1
|
Schley RJ, Pennington RT, Twyford AD, Dexter KG, Kidner C, Michael TP. The genome sequence of Inga leiocalycina Benth. Wellcome Open Res 2024; 9:606. [PMID: 39494196 PMCID: PMC11531642 DOI: 10.12688/wellcomeopenres.23131.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 11/05/2024] Open
Abstract
We present a genome assembly from an individual of Inga leiocalycina (Streptophyta; Magnoliopsida; Fabales; Fabaceae). The genome sequence has a total length of 948.00 megabases. Most of the assembly is scaffolded into 13 chromosomal pseudomolecules. The assembled mitochondrial genome sequences have lengths of 1,019.42 and 98.74 kilobases, and the plastid genome assembly is 175.51 kb long. Gene annotation of the nuclear genome assembly on Ensembl identified 33,457 protein-coding genes.
Collapse
Affiliation(s)
| | - R. Toby Pennington
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
| | - Alex D. Twyford
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
| | - Kyle G. Dexter
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
| | - Catherine Kidner
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
| | - Todd P. Michael
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Royal Botanic Garden Edinburgh Genome Acquisition Lab
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Plant Genome Sizing collective
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | | | - Wellcome Sanger Institute Scientific Operations: Sequencing Operations
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Wellcome Sanger Institute Tree of Life Core Informatics team
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Tree of Life Core Informatics collective
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| |
Collapse
|
2
|
Boom AF, Migliore J, Ojeda Alayon DI, Kaymak E, Hardy OJ. Phylogenomics of Brachystegia: Insights into the origin of African miombo woodlands. AMERICAN JOURNAL OF BOTANY 2024; 111:e16352. [PMID: 38853465 DOI: 10.1002/ajb2.16352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 06/11/2024]
Abstract
PREMISE Phylogenetic approaches can provide valuable insights on how and when a biome emerged and developed using its structuring species. In this context, Brachystegia Benth, a dominant genus of trees in miombo woodlands, appears as a key witness of the history of the largest woodland and savanna biome of Africa. METHODS We reconstructed the evolutionary history of the genus using targeted-enrichment sequencing on 60 Brachystegia specimens for a nearly complete species sampling. Phylogenomic inferences used supermatrix (RAxML-NG) and summary-method (ASTRAL-III) approaches. Conflicts between species and gene trees were assessed, and the phylogeny was time-calibrated in BEAST. Introgression between species was explored using Phylonet. RESULTS The phylogenies were globally congruent regardless of the method used. Most of the species were recovered as monophyletic, unlike previous plastid phylogenetic reconstructions where lineages were shared among geographically close individuals independently of species identity. Still, most of the individual gene trees had low levels of phylogenetic information and, when informative, were mostly in conflict with the reconstructed species trees. These results suggest incomplete lineage sorting and/or reticulate evolution, which was supported by network analyses. The BEAST analysis supported a Pliocene origin for current Brachystegia lineages, with most of the diversification events dated to the Pliocene-Pleistocene. CONCLUSIONS These results suggest a recent origin of species of the miombo, congruently with their spatial expansion documented from plastid data. Brachystegia species appear to behave potentially as a syngameon, a group of interfertile but still relatively well-delineated species, an aspect that deserves further investigations.
Collapse
Affiliation(s)
- Arthur F Boom
- Royal Museum for Central Africa, Biology Department, Section Vertebrates, Tervuren, Belgium
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
| | - Jérémy Migliore
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
- Muséum départemental du Var, Toulon, France
| | - Dario I Ojeda Alayon
- Muséum départemental du Var, Toulon, France
- Department of Forest Biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Esra Kaymak
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
- Institute of Science and Technology (OIST), Okinawa, Japan
| | - Olivier J Hardy
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
| |
Collapse
|
3
|
Finch KN, Jones FA, Cronn RC. Cryptic species diversity in a widespread neotropical tree genus: The case of Cedrela odorata. AMERICAN JOURNAL OF BOTANY 2022; 109:1622-1640. [PMID: 36098061 PMCID: PMC9827871 DOI: 10.1002/ajb2.16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Reconciling the use of taxonomy to partition morphological variation and describe genetic divergence within and among closely related species is a persistent challenge in phylogenetics. We reconstructed phylogenetic relationships among Cedrela odorata (Meliaceae) and five closely allied species to test the genetic basis for the current model of species delimitation in this economically valuable and threatened genus. METHODS We prepared a nuclear species tree with the program SNPhylo and 16,000 single-nucleotide polymorphisms from 168 Cedrela specimens. Based on clades present and ancestral patterns ADMIXTURE, we designed nine species delimitation models and compared each model to current taxonomy with Bayes factor delimitation. Timing of major lineage divergences was estimated with the program SNAPP. RESULTS The resulting analysis revealed that modern C. odorata evolved from two genetically distinct ancestral sources. All species delimitation models tested better fit the data than the model representing current taxonomic delimitation. Models with the greatest marginal likelihoods separated Mesoamerican C. odorata and South American C. odorata into two species and lumped C. angustifolia and C. montana as a single species. We estimated that Cedrela diversified in South America within the last 19 million years following one or more dispersal events from Mesoamerican lineages. CONCLUSIONS Our analyses show that the present taxonomic understanding within the genus obscures divergent lineages in C. odorata due in part to morphological differentiation and taxonomic distinctions that are not predictably associated with genetic divergence. A more accurate application of taxonomy to C. odorata and related species may aid in its conservation, management, and restoration efforts.
Collapse
Affiliation(s)
- Kristen N. Finch
- Department of Botany and Plant PathologyOregon State University2082 Cordley Hall, 2701 SW Campus WayCorvallisOR97331USA
| | - F. Andrew Jones
- Department of Botany and Plant PathologyOregon State University2082 Cordley Hall, 2701 SW Campus WayCorvallisOR97331USA
- Smithsonian Tropical Research InstituteBalboa, AnconRepublic of Panama
| | - Richard C. Cronn
- USFS PNW Research Station3200 SW Jefferson WayCorvallisOR97331USA
| |
Collapse
|
4
|
Guevara Andino JE, Hernández C, Valencia R, Forrister D, Endara MJ. Accelerating the discovery of rare tree species in Amazonian forests: integrating long monitoring tree plot data with metabolomics and phylogenetics for the description of a new species in the hyperdiverse genus Inga Mill. PeerJ 2022; 10:e13767. [PMID: 36061752 PMCID: PMC9435521 DOI: 10.7717/peerj.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/30/2022] [Indexed: 01/17/2023] Open
Abstract
In species-rich regions and highly speciose genera, the need for species identification and taxonomic recognition has led to the development of emergent technologies. Here, we combine long-term plot data with untargated metabolomics, and morphological and phylogenetic data to describe a new rare species in the hyperdiverse genus of trees Inga Mill. Our combined data show that Inga coleyana is a new lineage splitting from their closest relatives I. coruscans and I. cylindrica. Moreover, analyses of the chemical defensive profile demonstrate that I. coleyana has a very distinctive chemistry from their closest relatives, with I. coleyana having a chemistry based on saponins and I. cylindrica and I. coruscans producing a series of dihydroflavonols in addition to saponins. Finally, data from our network of plots suggest that I. coleyana is a rare and probably endemic taxon in the hyper-diverse genus Inga. Thus, the synergy produced by different approaches, such as long-term plot data and metabolomics, could accelerate taxonomic recognition in challenging tropical biomes.
Collapse
Affiliation(s)
- Juan Ernesto Guevara Andino
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud-BIOMAS, Universidad de las Americas, Quito, Ecuador
| | - Consuelo Hernández
- Laboratorio de Ecología de Plantas. Herbario QCA, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Renato Valencia
- Laboratorio de Ecología de Plantas. Herbario QCA, Escuela de Ciencias Biológicas,, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Dale Forrister
- Department of Biology, University of Utah, Salt Lake City, United States of America,Estación de Biodiversidad Tiputini, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito—USFQ, Quito, Ecuador
| | - María-José Endara
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud-BIOMAS, Universidad de las Americas, Quito, Ecuador
| |
Collapse
|
5
|
Yang CH, Wu KC, Chuang LY, Chang HW. DeepBarcoding: Deep Learning for Species Classification Using DNA Barcoding. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2158-2165. [PMID: 33600318 DOI: 10.1109/tcbb.2021.3056570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNA barcodes with short sequence fragments are used for species identification. Because of advances in sequencing technologies, DNA barcodes have gradually been emphasized. DNA sequences from different organisms are easily and rapidly acquired. Therefore, DNA sequence analysis tools play an increasingly crucial role in species identification. This study proposed deep barcoding, a deep learning framework for species classification by using DNA barcodes. Deep barcoding uses raw sequence data as the input to represent one-hot encoding as a one-dimensional image and uses a deep convolutional neural network with a fully connected deep neural network for sequence analysis. It can achieve an average accuracy of >90 percent for both simulation and real datasets. Although deep learning yields outstanding performance for species classification with DNA sequences, its application remains a challenge. The deep barcoding model can be a potential tool for species classification and can elucidate DNA barcode-based species identification.
Collapse
|
6
|
Garmendia A, Merle H, Sanía M, López C, Ferriol M. Morphologic, genetic, and biogeographic continua among subspecies hinder the conservation of threatened taxa: the case of Centaurea aspera ssp. scorpiurifolia (Asteraceae). Sci Rep 2022; 12:932. [PMID: 35042932 PMCID: PMC8766572 DOI: 10.1038/s41598-022-04934-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/28/2021] [Indexed: 12/03/2022] Open
Abstract
Subspecies are widely included as conservation units because of their potential to become new species. However, their practical recognition includes variable criteria, such as morphological, genetic, geographic and other differences. Centaurea aspera ssp. scorpiurifolia is a threatened taxon endemic to Andalusia (Spain), which coexists in most of its distribution area with similar taxa. Because of the difficulty to identify it using morphology alone, we aimed to sample all the populations cited as ssp. scorpiurifolia as exhaustively as possible, morphologically characterise them, and analyse their genetic structuring using microsatellites, to better understand difficulties when conserving subspecies. Three different Centaurea species were found which were easily identified. Within C. aspera, two genetic populations and some admixed individuals were observed, one including ssp. scorpiurifolia individuals and the other including individuals identified as subspecies aspera, stenophylla, and scorpiurifolia. A morphological continuum between these two genetic populations and a wide overlapping of their biogeographic distribution were also found. This continuum can affect the conservation of ssp. scorpiurifolia because of potential misidentifications and harmful effects of subspecific hybridization. Misidentifications could be partly overcome by using as many different traits as possible, and conservation priority should be given to populations representative of the ends of this continuum.
Collapse
Affiliation(s)
- Alfonso Garmendia
- Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Hugo Merle
- Departamento de Ecosistemas Agroforestales, Universitat Politècnica de València, Valencia, Spain
| | - Marta Sanía
- Departamento de Ecosistemas Agroforestales, Universitat Politècnica de València, Valencia, Spain
| | - Carmelo López
- Centro Para La Conservación Y Mejora de La Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - María Ferriol
- Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
7
|
Rucińska A, Olszak M, Świerszcz S, Nobis M, Zubek S, Kusza G, Boczkowska M, Nowak A. Looking for Hidden Enemies of Metabarcoding: Species Composition, Habitat and Management Can Strongly Influence DNA Extraction while Examining Grassland Communities. Biomolecules 2021; 11:318. [PMID: 33669773 PMCID: PMC7921978 DOI: 10.3390/biom11020318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/02/2022] Open
Abstract
Despite the raising preoccupation, the critical question of how the plant community is composed belowground still remains unresolved, particularly for the conservation priority types of vegetation. The usefulness of metabarcoding analysis of the belowground parts of the plant community is subjected to a considerable bias, that often impedes detection of all species in a sample due to insufficient DNA quality or quantity. In the presented study we have attempted to find environmental factors that determine the amount and quality of DNA extracted from total plant tissue from above- and belowground samples (1000 and 10,000 cm2). We analyzed the influence of land use intensity, soil properties, species composition, and season on DNA extraction. The most important factors for DNA quality were vegetation type, soil conductometry (EC), and soil pH for the belowground samples. The species that significantly decreased the DNA quality were Calamagrostis epigejos, Coronilla varia, and Holcus lanatus. For the aboveground part of the vegetation, the season, management intensity, and certain species-with the most prominent being Centaurea rhenana and Cirsium canum-have the highest influence. Additionally, we found that sample size, soil granulation, MgO, organic C, K2O, and total soil N content are important for DNA extraction effectiveness. Both low EC and pH reduce significantly the yield and quality of DNA. Identifying the potential inhibitors of DNA isolation and predicting difficulties of sampling the vegetation plots for metabarcoding analysis will help to optimize the universal, low-cost multi-stage DNA extraction procedure in molecular ecology studies.
Collapse
Affiliation(s)
- Anna Rucińska
- Polish Academy of Sciences Botanical Garden, Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-976 Warszawa, Poland; (A.R.); (M.O.); (M.B.); (A.N.)
| | - Marcin Olszak
- Polish Academy of Sciences Botanical Garden, Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-976 Warszawa, Poland; (A.R.); (M.O.); (M.B.); (A.N.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| | - Sebastian Świerszcz
- Polish Academy of Sciences Botanical Garden, Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-976 Warszawa, Poland; (A.R.); (M.O.); (M.B.); (A.N.)
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland; (M.N.); (S.Z.)
- Research Laboratory ‘Herbarium’, National Research Tomsk State University, 634050 Tomsk, Russia
| | - Szymon Zubek
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland; (M.N.); (S.Z.)
| | - Grzegorz Kusza
- Institute of Biology, University of Opole, Oleska 22, 45-052 Opole, Poland;
| | - Maja Boczkowska
- Polish Academy of Sciences Botanical Garden, Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-976 Warszawa, Poland; (A.R.); (M.O.); (M.B.); (A.N.)
- National Centre for Plant Genetic Resources, Plant Breeding and Acclimatization Institute (IHAR)–National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Arkadiusz Nowak
- Polish Academy of Sciences Botanical Garden, Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-976 Warszawa, Poland; (A.R.); (M.O.); (M.B.); (A.N.)
- Institute of Biology, University of Opole, Oleska 22, 45-052 Opole, Poland;
| |
Collapse
|
8
|
Redihough J, Russo IRM, Stewart AJA, Malenovský I, Stockdale JE, Moorhouse-Gann RJ, Wilson MR, Symondson WOC. Species Separation within, and Preliminary Phylogeny for, the Leafhopper Genus Anoscopus with Particular Reference to the Putative British Endemic Anoscopus duffieldi (Hemiptera: Cicadellidae). INSECTS 2020; 11:E799. [PMID: 33202804 PMCID: PMC7697789 DOI: 10.3390/insects11110799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/11/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
The subfamily Aphrodinae (Hemiptera: Cicadellidae) contains ~33 species in Europe within four genera. Species in two genera in particular, Aphrodes and Anoscopus, have proved to be difficult to distinguish morphologically. Our aim was to determine the status of the putative species Anoscopus duffieldi, found only on the RSPB Nature Reserve at Dungeness, Kent, a possible rare UK endemic. DNA from samples of all seven UK Anoscopus species (plus Anoscopusalpinus from the Czech Republic) were sequenced using parts of the mitochondrial cytochrome oxidase I and 16S rRNA genes. Bayesian inference phylogenies were created. Specimens of each species clustered into monophyletic groups, except for Anoscopusalbifrons, A. duffieldi and Anoscopuslimicola. Two A. albifrons specimens grouped with A. duffieldi repeatedly with strong support, and the remaining A. albifrons clustered within A. limicola. Genetic distances suggest that A. albifrons and A. limicola are a single interbreeding population (0% divergence), while A. albifrons and A. duffieldi diverged by only 0.28%. Shared haplotypes between A. albifrons, A. limicola and A. duffieldi strongly suggest interbreeding, although misidentification may also explain these topologies. However, all A. duffieldi clustered together in the trees. A conservative approach might be to treat A. duffieldi, until other evidence is forthcoming, as a possible endemic subspecies.
Collapse
Affiliation(s)
- Joanna Redihough
- Cardiff School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (J.R.); (I.-R.M.R.); (J.E.S.); (R.J.M.-G.)
| | - Isa-Rita M. Russo
- Cardiff School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (J.R.); (I.-R.M.R.); (J.E.S.); (R.J.M.-G.)
| | - Alan J. A. Stewart
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, East Sussex, UK;
| | - Igor Malenovský
- Department of Botany and Zoology, Faculty of Science, Masaryk University, CZ-611 37 Brno, Czech Republic;
| | - Jennifer E. Stockdale
- Cardiff School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (J.R.); (I.-R.M.R.); (J.E.S.); (R.J.M.-G.)
| | - Rosemary J. Moorhouse-Gann
- Cardiff School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (J.R.); (I.-R.M.R.); (J.E.S.); (R.J.M.-G.)
| | - Michael R. Wilson
- Department of Natural Sciences, National Museum of Wales, Cardiff CF10 3NP, UK;
| | - William O. C. Symondson
- Cardiff School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (J.R.); (I.-R.M.R.); (J.E.S.); (R.J.M.-G.)
| |
Collapse
|
9
|
Schley RJ, Pennington RT, Pérez-Escobar OA, Helmstetter AJ, de la Estrella M, Larridon I, Sabino Kikuchi IAB, Barraclough TG, Forest F, Klitgård B. Introgression across evolutionary scales suggests reticulation contributes to Amazonian tree diversity. Mol Ecol 2020; 29:4170-4185. [PMID: 32881172 DOI: 10.1111/mec.15616] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/03/2023]
Abstract
Hybridization has the potential to generate or homogenize biodiversity and is a particularly common phenomenon in plants, with an estimated 25% of plant species undergoing interspecific gene flow. However, hybridization in Amazonia's megadiverse tree flora was assumed to be extremely rare despite extensive sympatry between closely related species, and its role in diversification remains enigmatic because it has not yet been examined empirically. Using members of a dominant Amazonian tree family (Brownea, Fabaceae) as a model to address this knowledge gap, our study recovered extensive evidence of hybridization among multiple lineages across phylogenetic scales. More specifically, using targeted sequence capture our results uncovered several historical introgression events between Brownea lineages and indicated that gene tree incongruence in Brownea is best explained by reticulation, rather than solely by incomplete lineage sorting. Furthermore, investigation of recent hybridization using ~19,000 ddRAD loci recovered a high degree of shared variation between two Brownea species that co-occur in the Ecuadorian Amazon. Our analyses also showed that these sympatric lineages exhibit homogeneous rates of introgression among loci relative to the genome-wide average, implying a lack of selection against hybrid genotypes and persistent hybridization. Our results demonstrate that gene flow between multiple Amazonian tree species has occurred across temporal scales, and contrasts with the prevailing view of hybridization's rarity in Amazonia. Overall, our results provide novel evidence that reticulate evolution influenced diversification in part of the Amazonian tree flora, which is the most diverse on Earth.
Collapse
Affiliation(s)
- Rowan J Schley
- Royal Botanic Gardens, Kew, Richmond, UK.,Department of Life Sciences, Imperial College London, Ascot, Berkshire, London, UK
| | - R Toby Pennington
- Geography, University of Exeter, Exeter, UK.,Royal Botanic Garden Edinburgh, Edinburgh, UK
| | | | - Andrew J Helmstetter
- Institut de Recherche pour le Développement (IRD), UMR-DIADE, Montpellier, France
| | - Manuel de la Estrella
- Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| | - Isabel Larridon
- Royal Botanic Gardens, Kew, Richmond, UK.,Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, K.L, Gent, Belgium
| | | | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Ascot, Berkshire, London, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
10
|
Draper FC, Baker TR, Baraloto C, Chave J, Costa F, Martin RE, Pennington RT, Vicentini A, Asner GP. Quantifying Tropical Plant Diversity Requires an Integrated Technological Approach. Trends Ecol Evol 2020; 35:1100-1109. [PMID: 32912632 DOI: 10.1016/j.tree.2020.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
Tropical biomes are the most diverse plant communities on Earth, and quantifying this diversity at large spatial scales is vital for many purposes. As macroecological approaches proliferate, the taxonomic uncertainties in species occurrence data are easily neglected and can lead to spurious findings in downstream analyses. Here, we argue that technological approaches offer potential solutions, but there is no single silver bullet to resolve uncertainty in plant biodiversity quantification. Instead, we propose the use of artificial intelligence (AI) approaches to build a data-driven framework that integrates several data sources - including spectroscopy, DNA sequences, image recognition, and morphological data. Such a framework would provide a foundation for improving species identification in macroecological analyses while simultaneously improving the taxonomic process of species delimitation.
Collapse
Affiliation(s)
- Frederick C Draper
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA; School of Geography, University of Leeds, Leeds, UK.
| | | | - Christopher Baraloto
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Jerome Chave
- Laboratoire Evolution et Diversité Biologique (EDB) CNRS/UPS, Toulouse, France
| | - Flavia Costa
- Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
| | - Roberta E Martin
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA
| | - R Toby Pennington
- Department of Geography, University of Exeter, Exeter, UK; Royal Botanic Garden, Edinburgh, UK
| | | | - Gregory P Asner
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
11
|
Nic Lughadha EM, Graziele Staggemeier V, Vasconcelos TNC, Walker BE, Canteiro C, Lucas EJ. Harnessing the potential of integrated systematics for conservation of taxonomically complex, megadiverse plant groups. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2019; 33:511-522. [PMID: 30779869 PMCID: PMC6850456 DOI: 10.1111/cobi.13289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 05/30/2023]
Abstract
The value of natural history collections for conservation science research is increasingly recognized, despite their well-documented limitations in terms of taxonomic, geographic, and temporal coverage. Specimen-based analyses are particularly important for tropical plant groups for which field observations are scarce and potentially unreliable due to high levels of diversity-amplifying identification challenges. Specimen databases curated by specialists are rich sources of authoritatively identified, georeferenced occurrence data, and such data are urgently needed for large genera. We compared entries in a monographic database for the large Neotropical genus Myrcia in 2007 and 2017. We classified and quantified differences in specimen records over this decade and determined the potential impact of these changes on conservation assessments. We distinguished misidentifications from changes due to taxonomic remodeling and considered the effects of adding specimens and georeferences. We calculated the potential impact of each change on estimates of extent of occurrence (EOO), the most frequently used metric in extinction-risk assessments of tropical plants. We examined whether particular specimen changes were associated with species for which changes in EOO over the decade were large enough to change their conservation category. Corrections to specimens previously misidentified or lacking georeferences were overrepresented in such species, whereas changes associated with taxonomic remodeling (lumping and splitting) were underrepresented. Among species present in both years, transitions to less threatened status outnumbered those to more threatened (8% vs 3%, respectively). Species previously deemed data deficient transitioned to threatened status more often than to not threatened (10% vs 7%, respectively). Conservation scientists risk reaching unreliable conclusions if they use specimen databases that are not actively curated to reflect changing knowledge.
Collapse
Affiliation(s)
| | - Vanessa Graziele Staggemeier
- Royal Botanic Gardens, KewTW9 3AERichmondSurreyU.K.
- Universidade Estadual Paulista, Instituto de Biociências, Departamento de BotânicaLaboratório de FenologiaAvenida 24A 1515, CEP 13506–900Rio ClaroSão PauloBrazil
- Departamento de Ecologia, Centro de BiociênciasUniversidade Federal do Rio Grande do NorteCEP 59072–970NatalRio Grande do NorteBrazil
| | - Thais N. C. Vasconcelos
- Royal Botanic Gardens, KewTW9 3AERichmondSurreyU.K.
- Laboratório de Sistemática VegetalDepartamento de Botânica, Universidade de São Paulo, São PauloSP 05508–090Brazil
| | | | | | - Eve J. Lucas
- Royal Botanic Gardens, KewTW9 3AERichmondSurreyU.K.
| |
Collapse
|
12
|
Boege K, Villa‐Galaviz E, López‐Carretero A, Pérez‐Ishiwara R, Zaldivar‐Riverón A, Ibarra A, del‐Val E. Temporal variation in the influence of forest succession on caterpillar communities: A long‐term study in a tropical dry forest. Biotropica 2019. [DOI: 10.1111/btp.12666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karina Boege
- Departamento de Ecología Evolutiva Instituto de EcologíaUniversidad Nacional Autónoma de México Ciudad de México México
| | - Edith Villa‐Galaviz
- Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de México Morelia México
| | - Antonio López‐Carretero
- Departamento de Ecología Evolutiva Instituto de EcologíaUniversidad Nacional Autónoma de México Ciudad de México México
- Centro GEMA de Genómica, Ecología y Medio Ambiente Universidad Mayor Santiago Chile
| | - Rubén Pérez‐Ishiwara
- Departamento de Ecología Evolutiva Instituto de EcologíaUniversidad Nacional Autónoma de México Ciudad de México México
| | - Alejandro Zaldivar‐Riverón
- Colección Nacional de Insectos Instituto de BiologíaUniversidad Nacional Autónoma de México Ciudad de México México
| | - Adolfo Ibarra
- Instituto de BiologíaUniversidad Nacional Autónoma de México Ciudad de México México
| | - Ek del‐Val
- Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de México Morelia México
- Escuela Nacional de Estudios Superiores Unidad MoreliaUniversidad Nacional Autónoma de México Morelia México
| |
Collapse
|
13
|
Caron H, Molino J, Sabatier D, Léger P, Chaumeil P, Scotti‐Saintagne C, Frigério J, Scotti I, Franc A, Petit RJ. Chloroplast DNA variation in a hyperdiverse tropical tree community. Ecol Evol 2019; 9:4897-4905. [PMID: 31031952 PMCID: PMC6476754 DOI: 10.1002/ece3.5096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/11/2019] [Accepted: 03/01/2019] [Indexed: 01/05/2023] Open
Abstract
We investigate chloroplast DNA variation in a hyperdiverse community of tropical rainforest trees in French Guiana, focusing on patterns of intraspecific and interspecific variation. We test whether a species genetic diversity is higher when it has congeners in the community with which it can exchange genes and if shared haplotypes are more frequent in genetically diverse species, as expected in the presence of introgression.We sampled a total of 1,681 individual trees from 472 species corresponding to 198 genera and sequenced them at a noncoding chloroplast DNA fragment.Polymorphism was more frequent in species that have congeneric species in the study site than in those without congeners (30% vs. 12%). Moreover, more chloroplast haplotypes were shared with congeners in polymorphic species than in monomorphic ones (44% vs. 28%).Despite large heterogeneities caused by genus-specific behaviors in patterns of hybridization, these results suggest that the higher polymorphism in the presence of congeners is caused by local introgression rather than by incomplete lineage sorting. Our findings suggest that introgression has the potential to drive intraspecific genetic diversity in species-rich tropical forests.
Collapse
Affiliation(s)
- Henri Caron
- BIOGECOINRA, Univ. BordeauxCestasFrance
- INRAUMR 0745 EcoFoG (Ecologie des forêts de Guyane)KourouFrance
| | | | - Daniel Sabatier
- AMAP, IRD, Cirad, CNRS, INRAUniversité de MontpellierMontpellierFrance
| | | | | | - Caroline Scotti‐Saintagne
- INRAUMR 0745 EcoFoG (Ecologie des forêts de Guyane)KourouFrance
- INRA, UR629 Ecologie des Forêts MéditerranéennesURFMAvignonFrance
| | | | - Ivan Scotti
- INRAUMR 0745 EcoFoG (Ecologie des forêts de Guyane)KourouFrance
- INRA, UR629 Ecologie des Forêts MéditerranéennesURFMAvignonFrance
| | | | | |
Collapse
|
14
|
Thomson AM, Vargas OM, Dick CW. Complete plastome sequences from Bertholletia excelsa and 23 related species yield informative markers for Lecythidaceae. APPLICATIONS IN PLANT SCIENCES 2018; 6:e01151. [PMID: 30131893 PMCID: PMC5991589 DOI: 10.1002/aps3.1151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/11/2018] [Indexed: 05/09/2023]
Abstract
PREMISE OF THE STUDY The tropical tree family Lecythidaceae has enormous ecological and economic importance in the Amazon basin. Lecythidaceae species can be difficult to identify without molecular data, however, and phylogenetic relationships within and among the most diverse genera are poorly resolved. METHODS To develop informative genetic markers for Lecythidaceae, we used genome skimming to de novo assemble the full plastome of the Brazil nut tree (Bertholletia excelsa) and 23 other Lecythidaceae species. Indices of nucleotide diversity and phylogenetic signal were used to identify regions suitable for genetic marker development. RESULTS The B. excelsa plastome contained 160,472 bp and was arranged in a quadripartite structure. Using the 24 plastome alignments, we developed primers for 10 coding and non-coding DNA regions containing exceptional nucleotide diversity and phylogenetic signal. We also developed 19 chloroplast simple sequence repeats for population-level studies. DISCUSSION The coding region ycf1 and the spacer rpl16-rps3 outperformed plastid DNA markers previously used for barcoding and phylogenetics. Used in a phylogenetic analysis, the matrix of 24 plastomes showed with 100% bootstrap support that Lecythis and Eschweilera are polyphyletic. The plastomes and primers presented in this study will facilitate a broad array of ecological and evolutionary studies in Lecythidaceae.
Collapse
Affiliation(s)
- Ashley M. Thomson
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichigan48109USA
- Faculty of Natural Resources ManagementLakehead UniversityThunder BayOntarioP7B 5E1Canada
| | - Oscar M. Vargas
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichigan48109USA
| | - Christopher W. Dick
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichigan48109USA
- Smithsonian Tropical Research InstitutePanama City0843‐03092Republic of Panama
| |
Collapse
|
15
|
Endara MJ, Coley PD, Wiggins NL, Forrister DL, Younkin GC, Nicholls JA, Pennington RT, Dexter KG, Kidner CA, Stone GN, Kursar TA. Chemocoding as an identification tool where morphological- and DNA-based methods fall short: Inga as a case study. THE NEW PHYTOLOGIST 2018; 218:847-858. [PMID: 29436716 DOI: 10.1111/nph.15020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/04/2018] [Indexed: 05/12/2023]
Abstract
The need for species identification and taxonomic discovery has led to the development of innovative technologies for large-scale plant identification. DNA barcoding has been useful, but fails to distinguish among many species in species-rich plant genera, particularly in tropical regions. Here, we show that chemical fingerprinting, or 'chemocoding', has great potential for plant identification in challenging tropical biomes. Using untargeted metabolomics in combination with multivariate analysis, we constructed species-level fingerprints, which we define as chemocoding. We evaluated the utility of chemocoding with species that were defined morphologically and subject to next-generation DNA sequencing in the diverse and recently radiated neotropical genus Inga (Leguminosae), both at single study sites and across broad geographic scales. Our results show that chemocoding is a robust method for distinguishing morphologically similar species at a single site and for identifying widespread species across continental-scale ranges. Given that species are the fundamental unit of analysis for conservation and biodiversity research, the development of accurate identification methods is essential. We suggest that chemocoding will be a valuable additional source of data for a quick identification of plants, especially for groups where other methods fall short.
Collapse
Affiliation(s)
- María-José Endara
- Department of Biology, University of Utah, Salt Lake City, UT, 84112-0840, USA
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Quito, EC170103, Ecuador
| | - Phyllis D Coley
- Department of Biology, University of Utah, Salt Lake City, UT, 84112-0840, USA
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancón, Republic of Panamá
| | - Natasha L Wiggins
- School of Biological Sciences, University of Tasmania, Sandy Bay, TAS, 7001, Australia
| | - Dale L Forrister
- Department of Biology, University of Utah, Salt Lake City, UT, 84112-0840, USA
| | - Gordon C Younkin
- Department of Biology, University of Utah, Salt Lake City, UT, 84112-0840, USA
| | - James A Nicholls
- Ashworth Labs, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JY, UK
| | | | - Kyle G Dexter
- Royal Botanic Garden Edinburgh, Edinburgh, EH3 5LR, UK
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Catherine A Kidner
- Ashworth Labs, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JY, UK
- Royal Botanic Garden Edinburgh, Edinburgh, EH3 5LR, UK
| | - Graham N Stone
- Ashworth Labs, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JY, UK
| | - Thomas A Kursar
- Department of Biology, University of Utah, Salt Lake City, UT, 84112-0840, USA
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancón, Republic of Panamá
| |
Collapse
|
16
|
Ferrão M, de Fraga R, Moravec J, Kaefer IL, Lima AP. A new species of Amazonian snouted treefrog (Hylidae: Scinax) with description of a novel species-habitat association for an aquatic breeding frog. PeerJ 2018; 6:e4321. [PMID: 29441233 PMCID: PMC5808318 DOI: 10.7717/peerj.4321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/13/2018] [Indexed: 11/20/2022] Open
Abstract
The genus Scinax is one of the most specious genera of treefrogs of the family Hylidae. Despite the high number of potential new species of Scinax revealed in recent studies, the rate of species descriptions for Amazonia has been low in the last decade. A potential cause of this low rate may be the existence of morphologically cryptic species. Describing new species may not only impact the taxonomy and systematics of a group of organisms but also benefit other fields of biology. Ecological studies conducted in megadiverse regions, such as Amazonia, often meet challenging questions concerning insufficient knowledge of organismal alpha taxonomy. Due to that, detecting species-habitat associations is dependent on our ability to properly identify species. In this study, we first provide a description of a new species (including its tadpoles) of the genus Scinax distributed along heterogeneous landscapes in southern Amazonia; and secondly assess the influence of environmental heterogeneity on the new species' abundance and distribution. Scinax ruberoculatus sp. nov. differs from all nominal congeners by its small size (SVL 22.6-25.9 mm in males and 25.4-27.5 mm in females), by having a dark brown spot on the head and scapular region shaped mainly like the moth Copiopteryx semiramis (or a human molar in lateral view, or a triangle), bicolored reddish and grey iris, snout truncate in dorsal view, bilobate vocal sac in males, by its advertisement call consisting of a single pulsed note with duration of 0.134-0.331 s, 10-23 pulses per note, and dominant frequency 1,809-1,895 Hz. Both occurrence and abundance of the new species are significantly influenced by silt content in the soil. This finding brings the first evidence that edaphic factors influence species-habitat association in Amazonian aquatic breeding frogs.
Collapse
Affiliation(s)
- Miquéias Ferrão
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Rafael de Fraga
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Jiří Moravec
- Department of Zoology, National Museum, Prague, Czech Republic
| | - Igor L. Kaefer
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Albertina P. Lima
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| |
Collapse
|
17
|
Endara MJ, Coley PD, Ghabash G, Nicholls JA, Dexter KG, Donoso DA, Stone GN, Pennington RT, Kursar TA. Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system. Proc Natl Acad Sci U S A 2017; 114:E7499-E7505. [PMID: 28827317 PMCID: PMC5594685 DOI: 10.1073/pnas.1707727114] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coevolutionary models suggest that herbivores drive diversification and community composition in plants. For herbivores, many questions remain regarding how plant defenses shape host choice and community structure. We addressed these questions using the tree genus Inga and its lepidopteran herbivores in the Amazon. We constructed phylogenies for both plants and insects and quantified host associations and plant defenses. We found that similarity in herbivore assemblages between Inga species was correlated with similarity in defenses. There was no correlation with phylogeny, a result consistent with our observations that the expression of defenses in Inga is independent of phylogeny. Furthermore, host defensive traits explained 40% of herbivore community similarity. Analyses at finer taxonomic scales showed that different lepidopteran clades select hosts based on different defenses, suggesting taxon-specific histories of herbivore-host plant interactions. Finally, we compared the phylogeny and defenses of Inga to phylogenies for the major lepidopteran clades. We found that closely related herbivores fed on Inga with similar defenses rather than on closely related plants. Together, these results suggest that plant defenses might be more evolutionarily labile than the herbivore traits related to host association. Hence, there is an apparent asymmetry in the evolutionary interactions between Inga and its herbivores. Although plants may evolve under selection by herbivores, we hypothesize that herbivores may not show coevolutionary adaptations, but instead "chase" hosts based on the herbivore's own traits at the time that they encounter a new host, a pattern more consistent with resource tracking than with the arms race model of coevolution.
Collapse
Affiliation(s)
- María-José Endara
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840;
- Centro de Investigación de la Biodiversidad y Cambio Climático, Universidad Tecnológica Indoamérica, Quito EC170103, Ecuador
| | - Phyllis D Coley
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840
- Smithsonian Tropical Research Institute, 0843-03092, Balboa, Ancón, Republic of Panamá
| | - Gabrielle Ghabash
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840
| | - James A Nicholls
- Ashworth Labs, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JY, United Kingdom
| | - Kyle G Dexter
- School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
- Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, United Kingdom
| | - David A Donoso
- Instituto de Ciencias Biológicas, Escuela Politécnica Nacional, Quito 17-01-2759, Ecuador
| | - Graham N Stone
- Ashworth Labs, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JY, United Kingdom
| | | | - Thomas A Kursar
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840
- Smithsonian Tropical Research Institute, 0843-03092, Balboa, Ancón, Republic of Panamá
| |
Collapse
|
18
|
Salinas-Ramos VB, Zaldívar-Riverón A, Rebollo-Hernández A, Herrera-M LG. Seasonal variation of bat-flies (Diptera: Streblidae) in four bat species from a tropical dry forest. MAMMALIA 2017. [DOI: 10.1515/mammalia-2016-0176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Seasonality of climate promotes differences in abundance and species composition of parasites, affecting host-parasite interactions. Studies have reported seasonal variation in bat-flies, which are obligate bat ectoparasites. We characterized the bat-fly load of three insectivores [Pteronotus davyi (Gray), Pteronotus parnellii (Gray) and Pteronotus personatus (Wagner)] and one nectarivorous [Leptonycteris yerbabuenae (Martínez and Villa-R.)] bat species in a tropical dry forest to test the existence of seasonality in response to the availability of resources during the wet and dry seasons. We collected 3710 bat-fly specimens belonging to six species and two genera from 497 bats. Most of the ectoparasite load parameters examined (mean abundance, mean intensity, richness, etc.), including comparisons among reproductive conditions and sex of the host, were similar in both seasons. Prevalence was the parameter that varied the most between seasons. The six bat-fly species were found in all bat species except P. personatus. The latter species and L. yerbabuenae had four and five bat-fly species in the wet and dry seasons, respectively. This study provides significant information of ectoparasites ecology in relation to seasonality, contributes to the understanding of host-parasite relationships in tropical dry forests and discusses the relevance of the abiotic and biotic factors that could impact host-parasite interactions.
Collapse
Affiliation(s)
- Valeria B. Salinas-Ramos
- Posgrado en Ciencias Biológicas, Instituto de Biología , Universidad Nacional Autónoma de México , A. P. 70-153, Ciudad de México , C. P. 04510 , Mexico
| | - Alejandro Zaldívar-Riverón
- Instituto de Biología , Universidad Nacional Autónoma de México , Ciudad de México , C. P. 04510 , Mexico
| | - Andrea Rebollo-Hernández
- Laboratorio de Acarología, Facultad de Ciencias , Departamento de Biología Comparada , Universidad Nacional Autónoma de México , Ciudad de México , C. P. 04510 , Mexico
| | - L. Gerardo Herrera-M
- Estación de Biología Chamela, Instituto de Biología , Universidad Nacional Autónoma de México , A.P. 21, San Patricio, C. P. 48980 , Jalisco , Mexico
| |
Collapse
|
19
|
Liu ZF, Ci XQ, Li L, Li HW, Conran JG, Li J. DNA barcoding evaluation and implications for phylogenetic relationships in Lauraceae from China. PLoS One 2017; 12:e0175788. [PMID: 28414813 PMCID: PMC5393608 DOI: 10.1371/journal.pone.0175788] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/01/2017] [Indexed: 11/18/2022] Open
Abstract
Lauraceae are an important component of tropical and subtropical forests and have major ecological and economic significance. Owing to lack of clear-cut morphological differences between genera and species, this family is an ideal case for testing the efficacy of DNA barcoding in the identification and discrimination of species and genera. In this study, we evaluated five widely recommended plant DNA barcode loci matK, rbcL, trnH–psbA, ITS2 and the entire ITS region for 409 individuals representing 133 species, 12 genera from China. We tested the ability of DNA barcoding to distinguish species and as an alternative tool for correcting species misidentification. We also used the rbcL+matK+trnH–psbA+ITS loci to investigate the phylogenetic relationships of the species examined. Among the gene regions and their combinations, ITS was the most efficient for identifying species (57.5%) and genera (70%). DNA barcoding also had a positive role for correcting species misidentification (10.8%). Furthermore, based on the results of the phylogenetic analyses, Chinese Lauraceae species formed three supported monophyletic clades, with the Cryptocarya group strongly supported (PP = 1.00, BS = 100%) and the clade including the Persea group, Laureae and Cinnamomum also receiving strong support (PP = 1.00, BS = 98%), whereas the Caryodaphnopsis–Neocinnamomum received only moderate support (PP = 1.00 and BS = 85%). This study indicates that molecular barcoding can assist in screening difficult to identify families like Lauraceae, detecting errors of species identification, as well as helping to reconstruct phylogenetic relationships. DNA barcoding can thus help with large-scale biodiversity inventories and rare species conservation by improving accuracy, as well as reducing time and costs associated with species identification.
Collapse
Affiliation(s)
- Zhi-Fang Liu
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiu-Qin Ci
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Lang Li
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
| | - Hsi-Wen Li
- Herbarium (KUN), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
| | - John G. Conran
- Australian Centre for Evolutionary Biology and Biodiversity & Sprigg Geobiology Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Jie Li
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
- * E-mail:
| |
Collapse
|
20
|
Sosef MSM, Dauby G, Blach-Overgaard A, van der Burgt X, Catarino L, Damen T, Deblauwe V, Dessein S, Dransfield J, Droissart V, Duarte MC, Engledow H, Fadeur G, Figueira R, Gereau RE, Hardy OJ, Harris DJ, de Heij J, Janssens S, Klomberg Y, Ley AC, Mackinder BA, Meerts P, van de Poel JL, Sonké B, Stévart T, Stoffelen P, Svenning JC, Sepulchre P, Zaiss R, Wieringa JJ, Couvreur TLP. Exploring the floristic diversity of tropical Africa. BMC Biol 2017; 15:15. [PMID: 28264718 PMCID: PMC5339970 DOI: 10.1186/s12915-017-0356-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/25/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Understanding the patterns of biodiversity distribution and what influences them is a fundamental pre-requisite for effective conservation and sustainable utilisation of biodiversity. Such knowledge is increasingly urgent as biodiversity responds to the ongoing effects of global climate change. Nowhere is this more acute than in species-rich tropical Africa, where so little is known about plant diversity and its distribution. In this paper, we use RAINBIO - one of the largest mega-databases of tropical African vascular plant species distributions ever compiled - to address questions about plant and growth form diversity across tropical Africa. RESULTS The filtered RAINBIO dataset contains 609,776 georeferenced records representing 22,577 species. Growth form data are recorded for 97% of all species. Records are well distributed, but heterogeneous across the continent. Overall, tropical Africa remains poorly sampled. When using sampling units (SU) of 0.5°, just 21 reach appropriate collection density and sampling completeness, and the average number of records per species per SU is only 1.84. Species richness (observed and estimated) and endemism figures per country are provided. Benin, Cameroon, Gabon, Ivory Coast and Liberia appear as the botanically best-explored countries, but none are optimally explored. Forests in the region contain 15,387 vascular plant species, of which 3013 are trees, representing 5-7% of the estimated world's tropical tree flora. The central African forests have the highest endemism rate across Africa, with approximately 30% of species being endemic. CONCLUSIONS The botanical exploration of tropical Africa is far from complete, underlining the need for intensified inventories and digitization. We propose priority target areas for future sampling efforts, mainly focused on Tanzania, Atlantic Central Africa and West Africa. The observed number of tree species for African forests is smaller than those estimated from global tree data, suggesting that a significant number of species are yet to be discovered. Our data provide a solid basis for a more sustainable management and improved conservation of tropical Africa's unique flora, and is important for achieving Objective 1 of the Global Strategy for Plant Conservation 2011-2020. In turn, RAINBIO provides a solid basis for a more sustainable management and improved conservation of tropical Africa's unique flora.
Collapse
Affiliation(s)
- Marc S M Sosef
- Botanic Garden Meise, Nieuwelaan 38, BE-1860, Meise, Belgium.
| | - Gilles Dauby
- DIADE, Université Montpellier, IRD, Montpellier, France
- Laboratoire d'Évolution biologique et Écologie, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
- CESAB/FRB, Domaine du Petit Arbois, Av. Louis Philibert, Aix-en-Provence, 13100, France
| | - Anne Blach-Overgaard
- Section for Ecoinformatics & Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark
| | | | - Luís Catarino
- Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal
| | - Theo Damen
- Wageningen University, Biosystematics Group, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Vincent Deblauwe
- DIADE, Université Montpellier, IRD, Montpellier, France
- Herbarium et Bibliothèque de Botanique Africaine, Université Libre de Bruxelles, Boulevard du Triomphe, B-1050, Bruxelles, Belgium
- Laboratoire de Botanique systématique et d'Écologie, Département des Sciences Biologiques, École Normale Supérieure, Université de Yaoundé I, Yaoundé, Cameroon
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, Box 951496, Los Angeles, CA, 90095, USA
- International Institute of Tropical Agriculture, BP 2008 (Messa), Yaounde, Cameroon
| | - Steven Dessein
- Botanic Garden Meise, Nieuwelaan 38, BE-1860, Meise, Belgium
| | | | - Vincent Droissart
- Herbarium et Bibliothèque de Botanique Africaine, Université Libre de Bruxelles, Boulevard du Triomphe, B-1050, Bruxelles, Belgium
- Missouri Botanical Garden, Africa & Madagascar Department, P.O. Box 299, St. Louis, Missouri, 63166-0299, USA
- AMAP, CNRS, INRA, IRD, Université Montpellier, Montpellier, France
| | - Maria Cristina Duarte
- Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal
| | - Henry Engledow
- Botanic Garden Meise, Nieuwelaan 38, BE-1860, Meise, Belgium
| | - Geoffrey Fadeur
- Herbarium et Bibliothèque de Botanique Africaine, Université Libre de Bruxelles, Boulevard du Triomphe, B-1050, Bruxelles, Belgium
| | - Rui Figueira
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- CEABN/InBio, Centro de Ecologia Aplicada "Professor Baeta Neves", Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Roy E Gereau
- Missouri Botanical Garden, Africa & Madagascar Department, P.O. Box 299, St. Louis, Missouri, 63166-0299, USA
| | - Olivier J Hardy
- Laboratoire d'Évolution biologique et Écologie, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - David J Harris
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, UK
| | - Janneke de Heij
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
- Picturae, De Droogmakerij 12, 1851LX, Heiloo, The Netherlands
| | - Steven Janssens
- Botanic Garden Meise, Nieuwelaan 38, BE-1860, Meise, Belgium
| | - Yannick Klomberg
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
- Department of Ecology, Faculty of Science, Charles University, Vinicna 7, 128 44, Prague 2, Czech Republic
| | - Alexandra C Ley
- Institut für Geobotanik und Botanischer Garten, Im Neuwerk 21, University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - Barbara A Mackinder
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, UK
| | - Pierre Meerts
- Herbarium et Bibliothèque de Botanique Africaine, Université Libre de Bruxelles, Boulevard du Triomphe, B-1050, Bruxelles, Belgium
- Laboratoire d'Ecologie végétale et Biogéochimie, Université Libre de Bruxelles, Boulevard du Triomphe, B-1050, Bruxelles, Belgium
| | - Jeike L van de Poel
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
| | - Bonaventure Sonké
- Laboratoire de Botanique systématique et d'Écologie, Département des Sciences Biologiques, École Normale Supérieure, Université de Yaoundé I, Yaoundé, Cameroon
| | - Tariq Stévart
- Botanic Garden Meise, Nieuwelaan 38, BE-1860, Meise, Belgium
- Herbarium et Bibliothèque de Botanique Africaine, Université Libre de Bruxelles, Boulevard du Triomphe, B-1050, Bruxelles, Belgium
- Missouri Botanical Garden, Africa & Madagascar Department, P.O. Box 299, St. Louis, Missouri, 63166-0299, USA
| | - Piet Stoffelen
- Botanic Garden Meise, Nieuwelaan 38, BE-1860, Meise, Belgium
| | - Jens-Christian Svenning
- Section for Ecoinformatics & Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark
| | - Pierre Sepulchre
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Rainer Zaiss
- AMAP, CNRS, INRA, IRD, Université Montpellier, Montpellier, France
| | - Jan J Wieringa
- Wageningen University, Biosystematics Group, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
| | - Thomas L P Couvreur
- DIADE, Université Montpellier, IRD, Montpellier, France.
- Laboratoire de Botanique systématique et d'Écologie, Département des Sciences Biologiques, École Normale Supérieure, Université de Yaoundé I, Yaoundé, Cameroon.
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands.
| |
Collapse
|
21
|
Dexter KG, Lavin M, Torke BM, Twyford AD, Kursar TA, Coley PD, Drake C, Hollands R, Pennington RT. Dispersal assembly of rain forest tree communities across the Amazon basin. Proc Natl Acad Sci U S A 2017; 114:2645-2650. [PMID: 28213498 PMCID: PMC5347625 DOI: 10.1073/pnas.1613655114] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigate patterns of historical assembly of tree communities across Amazonia using a newly developed phylogeny for the species-rich neotropical tree genus Inga We compare our results with those for three other ecologically important, diverse, and abundant Amazonian tree lineages, Swartzia, Protieae, and Guatteria Our analyses using phylogenetic diversity metrics demonstrate a clear lack of geographic phylogenetic structure, and show that local communities of Inga and regional communities of all four lineages are assembled by dispersal across Amazonia. The importance of dispersal in the biogeography of Inga and other tree genera in Amazonian and Guianan rain forests suggests that speciation is not driven by vicariance, and that allopatric isolation following dispersal may be involved in the speciation process. A clear implication of these results is that over evolutionary timescales, the metacommunity for any local or regional tree community in the Amazon is the entire Amazon basin.
Collapse
Affiliation(s)
- Kyle G Dexter
- School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom;
- Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, United Kingdom
| | - Mathew Lavin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717
| | - Benjamin M Torke
- Institute of Systematic Botany, New York Botanical Garden, Bronx, NY 10458
| | - Alex D Twyford
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Thomas A Kursar
- Biology Department, University of Utah, Salt Lake City, UT 84112
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| | - Phyllis D Coley
- Biology Department, University of Utah, Salt Lake City, UT 84112
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| | - Camila Drake
- Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, United Kingdom
| | - Ruth Hollands
- Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, United Kingdom
| | | |
Collapse
|
22
|
Baker TR, Pennington RT, Dexter KG, Fine PVA, Fortune-Hopkins H, Honorio EN, Huamantupa-Chuquimaco I, Klitgård BB, Lewis GP, de Lima HC, Ashton P, Baraloto C, Davies S, Donoghue MJ, Kaye M, Kress WJ, Lehmann CER, Monteagudo A, Phillips OL, Vasquez R. Maximising Synergy among Tropical Plant Systematists, Ecologists, and Evolutionary Biologists. Trends Ecol Evol 2017; 32:258-267. [PMID: 28214038 DOI: 10.1016/j.tree.2017.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 11/26/2022]
Abstract
Closer collaboration among ecologists, systematists, and evolutionary biologists working in tropical forests, centred on studies within long-term permanent plots, would be highly beneficial for their respective fields. With a key unifying theme of the importance of vouchered collection and precise identification of species, especially rare ones, we identify four priority areas where improving links between these communities could achieve significant progress in biodiversity and conservation science: (i) increasing the pace of species discovery; (ii) documenting species turnover across space and time; (iii) improving models of ecosystem change; and (iv) understanding the evolutionary assembly of communities and biomes.
Collapse
Affiliation(s)
| | | | - Kyle G Dexter
- Royal Botanic Garden Edinburgh, Edinburgh, UK; School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Paul V A Fine
- Department of Integrative Biology and University and Jepson Herbaria, University of California, Berkeley, CA, USA
| | | | | | - Isau Huamantupa-Chuquimaco
- Programa de Pós-Graduação em Botânica, Escola Nacional de Botânica Tropical, Instituto de Pesquisas Jardim Botânico de Rio de Janeiro (ENBT/JBRJ). Rua Pacheco Leão, 2040. RJ, Brazil
| | - Bente B Klitgård
- Department for Identification and Naming, Royal Botanic Gardens, Kew, UK
| | - Gwilym P Lewis
- Department for Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, UK
| | - Haroldo C de Lima
- Programa de Pós-Graduação em Botânica, Escola Nacional de Botânica Tropical, Instituto de Pesquisas Jardim Botânico de Rio de Janeiro (ENBT/JBRJ). Rua Pacheco Leão, 2040. RJ, Brazil
| | | | - Christopher Baraloto
- International Center for Tropical Botany, Florida International University, Miami, USA
| | - Stuart Davies
- Center for Tropical Forest Science - Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA; National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Michael J Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Maria Kaye
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - W John Kress
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | | | | | | |
Collapse
|
23
|
Zhang A, Hao M, Yang C, Shi Z. BarcodingR: an integrated
r
package for species identification using
DNA
barcodes. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12682] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ai‐bing Zhang
- College of Life Sciences Capital Normal University Beijing 100048 China
| | - Meng‐di Hao
- College of Life Sciences Capital Normal University Beijing 100048 China
| | - Cai‐qing Yang
- College of Life Sciences Capital Normal University Beijing 100048 China
| | - Zhi‐yong Shi
- College of Life Sciences Capital Normal University Beijing 100048 China
| |
Collapse
|
24
|
Abstract
Floristic Quality Assessment (FQA) is increasingly influential for making land management decisions, for directing conservation policy, and for research. But, the basic ecological properties and limitations of its metrics are ill defined and not well understood-especially those related to sample methods and scale. Nested plot data from a remnant tallgrass prairie sampled annually over a 12-year period, were used to investigate FQA properties associated with species detection rates, species misidentification rates, sample year, and sample grain/area. Plot size had no apparent effect on Mean C (an area's average Floristic Quality level), nor did species detection levels above 65% detection. Simulated species misidentifications only affected Mean C values at greater than 10% in large plots, when the replaced species were randomly drawn from the broader county-wide species pool. Finally, FQA values were stable over the 12-year study, meaning that there was no evidence that the metrics exhibit year effects. The FQA metric Mean C is demonstrated to be robust to varied sample methodologies related to sample intensity (plot size, species detection rate), as well as sample year. These results will make FQA measures even more appealing for informing land-use decisions, policy, and research for two reasons: 1) The sampling effort needed to generate accurate and consistent site assessments with FQA measures is shown to be far lower than what has previously been assumed, and 2) the stable properties and consistent performance of metrics with respect to sample methods will allow for a remarkable level of comparability of FQA values from different sites and datasets compared to other commonly used ecological metrics.
Collapse
Affiliation(s)
- Greg Spyreas
- Illinois Natural History Survey, Champaign, IL, United States of America
- * E-mail:
| |
Collapse
|
25
|
ter Steege H, Vaessen RW, Cárdenas-López D, Sabatier D, Antonelli A, de Oliveira SM, Pitman NCA, Jørgensen PM, Salomão RP. The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Sci Rep 2016; 6:29549. [PMID: 27406027 PMCID: PMC4942782 DOI: 10.1038/srep29549] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/17/2016] [Indexed: 11/15/2022] Open
Abstract
Amazonia is the most biodiverse rainforest on Earth, and the debate over how many tree species grow there remains contentious. Here we provide a checklist of all tree species collected to date, and describe spatial and temporal trends in data accumulation. We report 530,025 unique collections of trees in Amazonia, dating between 1707 and 2015, for a total of 11,676 species in 1225 genera and 140 families. These figures support recent estimates of 16,000 total Amazonian tree species based on ecological plot data from the Amazonian Tree Diversity Network. Botanical collection in Amazonia is characterized by three major peaks, centred around 1840, 1920, and 1980, which are associated with flora projects and the establishment of inventory plots. Most collections were made in the 20th century. The number of collections has increased exponentially, but shows a slowdown in the last two decades. We find that a species' range size is a better predictor of the number of times it has been collected than the species' estimated basin-wide population size. Finding, describing, and documenting the distribution of the remaining species will require coordinated efforts at under-collected sites.
Collapse
Affiliation(s)
- Hans ter Steege
- Naturalis Biodiversity Center, Vondellaan 55, Postbus 9517, 2300 RA Leiden, The Netherlands
- Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Magalhães Barata 376, C.P. 399, Belém, PA 66040–170, Brazil
| | - Rens W. Vaessen
- Naturalis Biodiversity Center, Vondellaan 55, Postbus 9517, 2300 RA Leiden, The Netherlands
| | - Dairon Cárdenas-López
- Herbario Amazónico Colombiano, Instituto SINCHI, Calle 20 No 5-44, Bogotá, DF, Colombia
| | - Daniel Sabatier
- Institut de Recherche pour le Développement (IRD, UMR AMAP), TA A-51/PS2, Bd. de la Lironde, 34398 Montpellier cedex 5, France
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Göteborg, Sweden
- Gothenburg Botanical Garden, Carl Skottsbergs gata 22A, SE-413 19, Göteborg, Sweden
| | | | - Nigel C. A. Pitman
- Science and Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605–2496, USA
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27705, USA
| | | | - Rafael P. Salomão
- Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Magalhães Barata 376, C.P. 399, Belém, PA 66040–170, Brazil
| |
Collapse
|
26
|
Rejmánek M, Huntley BJ, Le Roux JJ, Richardson DM. A rapid survey of the invasive plant species in western Angola. Afr J Ecol 2016. [DOI: 10.1111/aje.12315] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Marcel Rejmánek
- Department of Evolution and Ecology; University of California; Davis CA 95616 U.S.A
| | - Brian J. Huntley
- Centre for Invasion Biology; Department of Botany and Zoology; Stellenbosch University; Matieland 7602 South Africa
| | - Johannes J. Le Roux
- Centre for Invasion Biology; Department of Botany and Zoology; Stellenbosch University; Matieland 7602 South Africa
| | - David M. Richardson
- Centre for Invasion Biology; Department of Botany and Zoology; Stellenbosch University; Matieland 7602 South Africa
| |
Collapse
|
27
|
Pennington RT, Lavin M. The contrasting nature of woody plant species in different neotropical forest biomes reflects differences in ecological stability. THE NEW PHYTOLOGIST 2016; 210:25-37. [PMID: 26558891 DOI: 10.1111/nph.13724] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/07/2015] [Indexed: 05/08/2023]
Abstract
A fundamental premise of this review is that distinctive phylogenetic and biogeographic patterns in clades endemic to different major biomes illuminate the evolutionary process. In seasonally dry tropical forests (SDTFs), phylogenies are geographically structured and multiple individuals representing single species coalesce. This pattern of monophyletic species, coupled with their old species stem ages, is indicative of maintenance of small effective population sizes over evolutionary timescales, which suggests that SDTF is difficult to immigrate into because of persistent resident lineages adapted to a stable, seasonally dry ecology. By contrast, lack of coalescence in conspecific accessions of abundant and often widespread species is more frequent in rain forests and is likely to reflect large effective population sizes maintained over huge areas by effective seed and pollen flow. Species nonmonophyly, young species stem ages and lack of geographical structure in rain forest phylogenies may reflect more widespread disturbance by drought and landscape evolution causing resident mortality that opens up greater opportunities for immigration and speciation. We recommend full species sampling and inclusion of multiple accessions representing individual species in phylogenies to highlight nonmonophyletic species, which we predict will be frequent in rain forest and savanna, and which represent excellent case studies of incipient speciation.
Collapse
Affiliation(s)
- R Toby Pennington
- Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Matt Lavin
- Department of Plant Sciences & Plant Pathology, Montana State University, PO Box 173150, Bozeman, MT, 59717-3150, USA
| |
Collapse
|
28
|
McNicol IM, Ryan CM, Williams M. How resilient are African woodlands to disturbance from shifting cultivation? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:2320-2336. [PMID: 26910958 DOI: 10.1890/14-2165.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Large parts of sub-Saharan Africa are experiencing rapid changes in land use and land cover, driven largely by the expansion of small-scale shifting cultivation. This practice creates complex mosaic landscapes with active agricultural fields and patches of mature woodland, interspersed with remnant patches in various stages of regrowth. Our objective here was to examine the rate and extent to which carbon stocks in trees and soils recover after cultivation, and detail how this disturbance and regrowth affect patterns in tree species composition and diversity over 40 years of succession in a miombo woodland landscape in southeast Tanzania. We sampled 67 areas, including plots previously cleared for cultivation, active fields, and mature woodlands for reference purposes. Sites were further stratified by soil texture to test for associated effects. Tree carbon stocks accumulated at an average rate of 0.83 ± 0.10 Mg C x ha(-1) x yr(-1), with soil texture having no clear impact on accumulation rates. Bulk soil carbon stocks on both soil types appeared unaffected by both the initial land clearance and the subsequent regrowth, which resulted in no significant changes over time. Tree species diversity in regrowing plots developed rapidly and within -10 years was equivalent to that of mature woodland. Many of the species found in mature woodlands reappeared relatively quickly after abandonment, although species composition is expected to take considerably longer to recover, with at least 60-80 years required for the compositional similarity between regrowing and mature woodlands to reach levels similar to that among nearby mature woodlands. Through impacts on β-diversity, disturbance was also found to increase the total number of tree species present in the landscape, with many of the recorded species only found in regrowing woodlands. Our results are of relevance to carbon sequestration projects by helping to inform the potential future carbon and biodiversity benefits of restoring disturbed habitats (REDD+). At a time where the use of shifting cultivation is threatened by shifts to larger-scale, commercial agriculture, we show that secondary woodland habitats can retain considerable biodiversity value, and act as carbon sinks.
Collapse
|
29
|
Pei N, Erickson DL, Chen B, Ge X, Mi X, Swenson NG, Zhang JL, Jones FA, Huang CL, Ye W, Hao Z, Hsieh CF, Lum S, Bourg NA, Parker JD, Zimmerman JK, McShea WJ, Lopez IC, Sun IF, Davies SJ, Ma K, Kress WJ. Closely-related taxa influence woody species discrimination via DNA barcoding: evidence from global forest dynamics plots. Sci Rep 2015; 5:15127. [PMID: 26456472 PMCID: PMC4601009 DOI: 10.1038/srep15127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/17/2015] [Indexed: 11/09/2022] Open
Abstract
To determine how well DNA barcodes from the chloroplast region perform in forest dynamics plots (FDPs) from global CTFS-ForestGEO network, we analyzed DNA barcoding sequences of 1277 plant species from a wide phylogenetic range (3 FDPs in tropics, 5 in subtropics and 5 in temperate zone) and compared the rates of species discrimination (RSD). We quantified RSD by two DNA barcode combinations (rbcL + matK and rbcL + matK + trnH-psbA) using a monophyly-based method (GARLI). We defined two indexes of closely-related taxa (Gm/Gt and S/G ratios) and correlated these ratios with RSD. The combination of rbcL + matK averagely discriminated 88.65%, 83.84% and 72.51% at the local, regional and global scales, respectively. An additional locus trnH-psbA increased RSD by 2.87%, 1.49% and 3.58% correspondingly. RSD varied along a latitudinal gradient and were negatively correlated with ratios of closely-related taxa. Successes of species discrimination generally depend on scales in global FDPs. We suggested that the combination of rbcL + matK + trnH-psbA is currently applicable for DNA barcoding-based phylogenetic studies on forest communities.
Collapse
Affiliation(s)
- Nancai Pei
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, PR China
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, PR China
| | - David L. Erickson
- Department of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA
| | - Bufeng Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, PR China
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, PR China
| | - Xuejun Ge
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Xiangcheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Nathan G. Swenson
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Jin-Long Zhang
- Flora Conservation Department, Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, N.T., Hong Kong
| | - Frank A. Jones
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR, 97331, USA
| | - Chun-Lin Huang
- Laboratory of Molecular Phylogenetics, Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Wanhui Ye
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Zhanqing Hao
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Chang-Fu Hsieh
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Roosevelt Road 1, Taipei, Taiwan
| | - Shawn Lum
- National Institute of Education of Nanyang Technological University, Singapore 637616
| | - Norman A. Bourg
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - John D. Parker
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Jess K. Zimmerman
- Institute for Tropical Ecosystem Studies, University of Puerto Rico, San Juan Puerto Rico, 00936-8377, USA
| | | | - Ida C. Lopez
- Department of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA
| | - I-Fang Sun
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan
| | - Stuart J. Davies
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, P.O. Box 37012, Washington, DC 20013-7012, USA
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - W. John Kress
- Department of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA
| |
Collapse
|
30
|
Nicholls JA, Pennington RT, Koenen EJM, Hughes CE, Hearn J, Bunnefeld L, Dexter KG, Stone GN, Kidner CA. Using targeted enrichment of nuclear genes to increase phylogenetic resolution in the neotropical rain forest genus Inga (Leguminosae: Mimosoideae). FRONTIERS IN PLANT SCIENCE 2015; 6:710. [PMID: 26442024 PMCID: PMC4584976 DOI: 10.3389/fpls.2015.00710] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/25/2015] [Indexed: 05/20/2023]
Abstract
Evolutionary radiations are prominent and pervasive across many plant lineages in diverse geographical and ecological settings; in neotropical rainforests there is growing evidence suggesting that a significant fraction of species richness is the result of recent radiations. Understanding the evolutionary trajectories and mechanisms underlying these radiations demands much greater phylogenetic resolution than is currently available for these groups. The neotropical tree genus Inga (Leguminosae) is a good example, with ~300 extant species and a crown age of 2-10 MY, yet over 6 kb of plastid and nuclear DNA sequence data gives only poor phylogenetic resolution among species. Here we explore the use of larger-scale nuclear gene data obtained though targeted enrichment to increase phylogenetic resolution within Inga. Transcriptome data from three Inga species were used to select 264 nuclear loci for targeted enrichment and sequencing. Following quality control to remove probable paralogs from these sequence data, the final dataset comprised 259,313 bases from 194 loci for 24 accessions representing 22 Inga species and an outgroup (Zygia). Bayesian phylogenies reconstructed using either all loci concatenated or a gene-tree/species-tree approach yielded highly resolved phylogenies. We used coalescent approaches to show that the same targeted enrichment data also have significant power to discriminate among alternative within-species population histories within the widespread species I. umbellifera. In either application, targeted enrichment simplifies the informatics challenge of identifying orthologous loci associated with de novo genome sequencing. We conclude that targeted enrichment provides the large volumes of phylogenetically-informative sequence data required to resolve relationships within recent plant species radiations, both at the species level and for within-species phylogeographic studies.
Collapse
Affiliation(s)
- James A. Nicholls
- Ashworth Labs, Institute of Evolutionary Biology, School of Biological Sciences, University of EdinburghEdinburgh, UK
- Royal Botanic Garden EdinburghEdinburgh, UK
| | | | - Erik J. M. Koenen
- Institute of Systematic Botany, University of ZurichZürich, Switzerland
| | - Colin E. Hughes
- Institute of Systematic Botany, University of ZurichZürich, Switzerland
| | - Jack Hearn
- Ashworth Labs, Institute of Evolutionary Biology, School of Biological Sciences, University of EdinburghEdinburgh, UK
| | - Lynsey Bunnefeld
- Ashworth Labs, Institute of Evolutionary Biology, School of Biological Sciences, University of EdinburghEdinburgh, UK
| | - Kyle G. Dexter
- School of Geosciences, University of EdinburghEdinburgh, UK
| | - Graham N. Stone
- Ashworth Labs, Institute of Evolutionary Biology, School of Biological Sciences, University of EdinburghEdinburgh, UK
| | - Catherine A. Kidner
- Royal Botanic Garden EdinburghEdinburgh, UK
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of EdinburghEdinburgh, UK
| |
Collapse
|
31
|
Lang C, Costa FRC, Camargo JLC, Durgante FM, Vicentini A. Near Infrared Spectroscopy Facilitates Rapid Identification of Both Young and Mature Amazonian Tree Species. PLoS One 2015; 10:e0134521. [PMID: 26312996 PMCID: PMC4551484 DOI: 10.1371/journal.pone.0134521] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/09/2015] [Indexed: 11/19/2022] Open
Abstract
Precise identification of plant species requires a high level of knowledge by taxonomists and presence of reproductive material. This represents a major limitation for those working with seedlings and juveniles, which differ morphologically from adults and do not bear reproductive structures. Near-infrared spectroscopy (FT-NIR) has previously been shown to be effective in species discrimination of adult plants, so if young and adults have a similar spectral signature, discriminant functions based on FT-NIR spectra of adults can be used to identify leaves from young plants. We tested this with a sample of 419 plants in 13 Amazonian species from the genera Protium and Crepidospermum (Burseraceae). We obtained 12 spectral readings per plant, from adaxial and abaxial surfaces of dried leaves, and compared the rate of correct predictions of species with discriminant functions for different combinations of readings. We showed that the best models for predicting species in early developmental stages are those containing spectral data from both young and adult plants (98% correct predictions of external samples), but even using only adult spectra it is still possible to attain good levels of identification of young. We obtained an average of 75% correct identifications of young plants by discriminant equations based only on adults, when the most informative wavelengths were selected. Most species were accurately predicted (75-100% correct identifications), and only three had poor predictions (27-60%). These results were obtained despite the fact that spectra of young individuals were distinct from those of adults when species were analyzed individually. We concluded that FT-NIR has a high potential in the identification of species even at different ontogenetic stages, and that young plants can be identified based on spectra of adults with reasonable confidence.
Collapse
Affiliation(s)
- Carla Lang
- Graduate Program in Botany, Instituto Nacional de Pesquisas da Amazonia, Manaus, Brazil
| | | | | | - Flávia Machado Durgante
- Department of Environmental Dynamics, Instituto Nacional de Pesquisas da Amazonia, Manaus, Brazil
| | - Alberto Vicentini
- Department of Environmental Dynamics, Instituto Nacional de Pesquisas da Amazonia, Manaus, Brazil
| |
Collapse
|
32
|
Huang XC, Ci XQ, Conran JG, Li J. Application of DNA Barcodes in Asian Tropical Trees--A Case Study from Xishuangbanna Nature Reserve, Southwest China. PLoS One 2015; 10:e0129295. [PMID: 26121045 PMCID: PMC4509572 DOI: 10.1371/journal.pone.0129295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/27/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Within a regional floristic context, DNA barcoding is more useful to manage plant diversity inventories on a large scale and develop valuable conservation strategies. However, there are no DNA barcode studies from tropical areas of China, which represents one of the biodiversity hotspots around the world. METHODOLOGY AND PRINCIPAL FINDINGS A DNA barcoding database of an Asian tropical trees with high diversity was established at Xishuangbanna Nature Reserve, Yunnan, southwest China using rbcL and matK as standard barcodes, as well as trnH-psbA and ITS as supplementary barcodes. The performance of tree species identification success was assessed using 2,052 accessions from four plots belonging to two vegetation types in the region by three methods: Neighbor-Joining, Maximum-Likelihood and BLAST. We corrected morphological field identification errors (9.6%) for the three plots using rbcL and matK based on Neighbor-Joining tree. The best barcode region for PCR and sequencing was rbcL (97.6%, 90.8%), followed by trnH-psbA (93.6%, 85.6%), while matK and ITS obtained relative low PCR and sequencing success rates. However, ITS performed best for both species (44.6-58.1%) and genus (72.8-76.2%) identification. With trnH-psbA slightly less effective for species identification. The two standard barcode rbcL and matK gave poor results for species identification (24.7-28.5% and 31.6-35.3%). Compared with other studies from comparable tropical forests (e.g. Cameroon, the Amazon and India), the overall performance of the four barcodes for species identification was lower for the Xishuangbanna Nature Reserve, possibly because of species/genus ratios and species composition between these tropical areas. CONCLUSIONS/SIGNIFICANCE Although the core barcodes rbcL and matK were not suitable for species identification of tropical trees from Xishuangbanna Nature Reserve, they could still help with identification at the family and genus level. Considering the relative sequence recovery and the species identification performance, we recommend the use of trnH-psbA and ITS in combination as the preferred barcodes for tropical tree species identification in China.
Collapse
Affiliation(s)
- Xiao-cui Huang
- Laboratory of Plant Phylogenetics and Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, People’s Republic of China
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, People’s Republic of China
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xiu-qin Ci
- Laboratory of Plant Phylogenetics and Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, People’s Republic of China
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, People’s Republic of China
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - John G. Conran
- Centre for Evolutionary Biology and Biodiversity & Sprigg Geobiology Centre, School of Biological Sciences, Benham Bldg DX, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Jie Li
- Laboratory of Plant Phylogenetics and Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, People’s Republic of China
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, People’s Republic of China
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, People’s Republic of China
| |
Collapse
|
33
|
Barej MF, Penner J, Schmitz A, Rödel MO. Multiple genetic lineages challenge the monospecific status of the West African endemic frog family Odontobatrachidae. BMC Evol Biol 2015; 15:67. [PMID: 25928080 PMCID: PMC4425868 DOI: 10.1186/s12862-015-0346-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/31/2015] [Indexed: 11/10/2022] Open
Abstract
Background Correct species identification is crucial in different fields of biology, and in conservation. The endemic West African frog family Odontobatrachidae currently contains a single described species, Odontobatrachus natator. From western Guinea to western Côte d'Ivoire it inhabits forests around waterfalls or cascades. Based on more than 130 specimens from 78 localities, covering the entire distribution, we investigated the molecular diversity of these frogs. Results Our analyses included mitochondrial and nuclear genes, with a concatenated alignment of 3527 base pairs. We detected high level of genetic differentiation with five distinct lineages or operational taxonomic units (OTUs). These OTUs were also identified by two different species delimitation approaches, Generalized Mixed Yule Coalescent (GMYC) and cluster algorithm. All OTUs occur in parapatry in the Upper Guinean forests. One OTU, assigned to the “true” Odontobatrachus natator, covers the largest distribution, ranging from the border region of western Sierra Leone-Guinea to eastern Liberia. Two OTUs are restricted to western Guinea (Fouta Djallon and foothills), while two others occur in eastern Guinea and the border region of Guinea-Liberia-Côte d'Ivoire. The OTU representing O. natator consists of two divergent subclades: one restricted to the Freetown Peninsula (Sierra Leone) and the other covering all populations further inland. Environmental niche models indicated that the restricted Freetown Peninsula population is separated by unsuitable habitat from remaining populations. Conclusion Geographic isolation of OTUs and molecular differences comparable to species level differentiation in other frog families indicate that O. natator contains cryptic species diversity. Respective distribution patterns most probably resulted from repeated changes of forest cover (contraction and expansion) over evolutionary timescales. The survival within forest refugia that have persisted through multiple drier periods and subsequent dispersal during wetter times may best explain the observed geographic distributions of OTUs. According to the IUCN Red List range criteria each OTU should be classified as “Endangered.” If the Freetown Peninsula “natator” population is recognized as a distinct species it would warrant recognition as “Critically Endangered.” The identification of cryptic lineages highlights the urgent need to protect these frogs, all of which are endemic to small areas within the Upper Guinean biodiversity hotspot. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0346-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael F Barej
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115, Berlin, Germany.
| | - Johannes Penner
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115, Berlin, Germany.
| | - Andreas Schmitz
- Department of Herpetology and Ichthyology, Natural History Museum of Geneva, CP 6434, 1211, Geneva 6, Switzerland.
| | - Mark-Oliver Rödel
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115, Berlin, Germany.
| |
Collapse
|
34
|
Nicholls JA, Pennington RT, Koenen EJM, Hughes CE, Hearn J, Bunnefeld L, Dexter KG, Stone GN, Kidner CA. Using targeted enrichment of nuclear genes to increase phylogenetic resolution in the neotropical rain forest genus Inga (Leguminosae: Mimosoideae). FRONTIERS IN PLANT SCIENCE 2015. [PMID: 26442024 DOI: 10.5061/dryad.r9c12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Evolutionary radiations are prominent and pervasive across many plant lineages in diverse geographical and ecological settings; in neotropical rainforests there is growing evidence suggesting that a significant fraction of species richness is the result of recent radiations. Understanding the evolutionary trajectories and mechanisms underlying these radiations demands much greater phylogenetic resolution than is currently available for these groups. The neotropical tree genus Inga (Leguminosae) is a good example, with ~300 extant species and a crown age of 2-10 MY, yet over 6 kb of plastid and nuclear DNA sequence data gives only poor phylogenetic resolution among species. Here we explore the use of larger-scale nuclear gene data obtained though targeted enrichment to increase phylogenetic resolution within Inga. Transcriptome data from three Inga species were used to select 264 nuclear loci for targeted enrichment and sequencing. Following quality control to remove probable paralogs from these sequence data, the final dataset comprised 259,313 bases from 194 loci for 24 accessions representing 22 Inga species and an outgroup (Zygia). Bayesian phylogenies reconstructed using either all loci concatenated or a gene-tree/species-tree approach yielded highly resolved phylogenies. We used coalescent approaches to show that the same targeted enrichment data also have significant power to discriminate among alternative within-species population histories within the widespread species I. umbellifera. In either application, targeted enrichment simplifies the informatics challenge of identifying orthologous loci associated with de novo genome sequencing. We conclude that targeted enrichment provides the large volumes of phylogenetically-informative sequence data required to resolve relationships within recent plant species radiations, both at the species level and for within-species phylogeographic studies.
Collapse
Affiliation(s)
- James A Nicholls
- Ashworth Labs, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh Edinburgh, UK ; Royal Botanic Garden Edinburgh Edinburgh, UK
| | | | - Erik J M Koenen
- Institute of Systematic Botany, University of Zurich Zürich, Switzerland
| | - Colin E Hughes
- Institute of Systematic Botany, University of Zurich Zürich, Switzerland
| | - Jack Hearn
- Ashworth Labs, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh Edinburgh, UK
| | - Lynsey Bunnefeld
- Ashworth Labs, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh Edinburgh, UK
| | - Kyle G Dexter
- School of Geosciences, University of Edinburgh Edinburgh, UK
| | - Graham N Stone
- Ashworth Labs, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh Edinburgh, UK
| | - Catherine A Kidner
- Royal Botanic Garden Edinburgh Edinburgh, UK ; Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh Edinburgh, UK
| |
Collapse
|
35
|
Honorio Coronado EN, Dexter KG, Poelchau MF, Hollingsworth PM, Phillips OL, Pennington RT, Carine M. Ficus insipida subsp. insipida (Moraceae) reveals the role of ecology in the phylogeography of widespread Neotropical rain forest tree species. JOURNAL OF BIOGEOGRAPHY 2014; 41:1697-1709. [PMID: 25821341 PMCID: PMC4368618 DOI: 10.1111/jbi.12326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
AIM To examine the phylogeography of Ficus insipida subsp. insipida in order to investigate patterns of spatial genetic structure across the Neotropics and within Amazonia. LOCATION Neotropics. METHODS Plastid DNA (trnH-psbA; 410 individuals from 54 populations) and nuclear ribosomal internal transcribed spacer (ITS; 85 individuals from 27 populations) sequences were sampled from Mexico to Bolivia, representing the full extent of the taxon's distribution. Divergence of plastid lineages was dated using a Bayesian coalescent approach. Genetic diversity was assessed with indices of haplotype and nucleotide diversities, and genetic structure was examined using spatial analysis of molecular variance (SAMOVA) and haplotype networks. Population expansion within Amazonia was tested using neutrality and mismatch distribution tests. RESULTS trnH-psbA sequences yielded 19 haplotypes restricted to either Mesoamerica or Amazonia; six haplotypes were found among ITS sequences. Diversification of the plastid DNA haplotypes began c. 14.6 Ma. Haplotype diversity for trnH-psbA was higher in Amazonia. Seven genetically differentiated SAMOVA groups were described for trnH-psbA, of which two were also supported by the presence of unique ITS sequences. Population expansion was suggested for both markers for the SAMOVA group that contains most Amazonian populations. MAIN CONCLUSIONS Our results show marked population genetic structure in F. insipida between Mesoamerica and Amazonia, implying that the Andes and seasonally dry areas of northern South America are eco-climatic barriers to its migration. This pattern is shared with other widespread pioneer species affiliated to wet habitats, indicating that the ecological characteristics of species may impact upon large-scale phylogeography. Ficus insipida also shows genetic structure in north-western Amazonia potentially related to pre-Pleistocene historical events. In contrast, evident population expansion elsewhere in Amazonia, in particular the presence of genetically uniform populations across the south-west, indicate recent colonization. Our findings are consistent with palaeoecological data that suggest recent post-glacial expansion of Amazonian forests in the south.
Collapse
Affiliation(s)
- Eurídice N Honorio Coronado
- School of Geography, University of LeedsLeeds, LS2 9JT, UK
- Instituto de Investigaciones de la Amazonia PeruanaIquitos, Peru
- *
Correspondence and present address: Eurídice N. Honorio Coronado, School of Geography, University of Leeds, Leeds, LS2 9JT, UK., E-mail:
| | - Kyle G Dexter
- School of GeoSciences, University of EdinburghEdinburgh, EH9 3JN, UK
- Royal Botanic Garden EdinburghEdinburgh, EH3 5LR, UK
| | - Monica F Poelchau
- Department of Biology, Georgetown UniversityWashington, DC, 20057, USA
| | | | | | | | | |
Collapse
|
36
|
Čandek K, Kuntner M. DNA barcoding gap: reliable species identification over morphological and geographical scales. Mol Ecol Resour 2014; 15:268-77. [DOI: 10.1111/1755-0998.12304] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/06/2014] [Accepted: 07/16/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Klemen Čandek
- Institute of Biology; Scientific Research Centre of the Slovenian Academy of Sciences and Arts; Novi Trg 2 1000 Ljubljana Slovenia
| | - Matjaž Kuntner
- Institute of Biology; Scientific Research Centre of the Slovenian Academy of Sciences and Arts; Novi Trg 2 1000 Ljubljana Slovenia
- Centre for Behavioural Ecology and Evolution; College of Life Sciences; Hubei University; 368 Youyi Road 430062 Wuhan China
- Department of Entomology; National Museum of Natural History; Smithsonian Institution; PO Box 37012 Washington DC 20013-7012 USA
| |
Collapse
|
37
|
Papadopoulou A, Chesters D, Coronado I, De la Cadena G, Cardoso A, Reyes JC, Maes JM, Rueda RM, Gómez-Zurita J. Automated DNA-based plant identification for large-scale biodiversity assessment. Mol Ecol Resour 2014; 15:136-52. [PMID: 24666885 DOI: 10.1111/1755-0998.12256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/17/2014] [Accepted: 02/22/2014] [Indexed: 11/29/2022]
Abstract
Rapid degradation of tropical forests urges to improve our efficiency in large-scale biodiversity assessment. DNA barcoding can assist greatly in this task, but commonly used phenetic approaches for DNA-based identifications rely on the existence of comprehensive reference databases, which are infeasible for hyperdiverse tropical ecosystems. Alternatively, phylogenetic methods are more robust to sparse taxon sampling but time-consuming, while multiple alignment of species-diagnostic, typically length-variable, markers can be problematic across divergent taxa. We advocate the combination of phylogenetic and phenetic methods for taxonomic assignment of DNA-barcode sequences against incomplete reference databases such as GenBank, and we developed a pipeline to implement this approach on large-scale plant diversity projects. The pipeline workflow includes several steps: database construction and curation, query sequence clustering, sequence retrieval, distance calculation, multiple alignment and phylogenetic inference. We describe the strategies used to establish these steps and the optimization of parameters to fit the selected psbA-trnH marker. We tested the pipeline using infertile plant samples and herbivore diet sequences from the highly threatened Nicaraguan seasonally dry forest and exploiting a valuable purpose-built resource: a partial local reference database of plant psbA-trnH. The selected methodology proved efficient and reliable for high-throughput taxonomic assignment, and our results corroborate the advantage of applying 'strict' tree-based criteria to avoid false positives. The pipeline tools are distributed as the scripts suite 'BAGpipe' (pipeline for Biodiversity Assessment using GenBank data), which can be readily adjusted to the purposes of other projects and applied to sequence-based identification for any marker or taxon.
Collapse
Affiliation(s)
- Anna Papadopoulou
- Animal Biodiversity and Evolution, Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), 08003, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Weitschek E, Fiscon G, Felici G. Supervised DNA Barcodes species classification: analysis, comparisons and results. BioData Min 2014; 7:4. [PMID: 24721333 PMCID: PMC4022351 DOI: 10.1186/1756-0381-7-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/05/2014] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Specific fragments, coming from short portions of DNA (e.g., mitochondrial, nuclear, and plastid sequences), have been defined as DNA Barcode and can be used as markers for organisms of the main life kingdoms. Species classification with DNA Barcode sequences has been proven effective on different organisms. Indeed, specific gene regions have been identified as Barcode: COI in animals, rbcL and matK in plants, and ITS in fungi. The classification problem assigns an unknown specimen to a known species by analyzing its Barcode. This task has to be supported with reliable methods and algorithms. METHODS In this work the efficacy of supervised machine learning methods to classify species with DNA Barcode sequences is shown. The Weka software suite, which includes a collection of supervised classification methods, is adopted to address the task of DNA Barcode analysis. Classifier families are tested on synthetic and empirical datasets belonging to the animal, fungus, and plant kingdoms. In particular, the function-based method Support Vector Machines (SVM), the rule-based RIPPER, the decision tree C4.5, and the Naïve Bayes method are considered. Additionally, the classification results are compared with respect to ad-hoc and well-established DNA Barcode classification methods. RESULTS A software that converts the DNA Barcode FASTA sequences to the Weka format is released, to adapt different input formats and to allow the execution of the classification procedure. The analysis of results on synthetic and real datasets shows that SVM and Naïve Bayes outperform on average the other considered classifiers, although they do not provide a human interpretable classification model. Rule-based methods have slightly inferior classification performances, but deliver the species specific positions and nucleotide assignments. On synthetic data the supervised machine learning methods obtain superior classification performances with respect to the traditional DNA Barcode classification methods. On empirical data their classification performances are at a comparable level to the other methods. CONCLUSIONS The classification analysis shows that supervised machine learning methods are promising candidates for handling with success the DNA Barcoding species classification problem, obtaining excellent performances. To conclude, a powerful tool to perform species identification is now available to the DNA Barcoding community.
Collapse
Affiliation(s)
- Emanuel Weitschek
- Department of Engineering, Roma Tre University, Via della Vasca Navale, 79, 00146 Rome, Italy
- Institute of Systems Analysis and Computer Science Antonio Ruberti, National Research Council, Viale Manzoni, 30, 00185 Rome, Italy
| | - Giulia Fiscon
- Institute of Systems Analysis and Computer Science Antonio Ruberti, National Research Council, Viale Manzoni, 30, 00185 Rome, Italy
- Department of Computer, Control, and Management Engineering, Sapienza University, Via Ariosto, 25, 00185 Rome, Italy
| | - Giovanni Felici
- Institute of Systems Analysis and Computer Science Antonio Ruberti, National Research Council, Viale Manzoni, 30, 00185 Rome, Italy
| |
Collapse
|
39
|
Parmentier I, Duminil J, Kuzmina M, Philippe M, Thomas DW, Kenfack D, Chuyong GB, Cruaud C, Hardy OJ. How effective are DNA barcodes in the identification of African rainforest trees? PLoS One 2013; 8:e54921. [PMID: 23565134 PMCID: PMC3615068 DOI: 10.1371/journal.pone.0054921] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/20/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND DNA barcoding of rain forest trees could potentially help biologists identify species and discover new ones. However, DNA barcodes cannot always distinguish between closely related species, and the size and completeness of barcode databases are key parameters for their successful application. We test the ability of rbcL, matK and trnH-psbA plastid DNA markers to identify rain forest trees at two sites in Atlantic central Africa under the assumption that a database is exhaustive in terms of species content, but not necessarily in terms of haplotype diversity within species. METHODOLOGY/PRINCIPAL FINDINGS We assess the accuracy of identification to species or genus using a genetic distance matrix between samples either based on a global multiple sequence alignment (GD) or on a basic local alignment search tool (BLAST). Where a local database is available (within a 50 ha plot), barcoding was generally reliable for genus identification (95-100% success), but less for species identification (71-88%). Using a single marker, best results for species identification were obtained with trnH-psbA. There was a significant decrease of barcoding success in species-rich clades. When the local database was used to identify the genus of trees from another region and did include all genera from the query individuals but not all species, genus identification success decreased to 84-90%. The GD method performed best but a global multiple sequence alignment is not applicable on trnH-psbA. CONCLUSIONS/SIGNIFICANCE Barcoding is a useful tool to assign unidentified African rain forest trees to a genus, but identification to a species is less reliable, especially in species-rich clades, even using an exhaustive local database. Combining two markers improves the accuracy of species identification but it would only marginally improve genus identification. Finally, we highlight some limitations of the BLAST algorithm as currently implemented and suggest possible improvements for barcoding applications.
Collapse
Affiliation(s)
- Ingrid Parmentier
- Evolutionary Biology and Ecology – Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Jérôme Duminil
- Evolutionary Biology and Ecology – Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
- Sub-regional Office for Central Africa, Bioversity International, Yaoundé, Cameroon
| | - Maria Kuzmina
- Canadian Centre for DNA Barcoding, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Morgane Philippe
- Evolutionary Biology and Ecology – Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Duncan W. Thomas
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - David Kenfack
- Department of Botany, Smithsonian Institution, Washington, D.C., United States of America
| | - George B. Chuyong
- Department of Plant and Animal Sciences, University of Buea, Buea, Cameroon
| | - Corinne Cruaud
- Institut de Génomique – Génoscope, Commissariat à l′énergie atomique et aux énergies alternatives (CEA), Evry, France
| | - Olivier J. Hardy
- Evolutionary Biology and Ecology – Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
40
|
References. Mol Ecol 2012. [DOI: 10.1002/9780470979365.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Lamarre GPA, Baraloto C, Fortunel C, Dávila N, Mesones I, Rios JG, Ríos M, Valderrama E, Pilco MV, Fine PVA. Herbivory, growth rates, and habitat specialization in tropical tree lineages: implications for Amazonian beta-diversity. Ecology 2012. [DOI: 10.1890/11-0397.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Palow DT, Nolting K, Kitajima K. Functional trait divergence of juveniles and adults of nineIngaspecies with contrasting soil preference in a tropical rain forest. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02019.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Danielle T. Palow
- Department of Biology; University of Florida; Gainesville; FL; 32611; USA
| | - Kristen Nolting
- Department of Plant Biology; Michigan State University; East Lansing; MI; 48824; USA
| | | |
Collapse
|
43
|
|
44
|
Dexter KG, Terborgh JW, Cunningham CW. Historical effects on beta diversity and community assembly in Amazonian trees. Proc Natl Acad Sci U S A 2012; 109:7787-92. [PMID: 22547831 PMCID: PMC3356654 DOI: 10.1073/pnas.1203523109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a unique perspective on the role of historical processes in community assembly by synthesizing analyses of species turnover among communities with environmental data and independent, population genetic-derived estimates of among-community dispersal. We sampled floodplain and terra firme communities of the diverse tree genus Inga (Fabaceae) across a 250-km transect in Amazonian Peru and found patterns of distance-decay in compositional similarity in both habitat types. However, conventional analyses of distance-decay masked a zone of increased species turnover present in the middle of the transect. We estimated past seed dispersal among the same communities by examining geographic plastid DNA variation for eight widespread Inga species and uncovered a population genetic break in the majority of species that is geographically coincident with the zone of increased species turnover. Analyses of these and 12 additional Inga species shared between two communities located on opposite sides of the zone showed that the populations experienced divergence 42,000-612,000 y ago. Our results suggest that the observed distance decay is the result not of environmental gradients or dispersal limitation coupled with ecological drift--as conventionally interpreted under neutral ecological theory--but rather of secondary contact between historically separated communities. Thus, even at this small spatial scale, historical processes seem to significantly impact species' distributions and community assembly. Other documented zones of increased species turnover found in the western Amazon basin or elsewhere may be related to similar historical processes.
Collapse
Affiliation(s)
- Kyle G. Dexter
- Biology Department, University Program in Genetics and Genomics and
| | - John W. Terborgh
- Center for Tropical Conservation, Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708
| | | |
Collapse
|
45
|
|
46
|
|
47
|
Arca M, Hinsinger DD, Cruaud C, Tillier A, Bousquet J, Frascaria-Lacoste N. Deciduous trees and the application of universal DNA barcodes: a case study on the circumpolar Fraxinus. PLoS One 2012; 7:e34089. [PMID: 22479532 PMCID: PMC3313964 DOI: 10.1371/journal.pone.0034089] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/21/2012] [Indexed: 02/01/2023] Open
Abstract
The utility of DNA barcoding for identifying representative specimens of the circumpolar tree genus Fraxinus (56 species) was investigated. We examined the genetic variability of several loci suggested in chloroplast DNA barcode protocols such as matK, rpoB, rpoC1 and trnH-psbA in a large worldwide sample of Fraxinus species. The chloroplast intergenic spacer rpl32-trnL was further assessed in search for a potentially variable and useful locus. The results of the study suggest that the proposed cpDNA loci, alone or in combination, cannot fully discriminate among species because of the generally low rates of substitution in the chloroplast genome of Fraxinus. The intergenic spacer trnH-psbA was the best performing locus, but genetic distance-based discrimination was moderately successful and only resulted in the separation of the samples at the subgenus level. Use of the BLAST approach was better than the neighbor-joining tree reconstruction method with pairwise Kimura's two-parameter rates of substitution, but allowed for the correct identification of only less than half of the species sampled. Such rates are substantially lower than the success rate required for a standardised barcoding approach. Consequently, the current cpDNA barcodes are inadequate to fully discriminate Fraxinus species. Given that a low rate of substitution is common among the plastid genomes of trees, the use of the plant cpDNA "universal" barcode may not be suitable for the safe identification of tree species below a generic or sectional level. Supplementary barcoding loci of the nuclear genome and alternative solutions are proposed and discussed.
Collapse
Affiliation(s)
- Mariangela Arca
- Université Paris Sud, UMR 8079, Orsay, France
- Centre national de la recherche scientifique, UMR 8079, Orsay, France
- AgroParisTech, UMR 8079, Orsay, France
| | - Damien Daniel Hinsinger
- Université Paris Sud, UMR 8079, Orsay, France
- Centre national de la recherche scientifique, UMR 8079, Orsay, France
- AgroParisTech, UMR 8079, Orsay, France
- Chaire de recherche du Canada en génomique forestière et environnementale, Centre d'étude de la forêt, Université Laval, Québec, Québec, Canada
| | | | - Annie Tillier
- Département systématique et évolution and Service de systématique moléculaire, Muséum national d'histoire naturelle, Paris, France
| | - Jean Bousquet
- Chaire de recherche du Canada en génomique forestière et environnementale, Centre d'étude de la forêt, Université Laval, Québec, Québec, Canada
| | - Nathalie Frascaria-Lacoste
- Université Paris Sud, UMR 8079, Orsay, France
- Centre national de la recherche scientifique, UMR 8079, Orsay, France
- AgroParisTech, UMR 8079, Orsay, France
| |
Collapse
|
48
|
Kane N, Sveinsson S, Dempewolf H, Yang JY, Zhang D, Engels JMM, Cronk Q. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. AMERICAN JOURNAL OF BOTANY 2012; 99:320-9. [PMID: 22301895 DOI: 10.3732/ajb.1100570] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
PREMISE OF STUDY To reliably identify lineages below the species level such as subspecies or varieties, we propose an extension to DNA-barcoding using next-generation sequencing to produce whole organellar genomes and substantial nuclear ribosomal sequence. Because this method uses much longer versions of the traditional DNA-barcoding loci in the plastid and ribosomal DNA, we call our approach ultra-barcoding (UBC). METHODS We used high-throughput next-generation sequencing to scan the genome and generate reliable sequence of high copy number regions. Using this method, we examined whole plastid genomes as well as nearly 6000 bases of nuclear ribosomal DNA sequences for nine genotypes of Theobroma cacao and an individual of the related species T. grandiflorum, as well as an additional publicly available whole plastid genome of T. cacao. KEY RESULTS All individuals of T. cacao examined were uniquely distinguished, and evidence of reticulation and gene flow was observed. Sequence variation was observed in some of the canonical barcoding regions between species, but other regions of the chloroplast were more variable both within species and between species, as were ribosomal spacers. Furthermore, no single region provides the level of data available using the complete plastid genome and rDNA. CONCLUSIONS Our data demonstrate that UBC is a viable, increasingly cost-effective approach for reliably distinguishing varieties and even individual genotypes of T. cacao. This approach shows great promise for applications where very closely related or interbreeding taxa must be distinguished.
Collapse
Affiliation(s)
- Nolan Kane
- Department of Botany, University of British Columbia, Vancouver BC, Canada V6T 1Z4.
| | | | | | | | | | | | | |
Collapse
|
49
|
van Velzen R, Weitschek E, Felici G, Bakker FT. DNA barcoding of recently diverged species: relative performance of matching methods. PLoS One 2012; 7:e30490. [PMID: 22272356 PMCID: PMC3260286 DOI: 10.1371/journal.pone.0030490] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 12/22/2011] [Indexed: 12/23/2022] Open
Abstract
Recently diverged species are challenging for identification, yet they are frequently of special interest scientifically as well as from a regulatory perspective. DNA barcoding has proven instrumental in species identification, especially in insects and vertebrates, but for the identification of recently diverged species it has been reported to be problematic in some cases. Problems are mostly due to incomplete lineage sorting or simply lack of a 'barcode gap' and probably related to large effective population size and/or low mutation rate. Our objective was to compare six methods in their ability to correctly identify recently diverged species with DNA barcodes: neighbor joining and parsimony (both tree-based), nearest neighbor and BLAST (similarity-based), and the diagnostic methods DNA-BAR, and BLOG. We analyzed simulated data assuming three different effective population sizes as well as three selected empirical data sets from published studies. Results show, as expected, that success rates are significantly lower for recently diverged species (∼75%) than for older species (∼97%) (P<0.00001). Similarity-based and diagnostic methods significantly outperform tree-based methods, when applied to simulated DNA barcode data (P<0.00001). The diagnostic method BLOG had highest correct query identification rate based on simulated (86.2%) as well as empirical data (93.1%), indicating that it is a consistently better method overall. Another advantage of BLOG is that it offers species-level information that can be used outside the realm of DNA barcoding, for instance in species description or molecular detection assays. Even though we can confirm that identification success based on DNA barcoding is generally high in our data, recently diverged species remain difficult to identify. Nevertheless, our results contribute to improved solutions for their accurate identification.
Collapse
Affiliation(s)
- Robin van Velzen
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
50
|
Tänzler R, Sagata K, Surbakti S, Balke M, Riedel A. DNA barcoding for community ecology--how to tackle a hyperdiverse, mostly undescribed Melanesian fauna. PLoS One 2012; 7:e28832. [PMID: 22253699 PMCID: PMC3258243 DOI: 10.1371/journal.pone.0028832] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/15/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Trigonopterus weevils are widely distributed throughout Melanesia and hyperdiverse in New Guinea. They are a dominant feature in natural forests, with narrow altitudinal zonation. Their use in community ecology has been precluded by the "taxonomic impediment". METHODOLOGY/PRINCIPAL FINDINGS We sampled >6,500 specimens from seven areas across New Guinea; 1,002 specimens assigned to 270 morphospecies were DNA sequenced. Objective clustering of a refined dataset (excluding nine cryptic species) at 3% threshold revealed 324 genetic clusters (DNA group count relative to number of morphospecies = 20.0% overestimation of species diversity, or 120.0% agreement) and 85.6% taxonomic accuracy (the proportion of DNA groups that "perfectly" agree with morphology-based species hypotheses). Agreement and accuracy were best at an 8% threshold. GMYC analysis revealed 328 entities (21.5% overestimation) with 227 perfect GMYC entities (84.1% taxonomic accuracy). Both methods outperform the parataxonomist (19% underestimation; 31.6% taxonomic accuracy). The number of species found in more than one sampling area was highest in the Eastern Highlands and Huon (Sørensen similarity index 0.07, 4 shared species); ⅓ of all areas had no species overlap. Success rates of DNA barcoding methods were lowest when species showed a pronounced geographical structure. In general, Trigonopterus show high α and β-diversity across New Guinea. CONCLUSIONS/SIGNIFICANCE DNA barcoding is an excellent tool for biodiversity surveys but success rates might drop when closer localities are included. Hyperdiverse Trigonopterus are a useful taxon for evaluating forest remnants in Melanesia, allowing finer-grained analyses than would be possible with vertebrate taxa commonly used to date. Our protocol should help establish other groups of hyperdiverse fauna as target taxa for community ecology. Sequencing delivers objective data on taxa of incredible diversity but mostly without a solid taxonomic foundation and should help pave the road for the eventual formal naming of new species.
Collapse
Affiliation(s)
- Rene Tänzler
- Department of Entomology, Zoologische Staatssammlung, Munich, Germany
| | - Katayo Sagata
- Papua New Guinea Institute for Biological Research, Goroka, Papua New Guinea
| | - Suriani Surbakti
- Department of Biology, Universitas Cendrawasih, Jayapura, Indonesia
| | - Michael Balke
- Department of Entomology, Zoologische Staatssammlung, Munich, Germany
- GeoBioCenter, Ludwig-Maximilians-University, Munich, Germany
| | - Alexander Riedel
- Department of Entomology, Staatliches Museum für Naturkunde, Karlsruhe, Germany
| |
Collapse
|