1
|
Zhang L, Zhao ZW, Ma LX, Dong YW. Genome-wide sequencing reveals geographical variations in the thermal adaptation of an aquaculture species with frequent seedling introductions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172010. [PMID: 38575020 DOI: 10.1016/j.scitotenv.2024.172010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Climate change and human activity are essential factors affecting marine biodiversity and aquaculture, and understanding the impacts of human activities on the genetic structure to increasing high temperatures is crucial for sustainable aquaculture and marine biodiversity conservation. As a commercially important bivalve, the Manila clam Ruditapes philippinarum is widely distributed along the coast of China, and it has been frequently introduced from Fujian Province, China, to other regions for aquaculture. In this study, we collected four populations of Manila clams from different areas to evaluate their thermal tolerance by measuring cardiac performance and genetic variations using whole-genome resequencing. The upper thermal limits of the clams showed high variations within and among populations. Different populations displayed divergent genetic compositions, and the admixed population was partly derived from the Zhangzhou population in Fujian Province, implying a complex genomic landscape under the influence of local genetic sources and human introductions. Multiple single nucleotide polymorphisms (SNPs) were associated with the cardiac functional traits, and some of these SNPs can affect the codon usage and the structural stability of the resulting protein. This study shed light on the importance of establishing long-term ecological and genetic monitoring programs at the local level to enhance resilience to future climate change.
Collapse
Affiliation(s)
- Liang Zhang
- Ministry Key Laboratory of Mariculture, Fisheries College, Ocean University of China, Qingdao, 266001, China
| | - Zhan-Wei Zhao
- Ministry Key Laboratory of Mariculture, Fisheries College, Ocean University of China, Qingdao, 266001, China
| | - Lin-Xuan Ma
- Ministry Key Laboratory of Mariculture, Fisheries College, Ocean University of China, Qingdao, 266001, China
| | - Yun-Wei Dong
- Ministry Key Laboratory of Mariculture, Fisheries College, Ocean University of China, Qingdao, 266001, China.
| |
Collapse
|
2
|
Padilla P, Herrel A, Denoël M. What makes a great invader? Anatomical traits as predictors of locomotor performance and metabolic rate in an invasive frog. J Exp Biol 2023; 226:jeb246717. [PMID: 37955111 DOI: 10.1242/jeb.246717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Invasive species are characterized by their ability to establish and spread in a new environment. In alien populations of anurans, dispersal and fitness-related traits such as endurance, burst performance and metabolism are key to their success. However, few studies have investigated inter-individual variation in these traits and more specifically have attempted to understand the drivers of variation in these traits. Associations of anatomical features may be excellent predictors of variation in performance and could be targets for selection or subject to trade-offs during invasions. In this study, we used marsh frogs (Pelophylax ridibundus), a species that has been introduced in many places outside its native range and which is now colonizing large areas of Western Europe. We first measured the inter-individual variation in resting metabolism, the time and distance they were able to jump until exhaustion, and their peak jump force, and then measured the mass of specific organs and lengths of body parts suspected to play a role in locomotion and metabolism. Among the 5000 bootstrap replicates on body size-corrected variables, our statistical models most often selected the stomach (75.42%), gonads (71.46%) and the kidneys (67.26%) as predictors of inter-individual variation in metabolism, and the gluteus maximus muscle (97.24%) mass was the most frequently selected predictor of jump force. However, endurance was poorly associated with the anatomical traits (R2distance=0.42, R2time=0.37). These findings suggest that selection on these predictors may lead to physiological changes that may affect the colonization, establishment and dispersal of these frogs.
Collapse
Affiliation(s)
- Pablo Padilla
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liège, 4020 Liège, Belgium
- UMR 7179 C.N.R.S./M.N.H.N., Département Adaptations du Vivant, 55 rue Buffon, 75005 Paris, France
| | - Anthony Herrel
- UMR 7179 C.N.R.S./M.N.H.N., Département Adaptations du Vivant, 55 rue Buffon, 75005 Paris, France
- Evolutionary Morphology of Vertebrates, Ghent University, B-9000 Ghent, Belgium
- Department of Biology, University of Antwerp, Wilrijk 2610, Belgium
- Naturhistorisches Museum Bern, 3005 Bern, Switzerland
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liège, 4020 Liège, Belgium
| |
Collapse
|
3
|
Thermal physiology integrated species distribution model predicts profound habitat fragmentation for estuarine fish with ocean warming. Sci Rep 2022; 12:21781. [PMID: 36526639 PMCID: PMC9758224 DOI: 10.1038/s41598-022-25419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Species distribution models predict a poleward migration for marine ectotherms with ocean warming. However, a key limitation in current species distribution models (SDM) is that they do not account for population-specific heterogeneity in physiological responses to temperature change resulting from local adaptations and acclimatization. To address this gap, we developed a novel, Physiology Integrated BioClimate Model (PIBCM) that combines habitat-specific metabolic thermal physiological tolerance of a species into a bioclimate envelope model. Using a downscaling approach, we also established a fine-resolution coastal sea-surface temperature data set for 2050-2080, that showed a high degree of location-specific variability in future thermal regimes. Combining predicted temperature data with the PIBCM model, we estimated habitat distribution for a highly eurythermal intertidal minnow, the Atlantic killifish (Fundulus heteroclitus), a species that likely presents a best-case-scenario for coastal vertebrates. We show that the killifish northern boundary shifts southwards, while distinct habitat fragmentation occurs in the southern sub-population (due to migration of adjacent fish populations to the nearest metabolically optimal thermal habitat). When compared to current SDMs (e.g., AquaMaps), our results emphasize the need for thermal physiology integrated range shift models and indicate that habitat fragmentation for coastal fishes may reshape nursery habitats for many commercially and ecologically important species.
Collapse
|
4
|
Citizen science reveals current distribution, predicted habitat suitability and resource requirements of the introduced African Carder Bee Pseudoanthidium (Immanthidium) repetitum in Australia. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractThe introduction of non-native bee species is a major driver of ecosystem change resulting in the spread of non-native weeds, alterations to plant-pollinator interactions and competition with native species for food and nesting resources. Our lack of ecological information for many non-native organisms hinders our ability to understand the impacts of species introductions. This is often compounded by the Wallacean Shortfall—a lack of adequate knowledge of a species’ distribution in geographic space. In Australia, the African carder bee (Pseudoanthidium (Immanthidium) repetitum) was first observed in 2000 and has since become one of the most common bees in some regions. Despite its rapid population increase and range expansion, little is known about the ecology or distribution of P. repetitum. In this study, we determine the flower preferences, current distribution and predicted areas at risk of future invasion of P. repetitum using opportunistic data collected from citizen science websites, social media and museum records. We found that the current distribution of P. repetitum in Australia encompasses approximately 332,000 km2 concentrated along the eastern coast. We found considerable suitable habitat outside the current distribution including biodiversity hotspots and world heritage listed natural areas. Pseudoanthidium repetitum foraged on a wide range of plants from many families and can thus be classified as a generalist forager (polylectic). Our results suggest that P. repetitum is well suited for continued expansion in coastal Australia. Our results demonstrate the effective application of opportunistic data in overcoming knowledge gaps in species ecology and modelling of introduced species distribution.
Collapse
|
5
|
Othman SN, Litvinchuk SN, Maslova I, Dahn H, Messenger KR, Andersen D, Jowers MJ, Kojima Y, Skorinov DV, Yasumiba K, Chuang MF, Chen YH, Bae Y, Hoti J, Jang Y, Borzee A. From Gondwana to the Yellow Sea, evolutionary diversifications of true toads Bufo sp. in the Eastern Palearctic and a revisit of species boundaries for Asian lineages. eLife 2022; 11:e70494. [PMID: 35089130 PMCID: PMC8920510 DOI: 10.7554/elife.70494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Taxa with vast distribution ranges often display unresolved phylogeographic structures and unclear taxonomic boundaries resulting in hidden diversity. This hypothesis-driven study reveals the evolutionary history of Bufonidae, covering the phylogeographic patterns found in Holarctic bufonids from the West Gondwana to the phylogenetic taxonomy of Asiatic true toads in the Eastern Palearctic. We used an integrative approach relying on fossilized birth-death calibrations, population dynamics, gene-flow, species distribution, and species delimitation modeling to resolve the biogeography of the clade and highlight cryptic lineages. We verified the near-simultaneous Miocene radiations within Western and Eastern Palearctic Bufo, c. 14.49-10.00 Mya, temporally matching with the maximum dust outflows in Central Asian deserts. Contrary to earlier studies, we demonstrated that the combined impacts of long dispersal and ice-age refugia equally contributed to the current genetic structure of Bufo in East Asia. Our findings reveal a climate-driven adaptation in septentrional Eastern Asian Bufo, explaining its range shifts toward northern latitudes. We resolve species boundaries within the Eastern Palearctic Bufo, and redefine the taxonomic and conservation units of the northeastern species: B. sachalinensis and its subspecies.
Collapse
Affiliation(s)
- Siti N Othman
- Laboratory of Animal Behaviour and Conservation, College of Biology and the Environment, Nanjing Forestry UniversityNanjingChina
- Department of Life Sciences and Division of EcoScience, Ewha Womans UniversitySeoulRepublic of Korea
| | - Spartak N Litvinchuk
- Institute of Cytology, Russian Academy of SciencesSt. PetersburgRussian Federation
| | - Irina Maslova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of SciencesVladivostokRussian Federation
| | - Hollis Dahn
- Department of Ecology and Evolutionary Biology, University of TorontoTorontoCanada
| | - Kevin R Messenger
- Herpetology and Applied Conservation Laboratory, College of Biology and the Environment, Nanjing Forestry UniversityNanjingChina
| | - Desiree Andersen
- Department of Life Sciences and Division of EcoScience, Ewha Womans UniversitySeoulRepublic of Korea
| | - Michael J Jowers
- CIBIO/InBIO (Centro de Investigação em Biodiversidade e Recursos Genéticos), Universidade do PortoVairãoPortugal
| | - Yosuke Kojima
- Graduate School of Human and Environmental Studies, Kyoto UniversityKyotoJapan
| | - Dmitry V Skorinov
- Institute of Cytology, Russian Academy of SciencesSt. PetersburgRussian Federation
| | | | - Ming-Feng Chuang
- Department of Life Sciences and Research Center for Global Change Biology, National Chung Hsing UniversityTaichungTaiwan
| | - Yi-Huey Chen
- Department of Life Science, Chinese Culture UniversityTaipeiTaiwan
| | - Yoonhyuk Bae
- Department of Life Sciences and Division of EcoScience, Ewha Womans UniversitySeoulRepublic of Korea
| | - Jennifer Hoti
- Department of Life Sciences and Division of EcoScience, Ewha Womans UniversitySeoulRepublic of Korea
- Department of Life Sciences and Systems Biology, University of TurinTurinItaly
| | - Yikweon Jang
- Department of Life Sciences and Division of EcoScience, Ewha Womans UniversitySeoulRepublic of Korea
| | - Amael Borzee
- Laboratory of Animal Behaviour and Conservation, College of Biology and the Environment, Nanjing Forestry UniversityNanjingChina
| |
Collapse
|
6
|
Yagound B, West AJ, Richardson MF, Selechnik D, Shine R, Rollins LA. Brain transcriptome analysis reveals gene expression differences associated with dispersal behaviour between range-front and range-core populations of invasive cane toads in Australia. Mol Ecol 2022; 31:1700-1715. [PMID: 35028988 PMCID: PMC9303232 DOI: 10.1111/mec.16347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 11/27/2022]
Abstract
Understanding the mechanisms allowing invasive species to adapt to novel environments is a challenge in invasion biology. Many invaders demonstrate rapid evolution of behavioural traits involved in range expansion such as locomotor activity, exploration and risk‐taking. However, the molecular mechanisms that underpin these changes are poorly understood. In 86 years, invasive cane toads (Rhinella marina) in Australia have drastically expanded their geographic range westward from coastal Queensland to Western Australia. During their range expansion, toads have undergone extensive phenotypic changes, particularly in behaviours that enhance the toads’ dispersal ability. Common‐garden experiments have shown that some changes in behavioural traits related to dispersal are heritable. At the molecular level, it is currently unknown whether these changes in dispersal‐related behaviour are underlain by small or large differences in gene expression, nor is known the biological function of genes showing differential expression. Here, we used RNA‐seq to gain a better understanding of the molecular mechanisms underlying dispersal‐related behavioural changes. We compared the brain transcriptomes of toads from the Hawai'ian source population, as well as three distinct populations from across the Australian invasive range. We found markedly different gene expression profiles between the source population and Australian toads. By contrast, toads from across the Australian invasive range had very similar transcriptomic profiles. Yet, key genes with functions putatively related to dispersal behaviour showed differential expression between populations located at each end of the invasive range. These genes could play an important role in the behavioural changes characteristic of range expansion in Australian cane toads.
Collapse
Affiliation(s)
- Boris Yagound
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Andrea J West
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Mark F Richardson
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,Deakin Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Daniel Selechnik
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lee A Rollins
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
7
|
Thompson MJ, Capilla-Lasheras P, Dominoni DM, Réale D, Charmantier A. Phenotypic variation in urban environments: mechanisms and implications. Trends Ecol Evol 2021; 37:171-182. [PMID: 34690006 DOI: 10.1016/j.tree.2021.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
In the past decade, numerous studies have explored how urbanisation affects the mean phenotypes of populations, but it remains unknown how urbanisation impacts phenotypic variation, a key target of selection that shapes, and is shaped by, eco-evolutionary processes. Our review suggests that urbanisation may often increase intraspecific phenotypic variation through several processes; a conclusion aligned with results from our illustrative analysis on tit morphology across 13 European city/forest population pairs. Urban-driven changes in phenotypic variation will have immense implications for urban populations and communities, particularly through urbanisation's effects on individual fitness, species interactions, and conservation. We call here for studies that incorporate phenotypic variation in urban eco-evolutionary research alongside advances in theory.
Collapse
Affiliation(s)
- M J Thompson
- Département des sciences biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| | - P Capilla-Lasheras
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - D M Dominoni
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - D Réale
- Département des sciences biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, QC H2X 1Y4, Canada
| | - A Charmantier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
8
|
Sillero N, Arenas-Castro S, Enriquez‐Urzelai U, Vale CG, Sousa-Guedes D, Martínez-Freiría F, Real R, Barbosa A. Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109671] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Claunch NM, Goodman C, Reed RN, Guralnick R, Romagosa CM, Taylor EN. Invaders from islands: thermal matching, potential or flexibility? Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Native-range thermal constraints may not reflect the geographical distributions of species introduced from native island ranges in part due to rapid physiological adaptation in species introduced to new environments. Correlative ecological niche models may thus underestimate potential invasive distributions of species from islands. The northern curly-tailed lizard (Leiocephalus carinatus) is established in Florida, including populations north of its native range. Competing hypotheses may explain this distribution: Thermal Matching (distribution reflects thermal conditions of the native range), Thermal Potential (species tolerates thermal extremes absent in the native range) and/or Thermal Flexibility (thermal tolerance reflects local thermal extremes). We rejected the Thermal Matching hypothesis by comparing ecological niche models developed from native vs. native plus invasive distributions; L. carinatus exists in areas of low suitability in Florida as predicted by the native-distribution model. We then compared critical thermal limits of L. carinatus from two non-native populations to evaluate the Thermal Potential and Flexibility hypotheses: one matching native range latitudes, and another 160 km north of the native range that experiences more frequent cold weather events. Critical thermal minima in the northern population were lower than in the south, supporting the Thermal Flexibility hypothesis, whereas critical thermal maxima did not differ.
Collapse
Affiliation(s)
- Natalie M Claunch
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, USA
| | - Colin Goodman
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Robert N Reed
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawai’i National Park, HI, USA
| | - Robert Guralnick
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Christina M Romagosa
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Emily N Taylor
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, USA
| |
Collapse
|
10
|
Lin X, Shih C, Hou Y, Shu X, Zhang M, Hu J, Jiang J, Xie F. Climatic-niche evolution with key morphological innovations across clades within Scutiger boulengeri (Anura: Megophryidae). Ecol Evol 2021; 11:10353-10368. [PMID: 34367580 PMCID: PMC8328447 DOI: 10.1002/ece3.7838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/23/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
The studies of climatic-niche shifts over evolutionary time accompanied by key morphological innovations have attracted the interest of many researchers recently. We applied ecological niche models (ENMs), ordination method (environment principal component analyses; PCA-env), combined phylogenetic comparative methods (PCMs), and phylogenetic generalized least squares (PGLS) regression methods to analyze the realized niche dynamics and correspondingly key morphological innovations across clades within Scutiger boulengeri throughout their distributions in Qinghai-Tibet Plateau (QTP) margins of China. Our results show there are six clades in S. boulengeri and obvious niche divergences caused by niche expansion in three clades. Moreover, in our system, niche expansion is more popular than niche unfilling into novel environmental conditions. Annual mean temperature, annual precipitation, and precipitation of driest month may contribute to such a shift. In addition, we identified several key climatic factors and morphological traits that tend to be associated with niche expansion in S. boulengeri clades correspondingly. We found phenotypic plasticity [i.e., length of lower arm and hand (LAHL), hind-limb length (HLL), and foot length (FL)] and evolutionary changes [i.e., snout-vent length (SVL)] may together contribute to niche expansion toward adapting novel niche, which provides us a potential pattern of how a colonizing toad might seed a novel habitat to begin the process of speciation and finally adaptive radiation. For these reasons, persistent phylogeographic divisions and accompanying divergences in niche occupancy and morphological adaption suggest that for future studies, distinct genetic structure and morphological changes corresponding to each genetic clade should be included in modeling niche evolution dynamics, but not just constructed at the species level.
Collapse
Affiliation(s)
- Xiuqin Lin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chungkun Shih
- College of Life Sciences and Academy for Multidisciplinary StudiesCapital Normal UniversityBeijingChina
- Department of PaleobiologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | - Yinmeng Hou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoxiao Shu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Meihua Zhang
- University of Chinese Academy of SciencesBeijingChina
| | - Junhua Hu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
- Mangkang Ecological StationTibet Ecological Safety Monitor NetworkChangduChina
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
11
|
Chen TY, Richard R, Lin TE, Huang SP. Landscape forest impacts the potential activity time of an invasive lizard and its possibilities for range expansion in Taiwan under climate warming. J Therm Biol 2021; 98:102948. [PMID: 34016365 DOI: 10.1016/j.jtherbio.2021.102948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/01/2022]
Abstract
Climate warming may have an impact on invasive species and their ecological consequences. Invasive reptiles, which have temperature-dependent physiology, are expected to be greatly impacted by climate warming, though data supporting this is limited. We investigated the potential impact of a warmer climate on an invasive lizard, Eutropis multifasciata, in Taiwan. A mechanistic model, NicheMapR, was used to simulate the maximum activity time available at three elevations, with varying forest densities, under the current climate and a warmer scenario. The results show that climate warming will provide this species more time for activity in the currently occupied lowland region but not in the mountain areas, which are covered with dense forests. However, if the landscape becomes more open in mountain areas, it will become more suitable for this species and may enable an expansion upslope. Our results show that climate warming has a positive impact on this species, and that landscape's characteristics profoundly modulate its impact and the possibilities for elevational expansion in the future.
Collapse
Affiliation(s)
- Tai-Yu Chen
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| | - Romain Richard
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| | - Te-En Lin
- Endemic Species Research Institute, 1, Minsheng E Rd., Jiji Township, Nantou County, 55244, Taiwan
| | - Shu-Ping Huang
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan.
| |
Collapse
|
12
|
Wagener C, Kruger N, Measey J. Progeny of Xenopus laevis from altitudinal extremes display adaptive physiological performance. J Exp Biol 2021; 224:jeb.233031. [PMID: 34424980 DOI: 10.1242/jeb.233031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/11/2021] [Indexed: 11/20/2022]
Abstract
Environmental temperature variation generates adaptive phenotypic differentiation in widespread populations. We used a common garden experiment to determine whether offspring with varying parental origins display adaptive phenotypic variation related to different thermal conditions experienced in parental environments. We compared burst swimming performance and critical thermal limits of African clawed frog (Xenopus laevis) tadpoles bred from adults captured at high (∼2000 m above sea level) and low (∼ 5 m above sea level) altitudes. Maternal origin significantly affected swimming performance. Optimal swimming performance temperature (Topt) had a >9°C difference between tadpoles with low altitude maternal origins (pure- and cross-bred, 35.0°C) and high-altitude maternal origins (pure-bred, 25.5°C; cross-bred, 25.9°C). Parental origin significantly affected critical thermal (CT) limits. Pure-bred tadpoles with low-altitude parental origins had higher CTmax (37.8±0.8°C) than pure-bred tadpoles with high-altitude parental origins and all cross-bred tadpoles (37.0±0.8 and 37.1±0.8°C). Pure-bred tadpoles with low-altitude parental origins and all cross-bred tadpoles had higher CTmin (4.2±0.7 and 4.2±0.7°C) than pure-bred tadpoles with high-altitude parental origins (2.5±0.6°C). Our study shows that the varying thermal physiological traits of Xenopus laevis tadpoles are the result of adaptive responses to their parental thermal environments. This study is one of few demonstrating potential intraspecific evolution of critical thermal limits in a vertebrate species. Multi-generation common garden experiments and genetic analyses would be required to further tease apart the relative contribution of plastic and genetic effects to the adaptive phenotypic variation observed in these tadpoles.
Collapse
Affiliation(s)
- Carla Wagener
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602 South Africa
| | - Natasha Kruger
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602 South Africa.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602 South Africa
| |
Collapse
|
13
|
Ginal P, Mokhatla M, Kruger N, Secondi J, Herrel A, Measey J, Rödder D. Ecophysiological models for global invaders: Is Europe a big playground for the African clawed frog? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:158-172. [PMID: 33264517 DOI: 10.1002/jez.2432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/18/2020] [Accepted: 11/15/2020] [Indexed: 11/06/2022]
Abstract
One principle threat prompting the worldwide decline of amphibians is the introduction of nonindigenous amphibians. The African Clawed Frog, Xenopus laevis, is now one of the widest distributed amphibians occurring on four continents with ongoing range expansion including large parts of Europe. Species distribution models (SDMs) are essential tools to predict the invasive risk of these species. Previous efforts have focused on correlative approaches but these can be vulnerable to extrapolation errors when projecting species' distributions in nonnative ranges. Recent developments emphasise more robust process-based models, which use physiological data like critical thermal limits and performance, or hybrid models using both approaches. Previous correlative SDMs predict different patterns in the potential future distribution of X. laevis in Europe, but it is likely that these models do not assess its full invasive potential. Based on physiological performance trials, we calculate size and temperature-dependent response surfaces, which are scaled to geographic performance layers matching the critical thermal limits. We then use these ecophysiological performance layers in a standard correlative SDM framework to predict the potential distribution in southern Africa and Europe. Physiological performance traits (standard metabolic rate and endurance time of adult frogs) are the main drivers for the predicted distribution, while the locomotor performance (maximum velocity and distance moved in 200 ms) of adults and tadpoles have low contributions.
Collapse
Affiliation(s)
- Philipp Ginal
- Herpetological Section, Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), Bonn, Germany
| | - Mohlamatsane Mokhatla
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.,Rondevlei Scientific Services, Garden Route National Park, South African National Parks, Sedgefield, South Africa
| | - Natasha Kruger
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.,Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Jean Secondi
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France.,Faculté des Sciences, Université d'Angers, Angers, France
| | - Anthony Herrel
- Département Adaptations du Vivant, MECADEV UMR7179 CNRS/MNHN, Paris, France
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Dennis Rödder
- Herpetological Section, Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), Bonn, Germany
| |
Collapse
|
14
|
Carbonell JA, Stoks R. Thermal evolution of life history and heat tolerance during range expansions toward warmer and cooler regions. Ecology 2020; 101:e03134. [PMID: 32691873 DOI: 10.1002/ecy.3134] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
Species' range edges are expanding to both warmer and cooler regions. Yet, no studies directly compared the changes in range-limiting traits within the same species during both types of range expansions. To increase our mechanistic understanding of range expansions, it is crucial to disentangle the contributions of plastic and genetic changes in these traits. The aim of this study was to test for plastic and evolutionary changes in heat tolerance, life history, and behavior, and compare these during range expansions toward warmer and cooler regions. Using laboratory experiments we reconstructed the thermal performance curves (TPCurves) of larval life history (survival, growth, and development rates) and larval heat tolerance (CTmax) across two recent range expansions from the core populations in southern France toward a warmer (southeastern Spain) and a cooler (northwestern Spain) region in Europe by the damselfly Ischnura elegans. First-generation larvae from field-collected mothers were reared across a range of temperatures (16°-28°C) in incubators. The range expansion to the warmer region was associated with the evolution of a greater ability to cope with high temperatures (increased mean and thermal plasticity of CTmax), faster development, and, in part, a faster growth, indicating a higher time constraints caused by a shorter time frame available for larval development associated with a transition to a greater voltinism. Our results thereby support the emerging pattern that plasticity in heat tolerance alone is inadequate to adapt to new thermal regimes. The range expansion to the cooler region was associated with faster growth indicating countergradient variation without a change in CTmax. The evolution of a faster growth rate during both range expansions could be explained by a greater digestive efficiency rather than an increased food intake. Our results highlight that range expansions to warmer and cooler regions can result in similar evolutionary changes in the TPCurves for life history, and no opposite changes in heat tolerance.
Collapse
Affiliation(s)
- José Antonio Carbonell
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven, B-3000, Belgium.,Department of Wetland Ecology, Doñana Biological Station (EBD-CSIC), Avenida Américo Vespucio 26, Isla de la Cartuja, Seville, 41042, Spain
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven, B-3000, Belgium
| |
Collapse
|
15
|
Thermal ecophysiology of a native and an invasive gecko species in a tropical dry forest of Mexico. J Therm Biol 2020; 90:102607. [PMID: 32479379 DOI: 10.1016/j.jtherbio.2020.102607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/07/2020] [Accepted: 04/22/2020] [Indexed: 11/24/2022]
Abstract
For ectotherms, thermal physiology plays a fundamental role in the establishment and success of invasive species in novel areas and, ultimately, in their ecological interactions with native species. Invasive species are assumed to have a greater ability to exploit the thermal environment, higher acclimation capacities, a wider thermal tolerance range, and better relative performance under a range of thermal conditions. Here we compare the thermal ecophysiology of two species that occur in sympatry in a tropical dry forest of the Pacific coast of Mexico, the microendemic species Benedetti's Leaf-toed Gecko (Phyllodactylus benedettii) and the invasive Common House Gecko (Hemidactylus frenatus). We characterized their patterns of thermoregulation, thermoregulatory efficiency, thermal tolerances, and thermal sensitivity of locomotor performance. In addition, we included morphological variables and an index of body condition to evaluate their effects on the thermal sensitivity of locomotor performance in these species. Although the two species had similar selected temperatures and thermal tolerances, they contrasted in their thermoregulatory strategies and thermal sensitivity of locomotor performance. Hemidactylus frenatus had a higher performance than the native species, P. benedettii, which would represent an ecological advantage for the former species. Nevertheless, we suggest that given the spatial and temporal limitations in habitat use of the two species, the probability of agonistic interactions between them is reduced. We recommend exploring additional biotic attributes, such as competition, behavior and niche overlap in order assess the role of alternative factors favoring the success of invasive species.
Collapse
|
16
|
Pili AN, Tingley R, Sy EY, Diesmos MLL, Diesmos AC. Niche shifts and environmental non-equilibrium undermine the usefulness of ecological niche models for invasion risk assessments. Sci Rep 2020; 10:7972. [PMID: 32409706 PMCID: PMC7224218 DOI: 10.1038/s41598-020-64568-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/15/2020] [Indexed: 12/27/2022] Open
Abstract
Niche shifts and environmental non-equilibrium in invading alien species undermine niche-based predictions of alien species’ potential distributions and, consequently, their usefulness for invasion risk assessments. Here, we compared the realized climatic niches of four alien amphibian species (Hylarana erythraea, Rhinella marina, Hoplobatrachus rugulosus, and Kaloula pulchra) in their native and Philippine-invaded ranges to investigate niche changes that have unfolded during their invasion and, with this, assessed the extent of niche conservatism and environmental equilibrium. We investigated how niche changes affected reciprocal transferability of ecological niche models (ENMs) calibrated using data from the species’ native and Philippine-invaded ranges, and both ranges combined. We found varying levels of niche change across the species’ realized climatic niches in the Philippines: climatic niche shift for H. rugulosus; niche conservatism for R. marina and K. pulchra; environmental non-equilibrium in the Philippine-invaded range for all species; and environmental non-equilibrium in the native range or adaptive changes post-introduction for all species except H. erythraea. Niche changes undermined the reciprocal transferability of ENMs calibrated using native and Philippine-invaded range data. Our paper highlights the difficulty of predicting potential distributions given niche shifts and environmental non-equilibrium; we suggest calibrating ENMs with data from species’ combined native and invaded ranges, and to regularly reassess niche changes and recalibrate ENMs as species’ invasions progress.
Collapse
Affiliation(s)
- Arman N Pili
- The Graduate School, University of Santo Tomas, España, 1015, Manila, The Philippines. .,HerpWatch Pilipinas, Inc., Tondo, Manila, The Philippines. .,School of Biological Sciences, Monash University, Clayton, 3800, Victoria, Australia.
| | - Reid Tingley
- School of Biological Sciences, Monash University, Clayton, 3800, Victoria, Australia
| | - Emerson Y Sy
- HerpWatch Pilipinas, Inc., Tondo, Manila, The Philippines.,Philippine Center for Terrestrial and Aquatic Research, Tondo, Manila, The Philippines
| | - Mae Lowe L Diesmos
- HerpWatch Pilipinas, Inc., Tondo, Manila, The Philippines.,Department of Biological Sciences, College of Science, University of Santo Tomas, España, 1015, Manila, The Philippines.,Research Center for the Natural and Applied Sciences, University of Santo Tomas, España, 1015, Manila, The Philippines
| | - Arvin C Diesmos
- The Graduate School, University of Santo Tomas, España, 1015, Manila, The Philippines.,HerpWatch Pilipinas, Inc., Tondo, Manila, The Philippines.,Philippine National Museum of Natural History, T.F. Valencia Circle, T.M. Kalaw Street, Rizal Park, 1000, Manila, Philippines
| |
Collapse
|
17
|
Enriquez‐Urzelai U, Tingley R, Kearney MR, Sacco M, Palacio AS, Tejedo M, Nicieza AG. The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients. J Anim Ecol 2020; 89:1722-1734. [DOI: 10.1111/1365-2656.13222] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/29/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Urtzi Enriquez‐Urzelai
- Departamento de Biología de Organismos y Sistemas Universidad de Oviedo Oviedo Spain
- Research Unit of Biodiversity (UO‐CSIC‐PA)Campus de Mieres Mieres Spain
| | - Reid Tingley
- School of Biological Sciences Monash University Clayton Vic. Australia
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Michael R. Kearney
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Martina Sacco
- Departamento de Biología de Organismos y Sistemas Universidad de Oviedo Oviedo Spain
- Research Unit of Biodiversity (UO‐CSIC‐PA)Campus de Mieres Mieres Spain
| | - Antonio S. Palacio
- Departamento de Biología de Organismos y Sistemas Universidad de Oviedo Oviedo Spain
- Research Unit of Biodiversity (UO‐CSIC‐PA)Campus de Mieres Mieres Spain
| | - Miguel Tejedo
- Department of Evolutionary Ecology Estación Biológica de DoñanaCSIC Sevilla Spain
| | - Alfredo G. Nicieza
- Departamento de Biología de Organismos y Sistemas Universidad de Oviedo Oviedo Spain
- Research Unit of Biodiversity (UO‐CSIC‐PA)Campus de Mieres Mieres Spain
| |
Collapse
|
18
|
Rudin-Bitterli TS, Evans JP, Mitchell NJ. Geographic variation in adult and embryonic desiccation tolerance in a terrestrial-breeding frog. Evolution 2020; 74:1186-1199. [PMID: 32255513 DOI: 10.1111/evo.13973] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/03/2023]
Abstract
Intraspecific variation in the ability of individuals to tolerate environmental perturbations is often neglected when considering the impacts of climate change. Yet this information is potentially crucial for mitigating deleterious effects of climate change on threatened species. Here we assessed patterns of intraspecific variation in desiccation tolerance in the frog Pseudophryne guentheri, a terrestrial-breeding species experiencing a drying climate. Adult frogs were collected from six populations across a rainfall gradient and their dehydration and rehydration rates were assessed. We also compared desiccation tolerance of embryos and hatchlings originating from within-population parental crosses from four of the populations. Embryos were reared on soil at three soil-water potentials and their desiccation tolerance was assessed across a range of traits. We found significant and strong patterns of intraspecific variation in almost all traits, both in adults and first-generation offspring. Adult frogs exhibited clinal variation in their water balance responses, with populations from drier sites both dehydrating and rehydrating more slowly compared to frogs from more mesic sites. Similarly, desiccation tolerance of first-generation offspring was significantly greater in populations from xeric sites. Our findings suggest that populations within this species will respond differently to the regional reduction in rainfall predicted by climate change models.
Collapse
Affiliation(s)
- Tabitha Silja Rudin-Bitterli
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia.,Centre for Evolutionary Biology, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Jonathan Paul Evans
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia.,Centre for Evolutionary Biology, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Nicola Jane Mitchell
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
19
|
Hulbert AC, Hall JM, Mitchell TS, Warner DA. Use of human-made structures facilitates persistence of a non-native ectotherm. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02236-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Herrando‐Pérez S, Monasterio C, Beukema W, Gomes V, Ferri‐Yáñez F, Vieites DR, Buckley LB, Araújo MB. Heat tolerance is more variable than cold tolerance across species of Iberian lizards after controlling for intraspecific variation. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13507] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Salvador Herrando‐Pérez
- Australian Centre for Ancient DNA School of Biological Sciences The University of Adelaide Adelaide SA Australia
- Department of Biogeography and Global Change Museo Nacional de Ciencias Naturales Spanish National Research Council (CSIC) Madrid Spain
| | - Camila Monasterio
- Department of Biogeography and Global Change Museo Nacional de Ciencias Naturales Spanish National Research Council (CSIC) Madrid Spain
| | - Wouter Beukema
- Wildlife Health Ghent Department of Pathology, Bacteriology and Poultry Diseases Faculty of Veterinary Medicine Ghent University Merelbeke Belgium
| | - Verónica Gomes
- Research Center in Biodiversity and Genetic Resources (CIBIO) Research Network in Biodiversity and Evolutionary Biology (lnBIO) Universidade do Porto Vairão Portugal
| | - Francisco Ferri‐Yáñez
- Department of Community Ecology Helmholtz Centre for Environmental Research (UFZ) Halle (Saale) Germany
| | - David R. Vieites
- Department of Biogeography and Global Change Museo Nacional de Ciencias Naturales Spanish National Research Council (CSIC) Madrid Spain
| | | | - Miguel B. Araújo
- Department of Biogeography and Global Change Museo Nacional de Ciencias Naturales Spanish National Research Council (CSIC) Madrid Spain
- Rui Nabeiro Biodiversity Chair MED Institute Universidade de ÉvoraLargo dos Colegiais Évora Portugal
- The Globe Institute University of Copenhagen Copenhagen Denmark
| |
Collapse
|
21
|
Doody JS, Rhind D, Clulow S. Paradoxical population resilience of a keystone predator to a toxic invasive species. WILDLIFE RESEARCH 2020. [DOI: 10.1071/wr19150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
ContextThe invasive cane toad (Rhinella marina) has decimated populations of a keystone predator, the yellow-spotted monitor (Varanus panoptes), causing trophic cascades in Australian animal communities. Paradoxically, some V. panoptes populations coexist with toads. Demonstrating patterns in heterogeneous population-level impacts could reveal mechanisms that mediate individual effects, and provide managers with the ability to predict future impacts and assist in population recovery.
AimsThe aim of the present study was to search for spatial patterns of population resilience of V. panoptes to invasive cane toads.
MethodsPublished literature, unpublished data, reports and anecdotal information from trained herpetologists were used to test the emerging hypothesis that resilient predator populations are mainly coastal, whereas non-resilient populations are mostly inland.
Key resultsPost-toad invasion data from 23 V. panoptes populations supported the idea that toad impacts on V. panoptes were heterogeneous; roughly half the populations could be designated as resilient (n=13) and half as non-resilient (n=10). Resilient populations had longer times since toad invasion than did non-resilient populations (39 versus 9 years respectively), supporting the idea that some recovery can occur. Non-resilient populations were exclusively inland (n=10), whereas resilient populations were split between inland (n=5) and coastal (n=8) populations. Resilient inland populations, however, were mainly confined to areas in which decades had passed since toad invasion.
ConclusionsThe findings suggest that coastal V. panoptes populations fare much better than inland populations when it comes to surviving invading cane toads.
ImplicationsUnambiguous recovery of monitor populations remains undemonstrated and will require long-term population monitoring before and after toad invasion.
Collapse
|
22
|
Pheromones can cull an invasive amphibian without releasing survivors from intraspecific competition. Ecosphere 2019. [DOI: 10.1002/ecs2.2969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
23
|
Zakharova L, Meyer K, Seifan M. Trait-based modelling in ecology: A review of two decades of research. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Briscoe NJ, Elith J, Salguero-Gómez R, Lahoz-Monfort JJ, Camac JS, Giljohann KM, Holden MH, Hradsky BA, Kearney MR, McMahon SM, Phillips BL, Regan TJ, Rhodes JR, Vesk PA, Wintle BA, Yen JDL, Guillera-Arroita G. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol Lett 2019; 22:1940-1956. [PMID: 31359571 DOI: 10.1111/ele.13348] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/14/2019] [Accepted: 06/20/2019] [Indexed: 01/14/2023]
Abstract
Knowing where species occur is fundamental to many ecological and environmental applications. Species distribution models (SDMs) are typically based on correlations between species occurrence data and environmental predictors, with ecological processes captured only implicitly. However, there is a growing interest in approaches that explicitly model processes such as physiology, dispersal, demography and biotic interactions. These models are believed to offer more robust predictions, particularly when extrapolating to novel conditions. Many process-explicit approaches are now available, but it is not clear how we can best draw on this expanded modelling toolbox to address ecological problems and inform management decisions. Here, we review a range of process-explicit models to determine their strengths and limitations, as well as their current use. Focusing on four common applications of SDMs - regulatory planning, extinction risk, climate refugia and invasive species - we then explore which models best meet management needs. We identify barriers to more widespread and effective use of process-explicit models and outline how these might be overcome. As well as technical and data challenges, there is a pressing need for more thorough evaluation of model predictions to guide investment in method development and ensure the promise of these new approaches is fully realised.
Collapse
Affiliation(s)
- Natalie J Briscoe
- School of BioSciences, University of Melbourne, Melbourne, Vic., Australia
| | - Jane Elith
- School of BioSciences, University of Melbourne, Melbourne, Vic., Australia
| | - Roberto Salguero-Gómez
- Department of Zoology, University of Oxford, Oxford, UK.,School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia.,Max Planck Institute for Demographic Research, Rostock, Germany
| | | | - James S Camac
- School of BioSciences, University of Melbourne, Melbourne, Vic., Australia
| | | | - Matthew H Holden
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Bronwyn A Hradsky
- School of BioSciences, University of Melbourne, Melbourne, Vic., Australia
| | - Michael R Kearney
- School of BioSciences, University of Melbourne, Melbourne, Vic., Australia
| | - Sean M McMahon
- Forest Global Earth Observatory, Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Ben L Phillips
- School of BioSciences, University of Melbourne, Melbourne, Vic., Australia
| | - Tracey J Regan
- School of BioSciences, University of Melbourne, Melbourne, Vic., Australia.,The Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg, Vic., Australia
| | - Jonathan R Rhodes
- School of Earth and Environmental Sciences, University of Queensland, Brisbane, Qld, Australia
| | - Peter A Vesk
- School of BioSciences, University of Melbourne, Melbourne, Vic., Australia
| | - Brendan A Wintle
- School of BioSciences, University of Melbourne, Melbourne, Vic., Australia
| | - Jian D L Yen
- School of BioSciences, University of Melbourne, Melbourne, Vic., Australia
| | | |
Collapse
|
25
|
Lin TE, Chen TY, Wei HL, Richard R, Huang SP. Low cold tolerance of the invasive lizard Eutropis multifasciata constrains its potential elevation distribution in Taiwan. J Therm Biol 2019; 82:115-122. [PMID: 31128639 DOI: 10.1016/j.jtherbio.2019.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/04/2019] [Accepted: 03/21/2019] [Indexed: 01/24/2023]
Abstract
1. The invasive many-lined sun skink, Eutropis multifasciata, is established in much of southern Taiwan and is spreading northward. We investigated whether winter temperatures constrain further dispersion of this skink by comparing its cold tolerance to the spatial distribution of winter temperatures in Taiwan. 2. We measured the 28-day survival rate of this species at 4 constant temperatures (10-16 °C in 2 °C increments) and its critical thermal minimum (CTmin), i.e., the body temperature at which the righting reflex is lost during the cooling process. For comparison with the spatial distribution of temperatures over Taiwan, we used the biophysical model Niche Mapper™ in order to simulate the soil temperatures, where lizards are inactive in the winter, during the coldest month of the year, January, under three climatic scenarios (average temperature, average-3 °C, average+3 °C). 3. Our results indicate that this species has low tolerance to cold. Combining cold tolerance data with soil temperature data suggests that its upper elevation limit could range from 1000 m to 1500 m, above which the weather is lethal and precludes overwintering. The locations of sightings of E. multifasciata are consistent with this prediction, with no known locations above 500 m elevation. 4. This study highlights that the winter climate is a major factor in determining population establishment and hence in limiting this species' range. Future studies would benefit from accounting for low winter temperatures and their potential influence on range limits of invasive species.
Collapse
Affiliation(s)
- Te-En Lin
- Endemic Species Research Institute, 1, Minsheng E Rd., Jiji Township, Nantou County, 55244, Taiwan
| | - Tai-Yu Chen
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| | - Hsin-Lin Wei
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| | - Romain Richard
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| | - Shu-Ping Huang
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan.
| |
Collapse
|
26
|
Brannelly LA, Martin G, Llewelyn J, Skerratt LF, Berger L. Age- and size-dependent resistance to chytridiomycosis in the invasive cane toad Rhinella marina. DISEASES OF AQUATIC ORGANISMS 2018; 131:107-120. [PMID: 30460917 DOI: 10.3354/dao03278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In Australia, the cane toad Rhinella marina and chytrid fungus Batrachochytrium dendrobatidis (Bd) are examples of invasive species that have had dramatic impacts on native fauna. However, little is known about the interaction between Bd and cane toads. We aimed to explore the interaction of these 2 species in 3 parts. First, we collated data from the literature on Bd infection in wild cane toads. Second, we tested the susceptibility of recently metamorphosed cane toads to Bd infection. Finally, we modelled the distribution of the 2 species in Australia to identify where they overlap and, therefore, might interact. Through our data collation, we found that adult cane toads are infrequently infected and do not carry high infection burdens; however, our infection experiment showed that metamorphs are highly susceptible to infection and disease, but resistance appears to increase with increasing toad size. Niche modelling revealed overlapping distributions and the potential for cane toads to be affected by chytridiomycosis in the wild. While Bd can cause mortality in small juveniles in the laboratory, warm microhabitats used by wild toads likely prevent infection, and furthermore, high mortality of juveniles is unlikely to affect the adult populations because they are highly fecund. However, to demonstrate the impact of Bd on wild cane toad populations, targeted field studies are required to assess (1) the overall impact of chytridiomycosis on recruitment especially in cooler areas more favourable for Bd and (2) whether cane toad juveniles can amplify Bd exposure of native amphibian species in these areas.
Collapse
Affiliation(s)
- Laura A Brannelly
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
27
|
Herrando-Pérez S, Ferri-Yáñez F, Monasterio C, Beukema W, Gomes V, Belliure J, Chown SL, Vieites DR, Araújo MB. Intraspecific variation in lizard heat tolerance alters estimates of climate impact. J Anim Ecol 2018; 88:247-257. [PMID: 30303530 DOI: 10.1111/1365-2656.12914] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/15/2018] [Indexed: 11/30/2022]
Abstract
Research addressing the effects of global warming on the distribution and persistence of species generally assumes that population variation in thermal tolerance is spatially constant or overridden by interspecific variation. Typically, this rationale is implicit in sourcing one critical thermal maximum (CTmax ) population estimate per species to model spatiotemporal cross-taxa variation in heat tolerance. Theory suggests that such an approach could result in biased or imprecise estimates and forecasts of impact from climate warming, but limited empirical evidence in support of those expectations exists. We experimentally quantify the magnitude of intraspecific variation in CTmax among lizard populations, and the extent to which incorporating such variability can alter estimates of climate impact through a biophysical model. To do so, we measured CTmax from 59 populations of 15 Iberian lizard species (304 individuals). The overall median CTmax across all individuals from all species was 42.8°C and ranged from 40.5 to 48.3°C, with species medians decreasing through xeric, climate-generalist and mesic taxa. We found strong statistical support for intraspecific differentiation in CTmax by up to a median of 3°C among populations. We show that annual restricted activity (operative temperature > CTmax ) over the Iberian distribution of our study species differs by a median of >80 hr per 25-km2 grid cell based on different population-level CTmax estimates. This discrepancy leads to predictions of spatial variation in annual restricted activity to change by more than 20 days for six of the study species. Considering that during restriction periods, reptiles should be unable to feed and reproduce, current projections of climate-change impacts on the fitness of ectotherm fauna could be under- or over-estimated depending on which population is chosen to represent the physiological spectra of the species in question. Mapping heat tolerance over the full geographical ranges of single species is thus critical to address cross-taxa patterns and drivers of heat tolerance in a biologically comprehensive way.
Collapse
Affiliation(s)
- Salvador Herrando-Pérez
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, Spain
| | - Francisco Ferri-Yáñez
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, Spain
| | - Camila Monasterio
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, Spain
| | - Wouter Beukema
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Verónica Gomes
- Research Center in Biodiversity and Genetic Resources (CIBIO), Research Network in Biodiversity and Evolutionary Biology (lnBIO), Universidade do Porto, Vairão, Portugal
| | - Josabel Belliure
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Steven L Chown
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - David R Vieites
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, Spain
| | - Miguel B Araújo
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, Spain.,InBio/Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), Universidade de Évora, Évora, Portugal.,Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Riddell EA, Odom JP, Damm JD, Sears MW. Plasticity reveals hidden resistance to extinction under climate change in the global hotspot of salamander diversity. SCIENCE ADVANCES 2018; 4:eaar5471. [PMID: 30014037 PMCID: PMC6047487 DOI: 10.1126/sciadv.aar5471] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/30/2018] [Indexed: 05/21/2023]
Abstract
Extinction rates are predicted to rise exponentially under climate warming, but many of these predictions ignore physiological and behavioral plasticity that might buffer species from extinction. We evaluated the potential for physiological acclimatization and behavioral avoidance of poor climatic conditions to lower extinction risk under climate change in the global hotspot of salamander diversity, a region currently predicted to lose most of the salamander habitat due to warming. Our approach integrated experimental physiology and behavior into a mechanistic species distribution model to predict extinction risk based on an individual's capacity to maintain energy balance with and without plasticity. We assessed the sensitivity of extinction risk to body size, behavioral strategies, limitations on energy intake, and physiological acclimatization of water loss and metabolic rate. The field and laboratory experiments indicated that salamanders readily acclimatize water loss rates and metabolic rates in ways that could maintain positive energy balance. Projections with plasticity reduced extinction risk by 72% under climate warming, especially in the core of their range. Further analyses revealed that juveniles might experience the greatest physiological stress under climate warming, but we identified specific physiological adaptations or plastic responses that could minimize the lethal physiological stress imposed on juveniles. We conclude that incorporating plasticity fundamentally alters ecological predictions under climate change by reducing extinction risk in the hotspot of salamander diversity.
Collapse
Affiliation(s)
| | - Jonathan P. Odom
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA
| | - Jason D. Damm
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA
| | - Michael W. Sears
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA
| |
Collapse
|
29
|
Vimercati G, Davies SJ, Measey J. Rapid adaptive response to a Mediterranean environment reduces phenotypic mismatch in a recent amphibian invader. ACTA ACUST UNITED AC 2018; 221:jeb.174797. [PMID: 29615531 DOI: 10.1242/jeb.174797] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
Invasive species frequently cope with ecological conditions that are different from those to which they adapted, presenting an opportunity to investigate how phenotypes change across short time scales. In 2000, the guttural toad Sclerophrys gutturalis was first detected in a peri-urban area of Cape Town, where it is now invasive. The ability of the species to invade Cape Town is surprising as the area is characterized by a Mediterranean climate significantly drier and colder than that of the native source area. We measured field hydration state of guttural toads from the invasive Cape Town population and a native source population from Durban. We also obtained from laboratory trials: rates of evaporative water loss and water uptake, sensitivity of locomotor endurance to hydration state, critical thermal minimum (CTmin) and sensitivity of CTmin to hydration state. Field hydration state of invasive toads was significantly lower than that of native toads. Although the two populations had similar rates of water loss and uptake, invasive toads were more efficient in minimizing water loss through postural adjustments. In locomotor trials, invasive individuals noticeably outperformed native individuals when dehydrated but not when fully hydrated. CTmin was lower in invasive individuals than in native individuals, independent of hydration state. Our results indicate that an invasive population that is only 20 years old shows adaptive responses that reduce phenotypic mismatch with the novel environment. The invasion potential of the species in Cape Town is higher than we could infer from its characteristics in the native source population.
Collapse
Affiliation(s)
- Giovanni Vimercati
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Sarah J Davies
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
30
|
Perotti MG, Bonino MF, Ferraro D, Cruz FB. How sensitive are temperate tadpoles to climate change? The use of thermal physiology and niche model tools to assess vulnerability. ZOOLOGY 2018; 127:95-105. [PMID: 29496379 DOI: 10.1016/j.zool.2018.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/07/2018] [Accepted: 01/07/2018] [Indexed: 10/18/2022]
Abstract
Ectotherms are vulnerable to climate change, given their dependence on temperature, and amphibians are particularly interesting because of their complex life cycle. Tadpoles may regulate their body temperature by using suitable thermal microhabitats. Thus, their physiological responses are the result of adjustment to the local thermal limits experienced in their ponds. We studied three anuran tadpole species present in Argentina and Chile: Pleurodema thaul and Pleurodema bufoninum that are seasonal and have broad geographic ranges, and Batrachyla taeniata, a geographically restricted species with overwintering tadpoles. Species with restricted distribution are more susceptible to climate change than species with broader distribution that may cope with potential climatic changes in the environments in which they occur. We aim to test whether these species can buffer the potential effects of climate warming. We used ecological niche models and the outcomes of their thermal attributes (critical thermal limits, optimal temperature, and locomotor performance breadth) as empirical evidence of their capacity. We found that Pleurodema species show broader performance curves, related to their occurrence, while the geographically restricted B. taeniata shows a narrower thermal breadth, but is faster in warmer conditions. The modeled distributions and empirical physiological results suggest no severe threats for these three anurans. However, the risk level is increasing and a retraction of their distribution range might be possible for Pleurodema species, and some local population extinctions may happen, particularly for the narrowly distributed B. taeniata.
Collapse
Affiliation(s)
- María Gabriela Perotti
- Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCOMA, Quintral 1250, Bariloche, Río Negro 8400, Argentina.
| | - Marcelo Fabián Bonino
- Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCOMA, Quintral 1250, Bariloche, Río Negro 8400, Argentina
| | - Daiana Ferraro
- Laboratorio de Biodiversidad y Conservación de Tetrápodos, Instituto Nacional de Limnología (INALI-CONICET), Santa Fe, Argentina
| | - Félix Benjamín Cruz
- Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCOMA, Quintral 1250, Bariloche, Río Negro 8400, Argentina
| |
Collapse
|
31
|
McCann SM, Kosmala GK, Greenlees MJ, Shine R. Physiological plasticity in a successful invader: rapid acclimation to cold occurs only in cool-climate populations of cane toads ( Rhinella marina). CONSERVATION PHYSIOLOGY 2018; 6:cox072. [PMID: 29399360 PMCID: PMC5786208 DOI: 10.1093/conphys/cox072] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/03/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Physiological plasticity may facilitate invasion of novel habitats; but is such plasticity present in all populations of the invader or is it elicited only by specific climatic challenges? In cold-climate areas of Australia, invasive cane toads (Rhinella marina) can rapidly acclimate to cool conditions. To investigate whether this physiological plasticity is found in all invasive cane toads or is only seen in cool climates, we measured the acclimation ability of toads from across Australia and the island of Hawai'i. We collected toads from the field and placed them at either 12 or 24°C for 12 h before measuring their righting response as a proxy for critical thermal minimum (CTmin). Toads from the coolest Australian region (New South Wales) demonstrated plasticity (as previously reported), with exposure to 12°C (vs. 24°C) decreasing CTmin by 2°C. In toads from other Australian populations, CTmins were unaffected by our thermal treatments. Hawai'ian toads from a cool, wet site also rapidly acclimated to cool conditions, whereas those from warmer and drier Hawai'ian sites did not. Thermal plasticity has diverged among populations of invasive cane toads, with rapid acclimation manifested only in two cool-climate populations from widely separated sites. Predictions about the potential range of invasive species thus must consider the possibility of geographic (intraspecific) heterogeneity in thermal plasticity; data from other parts of the species' range may fail to predict levels of plasticity elicited by thermal challenges.
Collapse
Affiliation(s)
- Samantha M McCann
- School of Life and Environmental Sciences, University of Sydney, Room 442, Heydon-Laurence Building (A08) Science Road, New South Wales 2006, Australia
| | - Georgia K Kosmala
- School of Life and Environmental Sciences, University of Sydney, Room 442, Heydon-Laurence Building (A08) Science Road, New South Wales 2006, Australia
| | - Matthew J Greenlees
- School of Life and Environmental Sciences, University of Sydney, Room 442, Heydon-Laurence Building (A08) Science Road, New South Wales 2006, Australia
| | - Richard Shine
- School of Life and Environmental Sciences, University of Sydney, Room 442, Heydon-Laurence Building (A08) Science Road, New South Wales 2006, Australia
| |
Collapse
|
32
|
Doody JS, McHenry C, Letnic M, Everitt C, Sawyer G, Clulow S. Forecasting the spatiotemporal pattern of the cane toad invasion into north-western Australia. WILDLIFE RESEARCH 2018. [DOI: 10.1071/wr18091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
The toxic cane toad (Rhinella marina) has invaded over 50 countries and is a serious conservation issue in Australia. Because the cane toad has taken several decades to colonise northern Australia, due to the large size of the continent and the east–west invasion axis, there is scope for making testable predictions about how toads will invade new areas. The western toad invasion front is far from linear, providing clear evidence for heterogeneity in invasion speed.
Aims
Several ad hoc hypotheses have been offered to explain this heterogeneity, including the evolution of traits that could facilitate dispersal, and spatial heterogeneity in climate patterns. Here an alternative hypothesis is offered, and a prediction generated for the spatiotemporal pattern of invasion into the Kimberley Region – the next frontier for the invading toads in Australia.
Methods
Using observations of spatiotemporal patterns of cane toad colonisation in northern Australia over the last 15 years, a conceptual model is offered, based on the orientation of wet season river flows relative to the invasion axis, as well as toad rafting and floating behaviour during the wet season.
Key results
Our model predicts that toads will invade southern areas before northern areas; an alternative model based on rainfall amounts makes the opposite prediction. The models can now be tested by monitoring the spread of invasion front over the next 5–10 years.
Conclusions
Our conceptual models present a pleuralistic approach to understanding the spatiotemporal invasion dynamics of toads; such an approach and evaluation of the models could prove useful for managing other invasive species.
Implications
Although control of cane toads has largely proved ineffective, knowledge of the spatiotemporal pattern of the toad invasion in the Kimberley could: (1) facilitate potential management tools for slowing the spread of toads; (2) inform stakeholders in the local planning for the invasion; (3) provide researchers with a temporal context for quantifying toad impacts on animal communities; and (4) reveal the mechanism(s) causing the heterogeneity in invasion speed.
Collapse
|
33
|
Wijethunga U, Greenlees M, Shine R. Moving south: effects of water temperatures on the larval development of invasive cane toads ( Rhinella marina) in cool-temperate Australia. Ecol Evol 2017; 6:6993-7003. [PMID: 28725376 PMCID: PMC5513214 DOI: 10.1002/ece3.2405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/26/2016] [Accepted: 08/04/2016] [Indexed: 11/21/2022] Open
Abstract
The distributional limits of many ectothermic species are set by thermal tolerances of early‐developmental stages in the life history; embryos and larvae often are less able to buffer environmental variation than are conspecific adults. In pond‐breeding amphibians, for example, cold water may constrain viability of eggs and larvae, even if adults can find suitable thermal conditions in terrestrial niches. Invasive species provide robust model systems for exploring these questions, because we can quantify thermal challenges at the expanding range edge (from field surveys) and larval responses to thermal conditions (in the laboratory). Our studies on invasive cane toads (Rhinella marina) at the southern (cool‐climate) edge of their expanding range in Australia show that available ponds often average around 20°C during the breeding period, 10°C lower than in many areas of the toads’ native range, or in the Australian tropics. Our laboratory experiments showed that cane toad eggs and larvae cannot develop successfully at 16°C, but hatching success and larval survival rates were higher at 20°C than in warmer conditions. Lower temperatures slowed growth rates, increasing the duration of tadpole life, but also increased metamorph body mass. Water temperature also influenced metamorph body shape (high temperatures reduced relative limb length, head width, and body mass) and locomotor performance (increased speed from intermediate temperatures, longer hops from high temperatures). In combination with previous studies, our data suggest that lower water temperatures may enhance rather than reduce recruitment of cane toads, at least in areas where pond temperatures reach or exceed 20°C. That condition is fulfilled over a wide area of southern Australia, suggesting that the continuing expansion of this invasive species is unlikely to be curtailed by the impacts of relatively low water temperatures on the viability of early life‐history stages.
Collapse
Affiliation(s)
- Uditha Wijethunga
- School of Life and Environmental Sciences University of Sydney Sydney NSW 2006 Australia
| | - Matthew Greenlees
- School of Life and Environmental Sciences University of Sydney Sydney NSW 2006 Australia
| | - Richard Shine
- School of Life and Environmental Sciences University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
34
|
Chapman DS, Scalone R, Štefanić E, Bullock JM. Mechanistic species distribution modeling reveals a niche shift during invasion. Ecology 2017; 98:1671-1680. [PMID: 28369815 DOI: 10.1002/ecy.1835] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/10/2017] [Accepted: 03/13/2017] [Indexed: 11/08/2022]
Abstract
Niche shifts of nonnative plants can occur when they colonize novel climatic conditions. However, the mechanistic basis for niche shifts during invasion is poorly understood and has rarely been captured within species distribution models. We quantified the consequence of between-population variation in phenology for invasion of common ragweed (Ambrosia artemisiifolia L.) across Europe. Ragweed is of serious concern because of its harmful effects as a crop weed and because of its impact on public health as a major aeroallergen. We developed a forward mechanistic species distribution model based on responses of ragweed development rates to temperature and photoperiod. The model was parameterized and validated from the literature and by reanalyzing data from a reciprocal common garden experiment in which native and invasive populations were grown within and beyond the current invaded range. It could therefore accommodate between-population variation in the physiological requirements for flowering, and predict the potentially invaded ranges of individual populations. Northern-origin populations that were established outside the generally accepted climate envelope of the species had lower thermal requirements for bud development, suggesting local adaptation of phenology had occurred during the invasion. The model predicts that this will extend the potentially invaded range northward and increase the average suitability across Europe by 90% in the current climate and 20% in the future climate. Therefore, trait variation observed at the population scale can trigger a climatic niche shift at the biogeographic scale. For ragweed, earlier flowering phenology in established northern populations could allow the species to spread beyond its current invasive range, substantially increasing its risk to agriculture and public health. Mechanistic species distribution models offer the possibility to represent niche shifts by varying the traits and niche responses of individual populations. Ignoring such effects could substantially underestimate the extent and impact of invasions.
Collapse
Affiliation(s)
- Daniel S Chapman
- NERC Centre for Ecology & Hydrology, Bush Estate, Edinburgh, EH26 0QB, United Kingdom
| | - Romain Scalone
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Box 7043, Uppsala, 75007, Sweden
| | - Edita Štefanić
- Faculty of Agriculture, University of Josip Juraj Strossmayer, Trg Svetog Trojstva 3, Osijek, 31000, Croatia
| | - James M Bullock
- NERC Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Wallingford, OX10 8BB, United Kingdom
| |
Collapse
|
35
|
The impact of transportation and translocation on dispersal behaviour in the invasive cane toad. Oecologia 2017; 184:411-422. [PMID: 28432445 DOI: 10.1007/s00442-017-3871-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
Abstract
Biological invasions transport organisms to novel environments; but how does the translocation process influence movement patterns of the invader? Plausibly, the stress of encountering a novel environment, or of the transport process, might induce rapid dispersal from the release site-potentially enhancing (or reducing) invader success and spread. We investigated the effect of transportation and release to novel environments on dispersal-relevant traits of one of the world's most notorious invaders, the cane toad (Rhinella marina). We collected toads in northern New South Wales from heath and woodland habitats, manipulated the level of transport stress and either returned toads to their exact collection point (residents) or reciprocally translocated them to a novel site. Both translocation and the level of transport stress drastically altered toad dispersal rates for at least 5 days post-release. Translocated toads (depending on their level of transport stress and release habitat) moved on average two to five times further per day (mean range 67-148 m) than did residents (mean range 22-34 m). Translocated toads also moved on more days, and moved further from their release point than did resident toads, but did not move in straighter lines. A higher level of transport stress (simulating long-distance translocation) had no significant effect on movements of resident toads but amplified the dispersal of translocated toads only when released into woodland habitat. These behavioural shifts induced by translocation and transportation may affect an invader's ability to colonise novel sites, and need to be incorporated into plans for invader control.
Collapse
|
36
|
Mathewson PD, Moyer-Horner L, Beever EA, Briscoe NJ, Kearney M, Yahn JM, Porter WP. Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates. GLOBAL CHANGE BIOLOGY 2017; 23:1048-1064. [PMID: 27500587 DOI: 10.1111/gcb.13454] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
How climate constrains species' distributions through time and space is an important question in the context of conservation planning for climate change. Despite increasing awareness of the need to incorporate mechanism into species distribution models (SDMs), mechanistic modeling of endotherm distributions remains limited in this literature. Using the American pika (Ochotona princeps) as an example, we present a framework whereby mechanism can be incorporated into endotherm SDMs. Pika distribution has repeatedly been found to be constrained by warm temperatures, so we used Niche Mapper, a mechanistic heat-balance model, to convert macroclimate data to pika-specific surface activity time in summer across the western United States. We then explored the difference between using a macroclimate predictor (summer temperature) and using a mechanistic predictor (predicted surface activity time) in SDMs. Both approaches accurately predicted pika presences in current and past climate regimes. However, the activity models predicted 8-19% less habitat loss in response to annual temperature increases of ~3-5 °C predicted in the region by 2070, suggesting that pikas may be able to buffer some climate change effects through behavioral thermoregulation that can be captured by mechanistic modeling. Incorporating mechanism added value to the modeling by providing increased confidence in areas where different modeling approaches agreed and providing a range of outcomes in areas of disagreement. It also provided a more proximate variable relating animal distribution to climate, allowing investigations into how unique habitat characteristics and intraspecific phenotypic variation may allow pikas to exist in areas outside those predicted by generic SDMs. Only a small number of easily obtainable data are required to parameterize this mechanistic model for any endotherm, and its use can improve SDM predictions by explicitly modeling a widely applicable direct physiological effect: climate-imposed restrictions on activity. This more complete understanding is necessary to inform climate adaptation actions, management strategies, and conservation plans.
Collapse
Affiliation(s)
- Paul D Mathewson
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, 53703, USA
| | - Lucas Moyer-Horner
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, 53703, USA
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Erik A Beever
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT, 59715, USA
- Department of Ecology, Montana State University, Bozeman, MT, 59715, USA
| | - Natalie J Briscoe
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Michael Kearney
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jeremiah M Yahn
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, 53703, USA
| | - Warren P Porter
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, 53703, USA
| |
Collapse
|
37
|
Madliger CL, Franklin CE, Hultine KR, van Kleunen M, Lennox RJ, Love OP, Rummer JL, Cooke SJ. Conservation physiology and the quest for a 'good' Anthropocene. CONSERVATION PHYSIOLOGY 2017; 5:cox003. [PMID: 28852507 PMCID: PMC5570019 DOI: 10.1093/conphys/cox003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/31/2016] [Accepted: 01/06/2017] [Indexed: 05/21/2023]
Abstract
It has been proposed that we are now living in a new geological epoch known as the Anthropocene, which is specifically defined by the impacts that humans are having on the Earth's biological diversity and geology. Although the proposal of this term was borne out of an acknowledgement of the negative changes we are imparting on the globe (e.g. climate change, pollution, coastal erosion, species extinctions), there has recently been action amongst a variety of disciplines aimed at achieving a 'good Anthropocene' that strives to balance societal needs and the preservation of the natural world. Here, we outline ways that the discipline of conservation physiology can help to delineate a hopeful, progressive and productive path for conservation in the Anthropocene and, specifically, achieve that vision. We focus on four primary ways that conservation physiology can contribute, as follows: (i) building a proactive approach to conservation; (ii) encouraging a pragmatic perspective; (iii) establishing an appreciation for environmental resilience; and (iv) informing and engaging the public and political arenas. As a collection of passionate individuals combining theory, technological advances, public engagement and a dedication to achieving conservation success, conservation physiologists are poised to make meaningful contributions to the productive, motivational and positive way forward that is necessary to curb and reverse negative human impact on the environment.
Collapse
Affiliation(s)
- Christine L. Madliger
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, CanadaK1S 5B6
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, ON, CanadaN9B 3P4
- Corresponding author: Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, ON, Canada N9B 3P4. Tel: +1 519 253 3000 ×2701.
| | - Craig E. Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Kevin R. Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, 1201 North Galvin Parkway, Phoenix, AZ85008, USA
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, D 78457 Konstanz, Germany
| | - Robert J. Lennox
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, CanadaK1S 5B6
| | - Oliver P. Love
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, ON, CanadaN9B 3P4
| | - Jodie L. Rummer
- ARC Centre for Excellence for Coral Reef Studies, James Cook University, Townsville, QLD4811, Australia
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, CanadaK1S 5B6
| |
Collapse
|
38
|
Trumbo DR, Epstein B, Hohenlohe PA, Alford RA, Schwarzkopf L, Storfer A. Mixed population genomics support for the central marginal hypothesis across the invasive range of the cane toad (Rhinella marina) in Australia. Mol Ecol 2016; 25:4161-76. [PMID: 27393238 PMCID: PMC5021610 DOI: 10.1111/mec.13754] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 12/26/2022]
Abstract
Understanding factors that cause species' geographic range limits is a major focus in ecology and evolution. The central marginal hypothesis (CMH) predicts that species cannot adapt to conditions beyond current geographic range edges because genetic diversity decreases from core to edge due to smaller, more isolated edge populations. We employed a population genomics framework using 24 235-33 112 SNP loci to test major predictions of the CMH in the ongoing invasion of the cane toad (Rhinella marina) in Australia. Cane toad tissue samples were collected along broad-scale, core-to-edge transects across their invasive range. Geographic and ecological core areas were identified using GIS and habitat suitability indices from ecological niche modelling. Bayesian clustering analyses revealed three genetic clusters, in the northwest invasion-front region, northeast precipitation-limited region and southeast cold temperature-limited region. Core-to-edge patterns of genetic diversity and differentiation were consistent with the CMH in the southeast, but were not supported in the northeast and showed mixed support in the northwest. Results suggest cold temperatures are a likely contributor to southeastern range limits, consistent with CMH predictions. In the northeast and northwest, ecological processes consisting of a steep physiological barrier and ongoing invasion dynamics, respectively, are more likely explanations for population genomic patterns than the CMH.
Collapse
Affiliation(s)
- Daryl R. Trumbo
- Washington State University; School of Biological Sciences; Abelson Hall, Room 305; Pullman, WA 990164, USA
| | - Brendan Epstein
- Washington State University; School of Biological Sciences; Abelson Hall, Room 305; Pullman, WA 990164, USA
| | - Paul A. Hohenlohe
- University of Idaho; Department of Biological Sciences; Life Sciences South 252; Moscow, ID 83844, USA
| | - Ross A. Alford
- James Cook University; College of Marine and Environmental Sciences; Building 28; Townsville, QLD 4811, Australia
| | - Lin Schwarzkopf
- James Cook University; College of Marine and Environmental Sciences; Building 28; Townsville, QLD 4811, Australia
| | - Andrew Storfer
- Washington State University; School of Biological Sciences; Abelson Hall, Room 305; Pullman, WA 990164, USA
| |
Collapse
|
39
|
Llewelyn J, Macdonald SL, Hatcher A, Moritz C, Phillips BL. Intraspecific variation in climate‐relevant traits in a tropical rainforest lizard. DIVERS DISTRIB 2016. [DOI: 10.1111/ddi.12466] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- John Llewelyn
- Centre for Tropical Biodiversity and Climate Change James Cook University Townsville Qld 4811 Australia
- Land and Water Flagship CSIRO Townsville Qld 4811 Australia
| | - Stewart L. Macdonald
- Centre for Tropical Biodiversity and Climate Change James Cook University Townsville Qld 4811 Australia
- Land and Water Flagship CSIRO Townsville Qld 4811 Australia
| | - Amberlee Hatcher
- Centre for Tropical Biodiversity and Climate Change James Cook University Townsville Qld 4811 Australia
| | - Craig Moritz
- Centre for Biodiversity Analysis Australian National University Canberra ACT 0200 Australia
| | - Ben L. Phillips
- Centre for Tropical Biodiversity and Climate Change James Cook University Townsville Qld 4811 Australia
- School of Biosciences University of Melbourne Melbourne Vic. 3010 Australia
| |
Collapse
|
40
|
Kong JD, Axford JK, Hoffmann AA, Kearney MR. Novel applications of thermocyclers for phenotyping invertebrate thermal responses. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jacinta D. Kong
- School of BioSciences The University of Melbourne Parkville Vic. 3010 Australia
| | - Jason K. Axford
- School of BioSciences The University of Melbourne Parkville Vic. 3010 Australia
| | - Ary A. Hoffmann
- School of BioSciences The University of Melbourne Parkville Vic. 3010 Australia
| | - Michael R. Kearney
- School of BioSciences The University of Melbourne Parkville Vic. 3010 Australia
| |
Collapse
|
41
|
Ihlow F, Courant J, Secondi J, Herrel A, Rebelo R, Measey GJ, Lillo F, De Villiers FA, Vogt S, De Busschere C, Backeljau T, Rödder D. Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis. PLoS One 2016; 11:e0154869. [PMID: 27248830 PMCID: PMC4889038 DOI: 10.1371/journal.pone.0154869] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/20/2016] [Indexed: 11/19/2022] Open
Abstract
By altering or eliminating delicate ecological relationships, non-indigenous species are considered a major threat to biodiversity, as well as a driver of environmental change. Global climate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis), native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs). SDMs were computed based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algorithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a continental scale, both SDMs predict decreasing potential distributions in the species' native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France and Great Britain.
Collapse
Affiliation(s)
- Flora Ihlow
- Herpetological Section, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
- * E-mail:
| | | | - Jean Secondi
- UMR CNRS 5023 LEHNA, University Lyon 1, Lyon, France
- UMR CNRS 6554 LETG-LEESA, University of Angers, Angers, France
| | | | - Rui Rebelo
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - G. John Measey
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - Francesco Lillo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
| | - F. André De Villiers
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - Solveig Vogt
- Herpetological Section, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Charlotte De Busschere
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium and University of Antwerp, Antwerp, Belgium
| | - Thierry Backeljau
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium and University of Antwerp, Antwerp, Belgium
| | - Dennis Rödder
- Herpetological Section, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| |
Collapse
|
42
|
The impacts of a toxic invasive prey species (the cane toad, Rhinella marina) on a vulnerable predator (the lace monitor, Varanus varius). Biol Invasions 2016. [DOI: 10.1007/s10530-016-1097-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
43
|
Jolly CJ, Shine R, Greenlees MJ. The impact of invasive cane toads on native wildlife in southern Australia. Ecol Evol 2015; 5:3879-94. [PMID: 26445649 PMCID: PMC4588653 DOI: 10.1002/ece3.1657] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/15/2015] [Accepted: 07/25/2015] [Indexed: 01/15/2023] Open
Abstract
Commonly, invaders have different impacts in different places. The spread of cane toads (Rhinella marina: Bufonidae) has been devastating for native fauna in tropical Australia, but the toads' impact remains unstudied in temperate-zone Australia. We surveyed habitat characteristics and fauna in campgrounds along the central eastern coast of Australia, in eight sites that have been colonized by cane toads and another eight that have not. The presence of cane toads was associated with lower faunal abundance and species richness, and a difference in species composition. Populations of three species of large lizards (land mullets Bellatorias major, eastern water dragons Intellagama lesueurii, and lace monitors Varanus varius) and a snake (red-bellied blacksnake Pseudechis porphyriacus) were lower (by 84 to 100%) in areas with toads. The scarcity of scavenging lace monitors in toad-invaded areas translated into a 52% decrease in rates of carrion removal (based on camera traps at bait stations) and an increase (by 61%) in numbers of brush turkeys (Alectura lathami). The invasion of cane toads through temperate-zone Australia appears to have reduced populations of at least four anurophagous predators, facilitated other taxa, and decreased rates of scavenging. Our data identify a paradox: The impacts of cane toads are at least as devastating in southern Australia as in the tropics, yet we know far more about toad invasion in the sparsely populated wilderness areas of tropical Australia than in the densely populated southeastern seaboard.
Collapse
Affiliation(s)
- Christopher J Jolly
- School of Biological Sciences University of Sydney Sydney New South Wales 2006 Australia
| | - Richard Shine
- School of Biological Sciences University of Sydney Sydney New South Wales 2006 Australia
| | - Matthew J Greenlees
- School of Biological Sciences University of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
44
|
Rato C, Carretero MA. Ecophysiology Tracks Phylogeny and Meets Ecological Models in an Iberian Gecko. Physiol Biochem Zool 2015; 88:564-75. [PMID: 26658252 DOI: 10.1086/682170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Because fitness of ectotherms, including reptiles, is highly dependent on temperature and water availability, the study of ecophysiological traits, such as preferred temperature (T p) and water loss rates (WLRs), may provide mechanistic evidence on the restricting factors to the species ranges. The Moorish gecko, Tarentola mauritanica, is a species complex with a circum-Mediterranean distribution. In the Iberian Peninsula, two sister parapatric forms of the complex, known as the Iberian and the European clades, are found. Ecological models previously performed using presence records and bioclimatic variables suggest niche divergence between both lineages correlated with precipitation rather than with temperature. In this study, we test this correlative hypothesis using ecophysiological evidence. In the laboratory, we analyzed the T p and WLRs for 84 adult males from seven distinct populations ascribed to one of the two lineages present in Iberia. Specifically, we evaluated the existence of trait conservatism versus adaptation among populations, lineages, or both. In addition, we tested for a trade-off between water and thermal traits and assessed whether climate regime of sampling localities had any influence on the ecophysiological patterns found. We found that T p is quite conserved at both the population and lineage levels and independent from body size. In contrast, water loss experiments revealed some variation among populations, but the regression analysis failed to detect correlation between T p and WLR at any level. Overall, the European lineage displayed a trend for higher water loss and was more diverse among populations when compared with the Iberian lineage. The lack of correspondence between ecophysiological traits and local climatic conditions favors phylogenetic signal versus adaptation. This suggests divergent evolutionary responses to the environment, mainly acting on water ecology, in both lineages, which may account for the differences in their range expansion.
Collapse
Affiliation(s)
- C Rato
- Centro de Investigação em Biodiversidade e Recursos Genéticos Research Centre in Biodiversity and Genetic Resources, Rede de Investigação em Biodiversidade e Biologia Evolutiva, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Vila do Conde, Portugal
| | | |
Collapse
|
45
|
Riddell EA, Sears MW. Geographic variation of resistance to water loss within two species of lungless salamanders: implications for activity. Ecosphere 2015. [DOI: 10.1890/es14-00360.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Winwood-Smith HS, Alton LA, Franklin CE, White CR. Does greater thermal plasticity facilitate range expansion of an invasive terrestrial anuran into higher latitudes? CONSERVATION PHYSIOLOGY 2015; 3:cov010. [PMID: 27293695 PMCID: PMC4778455 DOI: 10.1093/conphys/cov010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/04/2015] [Accepted: 02/08/2015] [Indexed: 05/25/2023]
Abstract
Temperature has pervasive effects on physiological processes and is critical in setting species distribution limits. Since invading Australia, cane toads have spread rapidly across low latitudes, but slowly into higher latitudes. Low temperature is the likely factor limiting high-latitude advancement. Several previous attempts have been made to predict future cane toad distributions in Australia, but understanding the potential contribution of phenotypic plasticity and adaptation to future range expansion remains challenging. Previous research demonstrates the considerable thermal metabolic plasticity of the cane toad, but suggests limited thermal plasticity of locomotor performance. Additionally, the oxygen-limited thermal tolerance hypothesis predicts that reduced aerobic scope sets thermal limits for ectotherm performance. Metabolic plasticity, locomotor performance and aerobic scope are therefore predicted targets of natural selection as cane toads invade colder regions. We measured these traits at temperatures of 10, 15, 22.5 and 30°C in low- and high-latitude toads acclimated to 15 and 30°C, to test the hypothesis that cane toads have adapted to cooler temperatures. High-latitude toads show increased metabolic plasticity and higher resting metabolic rates at lower temperatures. Burst locomotor performance was worse for high-latitude toads. Other traits showed no regional differences. We conclude that increased metabolic plasticity may facilitate invasion into higher latitudes by maintaining critical physiological functions at lower temperatures.
Collapse
Affiliation(s)
- Hugh S Winwood-Smith
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lesley A Alton
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Craig E Franklin
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Craig R White
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
47
|
Buckley LB, Ehrenberger JC, Angilletta MJ. Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12406] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Abstract
Accurate forecasts of biological invasions are crucial for managing invasion risk but are hampered by niche shifts resulting from evolved environmental tolerances (fundamental niche shifts) or the presence of novel biotic and abiotic conditions in the invaded range (realized niche shifts). Distinguishing between these kinds of niche shifts is impossible with traditional, correlative approaches to invasion forecasts, which exclusively consider the realized niche. Here we overcome this challenge by combining a physiologically mechanistic model of the fundamental niche with correlative models based on the realized niche to study the global invasion of the cane toad Rhinella marina. We find strong evidence that the success of R. marina in Australia reflects a shift in the species' realized niche, as opposed to evolutionary shifts in range-limiting traits. Our results demonstrate that R. marina does not fill its fundamental niche in its native South American range and that areas of niche unfilling coincide with the presence of a closely related species with which R. marina hybridizes. Conversely, in Australia, where coevolved taxa are absent, R. marina largely fills its fundamental niche in areas behind the invasion front. The general approach taken here of contrasting fundamental and realized niche models provides key insights into the role of biotic interactions in shaping range limits and can inform effective management strategies not only for invasive species but also for assisted colonization under climate change.
Collapse
|
49
|
McCann S, Greenlees MJ, Newell D, Shine R. Rapid acclimation to cold allows the cane toad to invade montane areas within its Australian range. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12255] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Samantha McCann
- School of Biological Sciences; University of Sydney; Sydney New South Wales 2006 Australia
| | - Matthew J. Greenlees
- School of Biological Sciences; University of Sydney; Sydney New South Wales 2006 Australia
| | - David Newell
- School of Environment, Science and Engineering; Southern Cross University; Lismore New South Wales 2480 Australia
| | - Richard Shine
- School of Biological Sciences; University of Sydney; Sydney New South Wales 2006 Australia
| |
Collapse
|
50
|
Kolbe JJ, Ehrenberger JC, Moniz HA, Angilletta MJ. Physiological Variation among Invasive Populations of the Brown Anole (Anolis sagrei). Physiol Biochem Zool 2014; 87:92-104. [DOI: 10.1086/672157] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|