1
|
Reuman DC, Walter JA, Sheppard LW, Karatayev VA, Kadiyala ES, Lohmann AC, Anderson TL, Coombs NJ, Haynes KJ, Hallett LM, Castorani MCN. Insights Into Spatial Synchrony Enabled by Long-Term Data. Ecol Lett 2025; 28:e70112. [PMID: 40269596 PMCID: PMC12018873 DOI: 10.1111/ele.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/25/2025]
Abstract
Spatial synchrony, the tendency for temporal fluctuations in an ecological variable to be positively associated in different locations, is a widespread and important phenomenon in ecology. Understanding of the nature and mechanisms of synchrony, and how synchrony is changing, has developed rapidly over the past 2 decades. Many recent developments have taken place through the study of long-term data sets. Here, we review and synthesise some important recent advances in spatial synchrony, with a focus on how long-term data have facilitated new understanding. Longer time series do not just facilitate better testing of existing ideas or more precise statistical results; more importantly, they also frequently make possible the expansion of conceptual paradigms. We discuss several such advances in our understanding of synchrony, how long-term data led to these advances, and how future studies can continue to improve the state of knowledge.
Collapse
Affiliation(s)
- Daniel C. Reuman
- Department of Ecology & Evolutionary Biology and Center for Ecological ResearchUniversity of KansasLawrenceKansasUSA
| | - Jonathan A. Walter
- Center for Watershed SciencesUniversity of California, DavisDavisCaliforniaUSA
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Vadim A. Karatayev
- Department of Ecology & Evolutionary Biology and Center for Ecological ResearchUniversity of KansasLawrenceKansasUSA
- Department of BiologyUniversity of MarylandCollege ParkMarylandUSA
| | - Ethan S. Kadiyala
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Amanda C. Lohmann
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Thomas L. Anderson
- Department of Biological SciencesSouthern Illinois University EdwardsvilleEdwardsvilleIllinoisUSA
| | - Nat J. Coombs
- Department of Ecology & Evolutionary Biology and Center for Ecological ResearchUniversity of KansasLawrenceKansasUSA
| | - Kyle J. Haynes
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Max C. N. Castorani
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
2
|
Hashimoto K, Hayasaka D, Eguchi Y, Seko Y, Cai J, Suzuki K, Goka K, Kadoya T. Multifaceted effects of variable biotic interactions on population stability in complex interaction webs. Commun Biol 2024; 7:1309. [PMID: 39438612 PMCID: PMC11496648 DOI: 10.1038/s42003-024-06948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Recent studies have revealed that biotic interactions in ecological communities vary over time, possibly mediating community responses to anthropogenic disturbances. This study investigated the heterogeneity of such variability within a real community and its impact on population stability in the face of pesticide application, particularly focusing on density-dependence of the interaction effect. Using outdoor mesocosms with a freshwater community, we found considerable heterogeneity in density-dependent interaction variability among links in the same community. This variability mediated the stability of recipient populations, with negative density-dependent interaction variability stabilizing whereas positive density-dependence and density-independent interaction variability destabilizing populations. Unexpectedly, the mean interaction strength, which is typically considered crucial for stability, had no significant effect, suggesting that how organisms interact on average is insufficient to predict the ecological impacts of pesticides. Our findings emphasize the multifaceted role of interaction variability in predicting the ecological consequences of anthropogenic disturbances such as pesticide application.
Collapse
Affiliation(s)
- Koya Hashimoto
- Faculty of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara, 631-8505, Japan.
- National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan.
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan.
| | - Daisuke Hayasaka
- Faculty of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara, 631-8505, Japan
| | - Yuji Eguchi
- Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara, 631-8505, Japan
| | - Yugo Seko
- National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
- Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara, 631-8505, Japan
| | - Ji Cai
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga, 520-2113, Japan
| | - Kenta Suzuki
- BioResource Research Center, RIKEN, Takanodai 3-1-1, Tsukuba, Ibaraki, 305-0074, Japan
- Institute for Multidisciplinary Sciences, Yokohama National University, Tokiwadai 9-5, Hodogaya, Yokohama, Kanagawa, 240-8501, Japan
| | - Koichi Goka
- National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| | - Taku Kadoya
- National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
3
|
Dedman S, Moxley JH, Papastamatiou YP, Braccini M, Caselle JE, Chapman DD, Cinner JE, Dillon EM, Dulvy NK, Dunn RE, Espinoza M, Harborne AR, Harvey ES, Heupel MR, Huveneers C, Graham NAJ, Ketchum JT, Klinard NV, Kock AA, Lowe CG, MacNeil MA, Madin EMP, McCauley DJ, Meekan MG, Meier AC, Simpfendorfer CA, Tinker MT, Winton M, Wirsing AJ, Heithaus MR. Ecological roles and importance of sharks in the Anthropocene Ocean. Science 2024; 385:adl2362. [PMID: 39088608 DOI: 10.1126/science.adl2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/17/2024] [Indexed: 08/03/2024]
Abstract
In ecosystems, sharks can be predators, competitors, facilitators, nutrient transporters, and food. However, overfishing and other threats have greatly reduced shark populations, altering their roles and effects on ecosystems. We review these changes and implications for ecosystem function and management. Macropredatory sharks are often disproportionately affected by humans but can influence prey and coastal ecosystems, including facilitating carbon sequestration. Like terrestrial predators, sharks may be crucial to ecosystem functioning under climate change. However, large ecosystem effects of sharks are not ubiquitous. Increasing human uses of oceans are changing shark roles, necessitating management consideration. Rebuilding key populations and incorporating shark ecological roles, including less obvious ones, into management efforts are critical for retaining sharks' functional value. Coupled social-ecological frameworks can facilitate these efforts.
Collapse
Affiliation(s)
- Simon Dedman
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Jerry H Moxley
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Yannis P Papastamatiou
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Matias Braccini
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, North Beach, WA 6920, Australia
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Demian D Chapman
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, FL 34236, USA
| | - Joshua Eli Cinner
- Thriving Oceans Research Hub, School of Geosciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Erin M Dillon
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Nicholas K Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Ruth Elizabeth Dunn
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- The Lyell Centre, Heriot-Watt University, Edinburgh EH14 4BA, UK
| | - Mario Espinoza
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060-11501, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060-11501, Costa Rica
- MigraMar, Bodega Bay, CA 94923, USA
| | - Alastair R Harborne
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Euan S Harvey
- School of Molecular and Life Sciences, Curtin University, WA, Australia
| | - Michelle R Heupel
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7000, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Integrated Marine Observing System, University of Tasmania, Hobart, TAS, Australia
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | | - James T Ketchum
- MigraMar, Bodega Bay, CA 94923, USA
- Pelagios Kakunjá, La Paz, Baja California Sur, Mexico
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | - Natalie V Klinard
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, NS B3H 4R2, Canada
| | - Alison A Kock
- Cape Research Centre, South African National Parks, Cape Town, South Africa
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda (Grahamstown), South Africa
| | - Christopher G Lowe
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - M Aaron MacNeil
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, NS B3H 4R2, Canada
| | - Elizabeth M P Madin
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Douglas J McCauley
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Mark G Meekan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | - Amelia C Meier
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Colin A Simpfendorfer
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7000, Australia
- College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, QLD 4811, Australia
| | - M Tim Tinker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
- US Geological Survey, Western Ecological Research Center, Santa Cruz, CA, USA
| | - Megan Winton
- Atlantic White Shark Conservancy, North Chatham, MA 02650, USA
| | - Aaron J Wirsing
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael R Heithaus
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| |
Collapse
|
4
|
Lemmen KD, Pennekamp F. Food web context modifies predator foraging and weakens trophic interaction strength. Ecol Lett 2024; 27:e14475. [PMID: 39060898 DOI: 10.1111/ele.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Trophic interaction modifications (TIM) are widespread in natural systems and occur when a third species indirectly alters the strength of a trophic interaction. Past studies have focused on documenting the existence and magnitude of TIMs; however, the underlying processes and long-term consequences remain elusive. To address this gap, we experimentally quantified the density-dependent effect of a third species on a predator's functional response. We conducted short-term experiments with ciliate communities composed of a predator, prey and non-consumable 'modifier' species. In both communities, increasing modifier density weakened the trophic interaction strength, due to a negative effect on the predator's space clearance rate. Simulated long-term dynamics indicate quantitative differences between models that account for TIMs or include only pairwise interactions. Our study demonstrates that TIMs are important to understand and predict community dynamics and highlights the need to move beyond focal species pairs to understand the consequences of species interactions in communities.
Collapse
Affiliation(s)
- Kimberley D Lemmen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Raerinne J. Popperian ecology is a delusion. Ecol Evol 2024; 14:e11106. [PMID: 38435009 PMCID: PMC10904965 DOI: 10.1002/ece3.11106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
During the last 50 years, a group of ecologists has repeatedly used Popper's falsificationism in normative claims concerning how research in ecology should be conducted and/or how ecology should be corrected. Other ecologists seem to be dissatisfied with these criticisms. Nevertheless, they have not provided systematic analyses of how and why the Popperian criticisms of ecology fail. I have two aims in this article First, I show how so-called Popperian ecologists have not only failed to use but have misused - if not abused - Popper in their criticisms of ecology. That is, the Popperian criticisms of ecology lack the justification the critics claim it has. Second, I claim that Popper's falsificationism is an unsuitable philosophy of science for ecology. In other words, ecology should not be criticized nor evaluated from the Popperian perspective in the first place.
Collapse
Affiliation(s)
- Jani Raerinne
- Faculty of Social ScienceUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
6
|
Budnik RR, Frank KT, Collis LM, Fraker ME, Mason LA, Muir AM, Pothoven SA, Clapp DF, Collingsworth PD, Hoffman JC, Hood JM, Johnson TB, Koops MA, Rudstam LG, Ludsin SA. Feasibility of implementing an integrated long-term database to advance ecosystem-based management in the Laurentian Great Lakes basin. JOURNAL OF GREAT LAKES RESEARCH 2024; 50:1-13. [PMID: 38783923 PMCID: PMC11110652 DOI: 10.1016/j.jglr.2024.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The North American Great Lakes have been experiencing dramatic change during the past half-century, highlighting the need for holistic, ecosystem-based approaches to management. To assess interest in ecosystem-based management (EBM), including the value of a comprehensive public database that could serve as a repository for the numerous physical, chemical, and biological monitoring Great Lakes datasets that exist, a two-day workshop was organized, which was attended by 40+ Great Lakes researchers, managers, and stakeholders. While we learned during the workshop that EBM is not an explicit mission of many of the participating research, monitoring, and management agencies, most have been conducting research or monitoring activities that can support EBM. These contributions have ranged from single-resource (-sector) management to considering the ecosystem holistically in a decision-making framework. Workshop participants also identified impediments to implementing EBM, including: 1) high anticipated costs; 2) a lack of EBM success stories to garner agency buy-in; and 3) difficulty in establishing common objectives among groups with different mandates (e.g., water quality vs. fisheries production). We discussed as a group solutions to overcome these impediments, including construction of a comprehensive, research-ready database, a prototype of which was presented at the workshop. We collectively felt that such a database would offer a cost-effective means to support EBM approaches by facilitating research that could help identify useful ecosystem indicators and management targets and allow for management strategy evaluations that account for risk and uncertainty when contemplating future decision-making.
Collapse
Affiliation(s)
- Richard R. Budnik
- Aquatic Ecology Laboratory, Department of Evolution,
Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43212,
USA
| | - Kenneth T. Frank
- Ocean Sciences Division, Bedford Institute of Oceanography,
Dartmouth, NS B2Y 4A2, Canada
- Department of Biology, Queen’s University, Kingston,
ON K7L 3N6, Canada
| | - Lyndsie M. Collis
- Aquatic Ecology Laboratory, Department of Evolution,
Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43212,
USA
- National Oceanic and Atmospheric Administration, Great
Lakes Environmental Research Laboratory, Ann Arbor, MI 48108, USA
| | - Michael E. Fraker
- Cooperative Institute for Great Lakes Research (CIGLR) and
Michigan Sea Grant, University of Michigan, Ann Arbor, MI 48108, USA
| | - Lacey A. Mason
- National Oceanic and Atmospheric Administration, Great
Lakes Environmental Research Laboratory, Ann Arbor, MI 48108, USA
| | - Andrew M. Muir
- Great Lakes Fishery Commission, Ann Arbor, MI 48105,
USA
| | - Steven A. Pothoven
- National Oceanic and Atmospheric Administration, Great
Lakes Environmental Research Laboratory, Lake Michigan Field Station, Muskegon, MI
49441, USA
| | - David F. Clapp
- Charlevoix Fisheries Research Station, Michigan Department
of Natural Resources, Charlevoix, Michigan,49720, USA
| | - Paris D. Collingsworth
- Department of Forestry and Natural Resources and
Illinois-Indiana Sea Grant, Purdue University, West Lafayette, USA
| | - Joel C. Hoffman
- United State Environmental Protection Agency, Office of
Research and Development, Great Lakes Toxicology and Ecology Division, Duluth,
Minnesota, 55804, USA
| | - James M. Hood
- Aquatic Ecology Laboratory, Department of Evolution,
Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43212,
USA
- Translational Data Analytics Institute, The Ohio State
University, Columbus, Ohio 43212 USA
| | - Timothy B. Johnson
- Ontario Ministry of Northern Development, Mines, Natural
Resources and Forestry, Glenora Fisheries Station, Pickton, ON, Canada, K0K
2T0
| | - Marten A. Koops
- Great Lakes Laboratory for Fisheries and Aquatic Sciences,
Fisheries and Oceans Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1,
Canada
| | - Lars G. Rudstam
- Department of Natural Resources and the Environment,
Cornell University, Ithaca, New York, USA
| | - Stuart A. Ludsin
- Aquatic Ecology Laboratory, Department of Evolution,
Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43212,
USA
| |
Collapse
|
7
|
Boero F, Mergeay J. Darwin's feathers: Eco-evolutionary biology, predictions and policy. ADVANCES IN MARINE BIOLOGY 2023; 95:91-111. [PMID: 37923540 DOI: 10.1016/bs.amb.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The scientific community is often asked to predict the future state of the environment and, to do so, the structure (biodiversity) and the functions (ecosystem functioning) of the investigated systems must be described and understood. In his "handful of feathers" metaphor, Charles Darwin explained the difference between simple and predictable systems, obeying definite laws, and complex (and unpredictable) systems, featured by innumerable components and interactions among them. In order not to waste efforts in impossible enterprises, it is crucial to ascertain if accurate predictions are possible in a given domain, and to what extent they might be reliable. Since ecology and evolution (together forming "natural history") deal with complex historical systems that are extremely sensitive to initial conditions and to contingencies or 'black swans', it is inherently impossible to accurately predict their future states. Notwithstanding this impossibility, policy makers are asking the community of ecological and evolutionary biologists to predict the future. The struggle for funding induces many supposed naturalists to do so, also because other types of scientists (from engineers to modellers) are keen to sell predictions (usually in form of solutions) to policy makers that are willing to pay for them. This paper is a plea for bio-ecological realism. The "mission" of ecologists and evolutionary biologists (natural historians) is not to predict the future state of inherently unpredictable systems, but to convince policy makers that we must live with uncertainties. Natural history, however, can provide knowledge-based wisdom to face the uncertainties about the future. Natural historians produce scenarios that are of great help in figuring out how to manage our relationship with the rest of nature.
Collapse
Affiliation(s)
- Ferdinando Boero
- Fondazione Dohrn, Museo Darwin Dohrn, Villa Comunale, Napoli, Italy; CNR-IAS, Genova, Italy.
| | - Joachim Mergeay
- Research Institute for Nature and Forest, Gaverstraat, Geraardsbergen, Belgium; Laboratory of Aquatic Ecology and Evolutionary Biology, KULeuven, Deberiotstraat, Leuven, Belgium
| |
Collapse
|
8
|
Tremblay LA, Chariton AA, Li MS, Zhang Y, Horiguchi T, Ellis JI. Monitoring the Health of Coastal Environments in the Pacific Region-A Review. TOXICS 2023; 11:277. [PMID: 36977042 PMCID: PMC10059979 DOI: 10.3390/toxics11030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Coastal areas provide important ecological services to populations accessing, for example, tourism services, fisheries, minerals and petroleum. Coastal zones worldwide are exposed to multiple stressors that threaten the sustainability of receiving environments. Assessing the health of these valuable ecosystems remains a top priority for environmental managers to ensure the key stressor sources are identified and their impacts minimized. The objective of this review was to provide an overview of current coastal environmental monitoring frameworks in the Asia-Pacific region. This large geographical area includes many countries with a range of climate types, population densities and land uses. Traditionally, environmental monitoring frameworks have been based on chemical criteria set against guideline threshold levels. However, regulatory organizations are increasingly promoting the incorporation of biological effects-based data in their decision-making processes. Using a range of examples drawn from across the region, we provide a synthesis of the major approaches currently being applied to examine coastal health in China, Japan, Australia and New Zealand. In addition, we discuss some of the challenges and investigate potential solutions for improving traditional lines of evidence, including the coordination of regional monitoring programs, the implementation of ecosystem-based management and the inclusion of indigenous knowledge and participatory processes in decision-making.
Collapse
Affiliation(s)
- Louis A. Tremblay
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Anthony A. Chariton
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Meng-Shuo Li
- State Key Laboratory of Marine Environmental Science of China, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science of China, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Toshihiro Horiguchi
- Ecosystem Impact Research Section, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba 305-8506, Ibaraki, Japan
| | - Joanne I. Ellis
- School of Sciences, Waikato University, Tauranga 3240, New Zealand
| |
Collapse
|
9
|
Rogers TL, Munch SB, Matsuzaki SIS, Symons CC. Intermittent instability is widespread in plankton communities. Ecol Lett 2023; 26:470-481. [PMID: 36707927 DOI: 10.1111/ele.14168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/29/2023]
Abstract
Chaotic dynamics appear to be prevalent in short-lived organisms including plankton and may limit long-term predictability. However, few studies have explored how dynamical stability varies through time, across space and at different taxonomic resolutions. Using plankton time series data from 17 lakes and 4 marine sites, we found seasonal patterns of local instability in many species, that short-term predictability was related to local instability, and that local instability occurred most often in the spring, associated with periods of high growth. Taxonomic aggregates were more stable and more predictable than finer groupings. Across sites, higher latitude locations had higher Lyapunov exponents and greater seasonality in local instability, but only at coarser taxonomic resolution. Overall, these results suggest that prediction accuracy, sensitivity to change and management efficacy may be greater at certain times of year and that prediction will be more feasible for taxonomic aggregates.
Collapse
Affiliation(s)
- Tanya L Rogers
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, USA.,Institute of Marine Sciences, University of California, Santa Cruz, California, USA
| | - Stephan B Munch
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, USA.,Department of Applied Mathematics, University of California, Santa Cruz, California, USA
| | | | - Celia C Symons
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
10
|
Rantala HM, Branstrator DK, Hirsch JK, Jones TS, Montz G. Simultaneous invasion decouples zebra mussels and water clarity. Commun Biol 2022; 5:1405. [PMID: 36550286 PMCID: PMC9780222 DOI: 10.1038/s42003-022-04355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Species invasions are a leading threat to ecosystems globally, but our understanding of interactions among multiple invasive species and their outcomes on ecosystem properties is undeveloped despite their significance to conservation and management. Here we studied a large lake in Minnesota, USA, that experienced a simultaneous surge in invasive zebra mussel and spiny water flea populations. A long-term (2000-2018) dataset offered a rare opportunity to assess whole-ecosystem shifts following the co-invasion. Within two years, the native crustacean zooplankton community declined abruptly in density and productivity (-93% and -91%, respectively). Summer phytoplankton abundance and water clarity remained stable across the time series, an unexpected outcome given the high density of zebra mussels in the lake. Observational data and modeling indicate that removal of native herbivorous zooplankton by the predatory spiny water flea reduced zooplankton grazing pressure enough to compensate new grazing losses due to zebra mussels, resulting in a zero net effect on phytoplankton abundance and water clarity despite a wholesale shift in secondary production from the pelagic to the benthic food web. This study reveals the extent of direct and indirect effects of two aquatic invaders on food-web processes that cancel shifts in water clarity, a highly valued ecosystem service.
Collapse
Affiliation(s)
- Heidi M. Rantala
- grid.448381.20000 0004 0628 1499Minnesota Department of Natural Resources, St. Paul, MN USA
| | - Donn K. Branstrator
- grid.266744.50000 0000 9540 9781Department of Biology, University of Minnesota Duluth, Duluth, MN USA
| | - Jodene K. Hirsch
- grid.448381.20000 0004 0628 1499Minnesota Department of Natural Resources, St. Paul, MN USA
| | - Thomas S. Jones
- grid.448381.20000 0004 0628 1499Minnesota Department of Natural Resources, St. Paul, MN USA
| | - Gary Montz
- grid.448381.20000 0004 0628 1499Minnesota Department of Natural Resources, St. Paul, MN USA
| |
Collapse
|
11
|
Tyack PL, Thomas L, Costa DP, Hall AJ, Harris CM, Harwood J, Kraus SD, Miller PJO, Moore M, Photopoulou T, Pirotta E, Rolland RM, Schwacke LH, Simmons SE, Southall BL. Managing the effects of multiple stressors on wildlife populations in their ecosystems: developing a cumulative risk approach. Proc Biol Sci 2022; 289:20222058. [PMID: 36448280 PMCID: PMC9709579 DOI: 10.1098/rspb.2022.2058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Assessing cumulative effects of human activities on ecosystems is required by many jurisdictions, but current science cannot meet regulatory demands. Regulations define them as effect(s) of one human action combined with other actions. Here we argue for an approach that evaluates the cumulative risk of multiple stressors for protected wildlife populations within their ecosystems. Monitoring effects of each stressor is necessary but not sufficient to estimate how multiple stressors interact to affect wildlife populations. Examining the mechanistic pathways, from cellular to ecological, by which stressors affect individuals can help prioritize stressors and interpret how they interact. Our approach uses health indicators to accumulate the effects of stressors on individuals and to estimate changes in vital rates, driving population status. We advocate using methods well-established in human health and integrating them into ecosystem-based management to protect the health of commercially and culturally important wildlife populations and to protect against risk of extinction for threatened species. Our approach will improve abilities to conserve and manage ecosystems but will also demand significant increases in research and monitoring effort. We advocate for increased investment proportional to the economic scale of human activities in the Anthropocene and their pervasive effects on ecology and biodiversity.
Collapse
Affiliation(s)
- Peter L Tyack
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Len Thomas
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA.,Institute of Marine Sciences, University of California, Santa Cruz, CA, USA
| | - Ailsa J Hall
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Catriona M Harris
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - John Harwood
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - Scott D Kraus
- Anderson-Cabot Center for Ocean Life, New England Aquarium, Boston, MA, USA
| | - Patrick J O Miller
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Michael Moore
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Theoni Photopoulou
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - Rosalind M Rolland
- Anderson-Cabot Center for Ocean Life, New England Aquarium, Boston, MA, USA
| | | | - Samantha E Simmons
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Brandon L Southall
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA.,Southall Environmental Associates, Inc., Aptos, CA, USA
| |
Collapse
|
12
|
Adam TC, Holbrook SJ, Burkepile DE, Speare KE, Brooks AJ, Ladd MC, Shantz AA, Vega Thurber R, Schmitt RJ. Priority effects in coral-macroalgae interactions can drive alternate community paths in the absence of top-down control. Ecology 2022; 103:e3831. [PMID: 35862066 PMCID: PMC10078572 DOI: 10.1002/ecy.3831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/22/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
The outcomes of species interactions can vary greatly in time and space with the outcomes of some interactions determined by priority effects. On coral reefs, benthic algae rapidly colonize disturbed substrate. In the absence of top-down control from herbivorous fishes, these algae can inhibit the recruitment of reef-building corals, leading to a persistent phase shift to a macroalgae-dominated state. Yet, corals may also inhibit colonization by macroalgae, and thus the effects of herbivores on algal communities may be strongest following disturbances that reduce coral cover. Here, we report results from experiments conducted on the fore reef of Moorea, French Polynesia, where we: 1) tested the ability of macroalgae to invade coral-dominated and coral-depauperate communities under different levels of herbivory, 2) explored the ability of juvenile corals (Pocillopora spp.) to suppress macroalgae, and 3) quantified the direct and indirect effects of fish herbivores and corallivores on juvenile corals. We found that macroalgae proliferated when herbivory was low but only in recently disturbed communities where coral cover was also low. When coral cover was < 10%, macroalgae increased 20-fold within one year under reduced herbivory conditions relative to high herbivory controls. Yet, when coral cover was high (50%), macroalgae were suppressed irrespective of the level of herbivory despite ample space for algal colonization. Once established in communities with low herbivory and low coral cover, macroalgae suppressed recruitment of coral larvae, reducing the capacity for coral replenishment. However, when we experimentally established small juvenile corals (2 cm diameter) following a disturbance, juvenile corals inhibited macroalgae from invading local neighborhoods, even in the absence of herbivores, indicating a strong priority effect in macroalgae-coral interactions. Surprisingly, fishes that initially facilitated coral recruitment by controlling algae had a net negative effect on juvenile corals via predation. Corallivores reduced growth rates of corals exposed to fishes by ~ 30% relative to fish exclosures despite increased competition with macroalgae within the exclosures. These results highlight that different processes are important for structuring coral reef ecosystems at different successional stages and underscore the need to consider multiple ecological processes and historical contingencies to predict coral community dynamics.
Collapse
Affiliation(s)
- Thomas C Adam
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Sally J Holbrook
- Marine Science Institute, University of California, Santa Barbara, California, USA.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| | - Deron E Burkepile
- Marine Science Institute, University of California, Santa Barbara, California, USA.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| | - Kelly E Speare
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| | - Andrew J Brooks
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Mark C Ladd
- Marine Science Institute, University of California, Santa Barbara, California, USA.,NOAA - National Marine Fisheries Service, Southeast Fisheries Science Center, Key Biscayne, FL, USA
| | - Andrew A Shantz
- Florida State University Coastal and Marine Laboratory, St. Teresa, FL, USA
| | | | - Russell J Schmitt
- Marine Science Institute, University of California, Santa Barbara, California, USA.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
13
|
Daugaard U, Munch SB, Inauen D, Pennekamp F, Petchey OL. Forecasting in the face of ecological complexity: Number and strength of species interactions determine forecast skill in ecological communities. Ecol Lett 2022; 25:1974-1985. [PMID: 35831269 PMCID: PMC9540476 DOI: 10.1111/ele.14070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
The potential for forecasting the dynamics of ecological systems is currently unclear, with contrasting opinions regarding its feasibility due to ecological complexity. To investigate forecast skill within and across systems, we monitored a microbial system exposed to either constant or fluctuating temperatures in a 5-month-long laboratory experiment. We tested how forecasting of species abundances depends on the number and strength of interactions and on model size (number of predictors). We also tested how greater system complexity (i.e. the fluctuating temperatures) impacted these relations. We found that the more interactions a species had, the weaker these interactions were and the better its abundance was predicted. Forecast skill increased with model size. Greater system complexity decreased forecast skill for three out of eight species. These insights into how abundance prediction depends on the connectedness of the species within the system and on overall system complexity could improve species forecasting and monitoring.
Collapse
Affiliation(s)
- Uriah Daugaard
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Stephan B Munch
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
| | - David Inauen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Owen L Petchey
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Fox LR, Potts SE. Herbivory mediates direct and indirect interactions in long‐unburned chaparral. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Laurel R. Fox
- Department of Ecology and Evolutionary Biology University of California, Santa Cruz California USA
| | - Stephen E. Potts
- Department of Biological Sciences Louisiana State University, Baton Rouge Louisiana USA
| |
Collapse
|
15
|
Stier AC, Essington TE, Samhouri JF, Siple MC, Halpern BS, White C, Lynham JM, Salomon AK, Levin PS. Avoiding critical thresholds through effective monitoring. Proc Biol Sci 2022; 289:20220526. [PMID: 35703054 PMCID: PMC9198780 DOI: 10.1098/rspb.2022.0526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A major challenge in sustainability science is identifying targets that maximize ecosystem benefits to humanity while minimizing the risk of crossing critical system thresholds. One critical threshold is the biomass at which populations become so depleted that their population growth rates become negative-depensation. Here, we evaluate how the value of monitoring information increases as a natural resource spends more time near the critical threshold. This benefit emerges because higher monitoring precision promotes higher yield and a greater capacity to recover from overharvest. We show that precautionary buffers that trigger increased monitoring precision as resource levels decline may offer a way to minimize monitoring costs and maximize profits. In a world of finite resources, improving our understanding of the trade-off between precision in estimates of population status and the costs of mismanagement will benefit stakeholders that shoulder the burden of these economic and social costs.
Collapse
Affiliation(s)
- Adrian C. Stier
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Timothy E. Essington
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jameal F. Samhouri
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Margaret C. Siple
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Benjamin S. Halpern
- National Center for Ecological Analysis and Synthesis, 1021 Anacapa Street, Santa Barbara, CA 93101, USA,Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
| | - Crow White
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407 USA
| | - John M. Lynham
- Department of Economics & UHERO, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Anne K. Salomon
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia Canada, V5A 1S6
| | - Phillip S. Levin
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA,School of Marine and Environmental Affairs, University of Washington, Box 355020, Seattle, WA 98195, USA,The Nature Conservancy, 74 Wall Street, Seattle, WA, USA
| |
Collapse
|
16
|
Clark‐Wolf TJ, Hahn PG, Brelsford E, Francois J, Hayes N, Larkin B, Ramsey P, Pearson DE. Preventing a series of unfortunate events: using qualitative models to improve conservation. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- T. J. Clark‐Wolf
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation University of Montana Missoula, MT 59812 USA
- Current Address: Center for Ecosystem Sentinels, Department of Biology University of Washington Seattle, WA 98195 USA
| | - Philip G. Hahn
- Department of Entomology and Nematology University of Florida Gainesville, FL 32608 USA
| | - Eric Brelsford
- Stamen, 2017 Mission St Suite 300 San Francisco, CA 94110 USA
| | - Jaleen Francois
- Stamen, 2017 Mission St Suite 300 San Francisco, CA 94110 USA
| | - Nicolette Hayes
- Stamen, 2017 Mission St Suite 300 San Francisco, CA 94110 USA
| | - Beau Larkin
- MPG Ranch, 19400 Lower Woodchuck Road Florence, MT 59833 USA
| | - Philip Ramsey
- MPG Ranch, 19400 Lower Woodchuck Road Florence, MT 59833 USA
| | - Dean E. Pearson
- Rocky Mountain Research Station, U.S. Department of Agriculture Forest Service Missoula, MT 59801 USA
- Division of Biological Sciences University of Montana Missoula, MT 59812 USA
| |
Collapse
|
17
|
Pirotta E, Thomas L, Costa DP, Hall AJ, Harris CM, Harwood J, Kraus SD, Miller PJO, Moore MJ, Photopoulou T, Rolland RM, Schwacke L, Simmons SE, Southall BL, Tyack PL. Understanding the combined effects of multiple stressors: A new perspective on a longstanding challenge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153322. [PMID: 35074373 DOI: 10.1016/j.scitotenv.2022.153322] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Wildlife populations and their habitats are exposed to an expanding diversity and intensity of stressors caused by human activities, within the broader context of natural processes and increasing pressure from climate change. Estimating how these multiple stressors affect individuals, populations, and ecosystems is thus of growing importance. However, their combined effects often cannot be predicted reliably from the individual effects of each stressor, and we lack the mechanistic understanding and analytical tools to predict their joint outcomes. We review the science of multiple stressors and present a conceptual framework that captures and reconciles the variety of existing approaches for assessing combined effects. Specifically, we show that all approaches lie along a spectrum, reflecting increasing assumptions about the mechanisms that regulate the action of single stressors and their combined effects. An emphasis on mechanisms improves analytical precision and predictive power but could introduce bias if the underlying assumptions are incorrect. A purely empirical approach has less risk of bias but requires adequate data on the effects of the full range of anticipated combinations of stressor types and magnitudes. We illustrate how this spectrum can be formalised into specific analytical methods, using an example of North Atlantic right whales feeding on limited prey resources while simultaneously being affected by entanglement in fishing gear. In practice, case-specific management needs and data availability will guide the exploration of the stressor combinations of interest and the selection of a suitable trade-off between precision and bias. We argue that the primary goal for adaptive management should be to identify the most practical and effective ways to remove or reduce specific combinations of stressors, bringing the risk of adverse impacts on populations and ecosystems below acceptable thresholds.
Collapse
Affiliation(s)
- Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK; School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
| | - Len Thomas
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK.
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA; Institute of Marine Sciences, University of California, Santa Cruz, CA, USA.
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK.
| | - Catriona M Harris
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK.
| | - John Harwood
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK.
| | - Scott D Kraus
- Anderson-Cabot Center for Ocean Life, New England Aquarium, Boston, MA, USA.
| | - Patrick J O Miller
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK.
| | - Michael J Moore
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Theoni Photopoulou
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK.
| | - Rosalind M Rolland
- Anderson-Cabot Center for Ocean Life, New England Aquarium, Boston, MA, USA.
| | - Lori Schwacke
- National Marine Mammal Foundation, Johns Island, SC, USA.
| | | | - Brandon L Southall
- Institute of Marine Sciences, University of California, Santa Cruz, CA, USA; Southall Environmental Associates, Inc., Aptos, CA, USA.
| | - Peter L Tyack
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK.
| |
Collapse
|
18
|
Frank KT, Fisher JA, Leggett WC. The dynamics of exploited marine fish populations and Humpty Dumpty: similarities and differences. Restor Ecol 2022. [DOI: 10.1111/rec.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kenneth T. Frank
- Department of Fisheries and Oceans, Ocean Sciences Division Bedford Institute of Oceanography Dartmouth Nova Scotia Canada B2Y 4A2
- Department of Biology Queen's University Kingston Ontario K7L 3N6 Canada
| | - Jonathan A.D. Fisher
- Centre for Fisheries Ecosystems Research Fisheries and Marine Institute of Memorial University of Newfoundland St. John's Newfoundland A1C 5R3 Canada
| | - William C. Leggett
- Department of Biology Queen's University Kingston Ontario K7L 3N6 Canada
| |
Collapse
|
19
|
Little CJ, Rizzuto M, Luhring TM, Monk JD, Nowicki RJ, Paseka RE, Stegen JC, Symons CC, Taub FB, Yen JDL. Movement with meaning: integrating information into meta‐ecology. OIKOS 2022. [DOI: 10.1111/oik.08892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chelsea J. Little
- Biodiversity Research Centre, Univ. of British Columbia Vancouver BC Canada
- School of Environmental Science, Simon Fraser Univ. Burnaby BC Canada
| | - Matteo Rizzuto
- Dept of Biology, Memorial Univ. of Newfoundland St. John's NL Canada
| | | | - Julia D. Monk
- School of the Environment, Yale Univ. New Haven CT USA
| | - Robert J. Nowicki
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory Summerland Key FL USA
| | - Rachel E. Paseka
- Dept of Ecology, Evolution and Behavior, Univ. of Minnesota Saint Paul MN USA
| | | | - Celia C. Symons
- Dept of Ecology and Evolutionary Biology, Univ. of California Irvine CA USA
| | - Frieda B. Taub
- School of Aquatic and Fishery Sciences, Univ. of Washington Seattle WA USA
| | - Jian D. L. Yen
- School of BioSciences, Univ. of Melbourne, Melbourne, Australia, and Arthur Rylah Inst. for Environmental Reserach Heidelberg Victoria Australia
| |
Collapse
|
20
|
Benedict BM, Barboza PS. Adverse effects of Diptera flies on northern ungulates:
Rangifer
,
Alces
, and
Bison. Mamm Rev 2022. [DOI: 10.1111/mam.12287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bridgett M. Benedict
- Department of Ecology and Conservation Biology Texas A&M University 2258 TAMU, 534 John Kimbrough Blvd College Station TX77843USA
| | - Perry S. Barboza
- Department of Ecology and Conservation Biology Texas A&M University 2258 TAMU, 534 John Kimbrough Blvd College Station TX77843USA
- Department of Rangelands Wildlife and Fisheries Management Texas A&M University 2258 TAMU, 534 John Kimbrough Blvd College Station TX77843USA
| |
Collapse
|
21
|
Pearson DE, Clark TJ, Hahn PG. Evaluating unintended consequences of intentional species introductions and eradications for improved conservation management. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13734. [PMID: 33734489 PMCID: PMC9291768 DOI: 10.1111/cobi.13734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 05/19/2023]
Abstract
Increasingly intensive strategies to maintain biodiversity and ecosystem function are being deployed in response to global anthropogenic threats, including intentionally introducing and eradicating species via assisted migration, rewilding, biological control, invasive species eradications, and gene drives. These actions are highly contentious because of their potential for unintended consequences. We conducted a global literature review of these conservation actions to quantify how often unintended outcomes occur and to elucidate their underlying causes. To evaluate conservation outcomes, we developed a community assessment framework for systematically mapping the range of possible interaction types for 111 case studies. Applying this tool, we quantified the number of interaction types considered in each study and documented the nature and strength of intended and unintended outcomes. Intended outcomes were reported in 51% of cases, a combination of intended outcomes and unintended outcomes in 26%, and strictly unintended outcomes in 10%. Hence, unintended outcomes were reported in 36% of all cases evaluated. In evaluating overall conservations outcomes (weighing intended vs. unintended effects), some unintended effects were fairly innocuous relative to the conservation objective, whereas others resulted in serious unintended consequences in recipient communities. Studies that assessed a greater number of community interactions with the target species reported unintended outcomes more often, suggesting that unintended consequences may be underreported due to insufficient vetting. Most reported unintended outcomes arose from direct effects (68%) or simple density-mediated or indirect effects (25%) linked to the target species. Only a few documented cases arose from more complex interaction pathways (7%). Therefore, most unintended outcomes involved simple interactions that could be predicted and mitigated through more formal vetting. Our community assessment framework provides a tool for screening future conservation actions by mapping the recipient community interaction web to identify and mitigate unintended outcomes from intentional species introductions and eradications for conservation.
Collapse
Affiliation(s)
- Dean E. Pearson
- Rocky Mountain Research StationU.S. Department of Agriculture Forest ServiceMissoulaMontanaUSA
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Tyler J. Clark
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and ConservationUniversity of MontanaMissoulaMontanaUSA
| | - Philip G. Hahn
- Department of Entomology and NematologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
22
|
Urban MC, Travis JMJ, Zurell D, Thompson PL, Synes NW, Scarpa A, Peres-Neto PR, Malchow AK, James PMA, Gravel D, De Meester L, Brown C, Bocedi G, Albert CH, Gonzalez A, Hendry AP. Coding for Life: Designing a Platform for Projecting and Protecting Global Biodiversity. Bioscience 2021. [DOI: 10.1093/biosci/biab099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Time is running out to limit further devastating losses of biodiversity and nature's contributions to humans. Addressing this crisis requires accurate predictions about which species and ecosystems are most at risk to ensure efficient use of limited conservation and management resources. We review existing biodiversity projection models and discover problematic gaps. Current models usually cannot easily be reconfigured for other species or systems, omit key biological processes, and cannot accommodate feedbacks with Earth system dynamics. To fill these gaps, we envision an adaptable, accessible, and universal biodiversity modeling platform that can project essential biodiversity variables, explore the implications of divergent socioeconomic scenarios, and compare conservation and management strategies. We design a roadmap for implementing this vision and demonstrate that building this biodiversity forecasting platform is possible and practical.
Collapse
Affiliation(s)
- Mark C Urban
- University of Connecticut, Storrs, Connecticut, United States
| | | | | | | | | | - Alice Scarpa
- University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | | | | | | | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution, and Conservation, KU Leuven, Leuven, Belgium, with the Leibniz-Institut für Gewässerökologie und Binnenfischerei, Berlin, Germany, and with the Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Calum Brown
- IMK-IFU, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Greta Bocedi
- University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Cécile H Albert
- Aix Marseille Univ, CNRS, Univ Avignon, IRD, IMBE, Marseille, France
| | | | | |
Collapse
|
23
|
Baho DL, Bundschuh M, Futter MN. Microplastics in terrestrial ecosystems: Moving beyond the state of the art to minimize the risk of ecological surprise. GLOBAL CHANGE BIOLOGY 2021; 27:3969-3986. [PMID: 34042229 DOI: 10.1111/gcb.15724] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Microplastic (plastic particles measuring <5mm) pollution is ubiquitous. Unlike in other well-studied ecosystems, for example, marine and freshwater environments, microplastics in terrestrial systems are relatively understudied. Their potential impacts on terrestrial environments, in particular the risk of causing ecological surprise, must be better understood and quantified. Ecological surprise occurs when ecosystem behavior deviates radically from expectations and generally has negative consequences for ecosystem services. The properties and behavior of microplastics within terrestrial environments may increase their likelihood of causing ecological surprises as they (a) are highly persistent global pollutants that will last for centuries, (b) can interact with the abiotic environment in a complex manner, (c) can impact terrestrial organisms directly or indirectly and (d) interact with other contaminants and can facilitate their transport. Here, we compiled findings of previous research on microplastics in terrestrial environments. We systematically focused on studies addressing different facets of microplastics related to their distribution, dispersion, impact on soil characteristics and functions, levels of biological organization of tested terrestrial biota (single species vs. assemblages), scale of experimental study and corresponding ecotoxicological effects. Our systematic assessment of previous microplastic research revealed that most studies have been conducted on single species under laboratory conditions with short-term exposures; few studies were conducted under more realistic long-term field conditions and/or with multi-species assemblages. Studies targeting multi-species assemblages primarily considered soil bacterial communities and showed that microplastics can alter essential nutrient cycling functions. More ecologically meaningful studies of terrestrial microplastics encompassing multi-species assemblages, critical ecological processes (e.g., biogeochemical cycles and pollination) and interactions with other anthropogenic stressors must be conducted. Addressing these knowledge gaps will provide a better understanding of microplastics as emerging global stressors and should lower the risk of ecological surprise in terrestrial ecosystems.
Collapse
Affiliation(s)
- Didier L Baho
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mirco Bundschuh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Functional Aquatic Ecotoxicology, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Martyn N Futter
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
24
|
Fey SB, Kremer CT, Layden TJ, Vasseur DA. Resolving the consequences of gradual phenotypic plasticity for populations in variable environments. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Samuel B. Fey
- Department of Biology Reed College Portland Oregon 97202 USA
| | - Colin T. Kremer
- W.K. Kellogg Biological Station Michigan State University Hickory Corners Michigan 49060 USA
- Department of Ecology and Evolutionary Biology University of California Los Angeles Los Angeles California 90096 USA
| | | | - David A. Vasseur
- Department of Ecology and Evolutionary Biology Yale University 165 Prospect Street New Haven Connecticut 06520 USA
| |
Collapse
|
25
|
Srivastava DS, Coristine L, Angert AL, Bontrager M, Amundrud SL, Williams JL, Yeung ACY, Zwaan DR, Thompson PL, Aitken SN, Sunday JM, O'Connor MI, Whitton J, Brown NEM, MacLeod CD, Parfrey LW, Bernhardt JR, Carrillo J, Harley CDG, Martone PT, Freeman BG, Tseng M, Donner SD. Wildcards in climate change biology. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Govaert L, Altermatt F, De Meester L, Leibold MA, McPeek MA, Pantel JH, Urban MC. Integrating fundamental processes to understand eco‐evolutionary community dynamics and patterns. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lynn Govaert
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- URPP Global Change and BiodiversityUniversity of Zurich Zurich Switzerland
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB) Berlin Germany
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- URPP Global Change and BiodiversityUniversity of Zurich Zurich Switzerland
| | - Luc De Meester
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB) Berlin Germany
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
- Institute of Biology Freie Universität Berlin Berlin Germany
| | | | - Mark A. McPeek
- Department of Biological Sciences Dartmouth College Hanover NH USA
| | - Jelena H. Pantel
- Department of Computer Science, Mathematics, and Environmental Science The American University of Paris Paris France
| | - Mark C. Urban
- Center of Biological Risk and Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
| |
Collapse
|
27
|
Crone EE, Schultz CB. Resilience or Catastrophe? A possible state change for monarch butterflies in western North America. Ecol Lett 2021; 24:1533-1538. [PMID: 34110069 DOI: 10.1111/ele.13816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/08/2021] [Accepted: 05/02/2021] [Indexed: 01/04/2023]
Abstract
In the western United States, the population of migratory monarch butterflies is on the brink of collapse, having dropped from several million butterflies in the 1980s to ~2000 butterflies in the winter of 2020-2021. At the same time, a resident (non-migratory) monarch butterfly population in urban gardens has been growing in abundance. The new resident population is not sufficient to make up for the loss of the migratory population; there are still orders of magnitude fewer butterflies now than in the recent past. The resident population also probably lacks the demographic capacity to expand its range inland during summer months. Nonetheless, the resident population may have the capacity to persist. This sudden change emphasises the extent to which environmental change can have unexpected consequences, and how quickly these changes can happen. We hope it will provoke discussion about how we define resilience and viability in changing environments.
Collapse
Affiliation(s)
| | - Cheryl B Schultz
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| |
Collapse
|
28
|
Affiliation(s)
- Lars A. Brudvig
- Department of Plant Biology Michigan State University East Lansing MI 48824 U.S.A
- Program in Ecology, Evolution, and Behavior Michigan State University East Lansing MI 48824 U.S.A
| | | |
Collapse
|
29
|
Hollingsworth KA, Shively RD, Glasscock SN, Light JE, Tolleson DR, Barboza PS. Trace mineral supplies for populations of little and large herbivores. PLoS One 2021; 16:e0248204. [PMID: 33720946 PMCID: PMC7959371 DOI: 10.1371/journal.pone.0248204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/22/2021] [Indexed: 11/18/2022] Open
Abstract
Copper (Cu), iron (Fe), and zinc (Zn) are essential trace minerals for the reproduction, growth, and immunity of mammalian herbivore populations. We examined the relationships between Cu, Fe, and Zn in soils, common plants, and hepatic stores of two wild herbivores to assess the effects of weather, sex, and population density on the transfer of trace minerals from soils to mammals during the growing season. Soils, grasses, woody browse, hispid cotton rats (Sigmodon hispidus), and white-tailed deer (Odocoileus virginianus) were sampled across 19 sites. Concentrations of Cu, Fe, and Zn in grasses and browse species were not correlated with concentrations of those minerals in soils sampled from the same areas. Leaves of woody browse were higher in Cu, lower in Fe, and similar in Zn when compared with grasses. Available concentrations of soils were positively related to liver Cu and Zn in hispid cotton rats, which was consistent with the short lives and high productivity of these small mammals that rely on grass seed heads. Interactions between soil concentrations and weather also affected liver Cu and Fe in deer, which reflected the greater complexity of trophic transfers in large, long-lived, browsing herbivores. Population density was correlated with liver concentrations of Cu, Fe, and Zn in hispid cotton rats, and concentrations of Cu and Fe in deer. Liver Cu was < 5 mg/kg wet weight in at least 5% of animals at two of eight sites for hispid cotton rats and < 3.8 mg/kg wet weight in at least 5% of animals at three of 12 sites for deer, which could indicate regional limitation of Cu for populations of mammalian herbivores. Our data indicate that supplies of trace minerals may contribute to density dependence of herbivore populations. Local population density may therefore influence the prevalence of deficiency states and disease outbreak that exacerbate population cycles in wild mammals.
Collapse
Affiliation(s)
- K. A. Hollingsworth
- Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, College Station, Texas, United States of America
| | - R. D. Shively
- Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, College Station, Texas, United States of America
| | - S. N. Glasscock
- Welder Wildlife Foundation, Sinton, Texas, United States of America
| | - J. E. Light
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, United States of America
| | - D. R. Tolleson
- Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, College Station, Texas, United States of America
- Texas A&M AgriLife Research Station, Texas A&M University, Sonora, Texas, United States of America
| | - P. S. Barboza
- Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, College Station, Texas, United States of America
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
30
|
Novak M, Stouffer DB. Systematic bias in studies of consumer functional responses. Ecol Lett 2021; 24:580-593. [PMID: 33381898 DOI: 10.1111/ele.13660] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022]
Abstract
Functional responses are a cornerstone to our understanding of consumer-resource interactions, so how to best describe them using models has been actively debated. Here we focus on the consumer dependence of functional responses to evidence systematic bias in the statistical comparison of functional-response models and the estimation of their parameters. Both forms of bias are universal to nonlinear models (irrespective of consumer dependence) and are rooted in a lack of sufficient replication. Using a large compilation of published datasets, we show that - due to the prevalence of low sample size studies - neither the overall frequency by which alternative models achieve top rank nor the frequency distribution of parameter point estimates should be treated as providing insight into the general form or central tendency of consumer interference. We call for renewed clarity in the varied purposes that motivate the study of functional responses, purposes that can compete with each other in dictating the design, analysis and interpretation of functional-response experiments.
Collapse
Affiliation(s)
- Mark Novak
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Daniel B Stouffer
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| |
Collapse
|
31
|
Berger J, Wangchuk T, Briceño C, Vila A, Lambert JE. Disassembled Food Webs and Messy Projections: Modern Ungulate Communities in the Face of Unabating Human Population Growth. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
32
|
Sguotti C, Otto SA, Frelat R, Langbehn TJ, Ryberg MP, Lindegren M, Durant JM, Chr Stenseth N, Möllmann C. Catastrophic dynamics limit Atlantic cod recovery. Proc Biol Sci 2020; 286:20182877. [PMID: 30862289 PMCID: PMC6458326 DOI: 10.1098/rspb.2018.2877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Collapses and regime changes are pervasive in complex systems (such as marine ecosystems) governed by multiple stressors. The demise of Atlantic cod (Gadus morhua) stocks constitutes a text book example of the consequences of overexploiting marine living resources, yet the drivers of these nearly synchronous collapses are still debated. Moreover, it is still unclear why rebuilding of collapsed fish stocks such as cod is often slow or absent. Here, we apply the stochastic cusp model, based on catastrophe theory, and show that collapse and recovery of cod stocks are potentially driven by the specific interaction between exploitation pressure and environmental drivers. Our statistical modelling study demonstrates that for most of the cod stocks, ocean warming could induce a nonlinear discontinuous relationship between fishing pressure and stock size, which would explain hysteresis in their response to reduced exploitation pressure. Our study suggests further that a continuing increase in ocean temperatures will probably limit productivity and hence future fishing opportunities for most cod stocks of the Atlantic Ocean. Moreover, our study contributes to the ongoing discussion on the importance of climate and fishing effects on commercially exploited fish stocks, highlighting the importance of considering discontinuous dynamics in holistic ecosystem-based management approaches, particularly under climate change.
Collapse
Affiliation(s)
- Camilla Sguotti
- 1 Institute for Marine Ecosystem and Fisheries Science (IMF), Center for Earth System Research and Sustainability (CEN), University of Hamburg , 22767 Hamburg , Germany
| | - Saskia A Otto
- 1 Institute for Marine Ecosystem and Fisheries Science (IMF), Center for Earth System Research and Sustainability (CEN), University of Hamburg , 22767 Hamburg , Germany
| | - Romain Frelat
- 1 Institute for Marine Ecosystem and Fisheries Science (IMF), Center for Earth System Research and Sustainability (CEN), University of Hamburg , 22767 Hamburg , Germany
| | - Tom J Langbehn
- 2 Department of Biological Sciences, University of Bergen , 5006 Bergen , Norway
| | - Marie Plambech Ryberg
- 3 National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua) , 2800 Kgs Lyngby , Denmark
| | - Martin Lindegren
- 3 National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua) , 2800 Kgs Lyngby , Denmark
| | - Joël M Durant
- 4 Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo , 0316 Oslo , Norway
| | - Nils Chr Stenseth
- 4 Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo , 0316 Oslo , Norway
| | - Christian Möllmann
- 1 Institute for Marine Ecosystem and Fisheries Science (IMF), Center for Earth System Research and Sustainability (CEN), University of Hamburg , 22767 Hamburg , Germany
| |
Collapse
|
33
|
Landres P, Hahn BA, Biber E, Spencer DT. Protected area stewardship in the Anthropocene: integrating science, law, and ethics to evaluate proposals for ecological restoration in wilderness. Restor Ecol 2020. [DOI: 10.1111/rec.13104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter Landres
- Aldo Leopold Wilderness Research Institute, USDA Forest ServiceRocky Mountain Research Station Missoula MT 59801 U.S.A
| | - Beth A. Hahn
- Aldo Leopold Wilderness Research Institute, USDA Forest ServiceRocky Mountain Research Station Missoula MT 59801 U.S.A
| | - Eric Biber
- Berkeley School of LawUniversity of California, Berkeley Berkeley CA 94720 U.S.A
| | - Daniel T. Spencer
- Environmental StudiesThe University of Montana Missoula MT 59812 U.S.A
| |
Collapse
|
34
|
Multiple factors contribute to the spatially variable and dramatic decline of an invasive snail in an estuary where it was long-established and phenomenally abundant. Biol Invasions 2020. [DOI: 10.1007/s10530-019-02172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Vucetich JA, Nelson MP, Bruskotter JT. What Drives Declining Support for Long-Term Ecological Research? Bioscience 2020. [DOI: 10.1093/biosci/biz151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AbstractSeveral recent papers have reinvigorated a chronic concern about the need for ecological science to focus more on long-term research. For a few decades, significant voices among ecologists have been assembling elements of a case in favor of long-term ecological research. In this article and for the first time, we synthesize the elements of this case and present it in succinct form. We also argue that this case is unlikely to result in more long-term research. Finally, we present ideas that, if implemented, are more likely to result in appropriate levels of investment in long-term research in ecological science. The article comes at an important time, because the US National Science Foundation is currently undertaking a 40-year review of its Long-Term Ecological Research Network.
Collapse
Affiliation(s)
- John A Vucetich
- College of Forest Resources and Environmental Science, Michigan Technological University Houghton
| | - Michael Paul Nelson
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis
| | - Jeremy T Bruskotter
- School Environment and Natural Resources, The Ohio State University, Columbus
| |
Collapse
|
36
|
Terry JCD, Bonsall MB, Morris RJ. Identifying important interaction modifications in ecological systems. OIKOS 2019. [DOI: 10.1111/oik.06353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Michael B. Bonsall
- Dept of Zoology, Univ. of Oxford Oxford OX1 3PS UK
- St. Peter's College Oxford UK
| | - Rebecca J. Morris
- Dept of Zoology, Univ. of Oxford Oxford OX1 3PS UK
- School of Biological Sciences, Univ. Of Southampton Southampton UK
| |
Collapse
|
37
|
Remm L, Lõhmus A, Leibak E, Kohv M, Salm JO, Lõhmus P, Rosenvald R, Runnel K, Vellak K, Rannap R. Restoration dilemmas between future ecosystem and current species values: The concept and a practical approach in Estonian mires. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109439. [PMID: 31499461 DOI: 10.1016/j.jenvman.2019.109439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Ecosystem restoration is gaining political and economic support worldwide, but its exact targets and costs often remain unclear. A key issue, both for predicting restoration success and assessing the costs, is the uncertainty of post-restoration development of the ecosystem. A specific combination of uncertainties emerges when ecosystem restoration would negatively affect pre-restoration species conservation values. Such dilemma appears to be common, but largely ignored in restoration planning; for example, in historically degraded forests, wetlands and grasslands that provide novel habitats for some threatened species. We present a framework of linked options for resolving the dilemma, and exemplify its application in extensive mire restoration in Estonia. The broad options include: redistributing the risks by timing; relocating restoration sites; modifying restoration techniques; and managing for future habitats of the species involved. In Estonia, we assessed these options based on spatially explicit mapping of expected future states of the ecosystem, their uncertainty, and the distribution of species at risk. Such planning documentation, combined with follow-up monitoring and experimentation, can be used for adaptive management, by funding organizations and for academic research.
Collapse
Affiliation(s)
- Liina Remm
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, EE-51005, Tartu, Estonia.
| | - Asko Lõhmus
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, EE-51005, Tartu, Estonia
| | - Eerik Leibak
- Estonian Fund for Nature, Lai 29, EE-51005, Tartu, Estonia
| | - Marko Kohv
- Department of Geology, Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, EE-50411, Tartu, Estonia
| | - Jüri-Ott Salm
- Estonian Fund for Nature, Lai 29, EE-51005, Tartu, Estonia
| | - Piret Lõhmus
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, EE-51005, Tartu, Estonia
| | - Raul Rosenvald
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, EE-51006, Tartu, Estonia
| | - Kadri Runnel
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, EE-51005, Tartu, Estonia; Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 750 07, Uppsala, Sweden
| | - Kai Vellak
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, EE-51005, Tartu, Estonia
| | - Riinu Rannap
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, EE-51005, Tartu, Estonia
| |
Collapse
|
38
|
Reinke BA, Miller DA, Janzen FJ. What Have Long-Term Field Studies Taught Us About Population Dynamics? ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long-term studies have been crucial to the advancement of population biology, especially our understanding of population dynamics. We argue that this progress arises from three key characteristics of long-term research. First, long-term data are necessary to observe the heterogeneity that drives most population processes. Second, long-term studies often inherently lead to novel insights. Finally, long-term field studies can serve as model systems for population biology, allowing for theory and methods to be tested under well-characterized conditions. We illustrate these ideas in three long-term field systems that have made outsized contributions to our understanding of population ecology, evolution, and conservation biology. We then highlight three emerging areas to which long-term field studies are well positioned to contribute in the future: ecological forecasting, genomics, and macrosystems ecology. Overcoming the obstacles associated with maintaining long-term studies requires continued emphasis on recognizing the benefits of such studies to ensure that long-term research continues to have a substantial impact on elucidating population biology.
Collapse
Affiliation(s)
- Beth A. Reinke
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David A.W. Miller
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Fredric J. Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
39
|
Peltzer DA, Bellingham PJ, Dickie IA, Houliston G, Hulme PE, Lyver PO, McGlone M, Richardson SJ, Wood J. Scale and complexity implications of making New Zealand predator-free by 2050. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1653940] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | | | - Ian A. Dickie
- Bio-Protection Research Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Philip E. Hulme
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | | | | | | | | |
Collapse
|
40
|
Abstract
Adaptive management is a powerful means of learning about complex ecosystems, but is rarely used for recovering endangered species. Here, we demonstrate how it can benefit woodland caribou, which became the first large mammal extirpated from the contiguous United States in recent history. The continental scale of forest alteration and extended time needed for forest recovery means that relying only on habitat protection and restoration will likely fail. Therefore, population management is also needed as an emergency measure to avoid further extirpation. Reductions of predators and overabundant prey, translocations, and creating safe havens have been applied in a design covering >90,000 km2 Combinations of treatments that increased multiple vital rates produced the highest population growth. Moreover, the degree of ecosystem alteration did not influence this pattern. By coordinating recovery involving scientists, governments, and First Nations, treatments were applied across vast scales to benefit this iconic species.
Collapse
|
41
|
Okey TA. Indicators of marine ecosystem integrity for Canada's Pacific: An expert-based hierarchical approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1114-1125. [PMID: 30248836 DOI: 10.1016/j.scitotenv.2018.07.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/14/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
There is great interest and rapid progress around the world in developing sets of indicators of marine ecosystem integrity for assessment and management. However, the complexity of coastal marine ecosystems can challenge such efforts. To address this challenge, an expert-based, hierarchical, and adaptive approach was developed with the objectives of healthy marine ecosystems and community partnerships in monitoring and management. Small sets of the top-ranked indicators of ecosystem integrity and associated human pressures were derived from expert-rankings of lists of identified candidate indicators of the status of, and pressures on, each of 17 ecosystem features, organized within 8 elements in turn within 3 overlapping aspects of ecosystem health. Over 200 experts played a role in rating the relative value of 1035 candidate indicators. A panel of topic experts was assigned to each of the 17 ecosystem features to apply 21 weighted indicator selection criteria. Selection criteria and candidate indicators were identified through literature reviews, expert panels, and surveys, and they were evaluated in terms of the experts' judgements of importance to the health of Canada's Pacific marine ecosystems. This produced a flexible, robust, and adaptable approach to identifying representative sets of indicators for any scale and for any management unit within Canada's Pacific. At the broadest scale, it produced a top 20 list of ecosystem state and pressure indicators. These top indicators, or other sets selected for smaller regions, can then guide the development of both regional and nested local monitoring programs in a way that maximizes continuity while including locally unique values. This hierarchical expert-based approach was designed to address challenges of complexity and scale and to enable efficient selection of useful and representative sets of indicators of ecosystem integrity while also enabling the participation of broad government and stakeholder communities.
Collapse
Affiliation(s)
- Thomas A Okey
- Ocean Integrity Research, 200-825 Broughton Street, Victoria, BC V8W 1E5, Canada; University of Victoria, School of Environmental Studies, PO Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada.
| |
Collapse
|
42
|
Thorson JT, Scheuerell MD, Olden JD, Schindler DE. Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes. Proc Biol Sci 2018; 285:20180915. [PMID: 30282649 PMCID: PMC6191698 DOI: 10.1098/rspb.2018.0915] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/10/2018] [Indexed: 11/12/2022] Open
Abstract
Variance of community abundance will be reduced relative to its theoretical maximum whenever population densities fluctuate asynchronously. Fishing communities and mobile predators can switch among fish species and/or fishing locations with asynchronous dynamics, thereby buffering against variable resource densities (termed 'portfolio effects', PEs). However, whether variation among species or locations represent the dominant contributor to PE remains relatively unexplored. Here, we apply a spatio-temporal model to multidecadal time series (1982-2015) for 20 bottom-associated fishes in seven marine ecosystems. For each ecosystem, we compute the reduction in variance over time in total biomass relative to its theoretical maximum if species and locations were perfectly correlated (total PE). We also compute the reduction in variance due to asynchrony among species at each location (species PE) or the reduction due to asynchrony among locations for each species (spatial PE). We specifically compute total, species and spatial PE in 10-year moving windows to detect changes over time. Our analyses revealed that spatial PE are stronger than species PE in six of seven ecosystems, and that ecosystems where species PE is constant over time can exhibit shifts in locations that strongly contribute to PE. We therefore recommend that spatial and total PE be monitored as ecosystem indicators representing risk exposure for human and natural consumers.
Collapse
Affiliation(s)
- James T Thorson
- Fisheries Resource Analysis and Monitoring Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - Mark D Scheuerell
- Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington, PO Box 355020, Seattle, WA 98195, USA
| | - Daniel E Schindler
- School of Aquatic and Fishery Sciences, University of Washington, PO Box 355020, Seattle, WA 98195, USA
| |
Collapse
|
43
|
Yates KL, Bouchet PJ, Caley MJ, Mengersen K, Randin CF, Parnell S, Fielding AH, Bamford AJ, Ban S, Barbosa AM, Dormann CF, Elith J, Embling CB, Ervin GN, Fisher R, Gould S, Graf RF, Gregr EJ, Halpin PN, Heikkinen RK, Heinänen S, Jones AR, Krishnakumar PK, Lauria V, Lozano-Montes H, Mannocci L, Mellin C, Mesgaran MB, Moreno-Amat E, Mormede S, Novaczek E, Oppel S, Ortuño Crespo G, Peterson AT, Rapacciuolo G, Roberts JJ, Ross RE, Scales KL, Schoeman D, Snelgrove P, Sundblad G, Thuiller W, Torres LG, Verbruggen H, Wang L, Wenger S, Whittingham MJ, Zharikov Y, Zurell D, Sequeira AM. Outstanding Challenges in the Transferability of Ecological Models. Trends Ecol Evol 2018; 33:790-802. [DOI: 10.1016/j.tree.2018.08.001] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 11/30/2022]
|
44
|
Burt JM, Tinker MT, Okamoto DK, Demes KW, Holmes K, Salomon AK. Sudden collapse of a mesopredator reveals its complementary role in mediating rocky reef regime shifts. Proc Biol Sci 2018; 285:20180553. [PMID: 30051864 PMCID: PMC6083256 DOI: 10.1098/rspb.2018.0553] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/04/2018] [Indexed: 11/12/2022] Open
Abstract
While changes in the abundance of keystone predators can have cascading effects resulting in regime shifts, the role of mesopredators in these processes remains underexplored. We conducted annual surveys of rocky reef communities that varied in the recovery of a keystone predator (sea otter, Enhydra lutris) and the mass mortality of a mesopredator (sunflower sea star, Pycnopodia helianthoides) due to an infectious wasting disease. By fitting a population model to empirical data, we show that sea otters had the greatest impact on the mortality of large sea urchins, but that Pycnopodia decline corresponded to a 311% increase in medium urchins and a 30% decline in kelp densities. Our results reveal that predator complementarity in size-selective prey consumption strengthens top-down control on urchins, affecting the resilience of alternative reef states by reinforcing the resilience of kelp forests and eroding the resilience of urchin barrens. We reveal previously underappreciated species interactions within a 'classic' trophic cascade and regime shift, highlighting the critical role of middle-level predators in mediating rocky reef state transitions.
Collapse
Affiliation(s)
- Jenn M Burt
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
- Hakai Institute, Heriot Bay, British Columbia, Canada V0P 1H0
| | - M Tim Tinker
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Daniel K Okamoto
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Kyle W Demes
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
- Hakai Institute, Heriot Bay, British Columbia, Canada V0P 1H0
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Keith Holmes
- Hakai Institute, Heriot Bay, British Columbia, Canada V0P 1H0
| | - Anne K Salomon
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
- Hakai Institute, Heriot Bay, British Columbia, Canada V0P 1H0
| |
Collapse
|
45
|
Identifying a common backbone of interactions underlying food webs from different ecosystems. Nat Commun 2018; 9:2603. [PMID: 29973596 PMCID: PMC6031633 DOI: 10.1038/s41467-018-05056-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 06/11/2018] [Indexed: 12/02/2022] Open
Abstract
Although the structure of empirical food webs can differ between ecosystems, there is growing evidence of multiple ways in which they also exhibit common topological properties. To reconcile these contrasting observations, we postulate the existence of a backbone of interactions underlying all ecological networks—a common substructure within every network comprised of species playing similar ecological roles—and a periphery of species whose idiosyncrasies help explain the differences between networks. To test this conjecture, we introduce a new approach to investigate the structural similarity of 411 food webs from multiple environments and biomes. We first find significant differences in the way species in different ecosystems interact with each other. Despite these differences, we then show that there is compelling evidence of a common backbone of interactions underpinning all food webs. We expect that identifying a backbone of interactions will shed light on the rules driving assembly of different ecological communities. The structure of ecological networks can vary dramatically, yet there may be common features across networks from different ecosystem types. Here, Bramon Mora et al. use network alignment to demonstrate that there is a common backbone of interactions underlying empirical food webs.
Collapse
|
46
|
Bozec YM, Doropoulos C, Roff G, Mumby PJ. Transient Grazing and the Dynamics of an Unanticipated Coral–Algal Phase Shift. Ecosystems 2018. [DOI: 10.1007/s10021-018-0271-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Filbee-Dexter K, Symons CC, Jones K, Haig HA, Pittman J, Alexander SM, Burke MJ. Quantifying ecological and social drivers of ecological surprise. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Celia C. Symons
- Department of Ecology and Evolutionary Biology; University of California, Santa Cruz; Santa Cruz California
| | - Kristal Jones
- National Socio-Environmental Synthesis Center; University of Maryland; Annapolis Maryland
| | - Heather A. Haig
- Limnology Laboratory; Department of Biology; University of Regina; Regina SK Canada
| | - Jeremy Pittman
- School of Planning; Faculty of Environment; University of Waterloo; Waterloo ON Canada
| | - Steven M. Alexander
- National Socio-Environmental Synthesis Center; University of Maryland; Annapolis Maryland
- Stockholm Resilience Centre; Stockholm University; Stockholm Sweden
| | - Matthew J. Burke
- Department of Natural Resource Sciences & McGill School of Environment; McGill University; Montreal QC Canada
| |
Collapse
|
48
|
Catalano AS, Redford K, Margoluis R, Knight AT. Black swans, cognition, and the power of learning from failure. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2018; 32:584-596. [PMID: 29094402 DOI: 10.1111/cobi.13045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/03/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
Failure carries undeniable stigma and is difficult to confront for individuals, teams, and organizations. Disciplines such as commercial and military aviation, medicine, and business have long histories of grappling with it, beginning with the recognition that failure is inevitable in every human endeavor. Although conservation may arguably be more complex, conservation professionals can draw on the research and experience of these other disciplines to institutionalize activities and attitudes that foster learning from failure, whether they are minor setbacks or major disasters. Understanding the role of individual cognitive biases, team psychological safety, and organizational willingness to support critical self-examination all contribute to creating a cultural shift in conservation to one that is open to the learning opportunity that failure provides. This new approach to managing failure is a necessary next step in the evolution of conservation effectiveness.
Collapse
Affiliation(s)
- Allison S Catalano
- Department of Life Sciences, Imperial College London, Ascot, Berkshire SL5 7PY, U.K
- The Silwood Group, Imperial College London, Ascot, Berkshire SL5 7PY, U.K
| | - Kent Redford
- The Silwood Group, Imperial College London, Ascot, Berkshire SL5 7PY, U.K
- Archipelago Consulting, Box 4750, Portland, ME 04112, U.S.A
- Department of Environmental Studies, University of New England, 11 Hills Beach Rd., Biddeford, ME 04005, U.S.A
| | - Richard Margoluis
- The Gordon and Betty Moore Foundation, 1661 Page Mill Rd., Palo Alto, CA 94304, U.S.A
| | - Andrew T Knight
- Department of Life Sciences, Imperial College London, Ascot, Berkshire SL5 7PY, U.K
- The Silwood Group, Imperial College London, Ascot, Berkshire SL5 7PY, U.K
- ARC Centre of Excellence in Environmental Decisions, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Department of Botany, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa
| |
Collapse
|
49
|
Bennett JR, Maxwell SL, Martin AE, Chadès I, Fahrig L, Gilbert B. When to monitor and when to act: Value of information theory for multiple management units and limited budgets. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13132] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Sean L. Maxwell
- School of Geography, Planning and Environmental Management; University of Queensland; Brisbane Qld Australia
| | - Amanda E. Martin
- Department of Biology; Carleton University; Ottawa Ontario Canada
| | - Iadine Chadès
- CSIRO; Brisbane Qld Australia
- ARC Centre of Excellence for Environmental Decisions; University of Queensland; Brisbane Qld Australia
| | - Lenore Fahrig
- Department of Biology; Carleton University; Ottawa Ontario Canada
| | - Benjamin Gilbert
- Department of Ecology & Evolutionary Biology; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
50
|
Socioeconomic Indicators for the Evaluation and Monitoring of Climate Change in National Parks: An Analysis of the Sierra de Guadarrama National Park (Spain). ENVIRONMENTS 2018. [DOI: 10.3390/environments5020025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|