fungal pathogen that causes chytridiomycosis, Batrachochytrium dendrobatidis (Bd), has affected amphibians in many different environments. One primary question for researchers grappling with disease-induced losses of amphibian biodiversity is what abiotic factors drive Bd pathogenicity in different environments. To study environmental influences on Bd pathogenicity, we quantified responses of Bd phenotypic traits (e.g., viability, zoospore densities, growth rates, and carrying capacities) over a range of environmental temperatures to generate thermal performance curves. We selected multiple Bd isolates that belong to a single genetic lineage but that were collected across a latitudinal gradient. For the population viability, we found that the isolates had similar thermal optima at 21°C, but there was considerable variation among the isolates in maximum viability at that temperature. Additionally, we found the densities of infectious zoospores varied among isolates across all temperatures. Our results suggest that temperatures across geographic point of origin (latitude) may explain some of the variation in Bd viability through vertical shifts in maximal performance. However, the same pattern was not evident for other reproductive parameters (zoospore densities, growth rates, fecundity), underscoring the importance of measuring multiple traits to understand variation in pathogen responses to environmental conditions. We suggest that variation among Bd genetic variants due to environmental factors may be an important determinant of disease dynamics for amphibians across a range of diverse environments.
Collapse
Affiliation(s)
- Ciara N Sheets
- Department of Biology, University of Nevada, Reno, NV, United States
| | - Deena R Schmidt
- Department of Mathematics and Statistics, University of Nevada, Reno, NV, United States
| | - Paul J Hurtado
- Department of Mathematics and Statistics, University of Nevada, Reno, NV, United States
| | - Allison Q Byrne
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States.,Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States.,Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| | | | - Jamie Voyles
- Department of Biology, University of Nevada, Reno, NV, United States
| |
Collapse
|
25
|
Xu S, Zhang S, Hu X, Zhang B, Yang S, Hu X, Liu S, Hu D, Bai J. Temporal and spatial dynamics of gastrointestinal parasite infection in Père David's deer. PeerJ 2021; 9:e11335. [PMID: 33996283 PMCID: PMC8106392 DOI: 10.7717/peerj.11335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 04/01/2021] [Indexed: 11/20/2022] Open
Abstract
Background The Père David's deer (Elaphurus davidianus) population was established from only a small number of individuals. Their genetic diversity is therefore relatively low and transmissible (parasitic) diseases affecting them merit further attention. Parasitic infections can affect the health, survival, and population development of the host. However, few reports have been published on the gastrointestinal parasites of Père David's deer. The aims of this study were: (1) to identify the intestinal parasites groups in Père David's deer; (2) to determine their prevalence and burden and clarify the effects of different seasons and regions on various indicators of Père David's deer intestinal parasites; (3) to evaluate the effects of the Père David's deer reproductive period on these parasites; (4) to reveal the regularity of the parasites in space and time. Methods In total, 1,345 Père David's deer faecal samples from four regions during four seasons were tested using the flotation (saturated sodium nitrate solution) to identify parasites of different genus or group, and the McMaster technique to count the number of eggs or oocysts. Results Four groups of gastrointestinal parasites were found, of which strongyles were dominant; their prevalence and burden were significantly higher than other groups. Significant temporal and spatial effects on gastrointestinal parasitic infection were found. Parasite diversity, prevalence, parasite burden, and aggregation were the highest in summer. Among the four regions, parasite diversity, prevalence, and burden were the highest in the Dongting Lake area. In addition, parasite diversity and burden during the reproductive period of Père David's deer was significantly higher than during the post-reproductive period. Conclusions The summer season and the reproductive period of Père David's deer had great potential for parasite transmission, and there is a high risk of parasite outbreaks in the Dongting Lake area.
Collapse
Affiliation(s)
- Shanghua Xu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Shumiao Zhang
- Department of Research, Beijing Milu Ecological Research Center, Beijing, China
| | - Xiaolong Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Baofeng Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Shuang Yang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xin Hu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Shuqiang Liu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jiade Bai
- Department of Research, Beijing Milu Ecological Research Center, Beijing, China
| |
Collapse
|
26
|
Winter is coming-Temperature affects immune defenses and susceptibility to Batrachochytrium salamandrivorans. PLoS Pathog 2021; 17:e1009234. [PMID: 33600433 PMCID: PMC7891748 DOI: 10.1371/journal.ppat.1009234] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
Environmental temperature is a key factor driving various biological processes, including immune defenses and host-pathogen interactions. Here, we evaluated the effects of environmental temperature on the pathogenicity of the emerging fungal pathogen, Batrachochytrium salamandrivorans (Bsal), using controlled laboratory experiments, and measured components of host immune defense to identify regulating mechanisms. We found that adult and juvenile Notophthalmus viridescens died faster due to Bsal chytridiomycosis at 14°C than at 6 and 22°C. Pathogen replication rates, total available proteins on the skin, and microbiome composition likely drove these relationships. Temperature-dependent skin microbiome composition in our laboratory experiments matched seasonal trends in wild N. viridescens, adding validity to these results. We also found that hydrophobic peptide production after two months post-exposure to Bsal was reduced in infected animals compared to controls, perhaps due to peptide release earlier in infection or impaired granular gland function in diseased animals. Using our temperature-dependent susceptibility results, we performed a geographic analysis that revealed N. viridescens populations in the northeastern United States and southeastern Canada are at greatest risk for Bsal invasion, which shifted risk north compared to previous assessments. Our results indicate that environmental temperature will play a key role in the epidemiology of Bsal and provide evidence that temperature manipulations may be a viable disease management strategy. In 2010, a new skin-eating fungus, Batrachochytrium salamandrivorans (Bsal), was discovered killing salamanders in the Netherlands. Since then, the pathogen has spread to other European countries. Bsal is believed to be from Asia and is being translocated through the international trade of amphibians. To our knowledge, Bsal has not arrived to North America. As a proactive strategy for disease control, we evaluated how a range of environmental temperatures in North America could affect invasion risk of Bsal into a widely distributed salamander species, the eastern newt (Notophthalmus viridescens). Our results show that northeastern USA, southeastern Canada, and the higher elevations of the Appalachian Mountains have the greatest likelihood of Bsal invasion, when temperature-dependent susceptibility is included in risk analyses. Changes in eastern newt susceptibility to Bsal infection associated with temperature are likely an interaction between pathogen replication rate and host immune defenses, including changes in skin microbiome composition and the host’s ability to produce Bsal-killing proteins on the skin. Our study provides new insights into how latitude, elevation and season can impact the epidemiology of Bsal, and suggests that strategies that manipulate microclimate of newt habitats could be useful in managing Bsal outbreaks and that climate change will impact Bsal invasion probability.
Collapse
|
27
|
Farthing HN, Jiang J, Henwood AJ, Fenton A, Garner TWJ, Daversa DR, Fisher MC, Montagnes DJS. Microbial Grazers May Aid in Controlling Infections Caused by the Aquatic Zoosporic Fungus Batrachochytrium dendrobatidis. Front Microbiol 2021; 11:592286. [PMID: 33552011 PMCID: PMC7858660 DOI: 10.3389/fmicb.2020.592286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Free-living eukaryotic microbes may reduce animal diseases. We evaluated the dynamics by which micrograzers (primarily protozoa) apply top-down control on the chytrid Batrachochytrium dendrobatidis (Bd) a devastating, panzootic pathogen of amphibians. Although micrograzers consumed zoospores (∼3 μm), the dispersal stage of chytrids, not all species grew monoxenically on zoospores. However, the ubiquitous ciliate Tetrahymena pyriformis, which likely co-occurs with Bd, grew at near its maximum rate (r = 1.7 d-1). A functional response (ingestion vs. prey abundance) for T. pyriformis, measured using spore-surrogates (microspheres) revealed maximum ingestion (I max ) of 1.63 × 103 zoospores d-1, with a half saturation constant (k) of 5.75 × 103 zoospores ml-1. Using these growth and grazing data we developed and assessed a population model that incorporated chytrid-host and micrograzer dynamics. Simulations using our data and realistic parameters obtained from the literature suggested that micrograzers could control Bd and potentially prevent chytridiomycosis (defined as 104 sporangia host-1). However, simulated inferior micrograzers (0.7 × I max and 1.5 × k) did not prevent chytridiomycosis, although they ultimately reduced pathogen abundance to below levels resulting in disease. These findings indicate how micrograzer responses can be applied when modeling disease dynamics for Bd and other zoosporic fungi.
Collapse
Affiliation(s)
- Hazel N. Farthing
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Department of Evolution, Ecology and Behaviour, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
| | - Jiamei Jiang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Alexandra J. Henwood
- Department of Evolution, Ecology and Behaviour, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
| | - Andy Fenton
- Department of Evolution, Ecology and Behaviour, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
| | - Trent W. J. Garner
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - David R. Daversa
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Matthew C. Fisher
- Department of Evolution, Ecology and Behaviour, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - David J. S. Montagnes
- Department of Evolution, Ecology and Behaviour, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
28
|
Single infection with Batrachochytrium dendrobatidis or Ranavirus does not increase probability of co-infection in a montane community of amphibians. Sci Rep 2020; 10:21115. [PMID: 33273613 PMCID: PMC7712875 DOI: 10.1038/s41598-020-78196-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022] Open
Abstract
Understanding the occurrence and consequence of co-infections can be useful in designing disease management interventions. Amphibians are the most highly threatened vertebrates, and emerging pathogens are a serious threat to their conservation. The amphibian chytrid fungus and the viruses of the Ranavirus genus are already widely distributed, causing disease outbreaks and population declines worldwide. However, we lack information about the occurrence and consequences of coinfection with these pathogens across age-classes of amphibian hosts. Here, we analyze the occurrence of infection of the amphibian chytrid fungus and ranaviruses during one season in two susceptible amphibian species at two different locations at which outbreaks have occurred. We found that the co-occurrence of both pathogens in a particular host is not common except in highly susceptible life-stages, and that single infections are the most common situation. Moreover, we found that the occurrence of one pathogen in a particular host did not predict the occurrence of the other. We attribute these results to the niches in which both pathogens proliferate in amphibian hosts.
Collapse
|
29
|
Le Sage EH, LaBumbard BC, Reinert LK, Miller BT, Richards-Zawacki CL, Woodhams DC, Rollins-Smith LA. Preparatory immunity: Seasonality of mucosal skin defences and Batrachochytrium infections in Southern leopard frogs. J Anim Ecol 2020; 90:542-554. [PMID: 33179786 DOI: 10.1111/1365-2656.13386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Accurately predicting the impacts of climate change on wildlife health requires a deeper understanding of seasonal rhythms in host-pathogen interactions. The amphibian pathogen, Batrachochytrium dendrobatidis (Bd), exhibits seasonality in incidence; however, the role that biological rhythms in host defences play in defining this pattern remains largely unknown. The aim of this study was to examine whether host immune and microbiome defences against Bd correspond with infection risk and seasonal fluctuations in temperature and humidity. Over the course of a year, five populations of Southern leopard frogs (Rana [Lithobates] sphenocephala) in Tennessee, United States, were surveyed for host immunity, microbiome and pathogen dynamics. Frogs were swabbed for pathogen load and skin bacterial diversity and stimulated to release stored antimicrobial peptides (AMPs). Secretions were analysed to estimate total hydrophobic peptide concentrations, presence of known AMPs and effectiveness of Bd growth inhibition in vitro. The diversity and proportion of bacterial reads with a 99% match to sequences of isolates known to inhibit Bd growth in vitro were used as an estimate of predicted anti-Bd function of the skin microbiome. Batrachochytrium dendrobatidis dynamics followed the expected seasonal fluctuations-peaks in cooler months-which coincided with when host mucosal defences were most potent against Bd. Specifically, the concentration and expression of stored AMPs cycled synchronously with Bd dynamics. Although microbiome changes followed more linear trends over time, the proportion of bacteria that can function to inhibit Bd growth was greatest when risk of Bd infection was highest. We interpret the increase in peptide storage in the fall and the shift to a more anti-Bd microbiome over winter as a preparatory response for subsequent infection risk during the colder periods when AMP synthesis and bacterial growth is slow and pathogen pressure from this cool-adapted fungus is high. Given that a decrease in stored AMP concentrations as temperatures warm in spring likely means greater secretion rates, the subsequent decrease in prevalence suggests seasonality of Bd in this host may be in part regulated by annual immune rhythms, and dominated by the effects of temperature.
Collapse
Affiliation(s)
- Emily H Le Sage
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Laura K Reinert
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brian T Miller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | | | - Doug C Woodhams
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | - Louise A Rollins-Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
30
|
LaBumbard B, Shepack A, Catenazzi A. After the epizootic: Host–pathogen dynamics in montane tropical amphibian communities with high prevalence of chytridiomycosis. Biotropica 2020. [DOI: 10.1111/btp.12824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brandon LaBumbard
- Department of Zoology Southern Illinois University Carbondale IL USA
- Department of Biology University of Massachusetts Boston Boston MA USA
| | - Alexander Shepack
- Department of Biological Sciences Florida International University Miami FL USA
| | | |
Collapse
|
31
|
Brannelly LA, McCallum HI, Grogan LF, Briggs CJ, Ribas MP, Hollanders M, Sasso T, Familiar López M, Newell DA, Kilpatrick AM. Mechanisms underlying host persistence following amphibian disease emergence determine appropriate management strategies. Ecol Lett 2020; 24:130-148. [PMID: 33067922 DOI: 10.1111/ele.13621] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Emerging infectious diseases have caused many species declines, changes in communities and even extinctions. There are also many species that persist following devastating declines due to disease. The broad mechanisms that enable host persistence following declines include evolution of resistance or tolerance, changes in immunity and behaviour, compensatory recruitment, pathogen attenuation, environmental refugia, density-dependent transmission and changes in community composition. Here we examine the case of chytridiomycosis, the most important wildlife disease of the past century. We review the full breadth of mechanisms allowing host persistence, and synthesise research on host, pathogen, environmental and community factors driving persistence following chytridiomycosis-related declines and overview the current evidence and the information required to support each mechanism. We found that for most species the mechanisms facilitating persistence have not been identified. We illustrate how the mechanisms that drive long-term host population dynamics determine the most effective conservation management strategies. Therefore, understanding mechanisms of host persistence is important because many species continue to be threatened by disease, some of which will require intervention. The conceptual framework we describe is broadly applicable to other novel disease systems.
Collapse
Affiliation(s)
- Laura A Brannelly
- Veterinary BioSciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Vic, 3030, Australia
| | - Hamish I McCallum
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, Qld., 4111, Australia
| | - Laura F Grogan
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, Qld., 4111, Australia.,Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Cheryl J Briggs
- Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Maria P Ribas
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia.,Wildlife Conservation Medicine Research Group, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Matthijs Hollanders
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Thais Sasso
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, Qld., 4111, Australia
| | - Mariel Familiar López
- School of Environment and Sciences, Griffith University, Gold Coast, Qld., 4215, Australia
| | - David A Newell
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Auston M Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| |
Collapse
|
32
|
Recent and Rapid Radiation of the Highly Endangered Harlequin Frogs (Atelopus) into Central America Inferred from Mitochondrial DNA Sequences. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12090360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Populations of amphibians are experiencing severe declines worldwide. One group with the most catastrophic declines is the Neotropical genus Atelopus (Anura: Bufonidae). Many species of Atelopus have not been seen for decades and all eight Central American species are considered “Critically Endangered”, three of them very likely extinct. Nonetheless, the taxonomy, phylogeny, and biogeographic history of Central American Atelopus are still poorly known. In this study, the phylogenetic relationships among seven of the eight described species in Central America were inferred based on mitochondrial DNA sequences from 103 individuals, including decades-old museum samples and two likely extinct species, plus ten South American species. Among Central American samples, we discovered two candidate species that should be incorporated into conservation programs. Phylogenetic inference revealed a ladderized topology, placing species geographically furthest from South America more nested in the tree. Model-based ancestral area estimation supported either one or two colonization events from South America. Relaxed-clock analysis of divergence times indicated that Atelopus colonized Central America prior to 4 million years ago (Ma), supporting a slightly older than traditional date for the closure of the Isthmus. This study highlights the invaluable role of museum collections in documenting past biodiversity, and these results could guide future conservation efforts. An abstract in Spanish (Resumen) is available as supplementary material.
Collapse
|
33
|
Rollins-Smith LA. Global Amphibian Declines, Disease, and the Ongoing Battle between Batrachochytrium Fungi and the Immune System. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.178] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Louise A. Rollins-Smith
- Departments of Pathology, Microbiology and Immunology and Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
34
|
Muths E, Hossack B, Campbell Grant E, Pilliod D, Mosher B. Effects of Snowpack, Temperature, and Disease on Demography in a Wild Population of Amphibians. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- E. Muths
- US Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Building C, Fort Collins, CO 80526, USA
| | - B.R. Hossack
- US Geological Survey, Northern Rocky Mountain Science Center, Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA
| | - E.H. Campbell Grant
- US Geological Survey, Patuxent Wildlife Research Center, SO Conte Anadromous Fish Laboratory, One Migratory Way, Turners Falls, MA 01376, USA
| | - D.S. Pilliod
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, ID 83706, USA
| | - B.A. Mosher
- University of Vermont, Rubenstein School of Environment and Natural Resources, Aiken Center, 81 Carrigan Drive, Burlington, VT 05405, USA
| |
Collapse
|
35
|
Pabijan M, Palomar G, Antunes B, Antoł W, Zieliński P, Babik W. Evolutionary principles guiding amphibian conservation. Evol Appl 2020; 13:857-878. [PMID: 32431739 PMCID: PMC7232768 DOI: 10.1111/eva.12940] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
The Anthropocene has witnessed catastrophic amphibian declines across the globe. A multitude of new, primarily human-induced drivers of decline may lead to extinction, but can also push species onto novel evolutionary trajectories. If these are recognized by amphibian biologists, they can be engaged in conservation actions. Here, we summarize how principles stemming from evolutionary concepts have been applied for conservation purposes, and address emerging ideas at the vanguard of amphibian conservation science. In particular, we examine the consequences of increased drift and inbreeding in small populations and their implications for practical conservation. We then review studies of connectivity between populations at the landscape level, which have emphasized the limiting influence of anthropogenic structures and degraded habitat on genetic cohesion. The rapid pace of environmental changes leads to the central question of whether amphibian populations can cope either by adapting to new conditions or by shifting their ranges. We gloomily conclude that extinction seems far more likely than adaptation or range shifts for most species. That said, conservation strategies employing evolutionary principles, such as selective breeding, introduction of adaptive variants through translocations, ecosystem interventions aimed at decreasing phenotype-environment mismatch, or genetic engineering, may effectively counter amphibian decline in some areas or for some species. The spread of invasive species and infectious diseases has often had disastrous consequences, but has also provided some premier examples of rapid evolution with conservation implications. Much can be done in terms of setting aside valuable amphibian habitat that should encompass both natural and agricultural areas, as well as designing protected areas to maximize the phylogenetic and functional diversity of the amphibian community. We conclude that an explicit consideration and application of evolutionary principles, although certainly not a silver bullet, should increase effectiveness of amphibian conservation in both the short and long term.
Collapse
Affiliation(s)
- Maciej Pabijan
- Institute of Zoology and Biomedical ResearchFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Gemma Palomar
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Bernardo Antunes
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Weronika Antoł
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Piotr Zieliński
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Wiesław Babik
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
36
|
Ribeiro JW, Siqueira T, DiRenzo GV, Lambertini C, Lyra ML, Toledo LF, Haddad CFB, Becker CG. Assessing amphibian disease risk across tropical streams while accounting for imperfect pathogen detection. Oecologia 2020; 193:237-248. [DOI: 10.1007/s00442-020-04646-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/07/2020] [Indexed: 12/23/2022]
|
37
|
Lindauer AL, Maier PA, Voyles J. Daily fluctuating temperatures decrease growth and reproduction rate of a lethal amphibian fungal pathogen in culture. BMC Ecol 2020; 20:18. [PMID: 32245440 PMCID: PMC7118903 DOI: 10.1186/s12898-020-00286-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Emerging infectious diseases (EIDs) are contributing to species die-offs worldwide. We can better understand EIDs by using ecological approaches to study pathogen biology. For example, pathogens are exposed to variable temperatures across daily, seasonal, and annual scales. Exposure to temperature fluctuations may reduce pathogen growth and reproduction, which could affect pathogen virulence, transmission, and environmental persistence with implications for disease. We examined the effect of a variable thermal environment on reproductive life history traits of the fungal pathogen Batrachochytrium dendrobatidis (Bd). Bd causes chytridiomycosis, an emerging infectious disease of amphibians. As a pathogen of ectothermic hosts, Bd can be exposed to large temperature fluctuations in nature. To determine the effect of fluctuating temperatures on Bd growth and reproduction, we collected temperature data from breeding pools of the Yosemite toad (Anaxyrus canorus), a federally threatened species that is susceptible to chytridiomycosis. We cultured Bd under a daily fluctuating temperature regime that simulated Yosemite toad breeding pool temperatures and measured Bd growth, reproduction, fecundity, and viability. RESULTS We observed decreased Bd growth and reproduction in a diurnally fluctuating thermal environment as compared to cultures grown at constant temperatures within the optimal Bd thermal range. We also found that Bd exhibits temperature-induced trade-offs under constant low and constant high temperature conditions. CONCLUSIONS Our results provide novel insights on variable responses of Bd to dynamic thermal conditions and highlight the importance of incorporating realistic temperature fluctuations into investigations of pathogen ecology and EIDs.
Collapse
Affiliation(s)
- Alexa L Lindauer
- Department of Biology, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV, 89557, USA.
| | - Paul A Maier
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.,FamilyTreeDNA, Gene by Gene, 1445 N Loop W, Houston, TX, 77008, USA
| | - Jamie Voyles
- Department of Biology, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV, 89557, USA
| |
Collapse
|
38
|
Jacinto-Maldonado M, García-Peña G, Paredes-León R, Saucedo B, Sarmiento-Silva R, García A, Martínez-Gómez D, Ojeda M, Del Callejo E, Suzán G. Chiggers (Acariformes: Trombiculoidea) do not increase rates of infection by Batrachochytrium dendrobatidis fungus in the endemic Dwarf Mexican Treefrog Tlalocohyla smithii (Anura: Hylidae). Int J Parasitol Parasites Wildl 2020; 11:163-173. [PMID: 32099787 PMCID: PMC7031141 DOI: 10.1016/j.ijppaw.2019.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/29/2022]
Abstract
Amphibian populations are globally declining at an alarming rate, and infectious diseases are among the main causes of their decline. Two micro-parasites, the fungus Batrachochytrium dendrobatidis (Bd) and the virus Ranavirus (RV) have caused mass mortality of amphibians and population declines. Other, less understood epizootics are caused by macro-parasites, such as Trombiculoidea chiggers. Infection with chiggers can affect frog behavior and survival. Furthermore, synergistic effects of co-infection with both macro and micro-parasites may lead to higher morbidity. To better understand these potential synergies, we investigated the presence and co-infection by chiggers, Bd and RV in the endemic frog Tlalocohyla smithii (T. smithii). Co-infection of Bd, RV, and/or chiggers is expected in habitats that are suitable for their co-occurrence; and if infection with one parasite facilitates infection with the others. On the other hand, co-infection could decrease if these parasites were to differ in their micro-environmental requirements (i.e. niche apportionment). A total of 116 frogs of T. smithii were studied during 2014 and 2016 in three streams within the Chamela-Cuixmala Biosphere Reserve in Jalisco, Mexico. Our results show that 31% of the frogs were infected with Trombiculoidea chiggers (Hannemania sp. and Eutrombicula alfreddugesi); Hannemania prevalence increased with air temperature and decreased in sites with high canopies and with water pH values above 8.5 and below 6.7. Bd prevalence was 2.6%, RV prevalence was 0%, and none of the frogs infected with chiggers were co-infected with Bd. Together, this study suggests that chiggers do not facilitate infection with Bd, as these are apportioned in different micro-habitats. Nevertheless, the statistical power to assure this is low. We recommend further epidemiological monitoring of multiple parasites in different geographical locations in order to provide insight on the true hazards, risks and conservation options for amphibian populations.
Collapse
Affiliation(s)
- M. Jacinto-Maldonado
- The Complexity Sciences Center C3 Universidad Nacional Autónoma de México, Av. Universidad, 3000, Mexico City, Mexico
- Faculty of Veterinary Medicine, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 3000, Mexico City, Mexico
| | - G.E. García-Peña
- The Complexity Sciences Center C3 Universidad Nacional Autónoma de México, Av. Universidad, 3000, Mexico City, Mexico
- Faculty of Veterinary Medicine, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 3000, Mexico City, Mexico
| | - R. Paredes-León
- National Mite Collection, Biology Institute, Universidad Nacional Autónoma de México, Mexico
| | - B. Saucedo
- Animal Health Trust, Lanwades Park, CB87UU, Newmarket, United Kingdom
| | - R.E. Sarmiento-Silva
- Faculty of Veterinary Medicine, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 3000, Mexico City, Mexico
| | - A. García
- Chamela Biological Station, Biology Institute, San Patricio Melaque, 48980, La Huerta, Jalisco, Mexico
| | - D. Martínez-Gómez
- Department of Agriculture and Animal Production, Universidad Autónoma Metropolitana. Unit of Xochimilco. Prol, Canal de Miramontes, 3855, Mexico City, Mexico
| | - M. Ojeda
- National Mite Collection, Biology Institute, Universidad Nacional Autónoma de México, Mexico
| | - E. Del Callejo
- The Complexity Sciences Center C3 Universidad Nacional Autónoma de México, Av. Universidad, 3000, Mexico City, Mexico
| | - G. Suzán
- Faculty of Veterinary Medicine, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 3000, Mexico City, Mexico
| |
Collapse
|
39
|
Abstract
Discovering that chytrid fungi cause chytridiomycosis in amphibians represented a paradigm shift in our understanding of how emerging infectious diseases contribute to global patterns of biodiversity loss. In this Review we describe how the use of multidisciplinary biological approaches has been essential to pinpointing the origins of amphibian-parasitizing chytrid fungi, including Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, as well as to timing their emergence, tracking their cycles of expansion and identifying the core mechanisms that underpin their pathogenicity. We discuss the development of the experimental methods and bioinformatics toolkits that have provided a fuller understanding of batrachochytrid biology and informed policy and control measures.
Collapse
|
40
|
McMillan KM, Lesbarrères D, Harrison XA, Garner TWJ. Spatiotemporal heterogeneity decouples infection parameters of amphibian chytridiomycosis. J Anim Ecol 2020; 89:1109-1121. [PMID: 31872434 DOI: 10.1111/1365-2656.13170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/01/2019] [Indexed: 11/27/2022]
Abstract
Emerging infectious diseases are responsible for declines in wildlife populations around the globe. Mass mortality events associated with emerging infectious diseases are often associated with high number of infected individuals (prevalence) and high pathogen loads within individuals (intensity). At the landscape scale, spatial and temporal variation in environmental conditions can alter the relationship between these infection parameters and blur the overall picture of disease dynamics. Quantitative estimates of how infection parameters covary with environmental heterogeneity at the landscape scale are scarce. If we are to identify wild populations at risk of disease epidemics, we must elucidate the factors that shape, and potentially decouple, the link between pathogen prevalence and intensity of infection over complex ecological landscapes. Using a network of 41 populations of the amphibian host Rana pipiens in Ontario, Canada, we present the spatial and temporal heterogeneity in pathogen prevalence and intensity of infection of the chytrid fungus Batrachochytrium dendrobatidis (Bd), across a 3-year period. We then quantify how covariation between both infection parameters measured during late summer is modified by previously experienced spatiotemporal environmental heterogeneity across 14 repeat sampled populations. Late summer Bd infection parameters are governed, at least in part, by different environmental factors operating during separate host life-history events. Our results provide evidence for a relationship between Bd prevalence and thermal regimes prior to host breeding at the site level, and a relationship between intensity of infection and aquatic conditions (precipitation, hydroshed size and river density) throughout host breeding period at the site level. This demonstrates that microclimatic variation within temporal windows can drive divergent patterns of pathogen dynamics within and across years, by effecting changes in host behaviour which interfere with the pathogen's ability to infect and re-infect hosts. A clearer understanding of the role that spatiotemporal heterogeneity has upon infection parameters will provide valuable insights into host-pathogen epidemiology, as well as more fundamental aspects of the ecology and evolution of interspecific interactions.
Collapse
Affiliation(s)
- Kirsten M McMillan
- Institute of Zoology, Zoological Society of London, London, UK.,Department of Biology, Laurentian University, Sudbury, ON, Canada
| | | | - Xavier A Harrison
- Institute of Zoology, Zoological Society of London, London, UK.,University of Exeter, Exeter, UK
| | | |
Collapse
|
41
|
Sonn JM, Utz RM, Richards‐Zawacki CL. Effects of latitudinal, seasonal, and daily temperature variations on chytrid fungal infections in a North American frog. Ecosphere 2019. [DOI: 10.1002/ecs2.2892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Julia M. Sonn
- Department of Ecology and Evolutionary Biology Tulane University New Orleans Louisiana USA
| | - Ryan M. Utz
- Falk School of Sustainability Chatham University Gibsonia Pennsylvania USA
| | | |
Collapse
|
42
|
Bradley PW, Brawner MD, Raffel TR, Rohr JR, Olson DH, Blaustein AR. Shifts in temperature influence how Batrachochytrium dendrobatidis infects amphibian larvae. PLoS One 2019; 14:e0222237. [PMID: 31536533 PMCID: PMC6752834 DOI: 10.1371/journal.pone.0222237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/23/2019] [Indexed: 11/18/2022] Open
Abstract
Many climate change models predict increases in frequency and magnitude of temperature fluctuations that might impact how ectotherms are affected by disease. Shifts in temperature might especially affect amphibians, a group with populations that have been challenged by several pathogens. Because amphibian hosts invest more in immunity at warmer than cooler temperatures and parasites might acclimate to temperature shifts faster than hosts (creating lags in optimal host immunity), researchers have hypothesized that a temperature shift from cold-to-warm might result in increased amphibian sensitivity to pathogens, whereas a shift from warm-to-cold might result in decreased sensitivity. Support for components of this climate-variability based hypothesis have been provided by prior studies of the fungus Batrachochytrium dendrobatidis (Bd) that causes the disease chytridiomycosis in amphibians. We experimentally tested whether temperature shifts before exposure to Batrachochytrium dendrobatidis (Bd) alters susceptibility to the disease chytridiomycosis in the larval stage of two amphibian species–western toads (Anaxyrus boreas) and northern red legged frogs (Rana aurora). Both host species harbored elevated Bd infection intensities under constant cold (15° C) temperature in comparison to constant warm (20° C) temperature. Additionally, both species experienced an increase in Bd infection abundance after shifted from 15° C to 20° C, compared to a constant 20° C but they experienced a decrease in Bd after shifted from 20° C to 15° C, compared to a constant 15° C. These results are in contrast to prior studies of adult amphibians highlighting the potential for species and stage differences in the temperature-dependence of chytridiomycosis.
Collapse
Affiliation(s)
- Paul W. Bradley
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - Michael D. Brawner
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| | - Thomas R. Raffel
- Department of Biology, Oakland University, Rochester, MI, United States of America
| | - Jason R. Rohr
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States of America
| | - Deanna H. Olson
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, United States of America
| | - Andrew R. Blaustein
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
43
|
Numminen E, Vaumourin E, Parratt SR, Poulin L, Laine AL. Variation and correlations between sexual, asexual and natural enemy resistance life-history traits in a natural plant pathogen population. BMC Evol Biol 2019; 19:142. [PMID: 31299905 PMCID: PMC6624897 DOI: 10.1186/s12862-019-1468-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Understanding the mechanisms by which diversity is maintained in pathogen populations is critical for epidemiological predictions. Life-history trade-offs have been proposed as a hypothesis for explaining long-term maintenance of variation in pathogen populations, yet the empirical evidence supporting trade-offs has remained mixed. This is in part due to the challenges of documenting successive pathogen life-history stages in many pathosystems. Moreover, little is understood of the role of natural enemies of pathogens on their life-history evolution. RESULTS We characterize life-history-trait variation and possible trade-offs in fungal pathogen Podosphaera plantaginis infecting the host plant Plantago lanceolata. We measured the timing of both asexual and sexual stages, as well as resistance to a hyperparasite of seven pathogen strains that vary in their prevalence in nature. We find significant variation among the strains in their life-history traits that constitute the infection cycle, but no evidence for trade-offs among pathogen development stages, apart from fast pathogen growth coninciding with fast hyperparasite growth. Also, the seemingly least fit pathogen strain was the most prevalent in the nature. CONCLUSIONS We conclude that in the nature environmental variation, and interactions with the antagonists of pathogens themselves may maintain variation in pathogen populations.
Collapse
Affiliation(s)
- Elina Numminen
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland.
| | - Elise Vaumourin
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland
| | - Steven R Parratt
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland.,University of Liverpool, Institute of Integrative Biology, Liverpool, L69 3BX, UK
| | - Lucie Poulin
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland.,Université de Nantes, Faculté des Sciences et des Techniques, Laboratoire de Biologie et de Pathologie Végétales (LBPV), EA 1157, SFR 4207 QUASAV, 2, rue de la Houssinière, BP 92 208, F-44322, Nantes Cedex 3, France
| | - Anna-Liisa Laine
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
44
|
Hettyey A, Ujszegi J, Herczeg D, Holly D, Vörös J, Schmidt BR, Bosch J. Mitigating Disease Impacts in Amphibian Populations: Capitalizing on the Thermal Optimum Mismatch Between a Pathogen and Its Host. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Hudson MA, Griffiths RA, Martin L, Fenton C, Adams SL, Blackman A, Sulton M, Perkins MW, Lopez J, Garcia G, Tapley B, Young RP, Cunningham AA. Reservoir frogs: seasonality of Batrachochytrium dendrobatidis infection in robber frogs in Dominica and Montserrat. PeerJ 2019; 7:e7021. [PMID: 31231595 PMCID: PMC6573808 DOI: 10.7717/peerj.7021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/25/2019] [Indexed: 11/20/2022] Open
Abstract
Emerging infectious diseases are an increasingly important threat to wildlife conservation, with amphibian chytridiomycosis, caused by Batrachochytrium dendrobatidis, the disease most commonly associated with species declines and extinctions. However, some amphibians can be infected with B. dendrobatidis in the absence of disease and can act as reservoirs of the pathogen. We surveyed robber frogs (Eleutherodactylus spp.), potential B. dendrobatidis reservoir species, at three sites on Montserrat, 2011-2013, and on Dominica in 2014, to identify seasonal patterns in B. dendrobatidis infection prevalence and load (B. dendrobatidis genomic equivalents). On Montserrat there was significant seasonality in B. dendrobatidis prevalence and B. dendrobatidis load, both of which were correlated with temperature but not rainfall. B. dendrobatidis prevalence reached 35% in the cooler, drier months but was repeatedly undetectable during the warmer, wetter months. Also, B. dendrobatidis prevalence significantly decreased from 53.2% when the pathogen emerged on Montserrat in 2009 to a maximum 34.8% by 2011, after which it remained stable. On Dominica, where B. dendrobatidis emerged seven years prior to Montserrat, the same seasonal pattern was recorded but at lower prevalence, possibly indicating long-term decline. Understanding the dynamics of disease threats such as chytridiomycosis is key to planning conservation measures. For example, reintroductions of chytridiomycosis-threatened species could be timed to coincide with periods of low B. dendrobatidis infection risk, increasing potential for reintroduction success.
Collapse
Affiliation(s)
- Michael A Hudson
- Zoological Society of London, London, UK.,Durrell Wildlife Conservation Trust, Trinity, Jersey, Channel Islands.,Durrell Insitute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
| | - Richard A Griffiths
- Durrell Insitute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
| | - Lloyd Martin
- Department of Environment, Ministry of Agriculture, Housing, Lands and Environment, Brades, Montserrat, West Indies
| | - Calvin Fenton
- Department of Environment, Ministry of Agriculture, Housing, Lands and Environment, Brades, Montserrat, West Indies
| | | | | | - Machel Sulton
- Forestry, Wildlife and Parks Division, Ministry of Environment, Climate Resilience, Disaster Management and Urban Renewal, Roseau, Commonwealth of Dominica, West Indies
| | | | | | | | | | - Richard P Young
- Durrell Wildlife Conservation Trust, Trinity, Jersey, Channel Islands
| | | |
Collapse
|
46
|
Lindauer A, May T, Rios-Sotelo G, Sheets C, Voyles J. Quantifying Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans Viability. ECOHEALTH 2019; 16:346-350. [PMID: 31124019 PMCID: PMC6682578 DOI: 10.1007/s10393-019-01414-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 01/20/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
The disease chytridiomycosis is responsible for global amphibian declines. Chytridiomycosis is caused by Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), fungal pathogens with stationary and transmissible life stages. Establishing methods that quantify growth and survival of both life stages can facilitate research on the pathophysiology and disease ecology of these pathogens. We tested the efficacy of the MTT assay, a colorimetric test of cell viability, and found it to be a reliable method for quantifying the viability of Bd and Bsal stationary life stages. This method can provide insights into these pathogens' growth and reproduction to improve our understanding of chytridiomycosis.
Collapse
Affiliation(s)
- Alexa Lindauer
- Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Tiffany May
- Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Gabriela Rios-Sotelo
- Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Ciara Sheets
- Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Jamie Voyles
- Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV, 89557, USA.
| |
Collapse
|
47
|
Kohli AK, Lindauer AL, Brannelly LA, Ohmer MEB, Richards-Zawacki C, Rollins-Smith L, Voyles J. Disease and the Drying Pond: Examining Possible Links among Drought, Immune Function, and Disease Development in Amphibians. Physiol Biochem Zool 2019; 92:339-348. [PMID: 30990770 DOI: 10.1086/703137] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Drought can heavily impact aquatic ecosystems. For amphibian species that rely on water availability for larval development, drought can have direct and indirect effects on larval survival and postmetamorphic fitness. Some amphibian species can accelerate the timing of metamorphosis to escape drying habitats through developmental plasticity. However, trade-offs associated with premature metamorphosis, such as reduced body size and altered immune function in the recently metamorphosed individual, may have downstream effects on susceptibility to disease. Here, we review the physiological mechanisms driving patterns in larval amphibian development under low water conditions. Specifically, we discuss drought-induced accelerated metamorphosis and how it may alter immune function, predisposing juvenile amphibians to infectious disease. In addition, we consider how these physiological and immunological adjustments could play out in a lethal disease system, amphibian chytridiomycosis. Last, we propose avenues for future research that adopt an ecoimmunological approach to evaluate the combined threats of drought and disease for amphibian populations.
Collapse
|
48
|
Fernández-Loras A, Boyero L, Correa-Araneda F, Tejedo M, Hettyey A, Bosch J. Infection with Batrachochytrium dendrobatidis lowers heat tolerance of tadpole hosts and cannot be cleared by brief exposure to CTmax. PLoS One 2019; 14:e0216090. [PMID: 31034535 PMCID: PMC6488074 DOI: 10.1371/journal.pone.0216090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/12/2019] [Indexed: 11/18/2022] Open
Abstract
Climate change and infectious disease by the chytrid fungus Batrachochytrium dendrobatidis (Bd) are major drivers of amphibian extinctions, but the potential interactions of these two factors are not fully understood. Temperature is known to influence (1) the infectivity, pathogenicity and virulence of Bd; (2) host-parasite dynamics, especially when both hosts and parasites are ectothermic organisms exhibiting thermal sensitivities that may or may not differ; and (3) amphibian vulnerability to extinction depending on their heat tolerance, which may decrease with infection. Thus, in a global warming scenario, with rising temperatures and more frequent and extreme weather events, amphibians infected by Bd could be expected to be more vulnerable if temperatures approach their critical thermal maximum (CTmax). However, it is also possible that predicted high temperatures could clear the Bd infection, thus enhancing amphibian survival. We tested these hypotheses by measuring CTmax values of Bd-infected and Bd-free aquatic tadpoles and terrestrial toadlets/juveniles of the common midwife toad (Alytes obstetricans) and examining whether exposure of A. obstetricans individuals to peak temperatures reaching their CTmax clears them from Bd infection. We show that (1) Bd has a wide thermal tolerance range; (2) Bd is capable of altering the thermal physiology of A. obstetricans, which is stage-dependent, lowering CTmax in tadpoles but not in toadlets; and (3) Bd infection is not cleared after exposure of tadpoles or toadlets to CTmax. Living under climatic change with rising temperatures, the effect of Bd infection might tip the balance and lead some already threatened amphibian communities towards extinction.
Collapse
Affiliation(s)
| | - Luz Boyero
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Francisco Correa-Araneda
- Unidad de Cambio Climático y Medio Ambiente, Instituto de Estudios del Hábitat (IEH), Facultad de Arquitectura y Construcción, Universidad Autónoma de Chile, Temuco, Chile
- Núcleo del Estudio en Ciencias Ambientales (NEA) y Departamento de Ciencias Ambientales (Facultad de Recursos Naturales), Universidad Católica de Temuco, Temuco, Chile
| | - Miguel Tejedo
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, Américo Vespucio s/n, Sevilla, Spain
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Ecology, Institute for Biology, University of Veterinary Medicine, Budapest, Hungary
| | - Jaime Bosch
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
- Centro de Investigación, Seguimiento y Evaluación, Parque Nacional de la Sierra de Guadarrama, Rascafría, Spain
- Research Unit of Biodiversity (CSIC, UO, PA), Oviedo University—Campus Mieres, Spain
- * E-mail:
| |
Collapse
|
49
|
Julian JT, Glenney GW, Rees C. Evaluating observer bias and seasonal detection rates in amphibian pathogen eDNA collections by citizen scientists. DISEASES OF AQUATIC ORGANISMS 2019; 134:15-24. [PMID: 32132269 DOI: 10.3354/dao03357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We trained volunteers from conservation organizations to collect environmental DNA (eDNA) from 21 ponds with amphibian communities that had a history of Batrachochytrium dendrobatidis (Bd) and ranavirus (Rv) infections. Volunteers were given sampling kits to filter pond water and preserve eDNA on filter paper, as were the principal investigators (PIs), who made independent collections within 48 h of volunteer collections. Using multi-scale occupancy modeling, we found no evidence to suggest the observer who collected the water sample (volunteer or PI) influenced either the probability of capturing eDNA on a filter or the probability of detecting extracted eDNA in a quantitative PCR (qPCR) reaction. The cumulative detection probability of Bd eDNA at a pond decreased from May through July 2017 because there was a decrease in the probability of detecting eDNA in qPCR reactions. In contrast, cumulative detection probability increased from May to July for Rv due to a higher probability of capturing eDNA on filters later in the year. Our models estimate that both pathogens could be detected with 95% confidence in as few as 5 water samples taken in June or July tested with either 4 or 3 qPCR reactions, respectively. Our eDNA protocols appeared to detect pathogens with 95% confidence using considerably fewer samples than protocols which typically recommend sampling ≥30 individual animals. In addition, eDNA sampling could reduce some biosecurity concerns, jurisdictional and institutional permitting, and stress to biota at ponds.
Collapse
Affiliation(s)
- James T Julian
- Division of Mathematics and Natural Science, Pennsylvania State University-Altoona College, Altoona, PA 16601, USA
| | | | | |
Collapse
|
50
|
Cohen JM, Civitello DJ, Venesky MD, McMahon TA, Rohr JR. An interaction between climate change and infectious disease drove widespread amphibian declines. GLOBAL CHANGE BIOLOGY 2019; 25:927-937. [PMID: 30484936 DOI: 10.1111/gcb.14489] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/02/2018] [Indexed: 06/09/2023]
Abstract
Climate change might drive species declines by altering species interactions, such as host-parasite interactions. However, few studies have combined experiments, field data, and historical climate records to provide evidence that an interaction between climate change and disease caused any host declines. A recently proposed hypothesis, the thermal mismatch hypothesis, could identify host species that are vulnerable to disease under climate change because it predicts that cool- and warm-adapted hosts should be vulnerable to disease at unusually warm and cool temperatures, respectively. Here, we conduct experiments on Atelopus zeteki, a critically endangered, captively bred frog that prefers relatively cool temperatures, and show that frogs have high pathogen loads and high mortality rates only when exposed to a combination of the pathogenic chytrid fungus (Batrachochytrium dendrobatidis) and high temperatures, as predicted by the thermal mismatch hypothesis. Further, we tested various hypotheses to explain recent declines experienced by species in the amphibian genus Atelopus that are thought to be associated with B. dendrobatidis and reveal that these declines are best explained by the thermal mismatch hypothesis. As in our experiments, only the combination of rapid increases in temperature and infectious disease could account for the patterns of declines, especially in species adapted to relatively cool environments. After combining experiments on declining hosts with spatiotemporal patterns in the field, our findings are consistent with the hypothesis that widespread species declines, including possible extinctions, have been driven by an interaction between increasing temperatures and infectious disease. Moreover, our findings suggest that hosts adapted to relatively cool conditions will be most vulnerable to the combination of increases in mean temperature and emerging infectious diseases.
Collapse
Affiliation(s)
- Jeremy M Cohen
- Department of Integrative Biology, University of South Florida, Tampa, Florida
| | | | | | | | - Jason R Rohr
- Department of Integrative Biology, University of South Florida, Tampa, Florida
| |
Collapse
|