1
|
Benard MF, Burke DJ, Carrino-Kyker SR, Krynak K, Relyea RA. Effects of amphibian genetic diversity on ecological communities. Oecologia 2024; 205:655-667. [PMID: 39078484 DOI: 10.1007/s00442-024-05599-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
The amount of genetic diversity within a population can affect ecological processes at population, community, and ecosystem levels. However, the magnitude, consistency, and scope of these effects are largely unknown. To investigate these issues, we conducted two experiments manipulating the amount of genetic diversity and environmental factors in larval amphibians. The first experiment manipulated wood frog genetic diversity, the presence or absence of caged predators, and competition from leopard frogs to test whether these factors affected survival, growth, and morphology of wood frogs and leopard frogs. The second experiment manipulated wood frog genetic diversity, the presence or absence of uncaged predators, and resource abundance to test whether these factors affected wood frog traits (survival, morphology, growth, development, and behavior) and other components of the ecological community (zooplankton abundance, phytoplankton, periphyton, and bacterial community structure). Genetic diversity did not affect wood frog survival, growth, and development in either experiment. However, genetic diversity did affect the mean morphology of wood frog tadpoles in the first experiment and the abundance and distribution of zooplankton in the second experiment. It did not affect phytoplankton abundance, periphyton abundance, or bacterial community structure. While effect sizes (Cohen's d) of genetic diversity were approximately half those of environment treatments, the greatest effect sizes were for interaction effects between genetic diversity and environment. Our results indicate that genetic diversity can have a large effect on ecological processes, but the direction of those effects is highly dependent upon environmental conditions, and not easily predicted from simple measures of traits.
Collapse
Affiliation(s)
- Michael F Benard
- Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - David J Burke
- Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
- The Holden Arboretum, 9500 Sperry Road, Kirtland, OH, 44094, USA
| | | | - Katherine Krynak
- Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biological and Allied Health Sciences, Ohio Northern University, Ada, OH, USA
| | - Rick A Relyea
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
2
|
Faticov M, Abdelfattah A, Hambäck P, Roslin T, Tack AJM. Different spatial structure of plant-associated fungal communities above- and belowground. Ecol Evol 2023; 13:e10065. [PMID: 37223309 PMCID: PMC10200691 DOI: 10.1002/ece3.10065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/22/2023] [Indexed: 05/25/2023] Open
Abstract
The distribution and community assembly of above- and belowground microbial communities associated with individual plants remain poorly understood, despite its consequences for plant-microbe interactions and plant health. Depending on how microbial communities are structured, we can expect different effects of the microbial community on the health of individual plants and on ecosystem processes. Importantly, the relative role of different factors will likely differ with the scale examined. Here, we address the driving factors at a landscape level, where each individual unit (oak trees) is accessible to a joint species pool. This allowed to quantify the relative effect of environmental factors and dispersal on the distribution of two types of fungal communities: those associated with the leaves and those associated with the soil of Quercus robur trees in a landscape in southwestern Finland. Within each community type, we compared the role of microclimatic, phenological, and spatial variables, and across community types, we examined the degree of association between the respective communities. Most of the variation in the foliar fungal community was found within trees, whereas soil fungal community composition showed positive spatial autocorrelation up to 50 m. Microclimate, tree phenology, and tree spatial connectivity explained little variation in the foliar and soil fungal communities. Foliar and soil fungal communities differed strongly in community structure, with no significant concordance detected between them. We provide evidence that foliar and soil fungal communities assemble independent of each other and are structured by different ecological processes.
Collapse
Affiliation(s)
- Maria Faticov
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Département de biologieUniversité de SherbrookeSherbrookeQuebecCanada
| | - Ahmed Abdelfattah
- Leibniz Institute of Agricultural Engineering and Bio‐economyPotsdamGermany
| | - Peter Hambäck
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Tomas Roslin
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| |
Collapse
|
3
|
Carrión PL, Raeymaekers JAM, De León LF, Chaves JA, Sharpe DMT, Huber SK, Herrel A, Vanhooydonck B, Gotanda KM, Koop JAH, Knutie SA, Clayton DH, Podos J, Hendry AP. The terroir of the finch: How spatial and temporal variation shapes phenotypic traits in DARWIN'S finches. Ecol Evol 2022; 12:e9399. [PMID: 36225827 PMCID: PMC9534727 DOI: 10.1002/ece3.9399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
The term terroir is used in viticulture to emphasize how the biotic and abiotic characteristics of a local site influence grape physiology and thus the properties of wine. In ecology and evolution, such terroir (i.e., the effect of space or "site") is expected to play an important role in shaping phenotypic traits. Just how important is the pure spatial effect of terroir (e.g., differences between sites that persist across years) in comparison to temporal variation (e.g., differences between years that persist across sites), and the interaction between space and time (e.g., differences between sites change across years)? We answer this question by analyzing beak and body traits of 4388 medium ground finches (Geospiza fortis) collected across 10 years at three locations in Galápagos. Analyses of variance indicated that phenotypic variation was mostly explained by site for beak size (η 2 = 0.42) and body size (η 2 = 0.43), with a smaller contribution for beak shape (η 2 = 0.05) and body shape (η 2 = 0.12), but still higher compared to year and site-by-year effects. As such, the effect of terroir seems to be very strong in Darwin's finches, notwithstanding the oft-emphasized interannual variation. However, these results changed dramatically when we excluded data from Daphne Major, indicating that the strong effect of terroir was mostly driven by that particular population. These phenotypic results were largely paralleled in analyses of environmental variables (rainfall and vegetation indices) expected to shape terroir in this system. These findings affirm the evolutionary importance of terroir, while also revealing its dependence on other factors, such as geographical isolation.
Collapse
Affiliation(s)
- Paola L. Carrión
- Redpath Museum, Department of BiologyMcGill UniversityMontréalQuébecCanada
| | | | - Luis Fernando De León
- Department of BiologyUniversity of Massachusetts BostonBostonMassachusettsUSA
- Centro de Biodiversidad y Descubrimiento de DrogasInstituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT‐AIP)PanamáRepública de Panamá
- Smithsonian Tropical Research InstitutePanamáRepública de Panamá
| | - Jaime A. Chaves
- Department of BiologySan Francisco State UniversitySan FranciscoCaliforniaUSA
- Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de QuitoQuitoEcuador
| | - Diana M. T. Sharpe
- Smithsonian Tropical Research InstitutePanamáRepública de Panamá
- Worcester State UniversityWorcesterMassachusettsUSA
| | - Sarah K. Huber
- Virginia Institute of Marine ScienceCollege of William & MaryGloucester PointVirginiaUSA
| | - Anthony Herrel
- Muséum National d'Histoire NaturelleDépartement Adaptations du VivantBâtiment d'Anatomie ComparéeParisFrance
| | | | - Kiyoko M. Gotanda
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
- Departement de BiologieUniversite de SherbrookeQuebecCanada
| | - Jennifer A. H. Koop
- Department of Biological SciencesNorthern Illinois UniversityDeKalbIllinoisUSA
| | - Sarah A. Knutie
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsConnecticutUSA
| | - Dale H. Clayton
- School of Biological SciencesUniversity of UtahSalt Lake CityUtahUSA
| | - Jeffrey Podos
- Department of BiologyUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Andrew P. Hendry
- Redpath Museum, Department of BiologyMcGill UniversityMontréalQuébecCanada
| |
Collapse
|
4
|
Gaytán Á, Moreira X, Castagneyrol B, Van Halder I, De Frenne P, Meeussen C, Timmermans BGH, Ten Hoopen JPJG, Rasmussen PU, Bos N, Jaatinen R, Pulkkinen P, Söderlund S, Covelo F, Gotthard K, Tack AJM. The co-existence of multiple oak leaf flushes contributes to the large within-tree variation in chemistry, insect attack and pathogen infection. THE NEW PHYTOLOGIST 2022; 235:1615-1628. [PMID: 35514157 PMCID: PMC9545873 DOI: 10.1111/nph.18209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Many plant species produce multiple leaf flushes during the growing season, which might have major consequences for within-plant variation in chemistry and species interactions. Yet, we lack a theoretical or empirical framework for how differences among leaf flushes might shape variation in damage by insects and diseases. We assessed the impact of leaf flush identity on leaf chemistry, insect attack and pathogen infection on the pedunculate oak Quercus robur by sampling leaves from each leaf flush in 20 populations across seven European countries during an entire growing season. The first leaf flush had higher levels of primary compounds, and lower levels of secondary compounds, than the second flush, whereas plant chemistry was highly variable in the third flush. Insect attack decreased from the first to the third flush, whereas infection by oak powdery mildew was lowest on leaves from the first flush. The relationship between plant chemistry, insect attack and pathogen infection varied strongly among leaf flushes and seasons. Our findings demonstrate the importance of considering differences among leaf flushes for our understanding of within-tree variation in chemistry, insect attack and disease levels, something particularly relevant given the expected increase in the number of leaf flushes with climate change.
Collapse
Affiliation(s)
- Álvaro Gaytán
- Department of Ecology, Environment and Plant SciencesStockholm UniversitySvante Arrhenius väg 20AStockholmSweden
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG‐CSIC)Apdo. 2836080Pontevedra, GaliciaSpain
| | | | | | - Pieter De Frenne
- Forest & Nature LaboratoryGhent UniversityGeraardsbergsesteenweg 267BE‐9090Gontrode‐MelleBelgium
| | - Camille Meeussen
- Forest & Nature LaboratoryGhent UniversityGeraardsbergsesteenweg 267BE‐9090Gontrode‐MelleBelgium
| | - Bart G. H. Timmermans
- Department of AgricultureLouis Bolk InstituteKosterijland 3‐53981 AJBunnikthe Netherlands
| | | | - Pil U. Rasmussen
- The National Research Centre for the Working Environment2100CopenhagenDenmark
| | - Nick Bos
- Section for Ecology & EvolutionUniversity of Copenhagen2200CopenhagenDenmark
| | - Raimo Jaatinen
- Natural Resources Institute Finland, Haapastensyrjä Breeding StationFI‐16200LäyliäinenFinland
| | - Pertti Pulkkinen
- Natural Resources Institute Finland, Haapastensyrjä Breeding StationFI‐16200LäyliäinenFinland
| | - Sara Söderlund
- Department of Ecology, Environment and Plant SciencesStockholm UniversitySvante Arrhenius väg 20AStockholmSweden
| | - Felisa Covelo
- Departamento de Sistemas FísicosQuímicos y NaturalesUniversidad Pablo de OlavideCarretera de Utrera km. 141013SevilleSpain
| | - Karl Gotthard
- Department of ZoologyStockholm UniversitySvante Arrhenius väg 18BSE‐106 91StockholmSweden
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant SciencesStockholm UniversitySvante Arrhenius väg 20AStockholmSweden
| |
Collapse
|
5
|
van Dijk LJA, Ehrlén J, Tack AJM. The relationship between pathogen life-history traits and metapopulation dynamics. THE NEW PHYTOLOGIST 2022; 233:2585-2598. [PMID: 34997974 PMCID: PMC9306763 DOI: 10.1111/nph.17948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Plant pathogen traits, such as transmission mode and overwintering strategy, may have important effects on dispersal and persistence, and drive disease dynamics. Still, we lack insights into how life-history traits influence spatiotemporal disease dynamics. We adopted a multifaceted approach, combining experimental assays, theory and field surveys, to investigate whether information about two pathogen life-history traits - infectivity and overwintering strategy - can predict pathogen metapopulation dynamics in natural systems. For this, we focused on four fungal pathogens (two rust fungi, one chytrid fungus and one smut fungus) on the forest herb Anemone nemorosa. Pathogens infecting new plants mostly via spores (the chytrid and smut fungi) had higher patch occupancies and colonization rates than pathogens causing mainly systemic infections and overwintering in the rhizomes (the two rust fungi). Although the rust fungi more often occupied well-connected plant patches, the chytrid and smut fungi were equally or more common in isolated patches. Host patch size was positively related to patch occupancy and colonization rates for all pathogens. Predicting disease dynamics is crucial for understanding the ecological and evolutionary dynamics of host-pathogen interactions, and to prevent disease outbreaks. Our study shows that combining experiments, theory and field observations is a useful way to predict disease dynamics.
Collapse
Affiliation(s)
- Laura J. A. van Dijk
- Department of Ecology, Environment and Plant SciencesStockholm UniversitySE‐106 91StockholmSweden
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant SciencesStockholm UniversitySE‐106 91StockholmSweden
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant SciencesStockholm UniversitySE‐106 91StockholmSweden
| |
Collapse
|
6
|
Ekholm A, Faticov M, Tack AJM, Berger J, Stone GN, Vesterinen E, Roslin T. Community phenology of insects on oak: local differentiation along a climatic gradient. Ecosphere 2021. [DOI: 10.1002/ecs2.3785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Adam Ekholm
- Department of Ecology Swedish University of Agricultural Sciences Box 7044 Uppsala SE‐750 07 Sweden
| | - Maria Faticov
- Department of Ecology, Environment and Plant Sciences Stockholm University Svante Arrhenius väg 20A Stockholm Sweden
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant Sciences Stockholm University Svante Arrhenius väg 20A Stockholm Sweden
| | - Josef Berger
- Department of Biology Biodiversity Unit Lund University Sölvegatan 37 Lund 22362 Sweden
| | - Graham N. Stone
- Institute of Evolutionary Biology University of Edinburgh Edinburgh EH9 3FL United Kingdom
| | - Eero Vesterinen
- Department of Ecology Swedish University of Agricultural Sciences Box 7044 Uppsala SE‐750 07 Sweden
- Department of Biology University of Turku Vesilinnantie 5 Turku FI‐20014 Finland
| | - Tomas Roslin
- Department of Ecology Swedish University of Agricultural Sciences Box 7044 Uppsala SE‐750 07 Sweden
| |
Collapse
|
7
|
Kennedy JP, Antwis RE, Preziosi RF, Rowntree JK. Evidence for the genetic similarity rule at an expanding mangrove range limit. AMERICAN JOURNAL OF BOTANY 2021; 108:1331-1342. [PMID: 34458987 DOI: 10.1002/ajb2.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Host-plant genetic variation can shape associated communities of organisms. These community-genetic effects include (1) genetically similar hosts harboring similar associated communities (i.e., the genetic similarity rule) and (2) host-plant heterozygosity increasing associated community diversity. Community-genetic effects are predicted to be less prominent in plant systems with limited genetic variation, such as those at distributional range limits. Yet, empirical evidence from such systems is limited. METHODS We sampled a natural population of a mangrove foundation species (Avicennia germinans) at an expanding range limit in Florida, USA. We measured genetic variation within and among 40 host trees with 24 nuclear microsatellite loci and characterized their foliar endophytic fungal communities with internal transcribed spacer (ITS1) gene amplicon sequencing. We evaluated relationships among host-tree genetic variation, host-tree spatial location, and the associated fungal communities. RESULTS Genetic diversity was low across all host trees (mean: 2.6 alleles per locus) and associated fungal communities were relatively homogeneous (five sequence variants represented 78% of all reads). We found (1) genetically similar host trees harbored similar fungal communities, with no detectable effect of interhost geographic distance. (2) Host-tree heterozygosity had no detectable effect, while host-tree absolute spatial location affected community alpha diversity. CONCLUSIONS This research supports the genetic similarity rule within a range limit population and helps broaden the current scope of community genetics theory by demonstrating that community-genetic effects can occur even at expanding distributional limits where host-plant genetic variation may be limited. Our findings also provide the first documentation of community-genetic effects in a natural mangrove system.
Collapse
Affiliation(s)
- John Paul Kennedy
- Ecology and Environment Research Centre, Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Rachael E Antwis
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Richard F Preziosi
- Ecology and Environment Research Centre, Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Jennifer K Rowntree
- Ecology and Environment Research Centre, Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
8
|
Abstract
With the process of urbanization, cities are expanding, while forests are declining. Many conditions in the urban habitats are modified compared to those in the rural ones, so the organisms present reactions to these changes. To determine to what extent the habitat type influences insects, we tested the differences in the pedunculate oak (Quercus robur L.) leaf-mining insect community between urban and rural habitats in Serbia. Lower species richness, abundance, and diversity were determined on trees in the urban environment. Due to the differences in the habitat types, many of the species disappeared, while most of the remaining species declined. The seasonal dynamics of species richness, abundance, and diversity differed between the habitat types. Both rural and urban populations started with low values in May. Subsequently, rural populations gained higher species richness, abundance, and diversity. As about 60% of the leaf miners’ species present in the rural habitats survive on the trees in urban areas, those trees are of great importance as a species reservoir. This is why we need to preserve and strive to improve the condition of urban areas where the pedunculate oak is present.
Collapse
|
9
|
van Dijk LJA, Ehrlén J, Tack AJM. The timing and asymmetry of plant-pathogen-insect interactions. Proc Biol Sci 2020; 287:20201303. [PMID: 32962544 PMCID: PMC7542815 DOI: 10.1098/rspb.2020.1303] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Insects and pathogens frequently exploit the same host plant and can potentially impact each other's performance. However, studies on plant–pathogen–insect interactions have mainly focused on a fixed temporal setting or on a single interaction partner. In this study, we assessed the impact of time of attacker arrival on the outcome and symmetry of interactions between aphids (Tuberculatus annulatus), powdery mildew (Erysiphe alphitoides), and caterpillars (Phalera bucephala) feeding on pedunculate oak, Quercus robur, and explored how single versus multiple attackers affect oak performance. We used a multifactorial greenhouse experiment in which oak seedlings were infected with either zero, one, two, or three attackers, with the order of attacker arrival differing among treatments. The performances of all involved organisms were monitored throughout the experiment. Overall, attackers had a weak and inconsistent impact on plant performance. Interactions between attackers, when present, were asymmetric. For example, aphids performed worse, but powdery mildew performed better, when co-occurring. Order of arrival strongly affected the outcome of interactions, and early attackers modified the strength and direction of interactions between later-arriving attackers. Our study shows that interactions between plant attackers can be asymmetric, time-dependent, and species specific. This is likely to shape the ecology and evolution of plant–pathogen–insect interactions.
Collapse
Affiliation(s)
- Laura J A van Dijk
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Greenspoon P, Wadhawan K. Colonization limitation of specialized enemies reduces species richness. THEOR ECOL-NETH 2020. [DOI: 10.1007/s12080-020-00474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Ekholm A, Tack AJM, Pulkkinen P, Roslin T. Host plant phenology, insect outbreaks and herbivore communities - The importance of timing. J Anim Ecol 2019; 89:829-841. [PMID: 31769502 DOI: 10.1111/1365-2656.13151] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/27/2019] [Indexed: 01/19/2023]
Abstract
Climate change may alter the dynamics of outbreak species by changing the phenological synchrony between herbivores and their host plants. As host plant phenology has a genotypic component that may interact with climate, infestation levels among genotypes might change accordingly. When the outbreaking herbivore is active early in the season, its infestation levels may also leave a detectable imprint on herbivores colonizing the plant later in the season. In this study, we first investigated how the spring phenology and genotype of Quercus robur influenced the density of the spring-active, outbreaking leaf miner Acrocercops brongniardellus. We then assessed how intraspecific density affected the performance of A. brongniardellus and how oak genotype and density of A. brongniardellus affected the insect herbivore community. We found that Q. robur individuals of late spring phenology were more strongly infested by A. brongniardellus. Conspecific pupae on heavily infested oaks tended to be lighter, and fewer heterospecific insect herbivores colonized the oak later in the season. Beyond its effects through phenology, plant genotype left an imprint on herbivore species richness and on two insect herbivores. Our results suggest a chain of knock-on effects from plant phenology, through the outbreaking species to the insect herbivore community. Given the finding of how phenological synchrony between the outbreak species and its host plant influences infestation levels, a shift in synchrony may then change outbreak dynamics and cause cascading effects on the insect community.
Collapse
Affiliation(s)
- Adam Ekholm
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
12
|
Faticov M, Ekholm A, Roslin T, Tack AJM. Climate and host genotype jointly shape tree phenology, disease levels and insect attacks. OIKOS 2019. [DOI: 10.1111/oik.06707] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Maria Faticov
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ. Stockholm Sweden
| | - Adam Ekholm
- Dept of Ecology, Swedish Univ. of Agricultural Sciences Uppsala Sweden
| | - Tomas Roslin
- Dept of Ecology, Swedish Univ. of Agricultural Sciences Uppsala Sweden
| | - Ayco J. M. Tack
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ. Stockholm Sweden
| |
Collapse
|
13
|
Moreira X, Vázquez-González C, Encinas-Valero M, Covelo F, Castagneyrol B, Abdala-Roberts L. Greater phylogenetic distance from native oaks predicts escape from insect leaf herbivores by non-native oak saplings. AMERICAN JOURNAL OF BOTANY 2019; 106:1202-1209. [PMID: 31449333 DOI: 10.1002/ajb2.1343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Non-native plant species have been hypothesized to experience lower herbivory in novel environments as a function of their phylogenetic distance from native plant species. Although recent work has found support for this prediction, the plant traits responsible for such patterns have been largely overlooked. METHODS In a common garden experiment in northwestern Spain, we tested whether oak species (Quercus spp.) not native to this region that are phylogenetically more distantly related to native species exhibit less insect leaf herbivory. In addition, we also investigated plant traits potentially correlated with any such effect of phylogenetic distance. RESULTS As expected, phylogenetic distance from native species negatively predicted insect leaf herbivory on non-native oaks. In addition, we found that the leaf traits, namely phosphorus and condensed tannins, were significantly associated with herbivory, suggesting that they are associated with the effect of phylogenetic distance on leaf herbivory on non-native oak species. CONCLUSIONS This study contributes to a better understanding of how evolutionary relationships (relatedness) between native and non-native plant species determine the latter's success in novel environments via locally shared enemies, and encourages more work investigating the plant traits that mediate the effects of phylogenetic distance on enemy escape.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, 36080, Pontevedra, Galicia, Spain
| | | | | | - Felisa Covelo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013, Sevilla, Spain
| | | | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, México
| |
Collapse
|
14
|
Pihain M, Gerhold P, Ducousso A, Prinzing A. Evolutionary response to coexistence with close relatives: increased resistance against specialist herbivores without cost for climatic-stress resistance. Ecol Lett 2019; 22:1285-1296. [PMID: 31172652 DOI: 10.1111/ele.13285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/02/2019] [Accepted: 03/08/2019] [Indexed: 01/25/2023]
Abstract
Why can hosts coexist with conspecifics or phylogenetically proximate neighbours despite sharing specialist enemies? Do the hosts evolve increased enemy resistance? If so, does this have costs in terms of climatic-stress resistance, or in such neighbourhoods, does climatic-stress select for resistances that are multifunctional against climate and enemies? We studied oak (Quercus petraea) descendants from provenances of contrasting phylogenetic neighbourhoods and climates in a 25-year-old common garden. We found that descendants from conspecific or phylogenetically proximate neighbourhoods had the toughest leaves and fewest leaf miners, but no reduction in climatic-stress resistance. Descendants from such neighbourhoods under cold or dry climates had the highest flavonol and anthocyanin levels and the thickest leaves. Overall, populations facing phylogenetically proximate neighbours can rapidly evolve herbivore resistance, without cost to climatic-stress resistance, but possibly facilitating resistance against cold and drought via multifunctional traits. Microevolution might hence facilitate ecological coexistence of close relatives and thereby macroevolutionary conservatism of niches.
Collapse
Affiliation(s)
- Mickael Pihain
- Research Unit "Ecosystèmes, Biodiversité, Evolution", University of Rennes 1 / CNRS, 35042, Rennes, France.,Institute of Ecology and Earth Sciences, University of Tartu, 51014, Tartu, Estonia
| | - Pille Gerhold
- Institute of Ecology and Earth Sciences, University of Tartu, 51014, Tartu, Estonia
| | - Alexis Ducousso
- BIOGECO, INRA, Université de Bordeaux, 33610, Cestas, France
| | - Andreas Prinzing
- Research Unit "Ecosystèmes, Biodiversité, Evolution", University of Rennes 1 / CNRS, 35042, Rennes, France
| |
Collapse
|
15
|
Galmán A, Petry WK, Abdala-Roberts L, Butrón A, de la Fuente M, Francisco M, Kergunteuil A, Rasmann S, Moreira X. Inducibility of chemical defences in young oak trees is stronger in species with high elevational ranges. TREE PHYSIOLOGY 2019; 39:606-614. [PMID: 30597091 DOI: 10.1093/treephys/tpy139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/20/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Elevational gradients have been highly useful for understanding the underlying forces driving variation in plant traits and plant-insect herbivore interactions. A widely held view from these studies has been that greater herbivory under warmer and less variable climatic conditions found at low elevations has resulted in stronger herbivore selection on plant defences. However, this prediction has been called into question by conflicting empirical evidence, which could be explained by a number of causes such as an incomplete assessment of defensive strategies (ignoring other axes of defence such as defence inducibility) or unaccounted variation in abiotic factors along elevational clines. We conducted a greenhouse experiment testing for inter-specific variation in constitutive leaf chemical defences (phenolic compounds) and their inducibility in response to feeding by gypsy moth larvae (Lymantria dispar L., Lepidoptera) using saplings of 18 oak (Quercus, Fagaceae) species. These species vary in their elevational distribution and together span >2400 m in elevation, therefore allowing us to test for among-species elevational clines in defences based on the elevational range of each species. In addition, we further tested for elevational gradients in the correlated expression of constitutive defences and their inducibility and for associations between defences and climatic factors potentially underlying elevational gradients in defences. Our results showed that oak species with high elevational ranges exhibited a greater inducibility of phenolic compounds (hydrolysable tannins), but this gradient was not accounted for by climatic predictors. In contrast, constitutive defences and the correlated expression of constitutive phenolics and their inducibility did not exhibit elevational clines. Overall, this study builds towards a more robust and integrative understanding of how multivariate plant defensive phenotypes vary along ecological gradients and their underlying abiotic drivers.
Collapse
Affiliation(s)
- Andrea Galmán
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, Spain
| | - William K Petry
- Institute of Integrative Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Universitätstrasse 16, Zurich, Switzerland
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, Mérida, Yucatán, México
| | - Ana Butrón
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, Spain
| | - María de la Fuente
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, Spain
| | - Marta Francisco
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, Spain
| | - Alan Kergunteuil
- Institute of Biology, Laboratory of Functional Ecology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, Switzerland
| | - Sergio Rasmann
- Institute of Biology, Laboratory of Functional Ecology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, Switzerland
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, Spain
| |
Collapse
|
16
|
Raffard A, Santoul F, Cucherousset J, Blanchet S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis. Biol Rev Camb Philos Soc 2018; 94:648-661. [PMID: 30294844 DOI: 10.1111/brv.12472] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
Understanding the relationships between biodiversity and ecosystem functioning has major implications. Biodiversity-ecosystem functioning relationships are generally investigated at the interspecific level, although intraspecific diversity (i.e. within-species diversity) is increasingly perceived as an important ecological facet of biodiversity. Here, we provide a quantitative and integrative synthesis testing, across diverse plant and animal species, whether intraspecific diversity is a major driver of community dynamics and ecosystem functioning. We specifically tested (i) whether the number of genotypes/phenotypes (i.e. intraspecific richness) or the specific identity of genotypes/phenotypes (i.e. intraspecific variation) in populations modulate the structure of communities and the functioning of ecosystems, (ii) whether the ecological effects of intraspecific richness and variation are strong in magnitude, and (iii) whether these effects vary among taxonomic groups and ecological responses. We found a non-linear relationship between intraspecific richness and community and ecosystem dynamics that follows a saturating curve shape, as observed for biodiversity-function relationships measured at the interspecific level. Importantly, intraspecific richness modulated ecological dynamics with a magnitude that was equal to that previously reported for interspecific richness. Our results further confirm, based on a database containing more than 50 species, that intraspecific variation also has substantial effects on ecological dynamics. We demonstrated that the effects of intraspecific variation are twice as high as expected by chance, and that they might have been underestimated previously. Finally, we found that the ecological effects of intraspecific variation are not homogeneous and are actually stronger when intraspecific variation is manipulated in primary producers than in consumer species, and when they are measured at the ecosystem rather than at the community level. Overall, we demonstrated that the two facets of intraspecific diversity (richness and variation) can both strongly affect community and ecosystem dynamics, which reveals the pivotal role of within-species biodiversity for understanding ecological dynamics.
Collapse
Affiliation(s)
- Allan Raffard
- CNRS, Station d'Écologie Théorique et Expérimentale du CNRS à Moulis UMR-5321, Université Toulouse III Paul Sabatier, 2 route du CNRS, F-09200, Moulis, France.,EcoLab, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Frédéric Santoul
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Julien Cucherousset
- CNRS, IRD, UPS, Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| | - Simon Blanchet
- CNRS, Station d'Écologie Théorique et Expérimentale du CNRS à Moulis UMR-5321, Université Toulouse III Paul Sabatier, 2 route du CNRS, F-09200, Moulis, France.,CNRS, IRD, UPS, Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| |
Collapse
|
17
|
Moreira X, Abdala-Roberts L, Berny Mier y Teran JC, Covelo F, de la Mata R, Francisco M, Hardwick B, Pires RM, Roslin T, Schigel DS, ten Hoopen JPJG, Timmermans BGH, van Dijk LJA, Castagneyrol B, Tack AJM. Impacts of urbanization on insect herbivory and plant defences in oak trees. OIKOS 2018. [DOI: 10.1111/oik.05497] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, ES-36080 Pontevedra; Galicia Spain
| | - Luis Abdala-Roberts
- Depto de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Univ; Autόnoma de Yucatán Mérida Yucatán México
| | | | - Felisa Covelo
- Depto de Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide; Sevilla Spain
| | - Raúl de la Mata
- Research Inst. of Food Technology and Agriculture-IRTA; Caldes de Montbui Spain
| | - Marta Francisco
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, ES-36080 Pontevedra; Galicia Spain
| | - Bess Hardwick
- Dept of Agricultural Sciences, Univ. of Helsinki; Helsinki Finland
| | - Ricardo Matheus Pires
- Inst. de Botânica de São Paulo, Núcleo de Pesquisa em Micologia; São Paulo SP Brasil
| | - Tomas Roslin
- Dept of Agricultural Sciences, Univ. of Helsinki; Helsinki Finland
- Dept of Ecology, Swedish Univ. of Agricultural Sciences; Uppsala Sweden
| | - Dmitry S. Schigel
- Dept of Biosciences, Faculty of Biological and Environmental Sciences, Univ. of Helsinki; Helsinki Finland
| | | | | | - Laura J. A. van Dijk
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ; Stockholm Sweden
| | | | - Ayco J. M. Tack
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ; Stockholm Sweden
| |
Collapse
|
18
|
Gripenberg S. Do pre-dispersal insect seed predators contribute to maintaining tropical forest plant diversity? Biotropica 2018. [DOI: 10.1111/btp.12602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Sakata Y, Craig TP, Itami JK, Ikemoto M, Utsumi S, Ohgushi T. Evolutionary and environmental effects on the geographical adaptation of herbivory resistance in native and introduced Solidago altissima populations. Evol Ecol 2018. [DOI: 10.1007/s10682-018-9954-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Kagiya S, Yasugi M, Kudoh H, Nagano AJ, Utsumi S. Does genomic variation in a foundation species predict arthropod community structure in a riparian forest? Mol Ecol 2018; 27:1284-1295. [PMID: 29508497 DOI: 10.1111/mec.14515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 01/15/2023]
Abstract
Understanding how genetic variation within a foundation species determines the structure of associated communities and ecosystem processes has been an emerging frontier in ecology. Previous studies in common gardens identified close links between intraspecific variation and multispecies community structure, and these findings are now being evaluated directly in the complex natural ecosystem. In this study, we examined to what extent genomic variation in a foundation tree species explains the structure of associated arthropod communities in the field, comparing with spatial, temporal and environmental factors. In a continuous mixed forest, arthropods were surveyed on 85 mature alders (Alnus hirsuta) in 2 years. Moreover, we estimated Nei's genetic distance among the alders based on 1,077 single nucleotide polymorphisms obtained from restricted-site-associated DNA sequencing of the alders' genome. In both years, we detected significant correlations between genetic distance and dissimilarity of arthropod communities. A generalized dissimilarity modelling indicated that the genetic distance of alder populations was the most important predictor to explain the variance of arthropod communities. Among arthropod functional groups, carnivores were consistently correlated with genetic distance of the foundation species in both years. Furthermore, the extent of year-to-year changes in arthropod communities was more similar between more genetically closed alder populations. This study demonstrates that the genetic similarity rule would be primarily prominent in community assembly of plant-associated arthropods under temporally and spatially variable environments in the field.
Collapse
Affiliation(s)
- Shinnosuke Kagiya
- Graduate School of Environmental Science, Hokkaido University, Nayoro, Japan
| | - Masaki Yasugi
- Laboratory of Neurophysiology, National Institute for Basic Biology, Okazaki, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | | | - Shunsuke Utsumi
- Uryu Experimental Forest, Field Science Center of Northern Biosphere, Hokkaido University, Horokanai, Hokkaido, Japan
| |
Collapse
|
21
|
Valencia-Cuevas L, Mussali-Galante P, Cano-Santana Z, Pujade-Villar J, Equihua-Martínez A, Tovar-Sánchez E. Genetic variation in foundation species governs the dynamics of trophic interactions. Curr Zool 2018; 64:13-22. [PMID: 29492034 PMCID: PMC5809035 DOI: 10.1093/cz/zox015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 10/11/2016] [Accepted: 02/27/2017] [Indexed: 11/25/2022] Open
Abstract
Various studies have demonstrated that the foundation species genetic diversity can have direct effects that extend beyond the individual or population level, affecting the dependent communities. Additionally, these effects may be indirectly extended to higher trophic levels throughout the entire community. Quercus castanea is an oak species with characteristics of foundation species beyond presenting a wide geographical distribution and being a dominant element of Mexican temperate forests. In this study, we analyzed the influence of population (He) and individual (HL) genetic diversity of Q. castanea on its canopy endophagous insect community and associated parasitoids. Specifically, we studied the composition, richness (S) and density of leaf-mining moths (Lepidoptera: Tischeridae, Citheraniidae), gall-forming wasps (Hymenoptera: Cynipidae), and canopy parasitoids of Q. castanea. We sampled 120 trees belonging to six populations (20/site) through the previously recognized gradient of genetic diversity. In total, 22 endophagous insect species belonging to three orders (Hymenoptera, Lepidoptera, and Diptera) and 20 parasitoid species belonging to 13 families were identified. In general, we observed that the individual genetic diversity of the host plant (HL) has a significant positive effect on the S and density of the canopy endophagous insect communities. In contrast, He has a significant negative effect on the S of endophagous insects. Additionally, indirect effects of HL were observed, affecting the S and density of parasitoid insects. Our results suggest that genetic variation in foundation species can be one of the most important factors governing the dynamics of tritrophic interactions that involve oaks, herbivores, and parasitoids.
Collapse
Affiliation(s)
- Leticia Valencia-Cuevas
- Laboratorio de Marcadores Moleculares, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62209, México
| | - Patricia Mussali-Galante
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62209, México
| | - Zenón Cano-Santana
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Delegación Coyoacán, DF 04510, México
| | - Juli Pujade-Villar
- Departamento de Biología Animal, Universitat de Barcelona, Facultat de Biología, Av. Diagonal, 645, Barcelona 08028, España
| | | | - Efraín Tovar-Sánchez
- Laboratorio de Marcadores Moleculares, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62209, México
| |
Collapse
|
22
|
Nell CS, Meza-Lopez MM, Croy JR, Nelson AS, Moreira X, Pratt JD, Mooney KA. Relative effects of genetic variation sensu lato and sexual dimorphism on plant traits and associated arthropod communities. Oecologia 2018; 187:389-400. [PMID: 29354878 DOI: 10.1007/s00442-018-4065-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/08/2018] [Indexed: 11/28/2022]
Abstract
Intraspecific plant trait variation can have cascading effects on plant-associated biotic communities. Sexual dimorphism is an important axis of genetic variation in dioecious plants, but the strength of such effects and the underlying mechanisms relative to genetic variation are unknown. We established a common garden with 39 genotypes of Baccharis salicifolia sampled from a single population that included male and female genotypes and measured plant traits and quantified associated arthropod communities. Genetic variation sensu lato (genotypic variation) had strong effects on most plant traits (flower number, relative growth rate, specific leaf area, percent water content, carbon-nitrogen ratio, monoterpene but not sesquiterpene concentrations) and on herbivore and predator density, and on arthropod community composition (relative abundance of 14 orders). In contrast, sexual dimorphism had weaker effects on only a few plant traits (flower number and relative growth rate), on predator density, and on arthropod community composition, but had no effect on herbivore density. Variation in flower number drove genetic variation sensu lato and sex dimorphism in predator density and arthropod community composition. There was unique genetic variation sensu lato in herbivore density (positively) associated with monoterpene concentration and in arthropod community composition associated with specific leaf area and carbon-nitrogen ratio. There was unique sexual dimorphism in arthropod community composition associated with plant relative growth rate. Together, these results demonstrate that genetic variation sensu lato and sexual dimorphism can shape plant-associated arthropod communities via both parallel and unique mechanisms, with greater overall effects of the former.
Collapse
Affiliation(s)
- Colleen S Nell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Maria M Meza-Lopez
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Jordan R Croy
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Annika S Nelson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Xoaquín Moreira
- Biological Mission of Galicia (MBG-CSIC), Apdo. 28, 36080, Pontevedra, Galicia, Spain
| | - Jessica D Pratt
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA.
| |
Collapse
|
23
|
Ekholm A, Roslin T, Pulkkinen P, Tack AJM. Dispersal, host genotype and environment shape the spatial dynamics of a parasite in the wild. Ecology 2017; 98:2574-2584. [DOI: 10.1002/ecy.1949] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/06/2017] [Accepted: 07/10/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Adam Ekholm
- Department of Ecology; Swedish University of Agricultural Sciences; Box 7044 Uppsala SE-750 07 Sweden
| | - Tomas Roslin
- Department of Ecology; Swedish University of Agricultural Sciences; Box 7044 Uppsala SE-750 07 Sweden
- Department of Agricultural Sciences; University of Helsinki; PO Box 27, Latokartanonkaari 5 Helsinki FI-00014 Finland
| | - Pertti Pulkkinen
- Haapastensyrjä Unit; Natural Resources Institute Finland; Haapastensyrjäntie 34 Läyliäinen FI-12600 Finland
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant Sciences; Stockholm University; Svante Arrhenius väg 20A Stockholm Sweden
| |
Collapse
|
24
|
Abstract
Plant ontogenetic stage and features of surrounding plant neighbourhoods can strongly influence herbivory and defences on focal plants. However, the effects of both factors have been assessed independently in previous studies. Here we tested for the independent and interactive effects of neighbourhood type (low vs. high frequency of our focal plant species in heterospecific stands) and ontogeny on leaf herbivory, physical traits and chemical defences of the English oak Quercus robur. We further tested whether plant traits were associated with neighbourhood and ontogenetic effects on herbivory. We found that leaf herbivory decreased in stands with a low frequency of Q. robur, and that saplings received less herbivory than adult trees. Interestingly, we also found interactive effects of these factors where a difference in damage between saplings and adult trees was only observed in stands with a high frequency of Q. robur. We also found strong ontogenetic differences in leaf traits where saplings had more defended leaves than adult trees, and this difference in turn explained ontogenetic differences in herbivory. Plant trait variation did not explain the neighbourhood effect on herbivory. This study builds towards a better understanding of the concurrent effects of plant individual- and community-level characteristics influencing plant-herbivore interactions.
Collapse
|
25
|
Stephan JG, Stenberg JA, Björkman C. Consumptive and nonconsumptive effect ratios depend on interaction between plant quality and hunting behavior of omnivorous predators. Ecol Evol 2017; 7:2327-2339. [PMID: 28405296 PMCID: PMC5383501 DOI: 10.1002/ece3.2828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 12/05/2022] Open
Abstract
Predators not only consume prey but exert nonconsumptive effects in form of scaring, consequently disturbing feeding or reproduction. However, how alternative food sources and hunting mode interactively affect consumptive and nonconsumptive effects with implications for prey fitness have not been addressed, impending functional understanding of such tritrophic interactions. With a herbivorous beetle, two omnivorous predatory bugs (plant sap as alternative food, contrasting hunting modes), and four willow genotypes (contrasting suitability for beetle/omnivore), we investigated direct and indirect effects of plant quality on the beetles key reproductive traits (oviposition rate, clutch size). Using combinations of either or both omnivores on different plant genotypes, we calculated the contribution of consumptive (eggs predated) and nonconsumptive (fewer eggs laid) effect on beetle fitness, including a prey density‐independent measure (c:nc ratio). We found that larger clutches increase egg survival in presence of the omnivore not immediately consuming all eggs. However, rather than lowering mean, the beetles generally responded with a frequency shift toward smaller clutches. However, female beetles decreased mean and changed clutch size frequency with decreasing plant quality, therefore reducing intraspecific exploitative competition among larvae. More importantly, variation in host plant quality (to omnivore) led to nonconsumptive effects between one‐third and twice as strong as the consumptive effects. Increased egg consumption on plants less suitable to the omnivore may therefore be accompanied by less searching and disturbing the beetle, representing a “cost” to the indirect plant defense in the form of a lower nonconsumptive effect. Many predators are omnivores and altering c:nc ratios (with egg retention as the most direct link to prey fitness) via plant quality and hunting behavior should be fundamental to advance ecological theory and applications. Furthermore, exploring modulation of fitness traits by bottom‐up and top‐down effects will help to explain how and why species aggregate.
Collapse
Affiliation(s)
- Jörg G. Stephan
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Johan A. Stenberg
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Christer Björkman
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
26
|
Stevenson CR, Davies C, Rowntree JK. Biodiversity in agricultural landscapes: The effect of apple cultivar on epiphyte diversity. Ecol Evol 2017; 7:1250-1258. [PMID: 28303193 PMCID: PMC5306003 DOI: 10.1002/ece3.2683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/19/2016] [Accepted: 11/20/2016] [Indexed: 12/04/2022] Open
Abstract
In natural systems, extended phenotypes of trees can be important in determining the species composition and diversity of associated communities. Orchards are productive systems where trees dominate, and can be highly biodiverse, but few studies have considered the importance of tree genetic background in promoting associated biodiversity. We tested the effect of apple cultivar (plant genetic background) on the diversity and composition of the associated epiphytic bryophyte community across a total of seven cultivars in five productive East Anglian orchards where each orchard contained two cultivars. Data were collected from 617 individual trees, over 5 years. Species richness and community composition were significantly influenced by both orchard and cultivar. Differences among orchards explained 16% of the variation in bryophyte community data, while cultivar explained 4%. For 13 of the 41 bryophyte species recorded, apple cultivar was an important factor in explaining their distribution. While the effects of cultivar were small, we were able to detect them at multiple levels of analysis. We provide evidence that extended phenotypes act in productive as well as natural systems. With issues of food security ranking high on the international agenda, it is important to understand the impact of production regimes on associated biodiversity. Our results can inform mitigation of this potential conflict.
Collapse
Affiliation(s)
| | | | - Jennifer K Rowntree
- Centre for the Genetics of Ecosystem Services Faculty of Life Sciences University of Manchester Manchester UK
| |
Collapse
|
27
|
David AS, Quiram GL, Sirota JI, Seabloom EW. Quantifying the associations between fungal endophytes and biocontrol-induced herbivory of invasive purple loosestrife (Lythrum salicariaL.). Mycologia 2017; 108:625-37. [DOI: 10.3852/15-207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 04/04/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Aaron S. David
- University of Minnesota, Department of Ecology, Evolution and Behavior, 1479 Gortner Avenue, Saint Paul, Minnesota 55108
| | - Gina L. Quiram
- University of Minnesota, College of Continuing Education, 1994 Buford Ave, Saint Paul, Minnesota 55108
| | - Jennie I. Sirota
- University of Minnesota, Natural Resources, Science and Management Program, 1530 Cleveland Avenue, Saint Paul, Minnesota 55108
| | - Eric W. Seabloom
- University of Minnesota, Department of Ecology, Evolution and Behavior, 1479 Gortner Avenue, Saint Paul, Minnesota 55108
| |
Collapse
|
28
|
Fernandez-Conradi P, Jactel H, Hampe A, Leiva MJ, Castagneyrol B. The effect of tree genetic diversity on insect herbivory varies with insect abundance. Ecosphere 2017. [DOI: 10.1002/ecs2.1637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Pilar Fernandez-Conradi
- Biogeco; INRA; University of Bordeaux; F-33610 Cestas France
- Departamento de Biología Vegetal y Ecología; Universidad de Sevilla; Apdo, 1095 41080 Sevilla Spain
| | - Hervé Jactel
- Biogeco; INRA; University of Bordeaux; F-33610 Cestas France
| | - Arndt Hampe
- Biogeco; INRA; University of Bordeaux; F-33610 Cestas France
| | - Maria José Leiva
- Departamento de Biología Vegetal y Ecología; Universidad de Sevilla; Apdo, 1095 41080 Sevilla Spain
| | | |
Collapse
|
29
|
Pratt JD, Datu A, Tran T, Sheng DC, Mooney KA. Genetically based latitudinal clines in Artemisia californica drive parallel clines in arthropod communities. Ecology 2016; 98:79-91. [PMID: 27935026 DOI: 10.1002/ecy.1620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 06/25/2016] [Accepted: 08/31/2016] [Indexed: 11/08/2022]
Abstract
Intraspecific variation in plant traits has been clearly shown to drive the structure of associated arthropod communities at the spatial scale of individual plant populations. Nevertheless, it is largely unknown whether plant trait variation among populations drives landscape-scale variation in arthropod communities, and how the strength of such plant genetic effects compares to, and interacts with, those of environmental variation. We documented the structure of arthropod communities on Artemisia californica for two consecutive years in a common garden of plants sourced from five populations along a 5° latitudinal gradient and grown under precipitation treatments approximating the four-fold difference between the north and south range margins for this species. Previous study of plant traits from this garden documented clinal genetic variation, suggesting local adaptation to this environmental gradient, as well as effects of precipitation manipulation that were consistent among populations (i.e., no genotype-by-environment interaction). Within the common garden, arthropod density, evenness, and diversity increased clinally with population source latitude, and arthropod community composition (i.e., species relative abundance) showed a north-south divide. The 2.6-fold cline of northward increase in arthropod density in the common garden was mirrored by a 6.4-fold increase in arthropod density on wild plants sampled along the species range. In contrast to the strong influence of plant genotype, the precipitation manipulation only influenced arthropod community composition, and plant genetic effects on arthropods operated independently of precipitation regime (no genotype-by-environment interaction). Accordingly, we conclude that the strongest driver of landscape-level variation in arthropod communities in this foundational plant species is not variation in the abiotic environment itself, but rather variation in plant traits underlain by the evolutionary process of plant local adaptation.
Collapse
Affiliation(s)
- Jessica D Pratt
- Department of Ecology and Evolutionary Biology and Center for Environmental Biology, University of California, 321 Steinhaus Hall, Irvine, California, 92697, USA
| | - Andrew Datu
- Department of Ecology and Evolutionary Biology and Center for Environmental Biology, University of California, 321 Steinhaus Hall, Irvine, California, 92697, USA
| | - Thi Tran
- Department of Ecology and Evolutionary Biology and Center for Environmental Biology, University of California, 321 Steinhaus Hall, Irvine, California, 92697, USA
| | - Daniel C Sheng
- Department of Ecology and Evolutionary Biology and Center for Environmental Biology, University of California, 321 Steinhaus Hall, Irvine, California, 92697, USA
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology and Center for Environmental Biology, University of California, 321 Steinhaus Hall, Irvine, California, 92697, USA
| |
Collapse
|
30
|
Zheng C, Ovaskainen O, Roslin T, Tack AJM. Beyond metacommunity paradigms: habitat configuration, life history, and movement shape an herbivore community on oak. Ecology 2016; 96:3175-85. [PMID: 26909424 DOI: 10.1890/15-0180.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many empirical studies of metacommunities have focused on the classification of observational patterns into four contrasting paradigms characterized by different levels of movement and habitat heterogeneity. However, deeper insight into the underlying local and regional processes may be derived from a combination of long-term observational data and experimental studies. With the aim of exploring forces structuring the insect metacommunity on oak, we fit a hierarchical Bayesian state-space model to data from observations and experiments. The fitted model reveals large variation in species-specific dispersal abilities and basic reproduction numbers, R0. The residuals from the model show only weak correlations among species, suggesting a lack of strong interspecific interactions. Simulations with model-derived parameter estimates indicate that habitat configuration and species attributes both contribute substantially to structuring insect communities. Overall, our findings demonstrate that community-level variation in movement and life history are key drivers of metacommunity dynamics.
Collapse
|
31
|
Tovar-Sánchez E, Martí-Flores E, Valencia-Cuevas L, Mussali-Galante P. Influence of forest type and host plant genetic relatedness on the canopy arthropod community structure of Quercus crassifolia. REVISTA CHILENA DE HISTORIA NATURAL 2015. [DOI: 10.1186/s40693-015-0038-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Sinclair FH, Stone GN, Nicholls JA, Cavers S, Gibbs M, Butterill P, Wagner S, Ducousso A, Gerber S, Petit RJ, Kremer A, Schönrogge K. Impacts of local adaptation of forest trees on associations with herbivorous insects: implications for adaptive forest management. Evol Appl 2015; 8:972-87. [PMID: 26640522 PMCID: PMC4662346 DOI: 10.1111/eva.12329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/20/2015] [Indexed: 01/18/2023] Open
Abstract
Disruption of species interactions is a key issue in climate change biology. Interactions involving forest trees may be particularly vulnerable due to evolutionary rate limitations imposed by long generation times. One mitigation strategy for such impacts is Climate matching - the augmentation of local native tree populations by input from nonlocal populations currently experiencing predicted future climates. This strategy is controversial because of potential cascading impacts on locally adapted animal communities. We explored these impacts using abundance data for local native gallwasp herbivores sampled from 20 provenances of sessile oak (Quercus petraea) planted in a common garden trial. We hypothesized that non-native provenances would show (i) declining growth performance with increasing distance between provenance origin and trial site, and (ii) phenological differences to local oaks that increased with latitudinal differences between origin and trial site. Under a local adaptation hypothesis, we predicted declining gallwasp abundance with increasing phenological mismatch between native and climate-matched trees. Both hypotheses for oaks were supported. Provenance explained significant variation in gallwasp abundance, but no gall type showed the relationship between abundance and phenological mismatch predicted by a local adaptation hypothesis. Our results show that climate matching would have complex and variable impacts on oak gall communities.
Collapse
Affiliation(s)
- Frazer H Sinclair
- Institute of Evolutionary Biology, University of EdinburghEdinburgh, UK
- Centre for Ecology and HydrologyWallingford, UK
| | - Graham N Stone
- Institute of Evolutionary Biology, University of EdinburghEdinburgh, UK
| | - James A Nicholls
- Institute of Evolutionary Biology, University of EdinburghEdinburgh, UK
| | | | | | - Philip Butterill
- Centre for Ecology and HydrologyWallingford, UK
- Faculty of Science, Biology Center, The Czech Academy of Sciences, University of South BohemiaČeské Budějovice, Czech Republic
| | - Stefanie Wagner
- INRA, UMR 1202 BIOGECOCestas, France
- UMR 1202 BIOGECO, University of BordeauxTalence, France
| | - Alexis Ducousso
- INRA, UMR 1202 BIOGECOCestas, France
- UMR 1202 BIOGECO, University of BordeauxTalence, France
| | - Sophie Gerber
- INRA, UMR 1202 BIOGECOCestas, France
- UMR 1202 BIOGECO, University of BordeauxTalence, France
| | - Rémy J Petit
- INRA, UMR 1202 BIOGECOCestas, France
- UMR 1202 BIOGECO, University of BordeauxTalence, France
| | - Antoine Kremer
- INRA, UMR 1202 BIOGECOCestas, France
- UMR 1202 BIOGECO, University of BordeauxTalence, France
| | | |
Collapse
|
33
|
Axelsson EP, Iason GR, Julkunen-Tiitto R, Whitham TG. Host Genetics and Environment Drive Divergent Responses of Two Resource Sharing Gall-Formers on Norway Spruce: A Common Garden Analysis. PLoS One 2015; 10:e0142257. [PMID: 26554587 PMCID: PMC4640599 DOI: 10.1371/journal.pone.0142257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/20/2015] [Indexed: 11/18/2022] Open
Abstract
A central issue in the field of community genetics is the expectation that trait variation among genotypes play a defining role in structuring associated species and in forming community phenotypes. Quantifying the existence of such community phenotypes in two common garden environments also has important consequences for our understanding of gene-by-environment interactions at the community level. The existence of community phenotypes has not been evaluated in the crowns of boreal forest trees. In this study we address the influence of tree genetics on needle chemistry and genetic x environment interactions on two gall-inducing adelgid aphids (Adelges spp. and Sacchiphantes spp.) that share the same elongating bud/shoot niche. We examine the hypothesis that the canopies of different genotypes of Norway spruce (Picea abies L.) support different community phenotypes. Three patterns emerged. First, the two gallers show clear differences in their response to host genetics and environment. Whereas genetics significantly affected the abundance of Adelges spp. galls, Sacchiphantes spp. was predominately affected by the environment suggesting that the genetic influence is stronger in Adelges spp. Second, the among family variation in genetically controlled resistance was large, i.e. fullsib families differed as much as 10 fold in susceptibility towards Adelges spp. (0.57 to 6.2 galls/branch). Also, the distribution of chemical profiles was continuous, showing both overlap as well as examples of significant differences among fullsib families. Third, despite the predicted effects of host chemistry on galls, principal component analyses using 31 different phenolic substances showed only limited association with galls and a similarity test showed that trees with similar phenolic chemical characteristics, did not host more similar communities of gallers. Nonetheless, the large genetic variation in trait expression and clear differences in how community members respond to host genetics supports our hypothesis that the canopies of Norway spruce differ in their community phenotypes.
Collapse
Affiliation(s)
- E. Petter Axelsson
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- * E-mail:
| | - Glenn R. Iason
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland
| | - Riitta Julkunen-Tiitto
- Department of Biology, University of Eastern Finland, PO Box 111, Joensuu 80101, Finland
| | - Thomas G. Whitham
- Merriam-Powell Center for Environmental Research & Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
34
|
Valencia-Cuevas L, Tovar-Sánchez E. Oak canopy arthropod communities: which factors shape its structure? REVISTA CHILENA DE HISTORIA NATURAL 2015. [DOI: 10.1186/s40693-015-0045-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Pohjanmies T, Tack AJM, Pulkkinen P, Elshibli S, Vakkari P, Roslin T. Genetic diversity and connectivity shape herbivore load within an oak population at its range limit. Ecosphere 2015. [DOI: 10.1890/es14-00549.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
36
|
Tovar-Sánchez E, Valencia-Cuevas L, Mussali-Galante P, Ramírez-Rodríguez R, Castillo-Mendoza E. Effect of host-plant genetic diversity on oak canopy arthropod community structure in central Mexico. REVISTA CHILENA DE HISTORIA NATURAL 2015. [DOI: 10.1186/s40693-015-0042-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Where is the extended phenotype in the wild? The community composition of arthropods on mature oak trees does not depend on the oak genotype. PLoS One 2015; 10:e0115733. [PMID: 25635387 PMCID: PMC4321774 DOI: 10.1371/journal.pone.0115733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 12/01/2014] [Indexed: 12/03/2022] Open
Abstract
Through a series of common garden experiments, it has been shown that heritable
phenotypic differences between individual trees can affect arthropod communities.
However, field studies under heterogeneous environmental conditions remain rare. In
the present study, we investigated the genetic constitution of 121 mature oak host
trees at different trophic levels from 10 sites across Bavaria, southern Germany and
their associated insect communities. A total of 23,576 individuals representing 395
species of beetles and true bugs were evaluated. In particular, we determined whether
the composition of arthropod communities is related to the oak genotype and whether
the strength of the relationships decreases from lower to higher trophic levels, such
as for phytophagous, xylophagous, zoophagous, and mycetophagous species. The genetic
differentiation of oaks was assessed using eight microsatellite markers. We found no
significant influence of the oak genotype on neither the full beetle and true bug
community nor on any of the analyzed trophic guilds. In contrast, the community
composition of the insects was highly related to the space and climate, such that the
community similarity decreased with increases in spatial distance and climatic
differences. The relationship with space and climate was much stronger in beetles
than in true bugs, particularly in mycetophagous species. Our results suggest that
spatial processes override the genetic effects of the host plant in structuring
arthropod communities on oak trees. Because we used neutral markers, we cannot
exclude the possibility that trait-specific markers may reveal a genetic imprint of
the foundation tree species on the composition of the arthropod community. However,
based on the strength of the spatial patterns in our data set, we assume that genetic
differences among oaks are less important in the structuring of arthropod
communities. Future whole-genome studies are required to draw a final conclusion.
Collapse
|
38
|
Gosney BJ, O′Reilly-Wapstra JM, Forster LG, Barbour RC, Iason GR, Potts BM. Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities. PLoS One 2014; 9:e114132. [PMID: 25469641 PMCID: PMC4254790 DOI: 10.1371/journal.pone.0114132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/15/2014] [Indexed: 11/21/2022] Open
Abstract
Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings.
Collapse
Affiliation(s)
- Benjamin J. Gosney
- School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
- National Center of Future Forest Industries (NCFFI), University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| | - Julianne M. O′Reilly-Wapstra
- School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
- National Center of Future Forest Industries (NCFFI), University of Tasmania, Hobart, Tasmania, Australia
| | - Lynne G. Forster
- School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Robert C. Barbour
- School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Glenn R. Iason
- The James Hutton Institute, Craigibuckler, Aberdeen, Scotland, United Kingdom
| | - Brad M. Potts
- School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
- National Center of Future Forest Industries (NCFFI), University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
39
|
Barton KE, Valkama E, Vehviläinen H, Ruohomäki K, Knight TM, Koricheva J. Additive and non-additive effects of birch genotypic diversity on arthropod herbivory in a long-term field experiment. OIKOS 2014. [DOI: 10.1111/oik.01663] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kasey E. Barton
- Dept of Botany; Univ. of Hawai'i at Mānoa; Honolulu HI 96822 USA
| | - Elena Valkama
- MTT Agrifood Research Finland; FI-31600 Jokioinen Finland
| | | | - Kai Ruohomäki
- Section of Ecology, Dept of Biology; Univ. of Turku; FI-20014 Turku Finland
| | - Tiffany M. Knight
- Dept of Biology; Washington Univ. in St. Louis; 1 Brookings Drive, Box 1137 St. Louis MO 63130 USA
| | - Julia Koricheva
- School of Biological Sciences, Royal Holloway Univ. of London; Egham, Surrey TW20 0EX UK
| |
Collapse
|
40
|
Davies C, Ellis CJ, Iason GR, Ennos RA. Genotypic variation in a foundation tree (Populus tremula L.) explains community structure of associated epiphytes. Biol Lett 2014; 10:20140190. [PMID: 24789141 PMCID: PMC4013706 DOI: 10.1098/rsbl.2014.0190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Community genetics hypothesizes that within a foundation species, the genotype of an individual significantly influences the assemblage of dependent organisms. To assess whether these intra-specific genetic effects are ecologically important, it is required to compare their impact on dependent organisms with that attributable to environmental variation experienced over relevant spatial scales. We assessed bark epiphytes on 27 aspen (Populus tremula L.) genotypes grown in a randomized experimental array at two contrasting sites spanning the environmental conditions from which the aspen genotypes were collected. We found that variation in aspen genotype significantly influenced bark epiphyte community composition, and to the same degree as environmental variation between the test sites. We conclude that maintaining genotypic diversity of foundation species may be crucial for conservation of associated biodiversity.
Collapse
Affiliation(s)
- Chantel Davies
- Institute of Evolutionary Biology, University of Edinburgh, , Mayfield Road, EH9 3JT, UK
| | | | | | | |
Collapse
|
41
|
Silfver T, Rousi M, Oksanen E, Roininen H. Genetic and environmental determinants of insect herbivore community structure in a Betula pendula population. F1000Res 2014; 3:34. [PMID: 24715977 PMCID: PMC3962004 DOI: 10.12688/f1000research.3-34.v1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2014] [Indexed: 11/29/2022] Open
Abstract
A number of recent studies have shown that intraspecific genetic variation of plants may have a profound effect on the herbivorous communities which depend on them. However less is known about the relative importance of intraspecific variation compared to other ecological factors, for example environmental variation or the effects of herbivore damage. We randomly selected 22
Betula pendula genotypes from a local population (< 0.9 ha), cloned them and planted cloned seedlings on two study sites separated at a regional scale (distance between sites about 30 km) to examine an insect community of 23-27 species on these genotypes.
B. pendula genotypes did not differ in their species richness, but the total mean abundance and the structure of the insect herbivore community was significantly affected by the genotype, which could account for up to 27% of the total variation in community structure.
B. pendula genotype accounted for two to four times more variation in the arthropod community structure than did environmental (block) variation on a local scale, while on a regional scale, genotypic and environmental (site) variation accounted for 4-14% of the arthropod community structure. The genetic effects were modified by environmental variation on both a local and regional scale over one study year, and locally, the largest part of the variation (38%) could be explained by the genotype × environment (block) interactions. Suppression of insect herbivores during one growing season led to changed arthropod community structure in the following growing season, but this effect was minimal and could explain only 4% of the total variation in insect community structure. Our results suggest that both genetic and environmental factors are important determinants of the community structure of herbivorous insects. Together these mechanisms appear to maintain the high diversity of insects in
B. pendula forest ecosystems.
Collapse
Affiliation(s)
- Tarja Silfver
- Faculty of Science and Forestry, Department of Biology, University of Eastern Finland, FIN-80101 Joensuu, Finland
| | - Matti Rousi
- Vantaa Research Unit, Finnish Forest Research Institute, FIN-01301 Vantaa, Finland
| | - Elina Oksanen
- Faculty of Science and Forestry, Department of Biology, University of Eastern Finland, FIN-80101 Joensuu, Finland
| | - Heikki Roininen
- Faculty of Science and Forestry, Department of Biology, University of Eastern Finland, FIN-80101 Joensuu, Finland
| |
Collapse
|
42
|
Khudr MS, Potter T, Rowntree J, Preziosi RF. Community Genetic and Competition Effects in a Model Pea Aphid System. ADV ECOL RES 2014. [DOI: 10.1016/b978-0-12-801374-8.00007-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
McLeish MJ, Miller JT, Mound LA. Delayed colonisation of Acacia by thrips and the timing of host-conservatism and behavioural specialisation. BMC Evol Biol 2013; 13:188. [PMID: 24010723 PMCID: PMC3846595 DOI: 10.1186/1471-2148-13-188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Repeated colonisation of novel host-plants is believed to be an essential component of the evolutionary success of phytophagous insects. The relative timing between the origin of an insect lineage and the plant clade they eat or reproduce on is important for understanding how host-range expansion can lead to resource specialisation and speciation. Path and stepping-stone sampling are used in a Bayesian approach to test divergence timing between the origin of Acacia and colonisation by thrips. The evolution of host-plant conservatism and ecological specialisation is discussed. RESULTS Results indicated very strong support for a model describing the origin of the common ancestor of Acacia thrips subsequent to that of Acacia. A current estimate puts the origin of Acacia at approximately 6 million years before the common ancestor of Acacia thrips, and 15 million years before the origin of a gall-inducing clade. The evolution of host conservatism and resource specialisation resulted in a phylogenetically under-dispersed pattern of host-use by several thrips lineages. CONCLUSIONS Thrips colonised a diversity of Acacia species over a protracted period as Australia experienced aridification. Host conservatism evolved on phenotypically and environmentally suitable host lineages. Ecological specialisation resulted from habitat selection and selection on thrips behavior that promoted primary and secondary host associations. These findings suggest that delayed and repeated colonisation is characterised by cycles of oligo- or poly-phagy. This results in a cumulation of lineages that each evolve host conservatism on different and potentially transient host-related traits, and facilitates both ecological and resource specialisation.
Collapse
Affiliation(s)
- Michael J McLeish
- Plant Geography Laboratory, Xishuangbanna Tropical Botanical Gardens, Chinese Academy and Sciences, Menglun, Mengla, Yunnan Province 666303, China
| | - Joseph T Miller
- Centre for Australian National Biodiversity Research, CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Laurence A Mound
- CSIRO Ecosystems Sciences, GPO Box 1700, Canberra, ACT 2601, Australia
| |
Collapse
|
44
|
Gugerli F, Brandl R, Castagneyrol B, Franc A, Jactel H, Koelewijn HP, Martin F, Peter M, Pritsch K, Schröder H, Smulders MJM, Kremer A, Ziegenhagen B. Community genetics in the time of next-generation molecular technologies. Mol Ecol 2013; 22:3198-207. [DOI: 10.1111/mec.12300] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 01/30/2013] [Accepted: 02/16/2013] [Indexed: 02/03/2023]
Affiliation(s)
- Felix Gugerli
- WSL Swiss Federal Research Institute; 8903 Birmensdorf Switzerland
| | - Roland Brandl
- Fachbereich Biologie; Philipps-Universität Marburg; 35032 Marburg Germany
| | - Bastien Castagneyrol
- UMR1202 Biodiversity, Genes & Communities; INRA Pierroton; 33612 Cestas Cedex France
| | - Alain Franc
- UMR1202 Biodiversity, Genes & Communities; INRA Pierroton; 33612 Cestas Cedex France
| | - Hervé Jactel
- UMR1202 Biodiversity, Genes & Communities; INRA Pierroton; 33612 Cestas Cedex France
| | - Hans-Peter Koelewijn
- ALTERRA Centre for Ecosystem Studies; Wageningen UR; 6700 AA Wageningen The Netherlands
| | - Francis Martin
- UMR “Interactions Arbres/Micro-Organismes”; INRA Nancy; 54280 Champenoux France
| | - Martina Peter
- WSL Swiss Federal Research Institute; 8903 Birmensdorf Switzerland
| | - Karin Pritsch
- Institute of Soil Ecology; Helmholtz Zentrum München; 85764 Neuherberg Germany
| | - Hilke Schröder
- Institute for Forest Genetics; Johann Heinrich von Thuenen-Institute; 22927 Grosshansdorf Germany
| | | | - Antoine Kremer
- UMR1202 Biodiversity, Genes & Communities; INRA Pierroton; 33612 Cestas Cedex France
| | - Birgit Ziegenhagen
- Fachbereich Biologie; Philipps-Universität Marburg; 35032 Marburg Germany
| | | |
Collapse
|
45
|
Pregitzer CC, Bailey JK, Schweitzer JA. Genetic by environment interactions affect plant-soil linkages. Ecol Evol 2013; 3:2322-33. [PMID: 23919173 PMCID: PMC3728968 DOI: 10.1002/ece3.618] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/21/2013] [Accepted: 05/01/2013] [Indexed: 11/16/2022] Open
Abstract
The role of plant intraspecific variation in plant–soil linkages is poorly understood, especially in the context of natural environmental variation, but has important implications in evolutionary ecology. We utilized three 18- to 21-year-old common gardens across an elevational gradient, planted with replicates of five Populus angustifolia genotypes each, to address the hypothesis that tree genotype (G), environment (E), and G × E interactions would affect soil carbon and nitrogen dynamics beneath individual trees. We found that soil nitrogen and carbon varied by over 50% and 62%, respectively, across all common garden environments. We found that plant leaf litter (but not root) traits vary by genotype and environment while soil nutrient pools demonstrated genotype, environment, and sometimes G × E interactions, while process rates (net N mineralization and net nitrification) demonstrated G × E interactions. Plasticity in tree growth and litter chemistry was significantly related to the variation in soil nutrient pools and processes across environments, reflecting tight plant–soil linkages. These data overall suggest that plant genetic variation can have differential affects on carbon storage and nitrogen cycling, with implications for understanding the role of genetic variation in plant–soil feedback as well as management plans for conservation and restoration of forest habitats with a changing climate.
Collapse
Affiliation(s)
- Clara C Pregitzer
- Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Tennessee
| | | | | |
Collapse
|
46
|
Chemical variation in a dominant tree species: population divergence, selection and genetic stability across environments. PLoS One 2013; 8:e58416. [PMID: 23526981 PMCID: PMC3603948 DOI: 10.1371/journal.pone.0058416] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/04/2013] [Indexed: 11/27/2022] Open
Abstract
Understanding among and within population genetic variation of ecologically important plant traits provides insight into the potential evolutionary processes affecting those traits. The strength and consistency of selection driving variability in traits would be affected by plasticity in differences among genotypes across environments (G×E). We investigated population divergence, selection and environmental plasticity of foliar plant secondary metabolites (PSMs) in a dominant tree species, Eucalyptus globulus. Using two common garden trials we examined variation in PSMs at multiple genetic scales; among 12 populations covering the full geographic range of the species and among up to 60 families within populations. Significant genetic variation in the expression of many PSMs resides both among and within populations of E. globulus with moderate (e.g., sideroxylonal A h2op = 0.24) to high (e.g., macrocarpal G h2op = 0.48) narrow sense heritabilities and high coefficients of additive genetic variation estimated for some compounds. A comparison of Qst and Fst estimates suggest that variability in some of these traits may be due to selection. Importantly, there was no genetic by environment interaction in the expression of any of the quantitative chemical traits despite often significant site effects. These results provide evidence that natural selection has contributed to population divergence in PSMs in E. globulus, and identifies the formylated phloroglucinol compounds (particularly sideroxylonal) and a dominant oil, 1,8-cineole, as candidates for traits whose genetic architecture has been shaped by divergent selection. Additionally, as the genetic differences in these PSMs that influence community phenotypes is stable across environments, the role of plant genotype in structuring communities is strengthened and these genotypic differences may be relatively stable under global environmental changes.
Collapse
|
47
|
Castagneyrol B, Lagache L, Giffard B, Kremer A, Jactel H. Genetic diversity increases insect herbivory on oak saplings. PLoS One 2012; 7:e44247. [PMID: 22937168 PMCID: PMC3429418 DOI: 10.1371/journal.pone.0044247] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/31/2012] [Indexed: 11/18/2022] Open
Abstract
A growing body of evidence from community genetics studies suggests that ecosystem functions supported by plant species richness can also be provided by genetic diversity within plant species. This is not yet true for the diversity-resistance relationship as it is still unclear whether damage by insect herbivores responds to genetic diversity in host plant populations. We developed a manipulative field experiment based on a synthetic community approach, with 15 mixtures of one to four oak (Quercus robur) half-sib families. We quantified genetic diversity at the plot level by genotyping all oak saplings and assessed overall damage caused by ectophagous and endophagous herbivores along a gradient of increasing genetic diversity. Damage due to ectophagous herbivores increased with the genetic diversity in oak sapling populations as a result of higher levels of damage in mixtures than in monocultures for all families (complementarity effect) rather than because of the presence of more susceptible oak genotypes in mixtures (selection effect). Assemblages of different oak genotypes would benefit polyphagous herbivores via improved host patch location, spill over among neighbouring saplings and diet mixing. By contrast, genetic diversity was a poor predictor of the abundance of endophagous herbivores, which increased with individual sapling apparency. Plant genetic diversity may not provide sufficient functional contrast to prevent tree sapling colonization by specialist herbivores while enhancing the foraging of generalist herbivores. Long term studies are nevertheless required to test whether the effect of genetic diversity on herbivory change with the ontogeny of trees and local adaptation of specialist herbivores.
Collapse
|
48
|
Tack AJM, Gripenberg S, Roslin T. Cross-kingdom interactions matter: fungal-mediated interactions structure an insect community on oak. Ecol Lett 2012; 15:177-85. [PMID: 22221681 DOI: 10.1111/j.1461-0248.2011.01724.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although phytophagous insects and plant pathogens frequently share the same host plant, interactions among such phylogenetically distant taxa have received limited attention. Here, we place pathogens and insects in the context of a multitrophic-level community. Focusing on the invasive powdery mildew Erysiphe alphitoides and the insect community on oak (Quercus robur), we demonstrate that mildew-insect interactions may be mediated by both the host plant and by natural enemies, and that the trait-specific outcome of individual interactions can range from negative to positive. Moreover, mildew affects resource selection by insects, thereby modifying the distribution of a specialist herbivore at two spatial scales (within and among trees). Finally, a long-term survey suggests that species-specific responses to mildew scale up to generate landscape-level variation in the insect community structure. Overall, our results show that frequently overlooked cross-kingdom interactions may play a major role in structuring terrestrial plant-based communities.
Collapse
Affiliation(s)
- Ayco J M Tack
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Finland.
| | | | | |
Collapse
|
49
|
|
50
|
Genung MA, Bailey JK, Schweitzer JA. Welcome to the neighbourhood: interspecific genotype by genotype interactions in Solidago influence above- and belowground biomass and associated communities. Ecol Lett 2011; 15:65-73. [DOI: 10.1111/j.1461-0248.2011.01710.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|