1
|
Iguchi A, Gibu K, Yorifuji M, Nishijima M, Suzuki A, Ono T, Matsumoto Y, Inoue M, Fujii M, Muraoka D, Fujita Y, Takami H. Transgenerational acclimation to acidified seawater and gene expression patterns in a sea urchin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172616. [PMID: 38642751 DOI: 10.1016/j.scitotenv.2024.172616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Transgenerational responses of susceptible calcifying organisms to progressive ocean acidification are an important issue in reducing uncertainty of future predictions. In this study, a two-generation rearing experiment was conducted using mature Mesocentrotus nudus, a major edible sea urchin that occurs along the coasts of northern Japan. Morphological observations and comprehensive gene expression analysis (RNA-seq) of resulting larvae were performed to examine transgenerational acclimation to acidified seawater. Two generations of rearing experiments showed that larvae derived from parents acclimated to acidified seawater tended to have higher survival and show less reduction in body size when exposed to acidified seawater of the same pH, suggesting that a positive carry-over effect occurred. RNA-seq analysis showed that gene expression patterns of larvae originated from both acclimated and non-acclimated parents to acidified seawater tended to be different than control condition, and the gene expression pattern of larvae originated from acclimated parents was substantially different than that of larvae of non-acclimated and control parents.
Collapse
Affiliation(s)
- Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan; Research laboratory on environmentally-conscious developments and technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan.
| | - Kodai Gibu
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan
| | - Makiko Yorifuji
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan
| | - Miyuki Nishijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan
| | - Atsushi Suzuki
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan; Research laboratory on environmentally-conscious developments and technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan
| | - Tsuneo Ono
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Yokohama 236-8648, Japan
| | - Yukio Matsumoto
- Japan Fisheries Research and Education Agency, Fisheries Technology Institute, Miyako Laboratory, Miyako 027-0097, Japan
| | - Mayuri Inoue
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Masahiko Fujii
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-810, Japan
| | - Daisuke Muraoka
- Japan Fisheries Research and Education Agency, Fisheries Technology Institute, Miyako Laboratory, Miyako 027-0097, Japan
| | - Yamato Fujita
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-810, Japan
| | - Hideki Takami
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Shiogama Laboratory, 3-27-5, Shiogama 985-0001, Japan
| |
Collapse
|
2
|
Sol Dourdin T, Guyomard K, Rabiller M, Houssais N, Cormier A, Le Monier P, Sussarellu R, Rivière G. Ancestors' Gift: Parental Early Exposure to the Environmentally Realistic Pesticide Mixture Drives Offspring Phenotype in a Larger Extent Than Direct Exposure in the Pacific Oyster, Crassostrea gigas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1865-1876. [PMID: 38217500 DOI: 10.1021/acs.est.3c08201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Marine organisms are threatened by the presence of pesticides in coastal waters. Among them, the Pacific oyster is one of the most studied invertebrates in marine ecotoxicology where numerous studies highlighted the multiscale impacts of pesticides. In the past few years, a growing body of literature has reported the epigenetic outcomes of xenobiotics. Because DNA methylation is an epigenetic mark implicated in organism development and is meiotically heritable, it raises the question of the multigenerational implications of xenobiotic-induced epigenetic alterations. Therefore, we performed a multigenerational exposure to an environmentally relevant mixture of 18 pesticides (nominal sum concentration: 2.85 μg·L-1) during embryo-larval stages (0-48 hpf) of a second generation (F1) for which parents where already exposed or not in F0. Gene expression, DNA methylation, and physiological end points were assessed throughout the life cycle of individuals. Overall, the multigenerational effect has a greater influence on the phenotype than the exposure itself. Thus, multigenerational phenotypic effects were observed: individuals descending from exposed parents exhibited lower epinephrine-induced metamorphosis and field survival rates. At the molecular level, RNA-seq and Methyl-seq data analyses performed in gastrula embryos and metamorphosis-competent pediveliger (MCP) larvae revealed a clear F0 treatment-dependent discrimination. Some genes implicated into shell secretion and immunity exhibited F1:F0 treatment interaction patterns (e.g., Calm and Myd88). Those results suggest that low chronic environmental pesticide contamination can alter organisms beyond the individual scale level and have long-term adaptive implications.
Collapse
Affiliation(s)
- Thomas Sol Dourdin
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins, 44311 Cedex 03 Nantes, France
| | - Killian Guyomard
- Ifremer, Plateforme Mollusques Marins Bouin, 85029 Bouin, France
| | | | - Nina Houssais
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins, 44311 Cedex 03 Nantes, France
| | - Alexandre Cormier
- Ifremer, Service de Bioinformatique de l'Ifremer, 29280 Brest, France
| | - Pauline Le Monier
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins, 44311 Cedex 03 Nantes, France
| | - Rossana Sussarellu
- Ifremer, Physiologie et Toxines des Microalgues Toxiques, 44311 Cedex 03 Nantes, France
| | - Guillaume Rivière
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR7208, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231 Paris Cedex, France
- BOREA, UFR des Sciences, Université de Caen-Normandie, Esplanade de la Paix, 14032 Caen Cedex, France
| |
Collapse
|
3
|
Li Y, Wilson D, Grundel R, Campbell S, Knight J, Perry J, Hellmann JJ. Extinction risk modeling predicts range-wide differences of climate change impact on Karner blue butterfly (Lycaeides melissa samuelis). PLoS One 2023; 18:e0262382. [PMID: 37934780 PMCID: PMC10629659 DOI: 10.1371/journal.pone.0262382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
The Karner blue butterfly (Lycaeides melissa samuelis, or Kbb), a federally endangered species under the U.S. Endangered Species Act in decline due to habitat loss, can be further threatened by climate change. Evaluating how climate shapes the population trend of the Kbb can help in the development of adaptive management plans. Current demographic models for the Kbb incorporate in either a density-dependent or density-independent manner. We instead created mixed density-dependent and -independent (hereafter "endo-exogenous") models for Kbbs based on long-term count data of five isolated populations in the upper Midwest, United States during two flight periods (May to June and July to August) to understand how the growth rates were related to previous population densities and abiotic environmental conditions, including various macro- and micro-climatic variables. Our endo-exogenous extinction risk models showed that both density-dependent and -independent components were vital drivers of the historical population trends. However, climate change impacts were not always detrimental to Kbbs. Despite the decrease of population growth rate with higher overwinter temperatures and spring precipitations in the first generation, the growth rate increased with higher summer temperatures and precipitations in the second generation. We concluded that finer spatiotemporally scaled models could be more rewarding in guiding the decision-making process of Kbb restoration under climate change.
Collapse
Affiliation(s)
- Yudi Li
- Energy Graduate Group, University of California Davis, Davis, CA, United States of America
| | - David Wilson
- Minnesota Department of Natural Resources, Grand Rapids, MN, United States of America
| | - Ralph Grundel
- US Geological Survey, Lake Michigan Ecological Research Station, Chesterton, IN, United States of America
| | - Steven Campbell
- Albany Pine Bush Preserve Commission, Albany Pine Bush, NY, United States of America
| | - Joseph Knight
- Department of Forest Resources, University of Minnesota, St. Paul, MN, United States of America
| | - Jim Perry
- Department of Fisheries, Wildlife and Conservation Biology University of Minnesota, St. Paul, MN, United States of America
| | - Jessica J. Hellmann
- Conservation Sciences Graduate Program, University of Minnesota, St. Paul, MN, United States of America
| |
Collapse
|
4
|
Long WC, Swiney KM, Foy RJ. Direct, carryover, and maternal effects of ocean acidification on snow crab embryos and larvae. PLoS One 2023; 18:e0276360. [PMID: 37851644 PMCID: PMC10584120 DOI: 10.1371/journal.pone.0276360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
Ocean acidification, a decrease in ocean pH with increasing anthropogenic CO2 concentrations, is expected to affect many marine animals. To examine the effects of decreased pH on snow crab (Chionoecetes opilio), a commercial species in Alaska, we reared ovigerous females in one of three treatments: Ambient pH (~8.1), pH 7.8, and pH 7.5, through two annual reproductive cycles. Morphometric changes during development and hatching success were measured for embryos both years and calcification was measured for the adult females at the end of the 2-year experiment. Embryos and larvae analyzed in year one were from oocytes developed, fertilized, and extruded in situ, whereas embryos and larvae in year two were from oocytes developed, fertilized, and extruded under acidified conditions in the laboratory. In both years, larvae were exposed to the same pH treatments in a fully crossed experimental design. Starvation-survival, morphology, condition, and calcium/magnesium content were assessed for larvae. Embryo morphology during development, hatching success, and fecundity were unaffected by pH during both years. Percent calcium in adult females' carapaces did not differ among treatments at the end of the experiment. In the first year, starvation-survival of larvae reared at Ambient pH but hatched from embryos reared at reduced pH was lowered; however, the negative effect was eliminated when the larvae were reared at reduced pH. In the second year, there was no direct effect of either embryo or larval pH treatment, but larvae reared as embryos at reduced pH survived longer if reared at reduced pH. Treatment either did not affect other measured larval parameters, or effect sizes were small. The results from this two-year study suggest that snow crabs are well adapted to projected ocean pH levels within the next two centuries, although other life-history stages still need to be examined for sensitivity and potential interactive effects with increasing temperatures should be investigated.
Collapse
Affiliation(s)
- William Christopher Long
- Kodiak Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Kodiak, AK, United States of America
| | - Katherine M. Swiney
- Kodiak Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Kodiak, AK, United States of America
| | - Robert J. Foy
- Kodiak Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Kodiak, AK, United States of America
| |
Collapse
|
5
|
Schwaner C, Farhat S, Barbosa M, Boutet I, Tanguy A, Pales Espinosa E, Allam B. Molecular Features Associated with Resilience to Ocean Acidification in the Northern Quahog, Mercenaria mercenaria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:83-99. [PMID: 36417051 DOI: 10.1007/s10126-022-10183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The increasing concentration of CO2 in the atmosphere and resulting flux into the oceans will further exacerbate acidification already threatening coastal marine ecosystems. The subsequent alterations in carbonate chemistry can have deleterious impacts on many economically and ecologically important species including the northern quahog (Mercenaria mercenaria). The accelerated pace of these changes requires an understanding of how or if species and populations will be able to acclimate or adapt to such swift environmental alterations. Thus far, studies have primarily focused on the physiological effects of ocean acidification (OA) on M. mercenaria, including reductions in growth and survival. However, the molecular mechanisms of resilience to OA in this species remains unclear. Clam gametes were fertilized under normal pCO2 and reared under acidified (pH ~ 7.5, pCO2 ~ 1200 ppm) or control (pH ~ 7.9, pCO2 ~ 600 ppm) conditions before sampled at 2 days (larvae), 32 days (postsets), 5 and 10 months (juveniles) and submitted to RNA and DNA sequencing to evaluate alterations in gene expression and genetic variations. Results showed significant shift in gene expression profiles among clams reared in acidified conditions as compared to their respective controls. At 10 months of exposure, significant shifts in allele frequency of single nucleotide polymorphisms (SNPs) were identified. Both approaches highlighted genes coding for proteins related to shell formation, bicarbonate transport, cytoskeleton, immunity/stress, and metabolism, illustrating the role these pathways play in resilience to OA.
Collapse
Affiliation(s)
- Caroline Schwaner
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Michelle Barbosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Isabelle Boutet
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, 29680, Roscoff, France
| | - Arnaud Tanguy
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, 29680, Roscoff, France
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| |
Collapse
|
6
|
Kekuewa SAH, Courtney TA, Cyronak T, Andersson AJ. Seasonal nearshore ocean acidification and deoxygenation in the Southern California Bight. Sci Rep 2022; 12:17969. [PMID: 36289268 PMCID: PMC9606271 DOI: 10.1038/s41598-022-21831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/04/2022] [Indexed: 01/24/2023] Open
Abstract
The California Current System experiences seasonal ocean acidification and hypoxia (OAH) owing to wind-driven upwelling, but little is known about the intensity, frequency, and depth distribution of OAH in the shallow nearshore environment. Here we present observations of OAH and dissolved inorganic carbon and nutrient parameters based on monthly transects from March 2017 to September 2018 extending from the surf zone to the ~ 40 m depth contour in La Jolla, California. Biologically concerning OAH conditions were observed at depths as shallow as 10 m and as close as 700 m to the shoreline. Below 20 m depth, 8% of observations were undersaturated with respect to aragonite, 28% of observations had a pHT less than 7.85, and 19% of observations were below the sublethal oxygen threshold of 157 µmol kg-1. These observations raise important questions about the impacts of OAH on coastal organisms and ecosystems and how future intensified upwelling may exacerbate these conditions.
Collapse
Affiliation(s)
- Samuel A. H. Kekuewa
- grid.266100.30000 0001 2107 4242Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA USA
| | - Travis A. Courtney
- grid.267044.30000 0004 0398 9176Department of Marine Sciences, University of Puerto Rico Mayagüez, Mayagüez, PR USA
| | - Tyler Cyronak
- grid.261241.20000 0001 2168 8324Department of Marine and Environmental Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL USA
| | - Andreas J. Andersson
- grid.266100.30000 0001 2107 4242Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA USA
| |
Collapse
|
7
|
Gilbert SF, Hadfield MG. Symbiosis of disciplines: how can developmental biologists join conservationists in sustaining and restoring earth's biodiversity? Development 2022; 149:275878. [PMID: 35775576 DOI: 10.1242/dev.199960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
What can developmental biology contribute toward mitigating the consequences of anthropogenic assaults on the environment and climate change? In this Spotlight article, we advocate a developmental biology that takes seriously Lynn Margulis' claim that 'the environment is part of the body'. We believe this to be a pre-condition for developmental biology playing important roles in conservation and environmental restoration. We need to forge a developmental biology of the holobiont - the multi-genomic physiologically integrated organism that is also a functional biome. To this end, we highlight how developmental biology needs to explore more deeply the interactions between developing organisms, and their chemical, physical and biotic environments.
Collapse
Affiliation(s)
- Scott F Gilbert
- Howard A. Schneiderman Professor of Biology Emeritus, Swarthmore College, Swarthmore, PA 19081, USA
| | - Michael G Hadfield
- Research Professor, Pacific Biosciences Research Center, Professor of Biology Emeritus, Kewalo Marine Laboratory, Honolulu, HI 96813, USA
| |
Collapse
|
8
|
Bednaršek N, Beck MW, Pelletier G, Applebaum SL, Feely RA, Butler R, Byrne M, Peabody B, Davis J, Štrus J. Natural Analogues in pH Variability and Predictability across the Coastal Pacific Estuaries: Extrapolation of the Increased Oyster Dissolution under Increased pH Amplitude and Low Predictability Related to Ocean Acidification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9015-9028. [PMID: 35548856 PMCID: PMC9228044 DOI: 10.1021/acs.est.2c00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Coastal-estuarine habitats are rapidly changing due to global climate change, with impacts influenced by the variability of carbonate chemistry conditions. However, our understanding of the responses of ecologically and economically important calcifiers to pH variability and temporal variation is limited, particularly with respect to shell-building processes. We investigated the mechanisms driving biomineralogical and physiological responses in juveniles of introduced (Pacific; Crassostrea gigas) and native (Olympia; Ostrea lurida) oysters under flow-through experimental conditions over a six-week period that simulate current and future conditions: static control and low pH (8.0 and 7.7); low pH with fluctuating (24-h) amplitude (7.7 ± 0.2 and 7.7 ± 0.5); and high-frequency (12-h) fluctuating (8.0 ± 0.2) treatment. The oysters showed physiological tolerance in vital processes, including calcification, respiration, clearance, and survival. However, shell dissolution significantly increased with larger amplitudes of pH variability compared to static pH conditions, attributable to the longer cumulative exposure to lower pH conditions, with the dissolution threshold of pH 7.7 with 0.2 amplitude. Moreover, the high-frequency treatment triggered significantly greater dissolution, likely because of the oyster's inability to respond to the unpredictable frequency of variations. The experimental findings were extrapolated to provide context for conditions existing in several Pacific coastal estuaries, with time series analyses demonstrating unique signatures of pH predictability and variability in these habitats, indicating potentially benefiting effects on fitness in these habitats. These implications are crucial for evaluating the suitability of coastal habitats for aquaculture, adaptation, and carbon dioxide removal strategies.
Collapse
Affiliation(s)
- Nina Bednaršek
- Southern
California Coastal Water Research Project, Costa Mesa, California 92626, United States
- National
Institute of Biology, Marine Biological Station, 6330 Piran, Slovenia
| | - Marcus W. Beck
- Tampa
Bay Estuary Program, St. Petersburg, Florida 33701, United States
| | - Greg Pelletier
- Southern
California Coastal Water Research Project, Costa Mesa, California 92626, United States
| | - Scott Lee Applebaum
- Environmental
Studies Program, University of Southern
California, Los Angeles, California 90089, United States
| | - Richard A. Feely
- NOAA
Pacific Marine Environmental Laboratory, Seattle, Washington 98115, United States
| | - Robert Butler
- Southern
California Coastal Water Research Project, Costa Mesa, California 92626, United States
| | - Maria Byrne
- School of
Life and Environmental Sciences, University
of Sydney, Sydney 2006, New South Wales, Australia
| | - Betsy Peabody
- Puget
Sound Restoration Fund, Bainbridge
Island, Washington 98110, United States
| | - Jonathan Davis
- Pacific
Hybreed, Inc., Port Orchard, Washington 98366, United States
| | - Jasna Štrus
- Biotechnical
Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Godefroid M, Dupont S, Metian M, Hédouin L. Two decades of seawater acidification experiments on tropical scleractinian corals: Overview, meta-analysis and perspectives. MARINE POLLUTION BULLETIN 2022; 178:113552. [PMID: 35339865 DOI: 10.1016/j.marpolbul.2022.113552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Ocean acidification has emerged as a major concern in the last fifteen years and studies on the impacts of seawater acidification on marine organisms have multiplied accordingly. This review aimed at synthesizing the literature on the effects of seawater acidification on tropical scleractinians under laboratory-controlled conditions. We identified 141 articles (published between 1999 and 2021) and separated endpoints into 22 biological categories to identify global trends for mitigation and gaps in knowledge and research priorities for future investigators. The relative number of affected endpoints increased with pH intensity (particularly for endpoints associated to calcification and reproduction). When exposed to pH 7.6-7.8 (compared to higher pH), 49% of endpoints were affected. The diversity in experimental designs prevented deciphering the modulating role of coral life stages, genera or duration of exposure. Finally, important bias in research efforts included most experiments on adult corals (68.5%), in 27 out of 150 (18%) coral ecoregions and exclusively from shallow-waters.
Collapse
Affiliation(s)
- Mathilde Godefroid
- PSL Research University: EPHE-CNRS-UPVD, USR 3278 CRIOBE, BP 1013, 98729 Papetoai, Mo'orea, French Polynesia; Laboratoire d'Excellence "CORAIL", Mo'orea, French Polynesia.
| | - Sam Dupont
- Department of Biological and Environmental Sciences, University of Gothenburg, Kristineberg Marine Research Station, Kristineberg 566, 45178 Fiskebäckskil, Sweden; Radioecology Laboratory International Atomic Energy Agency (IAEA), Marine Laboratories, 4 Quai Antoine 1er, 98000, Monaco
| | - Marc Metian
- Radioecology Laboratory International Atomic Energy Agency (IAEA), Marine Laboratories, 4 Quai Antoine 1er, 98000, Monaco
| | - Laetitia Hédouin
- PSL Research University: EPHE-CNRS-UPVD, USR 3278 CRIOBE, BP 1013, 98729 Papetoai, Mo'orea, French Polynesia; Laboratoire d'Excellence "CORAIL", Mo'orea, French Polynesia
| |
Collapse
|
10
|
Direct and latent effects of ocean acidification on the transition of a sea urchin from planktonic larva to benthic juvenile. Sci Rep 2022; 12:5557. [PMID: 35365731 PMCID: PMC8976010 DOI: 10.1038/s41598-022-09537-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
Ongoing ocean acidification is expected to affect marine organisms and ecosystems. While sea urchins can tolerate a wide range of pH, this comes at a high energetic cost, and early life stages are particularly vulnerable. Information on how ocean acidification affects transitions between life-history stages is scarce. We evaluated the direct and indirect effects of pH (pHT 8.0, 7.6 and 7.2) on the development and transition between life-history stages of the sea urchin Strongylocentrotusdroebachiensis, from fertilization to early juvenile. Continuous exposure to low pH negatively affected larval mortality and growth. At pH 7.2, formation of the rudiment (the primordial juvenile) was delayed by two days. Larvae raised at pH 8.0 and transferred to 7.2 after competency had mortality rates five to six times lower than those kept at 8.0, indicating that pH also has a direct effect on older, competent larvae. Latent effects were visible on the larvae raised at pH 7.6: they were more successful in settling (45% at day 40 post-fertilization) and metamorphosing (30%) than larvae raised at 8.0 (17 and 1% respectively). These direct and indirect effects of ocean acidification on settlement and metamorphosis have important implications for population survival.
Collapse
|
11
|
Foster WJ, Hirtz JA, Farrell C, Reistroffer M, Twitchett RJ, Martindale RC. Bioindicators of severe ocean acidification are absent from the end-Permian mass extinction. Sci Rep 2022; 12:1202. [PMID: 35075151 PMCID: PMC8786885 DOI: 10.1038/s41598-022-04991-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/04/2022] [Indexed: 11/09/2022] Open
Abstract
The role of ocean acidification in the end-Permian mass extinction is highly controversial with conflicting hypotheses relating to its timing and extent. Observations and experiments on living molluscs demonstrate that those inhabiting acidic settings exhibit characteristic morphological deformities and disordered shell ultrastructures. These deformities should be recognisable in the fossil record, and provide a robust palaeo-proxy for severe ocean acidification. Here, we use fossils of originally aragonitic invertebrates to test whether ocean acidification occurred during the Permian–Triassic transition. Our results show that we can reject a hypothesised worldwide basal Triassic ocean acidification event owing to the absence of deformities and repair marks on bivalves and gastropods from the Triassic Hindeodus parvus Conodont Zone. We could not, however, utilise this proxy to test the role of a hypothesised acidification event just prior to and/or during the mass extinction event. If ocean acidification did develop during the mass extinction event, then it most likely only occurred in the latest Permian, and was not severe enough to impact calcification.
Collapse
Affiliation(s)
- William J Foster
- Institut für Geologie, Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany.
| | - J A Hirtz
- University of Texas at Austin, Jackson School of Geosciences, Austin, TX, USA
| | - C Farrell
- School of Earth Sciences, University College Dublin, Dublin, Ireland
| | - M Reistroffer
- University of Texas at Austin, Jackson School of Geosciences, Austin, TX, USA
| | - R J Twitchett
- Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK
| | - R C Martindale
- University of Texas at Austin, Jackson School of Geosciences, Austin, TX, USA
| |
Collapse
|
12
|
Lim YK, Dang X, Thiyagarajan V. Transgenerational responses to seawater pH in the edible oyster, with implications for the mariculture of the species under future ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146704. [PMID: 33848868 DOI: 10.1016/j.scitotenv.2021.146704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
The majority of common edible oysters are projected to grow more slowly and have smaller impaired shells because of anthropogenic CO2-induced reductions in seawater carbonate ion concentration and pH, a process called ocean acidification (OA). Recent evidence has shown that OA has carryover effects, for example, larvae exposed to OA will also exhibit either positive or negative effects after metamorphosis. This study examined the hidden carryover effects of OA exposure during parental and larval stages on post-metamorphic traits of the commercially important oyster species Crassostrea hongkongensis. Adults of C. hongkongensis were exposed to control pH (pHNBS 8.0) and OA-induced low pH (pHNBS 7.4) conditions. Their larval offspring were then exposed to the same aquarium conditions before being out-planted as post-metamorphic juveniles at a mariculture site for 10 months. Initially, larval offspring were resilient to low pH with or without parental exposure. The larvae exposed to low pH had significantly faster development and higher percentage of settlement success compared to control groups. The out-planted juveniles with parental exposure had improved survival and growth compared to juveniles without parental exposure, regardless of the larval exposure history. This implies that transgenerational effects due to parental exposure not only persists but also have a greater influence than the within-generational effects of larval exposure. Our results shed light on the importance of linking the various life history stages when assessing the OA-induced carryover capacity of C. hongkongensis in the natural environment. Understanding these linked relationships helps us better predict the species rapid adaptation responses in the face of changing coastal conditions due to OA.
Collapse
Affiliation(s)
- Yong-Kian Lim
- The Swire Institute of Marine Science, Division of Ecology and Biodiversity, and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Xin Dang
- The Swire Institute of Marine Science, Division of Ecology and Biodiversity, and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science, Division of Ecology and Biodiversity, and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
13
|
Gassett PR, O'Brien-Clayton K, Bastidas C, Rheuban JE, Hunt CW, Turner E, Liebman M, Silva E, Pimenta AR, Grear J, Motyka J, McCorkle D, Stancioff E, Brady DC, Strong AL. Community Science for Coastal Acidification Monitoring and Research. COASTAL MANAGEMENT : AN INTERNATIONAL JOURNAL OF MARINE ENVIRONMENT, RESOURCES, LAW, AND SOCIETY 2021; 49:510-531. [PMID: 36204115 PMCID: PMC9534045 DOI: 10.1080/08920753.2021.1947131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ocean and coastal acidification (OCA) present a unique set of sustainability challenges at the human-ecological interface. Extensive biogeochemical monitoring that can assess local acidification conditions, distinguish multiple drivers of changing carbonate chemistry, and ultimately inform local and regional response strategies is necessary for successful adaptation to OCA. However, the sampling frequency and cost-prohibitive scientific equipment needed to monitor OCA are barriers to implementing the widespread monitoring of dynamic coastal conditions. Here, we demonstrate through a case study that existing community-based water monitoring initiatives can help address these challenges and contribute to OCA science. We document how iterative, sequential outreach, workshop-based training, and coordinated monitoring activities through the Northeast Coastal Acidification Network (a) assessed the capacity of northeastern United States community science programs and (b) engaged community science programs productively with OCA monitoring efforts. Our results (along with the companion manuscript) indicate that community science programs are capable of collecting robust scientific information pertinent to OCA and are positioned to monitor in locations that would critically expand the coverage of current OCA research. Furthermore, engaging community stakeholders in OCA science and outreach enabled a platform for dialogue about OCA among other interrelated environmental concerns and fostered a series of co-benefits relating to public participation in resource and risk management. Activities in support of community science monitoring have an impact not only by increasing local understanding of OCA but also by promoting public education and community participation in potential adaptation measures.
Collapse
Affiliation(s)
- Parker Randall Gassett
- Department of Marine Science, University of Maine, Orono, Maine, USA
- Maine Sea Grant, Orono, Maine, USA
| | - Katie O'Brien-Clayton
- Connecticut Department of Energy and Environmental Protection, Hartford, Connecticut, USA
| | - Carolina Bastidas
- MIT Sea Grant Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jennie E Rheuban
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Woods Hole Sea Grant, Woods Hole, Massachusetts, USA
| | - Christopher W Hunt
- Ocean Process Analysis Laboratory, University of New Hampshire, Durham, New Hampshire, USA
| | | | | | - Emily Silva
- Northeastern Regional Association of Coastal Ocean Observing Systems, Portsmouth, New Hampshire, USA
| | - Adam R Pimenta
- Atlantic Coastal Environmental Sciences Division, Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Jason Grear
- Atlantic Coastal Environmental Sciences Division, Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Jackie Motyka
- Northeastern Regional Association of Coastal Ocean Observing Systems, Portsmouth, New Hampshire, USA
| | - Daniel McCorkle
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Massachusetts, USA
| | - Esperanza Stancioff
- University of Maine Cooperative Extension and Maine Sea Grant, University of Maine, Orono, Maine, USA
| | - Damian C Brady
- School of Marine Science, University of Maine, Orono, Maine, USA
| | - Aaron L Strong
- Environmental Studies Program, Hamilton College, Clinton, New York, USA
| |
Collapse
|
14
|
Maboloc EA, Chan KYK. Parental whole life cycle exposure modulates progeny responses to ocean acidification in slipper limpets. GLOBAL CHANGE BIOLOGY 2021; 27:3272-3281. [PMID: 33872435 DOI: 10.1111/gcb.15647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Multigenerational exposure is needed to assess the evolutionary potential of organisms in the rapidly changing seascape. Here, we investigate if there is a transgenerational effect of ocean acidification exposure on a calyptraeid gastropod such that long-term exposure elevates offspring resilience. Larvae from wild type Crepidula onyx adults were reared from hatching until sexual maturity for over 36 months under three pH conditions (pH 7.3, 7.7, and 8.0). While the survivorship, growth, and respiration rate of F1 larvae were unaffected by acute ocean acidification (OA), long-term and whole life cycle exposure significantly compromised adult survivorship, growth, and reproductive output of the slipper limpets. When kept under low pH throughout their life cycle, only 6% of the F1 slipper limpets survived pH 7.3 conditions after ~2.5 years and the number of larvae they released was ~10% of those released by the control. However, the F2 progeny from adults kept under the long-term low pH condition hatched at a comparable size to those in medium and control pH conditions. More importantly, these F2 progeny from low pH adults outperformed F2 slipper limpets from control conditions; they had higher larval survivorship and growth, and reduced respiration rate across pH conditions, even at the extreme low pH of 7.0. The intragenerational negative consequences of OA during long-term acclimation highlights potential carryover effects and ontogenetic shifts in stress vulnerability, especially prior to and during reproduction. Yet, the presence of a transgenerational effect implies that this slipper limpet, which has been widely introduced along the West Pacific coasts, has the potential to adapt to rapid acidification.
Collapse
Affiliation(s)
- Elizaldy A Maboloc
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Kit Yu Karen Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
- Biology Department, Swarthmore College, Swarthmore, PA, USA
| |
Collapse
|
15
|
Villeneuve AR, Komoroske LM, Cheng BS. Diminished warming tolerance and plasticity in low-latitude populations of a marine gastropod. CONSERVATION PHYSIOLOGY 2021; 9:coab039. [PMID: 34136259 PMCID: PMC8201192 DOI: 10.1093/conphys/coab039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/08/2021] [Accepted: 05/13/2021] [Indexed: 05/25/2023]
Abstract
Models of species response to climate change often assume that physiological traits are invariant across populations. Neglecting potential intraspecific variation may overlook the possibility that some populations are more resilient or susceptible than others, creating inaccurate predictions of climate impacts. In addition, phenotypic plasticity can contribute to trait variation and may mediate sensitivity to climate. Quantifying such forms of intraspecific variation can improve our understanding of how climate can affect ecologically important species, such as invasive predators. Here, we quantified thermal performance (tolerance, acclimation capacity, developmental traits) across seven populations of the predatory marine snail (Urosalpinx cinerea) from native Atlantic and non-native Pacific coast populations in the USA. Using common garden experiments, we assessed the effects of source population and developmental acclimation on thermal tolerance and developmental traits of F1 snails. We then estimated climate sensitivity by calculating warming tolerance (thermal tolerance - habitat temperature), using field environmental data. We report that low-latitude populations had greater thermal tolerance than their high latitude counterparts. However, these same low-latitude populations exhibited decreased thermal tolerance when exposed to environmentally realistic higher acclimation temperatures. Low-latitude native populations had the greatest climate sensitivity (habitat temperatures near thermal limits). In contrast, invasive Pacific snails had the lowest climate sensitivity, suggesting that these populations are likely to persist and drive negative impacts on native biodiversity. Developmental rate significantly increased in embryos sourced from populations with greater habitat temperature but had variable effects on clutch size and hatching success. Thus, warming can produce widely divergent responses within the same species, resulting in enhanced impacts in the non-native range and extirpation in the native range. Broadly, our results highlight how intraspecific variation can alter management decisions, as this may clarify whether management efforts should be focused on many or only a few populations.
Collapse
Affiliation(s)
- Andrew R Villeneuve
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Gloucester Marine Station, University of Massachusetts Amherst, Gloucester, MA 01930, USA
| | - Lisa M Komoroske
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Gloucester Marine Station, University of Massachusetts Amherst, Gloucester, MA 01930, USA
| | - Brian S Cheng
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Gloucester Marine Station, University of Massachusetts Amherst, Gloucester, MA 01930, USA
| |
Collapse
|
16
|
Donelan SC, Breitburg D, Ogburn MB. Context-dependent carryover effects of hypoxia and warming in a coastal ecosystem engineer. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02315. [PMID: 33636022 PMCID: PMC8243920 DOI: 10.1002/eap.2315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/06/2020] [Accepted: 12/06/2020] [Indexed: 05/20/2023]
Abstract
Organisms are increasingly likely to be exposed to multiple stressors repeatedly across ontogeny as climate change and other anthropogenic stressors intensify. Early life stages can be particularly sensitive to environmental stress, such that experiences early in life can "carry over" to have long-term effects on organism fitness. Despite the potential importance of these within-generation carryover effects, we have little understanding of how they vary across ecological contexts, particularly when organisms are re-exposed to the same stressors later in life. In coastal marine systems, anthropogenic nutrients and warming water temperatures are reducing average dissolved oxygen (DO) concentrations while also increasing the severity of naturally occurring daily fluctuations in DO. Combined effects of warming and diel-cycling DO can strongly affect the fitness and survival of coastal organisms, including the eastern oyster (Crassostrea virginica), a critical ecosystem engineer and fishery species. However, whether early life exposure to hypoxia and warming affects oysters' subsequent response to these stressors is unknown. Using a multiphase laboratory experiment, we explored how early life exposure to diel-cycling hypoxia and warming affected oyster growth when oysters were exposed to these same stressors 8 weeks later. We found strong, interactive effects of early life exposure to diel-cycling hypoxia and warming on oyster tissue : shell growth, and these effects were context-dependent, only manifesting when oysters were exposed to these stressors again two months later. This change in energy allocation based on early life stress exposure may have important impacts on oyster fitness. Exposure to hypoxia and warming also influenced oyster tissue and shell growth, but only later in life. Our results show that organisms' responses to current stress can be strongly shaped by their previous stress exposure, and that context-dependent carryover effects may influence the fitness, production, and restoration of species of management concern, particularly for sessile species such as oysters.
Collapse
Affiliation(s)
- Sarah C. Donelan
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037USA
| | - Denise Breitburg
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037USA
| | - Matthew B. Ogburn
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037USA
| |
Collapse
|
17
|
Griffiths JS, Johnson KM, Sirovy KA, Yeats MS, Pan FTC, La Peyre JF, Kelly MW. Transgenerational plasticity and the capacity to adapt to low salinity in the eastern oyster, Crassostrea virginica. Proc Biol Sci 2021; 288:20203118. [PMID: 34004136 PMCID: PMC8131124 DOI: 10.1098/rspb.2020.3118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Salinity conditions in oyster breeding grounds in the Gulf of Mexico are expected to drastically change due to increased precipitation from climate change and anthropogenic changes to local hydrology. We determined the capacity of the eastern oyster, Crassostrea virginica, to adapt via standing genetic variation or acclimate through transgenerational plasticity (TGP). We outplanted oysters to either a low- or medium-salinity site in Louisiana for 2 years. We then crossed adult parents using a North Carolina II breeding design, and measured body size and survival of larvae 5 dpf raised under low or ambient salinity. We found that TGP is unlikely to significantly contribute to low-salinity tolerance since we did not observe increased growth or survival in offspring reared in low salinity when their parents were also acclimated at a low-salinity site. However, we detected genetic variation for body size, with an estimated heritability of 0.68 ± 0.25 (95% CI). This suggests there is ample genetic variation for this trait to evolve, and that evolutionary adaptation is a possible mechanism through which oysters will persist with future declines in salinity. The results of this experiment provide valuable insights into successfully breeding low-salinity tolerance in this commercially important species.
Collapse
Affiliation(s)
- Joanna S. Griffiths
- Department of Environmental Toxicology and Department of Wildlife, Fish, and Conservation Biology, University of California, 4121 Meyer Hall, Davis, CA 95616, USA
| | - Kevin M. Johnson
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Kyle A. Sirovy
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Mark S. Yeats
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Francis T. C. Pan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jerome F. La Peyre
- Department of Veterinary Science, Louisiana State University, Baton Rouge, LA, USA
| | - Morgan W. Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
18
|
Kessouri F, McWilliams JC, Bianchi D, Sutula M, Renault L, Deutsch C, Feely RA, McLaughlin K, Ho M, Howard EM, Bednaršek N, Damien P, Molemaker J, Weisberg SB. Coastal eutrophication drives acidification, oxygen loss, and ecosystem change in a major oceanic upwelling system. Proc Natl Acad Sci U S A 2021; 118:e2018856118. [PMID: 34001604 PMCID: PMC8166049 DOI: 10.1073/pnas.2018856118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global change is leading to warming, acidification, and oxygen loss in the ocean. In the Southern California Bight, an eastern boundary upwelling system, these stressors are exacerbated by the localized discharge of anthropogenically enhanced nutrients from a coastal population of 23 million people. Here, we use simulations with a high-resolution, physical-biogeochemical model to quantify the link between terrestrial and atmospheric nutrients, organic matter, and carbon inputs and biogeochemical change in the coastal waters of the Southern California Bight. The model is forced by large-scale climatic drivers and a reconstruction of local inputs via rivers, wastewater outfalls, and atmospheric deposition; it captures the fine scales of ocean circulation along the shelf; and it is validated against a large collection of physical and biogeochemical observations. Local land-based and atmospheric inputs, enhanced by anthropogenic sources, drive a 79% increase in phytoplankton biomass, a 23% increase in primary production, and a nearly 44% increase in subsurface respiration rates along the coast in summer, reshaping the biogeochemistry of the Southern California Bight. Seasonal reductions in subsurface oxygen, pH, and aragonite saturation state, by up to 50 mmol m-3, 0.09, and 0.47, respectively, rival or exceed the global open-ocean oxygen loss and acidification since the preindustrial period. The biological effects of these changes on local fisheries, proliferation of harmful algal blooms, water clarity, and submerged aquatic vegetation have yet to be fully explored.
Collapse
Affiliation(s)
- Faycal Kessouri
- Department of Biogeochemistry, Southern California Coastal Water Research Project, Costa Mesa, CA 92626;
- Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, CA 90095
| | - James C McWilliams
- Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, CA 90095;
| | - Daniele Bianchi
- Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, CA 90095
| | - Martha Sutula
- Department of Biogeochemistry, Southern California Coastal Water Research Project, Costa Mesa, CA 92626
| | - Lionel Renault
- Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, CA 90095
- Laboratoire d'Études en Géophysique et Océanographie Spatiale, Institut de Recherche et de Developpement, CNRS, Université Paul Sabatier, Toulouse 31400, France
| | - Curtis Deutsch
- School of Oceanography, University of Washington, Seattle, WA 98195
| | - Richard A Feely
- Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, WA 98115
| | - Karen McLaughlin
- Department of Biogeochemistry, Southern California Coastal Water Research Project, Costa Mesa, CA 92626
| | - Minna Ho
- Department of Biogeochemistry, Southern California Coastal Water Research Project, Costa Mesa, CA 92626
| | - Evan M Howard
- School of Oceanography, University of Washington, Seattle, WA 98195
| | - Nina Bednaršek
- Department of Biogeochemistry, Southern California Coastal Water Research Project, Costa Mesa, CA 92626
- National Institute of Biology, Marine Biological Station Piran, 6330 Piran, Slovenia
| | - Pierre Damien
- Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, CA 90095
| | - Jeroen Molemaker
- Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, CA 90095
| | - Stephen B Weisberg
- Department of Biogeochemistry, Southern California Coastal Water Research Project, Costa Mesa, CA 92626
| |
Collapse
|
19
|
Olguín-Jacobson C, Pitt KA, Carroll AR, Melvin SD. Chronic pesticide exposure elicits a subtle carry-over effect on the metabolome of Aurelia coerulea ephyrae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116641. [PMID: 33611208 DOI: 10.1016/j.envpol.2021.116641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/19/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Chemical pollutants, such as pesticides, often leach into aquatic environments and impact non-target organisms. Marine invertebrates have complex life cycles with multiple life-history stages. Exposure to pesticides during one life-history stage potentially influences subsequent stages; a process known as a carry-over effect. Here, we investigated carry-over effects on the jellyfish Aurelia coerulea. We exposed polyps to individual and combined concentrations of atrazine (2.5 μg/L) and chlorpyrifos (0.04 μg/L) for four weeks, after which they were induced to strobilate. The resultant ephyrae were then redistributed and exposed to either the same conditions as their parent-polyps or to filtered seawater to track potential carry-over effects. The percentage of deformities, ephyrae size, pulsation and respiration rates, as well as the metabolic profile of the ephyrae, were measured. We detected a subtle carry-over effect in two metabolites, acetoacetate and glycerophosphocholine, which are precursors of the neurotransmitter acetylcholine, important for energy metabolism and osmoregulation of the ephyrae. Although these carry-over effects were not reflected in the other response variables in the short-term, a persistent reduction of these two metabolites could have negative physiological consequences on A. coerulea jellyfish in the long-term. Our results highlight the importance of considering more than one life-history stage in ecotoxicology, and measuring a range of variables with different sensitivities to detect sub-lethal effects caused by anthropogenic stressors. Furthermore, since we identified few effects when using pesticides concentrations corresponding to Australian water quality guidelines, we suggest that future studies consider concentrations detected in the environment, which are higher than the water quality guidelines, to obtain a more realistic scenario by possible risk from pesticide exposure.
Collapse
Affiliation(s)
- Carolina Olguín-Jacobson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia.
| | - Kylie A Pitt
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| | - Anthony R Carroll
- Environmental Futures Research Institute, Griffith University, Southport, Queensland, Australia
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
20
|
Martins M, Carreiro-Silva M, Martins GM, Barcelos E Ramos J, Viveiros F, Couto RP, Parra H, Monteiro J, Gallo F, Silva C, Teodósio A, Guilini K, Hall-Spencer JM, Leitão F, Chícharo L, Range P. Ervilia castanea (Mollusca, Bivalvia) populations adversely affected at CO 2 seeps in the North Atlantic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142044. [PMID: 33254890 DOI: 10.1016/j.scitotenv.2020.142044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/08/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
Sites with naturally high CO2 conditions provide unique opportunities to forecast the vulnerability of coastal ecosystems to ocean acidification, by studying the biological responses and potential adaptations to this increased environmental variability. In this study, we investigated the bivalve Ervilia castanea in coastal sandy sediments at reference sites and at volcanic CO2 seeps off the Azores, where the pH of bottom waters ranged from average oceanic levels of 8.2, along gradients, down to 6.81, in carbonated seawater at the seeps. The bivalve population structure changed markedly at the seeps. Large individuals became less abundant as seawater CO2 levels rose and were completely absent from the most acidified sites. In contrast, small bivalves were most abundant at the CO2 seeps. We propose that larvae can settle and initially live in high abundances under elevated CO2 levels, but that high rates of post-settlement dispersal and/or mortality occur. Ervilia castanea were susceptible to elevated CO2 levels and these effects were consistently associated with lower food supplies. This raises concerns about the effects of ocean acidification on the brood stock of this species and other bivalve molluscs with similar life history traits.
Collapse
Affiliation(s)
- Marta Martins
- Centro Interdisciplinar de Investigação Marinha e Ambiental - Universidade do Porto, Porto, Portugal; Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Marina Carreiro-Silva
- IMAR - Instituto do Mar & OKEANOS Research Unit, Universidade dos Açores, 9901-862 Horta, Portugal
| | | | | | - Fátima Viveiros
- Research Institute for Volcanology and Risk Assessment, University of the Azores, Ponta Delgada, Portugal; Faculty of Sciences and Technology, University of the Azores, Ponta Delgada, Portugal
| | - Ruben P Couto
- cE3c - Universidade dos Açores, Ponta Delgada, Portugal
| | - Hugo Parra
- IMAR - Instituto do Mar & OKEANOS Research Unit, Universidade dos Açores, 9901-862 Horta, Portugal
| | - João Monteiro
- MARE - Marine and Environmental Sciences Centre, Madeira, Portugal
| | - Francesca Gallo
- IITAA - University of the Azores, Angra do Heroísmo, Portugal
| | - Catarina Silva
- Research Institute for Volcanology and Risk Assessment, University of the Azores, Ponta Delgada, Portugal; Center for Information and Seismovolcanic Surveillance of the Azores, Rua Mãe de Deus, 9500-321 Ponta Delgada, Portugal
| | - Alexandra Teodósio
- Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Katja Guilini
- Marine Biology Research Group, Ghent University, Belgium
| | - Jason M Hall-Spencer
- School of Biological and Marine Sciences, University of Plymouth, United Kingdom; Shimoda Marine Research Center, University of Tsukuba, Japan
| | - Francisco Leitão
- Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | | | - Pedro Range
- Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
21
|
Wong JM, Hofmann GE. Gene expression patterns of red sea urchins (Mesocentrotus franciscanus) exposed to different combinations of temperature and pCO 2 during early development. BMC Genomics 2021; 22:32. [PMID: 33413121 PMCID: PMC7792118 DOI: 10.1186/s12864-020-07327-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The red sea urchin Mesocentrotus franciscanus is an ecologically important kelp forest herbivore and an economically valuable wild fishery species. To examine how M. franciscanus responds to its environment on a molecular level, differences in gene expression patterns were observed in embryos raised under combinations of two temperatures (13 °C or 17 °C) and two pCO2 levels (475 μatm or 1050 μatm). These combinations mimic various present-day conditions measured during and between upwelling events in the highly dynamic California Current System with the exception of the 17 °C and 1050 μatm combination, which does not currently occur. However, as ocean warming and acidification continues, warmer temperatures and higher pCO2 conditions are expected to increase in frequency and to occur simultaneously. The transcriptomic responses of the embryos were assessed at two developmental stages (gastrula and prism) in light of previously described plasticity in body size and thermotolerance under these temperature and pCO2 treatments. RESULTS Although transcriptomic patterns primarily varied by developmental stage, there were pronounced differences in gene expression as a result of the treatment conditions. Temperature and pCO2 treatments led to the differential expression of genes related to the cellular stress response, transmembrane transport, metabolic processes, and the regulation of gene expression. At each developmental stage, temperature contributed significantly to the observed variance in gene expression, which was also correlated to the phenotypic attributes of the embryos. On the other hand, the transcriptomic response to pCO2 was relatively muted, particularly at the prism stage. CONCLUSIONS M. franciscanus exhibited transcriptomic plasticity under different temperatures, indicating their capacity for a molecular-level response that may facilitate red sea urchins facing ocean warming as climate change continues. In contrast, the lack of a robust transcriptomic response, in combination with observations of decreased body size, under elevated pCO2 levels suggest that this species may be negatively affected by ocean acidification. High present-day pCO2 conditions that occur due to coastal upwelling may already be influencing populations of M. franciscanus.
Collapse
Affiliation(s)
- Juliet M Wong
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
- Present address: Department of Biological Sciences, Florida International University, North Miami, FL, 33181, USA.
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
22
|
Cai WJ, Feely RA, Testa JM, Li M, Evans W, Alin SR, Xu YY, Pelletier G, Ahmed A, Greeley DJ, Newton JA, Bednaršek N. Natural and Anthropogenic Drivers of Acidification in Large Estuaries. ANNUAL REVIEW OF MARINE SCIENCE 2021; 13:23-55. [PMID: 32956015 DOI: 10.1146/annurev-marine-010419-011004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Oceanic uptake of anthropogenic carbon dioxide (CO2) from the atmosphere has changed ocean biogeochemistry and threatened the health of organisms through a process known as ocean acidification (OA). Such large-scale changes affect ecosystem functions and can have impacts on societal uses, fisheries resources, and economies. In many large estuaries, anthropogenic CO2-induced acidification is enhanced by strong stratification, long water residence times, eutrophication, and a weak acid-base buffer capacity. In this article, we review how a variety of processes influence aquatic acid-base properties in estuarine waters, including coastal upwelling, river-ocean mixing, air-water gas exchange, biological production and subsequent aerobic and anaerobic respiration, calcium carbonate (CaCO3) dissolution, and benthic inputs. We emphasize the spatial and temporal dynamics of partial pressure of CO2 (pCO2), pH, and calcium carbonate mineral saturation states. Examples from three large estuaries-Chesapeake Bay, the Salish Sea, and Prince William Sound-are used to illustrate how natural and anthropogenic processes and climate change may manifest differently across estuaries, as well as the biological implications of OA on coastal calcifiers.
Collapse
Affiliation(s)
- Wei-Jun Cai
- School of Marine Science and Policy, University of Delaware, Newark, Delaware 19716, USA;
| | - Richard A Feely
- Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, Washington 98115, USA
| | - Jeremy M Testa
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland 20688, USA
| | - Ming Li
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland 21613, USA
| | - Wiley Evans
- Hakai Institute, Heriot Bay, British Columbia V0P 1H0, Canada
| | - Simone R Alin
- Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, Washington 98115, USA
| | - Yuan-Yuan Xu
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida 33149, USA
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida 33149, USA
| | - Greg Pelletier
- Department of Biochemistry, Southern California Coastal Water Research Project, Costa Mesa, California 92626, USA
| | - Anise Ahmed
- Washington State Department of Ecology, Olympia, Washington 98504, USA
| | - Dana J Greeley
- Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, Washington 98115, USA
| | - Jan A Newton
- Applied Physics Laboratory and Washington Ocean Acidification Center, University of Washington, Seattle, Washington 98105-6698, USA
| | - Nina Bednaršek
- Department of Biochemistry, Southern California Coastal Water Research Project, Costa Mesa, California 92626, USA
| |
Collapse
|
23
|
McCoy JCS, Spicer JI, Tills O, Rundle SD. Both maternal and embryonic exposure to mild hypoxia influence embryonic development of the intertidal gastropod Littorina littorea. J Exp Biol 2020; 223:jeb221895. [PMID: 32843360 DOI: 10.1242/jeb.221895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/17/2020] [Indexed: 11/20/2022]
Abstract
There is growing evidence that maternal exposure to environmental stressors can alter offspring phenotype and increase fitness. Here, we investigate the relative and combined effects of maternal and developmental exposure to mild hypoxia (65 and 74% air saturation, respectively) on the growth and development of embryos of the marine gastropod Littorina littorea Differences in embryo morphological traits were driven by the developmental environment, whereas the maternal environment and interactive effects of maternal and developmental environment were the main driver of differences in the timing of developmental events. While developmental exposure to mild hypoxia significantly increased the area of an important respiratory organ, the velum, it significantly delayed hatching of veliger larvae and reduced their size at hatching and overall survival. Maternal exposure had a significant effect on these traits, and interacted with developmental exposure to influence the time of appearance of morphological characters, suggesting that both are important in affecting developmental trajectories. A comparison between embryos that successfully hatched and those that died in mild hypoxia revealed that survivors exhibited hypertrophy in the velum and associated pre-oral cilia, suggesting that these traits are linked with survival in low-oxygen environments. We conclude that both maternal and developmental environments shape offspring phenotype in a species with a complex developmental life history, and that plasticity in embryo morphology arising from exposure to even small reductions in oxygen tensions affects the hatching success of these embryos.
Collapse
Affiliation(s)
- James C S McCoy
- Marine Biology and Ecology Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - John I Spicer
- Marine Biology and Ecology Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Oliver Tills
- Marine Biology and Ecology Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Simon D Rundle
- Marine Biology and Ecology Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
24
|
DuBois K, Williams SL, Stachowicz JJ. Previous exposure mediates the response of eelgrass to future warming via clonal transgenerational plasticity. Ecology 2020; 101:e03169. [DOI: 10.1002/ecy.3169] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/08/2020] [Accepted: 06/18/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Katherine DuBois
- Department of Evolution and Ecology University of California One Shields Avenue Davis California95616USA
- Bodega Marine Laboratory, University of California Davis Bodega Bay California94923USA
| | - Susan L. Williams
- Department of Evolution and Ecology University of California One Shields Avenue Davis California95616USA
- Bodega Marine Laboratory, University of California Davis Bodega Bay California94923USA
| | - John J. Stachowicz
- Department of Evolution and Ecology University of California One Shields Avenue Davis California95616USA
- Bodega Marine Laboratory, University of California Davis Bodega Bay California94923USA
| |
Collapse
|
25
|
Evolved differences in energy metabolism and growth dictate the impacts of ocean acidification on abalone aquaculture. Proc Natl Acad Sci U S A 2020; 117:26513-26519. [PMID: 33020305 PMCID: PMC7584875 DOI: 10.1073/pnas.2006910117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The pH of the global ocean is decreasing due to the absorption of anthropogenically emitted CO2, causing ocean acidification (OA). OA negatively impacts marine shellfish and threatens the continuing economic viability of molluscan shellfish aquaculture, a global industry valued at more than 19 billion USD. We identify traits linked to growth and lipid regulation that contribute tolerance to OA in abalone aquaculture, with broader implications for adaptation efforts in other shellfish species. We also identify evolved heritable variation for physiological resilience to OA that may be exploited in commercial and restoration aquaculture breeding programs to offset the negative consequences of continuing climate change. Ocean acidification (OA) poses a major threat to marine ecosystems and shellfish aquaculture. A promising mitigation strategy is the identification and breeding of shellfish varieties exhibiting resilience to acidification stress. We experimentally compared the effects of OA on two populations of red abalone (Haliotis rufescens), a marine mollusc important to fisheries and global aquaculture. Results from our experiments simulating captive aquaculture conditions demonstrated that abalone sourced from a strong upwelling region were tolerant of ongoing OA, whereas a captive-raised population sourced from a region of weaker upwelling exhibited significant mortality and vulnerability to OA. This difference was linked to population-specific variation in the maternal provisioning of lipids to offspring, with a positive correlation between lipid concentrations and survival under OA. This relationship also persisted in experiments on second-generation animals, and larval lipid consumption rates varied among paternal crosses, which is consistent with the presence of genetic variation for physiological traits relevant for OA survival. Across experimental trials, growth rates differed among family lineages, and the highest mortality under OA occurred in the fastest growing crosses. Identifying traits that convey resilience to OA is critical to the continued success of abalone and other shellfish production, and these mitigation efforts should be incorporated into breeding programs for commercial and restoration aquaculture.
Collapse
|
26
|
Niu D, Li B, Xie S, Dong Z, Li J. Integrated mRNA and Small RNA Sequencing Reveals Regulatory Expression of Larval Metamorphosis of the Razor Clam. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:696-705. [PMID: 32886280 DOI: 10.1007/s10126-020-09993-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
The razor clam, Sinonovacula constricta, is an important economic marine shellfish, and its larval development involves obvious morphological and physiological changes. MicroRNA plays a key role in the physiological changes of the organism through regulating targeted mRNA. This study performed miRNA-mRNA sequencing for eight different developmental stages of S. constricta using Illumina sequencing. A total of 2156 miRNAs were obtained, including 2069 known miRNAs and 87 novel miRNAs. In addition, target genes were predicted for key miRNAs differentially expressed between adjacent development samples by integrating the mRNA transcriptome. Further analysis revealed that the differentially expressed genes were enriched in complement activation, alternative pathways, translation, and negative regulation of monocyte molecular protein-1 production. KEGG pathway annotation showed significant enrichment in the regulation of the ribosome, phagosome, tuberculosis and fluid shear stress, and atherosclerosis. Ten mRNAs and ten miRNAs that are related to larval metamorphosis were identified using real-time PCR. Furthermore, the double luciferase experiment validated the negative regulatory relationship between miR-133 and peroxisome proliferator-activated receptor-γ (PPAR-γ). These results indicated that the target genes regulated by these differentially expressed miRNAs may play an important regulatory role in the metamorphosis development of S. constricta.
Collapse
Affiliation(s)
- Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Beibei Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Shumei Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhiguo Dong
- Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
27
|
Lawlor JA, Arellano SM. Temperature and salinity, not acidification, predict near-future larval growth and larval habitat suitability of Olympia oysters in the Salish Sea. Sci Rep 2020; 10:13787. [PMID: 32796854 PMCID: PMC7429507 DOI: 10.1038/s41598-020-69568-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 07/14/2020] [Indexed: 11/26/2022] Open
Abstract
Most invertebrates in the ocean begin their lives with planktonic larval phases that are critical for dispersal and distribution of these species. Larvae are particularly vulnerable to environmental change, so understanding interactive effects of environmental stressors on larval life is essential in predicting population persistence and vulnerability of species. Here, we use a novel experimental approach to rear larvae under interacting gradients of temperature, salinity, and ocean acidification, then model growth rate and duration of Olympia oyster larvae and predict the suitability of habitats for larval survival. We find that temperature and salinity are closely linked to larval growth and larval habitat suitability, but larvae are tolerant to acidification at this scale. We discover that present conditions in the Salish Sea are actually suboptimal for Olympia oyster larvae from populations in the region, and that larvae from these populations might actually benefit from some degree of global ocean change. Our models predict a vast decrease in mean pelagic larval duration by the year 2095, which has the potential to alter population dynamics for this species in future oceans. Additionally, we find that larval tolerance can explain large-scale biogeographic patterns for this species across its range.
Collapse
Affiliation(s)
- Jake A Lawlor
- Department of Biology, Shannon Point Marine Center, Western Washington University, Anacortes, WA, USA.
| | - Shawn M Arellano
- Department of Biology, Shannon Point Marine Center, Western Washington University, Anacortes, WA, USA
| |
Collapse
|
28
|
Putnam HM, Ritson-Williams R, Cruz JA, Davidson JM, Gates RD. Environmentally-induced parental or developmental conditioning influences coral offspring ecological performance. Sci Rep 2020; 10:13664. [PMID: 32788607 PMCID: PMC7423898 DOI: 10.1038/s41598-020-70605-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/23/2020] [Indexed: 01/22/2023] Open
Abstract
The persistence of reef building corals is threatened by human-induced environmental change. Maintaining coral reefs into the future requires not only the survival of adults, but also the influx of recruits to promote genetic diversity and retain cover following adult mortality. Few studies examine the linkages among multiple life stages of corals, despite a growing knowledge of carryover effects in other systems. We provide a novel test of coral parental conditioning to ocean acidification (OA) and tracking of offspring for 6 months post-release to better understand parental or developmental priming impacts on the processes of offspring recruitment and growth. Coral planulation was tracked for 3 months following adult exposure to high pCO2 and offspring from the second month were reciprocally exposed to ambient and high pCO2 for an additional 6 months. Offspring of parents exposed to high pCO2 had greater settlement and survivorship immediately following release, retained survivorship benefits during 1 and 6 months of continued exposure, and further displayed growth benefits to at least 1 month post release. Enhanced performance of offspring from parents exposed to high conditions was maintained despite the survivorship in both treatments declining in continued exposure to OA. Conditioning of the adults while they brood their larvae, or developmental acclimation of the larvae inside the adult polyps, may provide a form of hormetic conditioning, or environmental priming that elicits stimulatory effects. Defining mechanisms of positive acclimatization, with potential implications for carry over effects, cross-generational plasticity, and multi-generational plasticity, is critical to better understanding ecological and evolutionary dynamics of corals under regimes of increasing environmental disturbance. Considering environmentally-induced parental or developmental legacies in ecological and evolutionary projections may better account for coral reef response to the chronic stress regimes characteristic of climate change.
Collapse
Affiliation(s)
- Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA.
| | | | - Jolly Ann Cruz
- Micronesia Islands Nature Alliance, Garapan, Saipan, CNMI, 96950, USA
| | - Jennifer M Davidson
- Hawai'i Institute of Marine Biology, University of Hawai'i, Mānoa, Honolulu, HI, USA
| | - Ruth D Gates
- Hawai'i Institute of Marine Biology, University of Hawai'i, Mānoa, Honolulu, HI, USA
| |
Collapse
|
29
|
Pei Y, Forstmeier W, Kempenaers B. Offspring performance is well buffered against stress experienced by ancestors. Evolution 2020; 74:1525-1539. [PMID: 32463119 DOI: 10.1111/evo.14026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 11/27/2022]
Abstract
Evolution should render individuals resistant to stress and particularly to stress experienced by ancestors. However, many studies report negative effects of stress experienced by one generation on the performance of subsequent generations. To assess the strength of such transgenerational effects we propose a strategy aimed at overcoming the problem of type I errors when testing multiple proxies of stress in multiple ancestors against multiple offspring performance traits, and we apply it to a large observational dataset on captive zebra finches (Taeniopygia guttata). We combine clear one-tailed hypotheses with steps of validation, meta-analytic summary of mean effect sizes, and independent confirmatory testing. We find that drastic differences in early growth conditions (nestling body mass 8 days after hatching varied sevenfold between 1.7 and 12.4 g) had only moderate direct effects on adult morphology (95% confidence interval [CI]: r = 0.19-0.27) and small direct effects on adult fitness traits (r = 0.02-0.12). In contrast, we found no indirect effects of parental or grandparental condition (r = -0.017 to 0.002; meta-analytic summary of 138 effect sizes), and mixed evidence for small benefits of matching environments between parents and offspring, as the latter was not robust to confirmatory testing in independent datasets. This study shows that evolution has led to a remarkable robustness of zebra finches against undernourishment. Our study suggests that transgenerational effects are absent in this species, because CIs exclude all biologically relevant effect sizes.
Collapse
Affiliation(s)
- Yifan Pei
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| |
Collapse
|
30
|
Gurr SJ, Vadopalas B, Roberts SB, Putnam HM. Metabolic recovery and compensatory shell growth of juvenile Pacific geoduck Panopea generosa following short-term exposure to acidified seawater. CONSERVATION PHYSIOLOGY 2020; 8:coaa024. [PMID: 32274068 PMCID: PMC7125045 DOI: 10.1093/conphys/coaa024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/12/2019] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
While acute stressors can be detrimental, environmental stress conditioning can improve performance. To test the hypothesis that physiological status is altered by stress conditioning, we subjected juvenile Pacific geoduck, Panopea generosa, to repeated exposures of elevated pCO2 in a commercial hatchery setting followed by a period in ambient common garden. Respiration rate and shell length were measured for juvenile geoduck periodically throughout short-term repeated reciprocal exposure periods in ambient (~550 μatm) or elevated (~2400 μatm) pCO2 treatments and in common, ambient conditions, 5 months after exposure. Short-term exposure periods comprised an initial 10-day exposure followed by 14 days in ambient before a secondary 6-day reciprocal exposure. The initial exposure to elevated pCO2 significantly reduced respiration rate by 25% relative to ambient conditions, but no effect on shell growth was detected. Following 14 days in common garden, ambient conditions, reciprocal exposure to elevated or ambient pCO2 did not alter juvenile respiration rates, indicating ability for metabolic recovery under subsequent conditions. Shell growth was negatively affected during the reciprocal treatment in both exposure histories; however, clams exposed to the initial elevated pCO2 showed compensatory growth with 5.8% greater shell length (on average between the two secondary exposures) after 5 months in ambient conditions. Additionally, clams exposed to the secondary elevated pCO2 showed 52.4% increase in respiration rate after 5 months in ambient conditions. Early exposure to low pH appears to trigger carryover effects suggesting bioenergetic re-allocation facilitates growth compensation. Life stage-specific exposures to stress can determine when it may be especially detrimental, or advantageous, to apply stress conditioning for commercial production of this long-lived burrowing clam.
Collapse
Affiliation(s)
- Samuel J Gurr
- College of the Environment and Life Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881, USA
| | - Brent Vadopalas
- Washington Sea Grant, University of Washington, 3716 Brooklyn Ave NE, Seattle, WA 98105, USA
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St, Seattle, WA 98105, USA
| | - Hollie M Putnam
- College of the Environment and Life Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881, USA
| |
Collapse
|
31
|
Lee YH, Jeong CB, Wang M, Hagiwara A, Lee JS. Transgenerational acclimation to changes in ocean acidification in marine invertebrates. MARINE POLLUTION BULLETIN 2020; 153:111006. [PMID: 32275552 DOI: 10.1016/j.marpolbul.2020.111006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
The rapid pace of increasing oceanic acidity poses a major threat to the fitness of the marine ecosystem, as well as the buffering capacity of the oceans. Disruption in chemical equilibrium in the ocean leads to decreased carbonate ion precipitation, resulting in calcium carbonate saturation. If these trends continue, calcifying invertebrates will experience difficultly maintaining their calcium carbonate exoskeleton and shells. Because malfunction of exoskeleton formation by calcifiers in response to ocean acidification (OA) will have non-canonical biological cascading results in the marine ecosystem, many studies have investigated the direct and indirect consequences of OA on ecosystem- and physiology-related traits of marine invertebrates. Considering that evolutionary adaptation to OA depends on the duration of OA effects, long-term exposure to OA stress over multi-generations may result in adaptive mechanisms that increase the potential fitness of marine invertebrates in response to OA. Transgenerational studies have the potential to elucidate the roles of acclimation, carryover effects, and evolutionary adaptation within and over generations in response to OA. In particular, understanding mechanisms of transgenerational responses (e.g., antioxidant responses, metabolic changes, epigenetic reprogramming) to changes in OA will enhance our understanding of marine invertebrate in response to rapid climate change.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Department of Marine Science, College of Nature Science, Incheon National University, Incheon 22012, South Korea
| | - Minghua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen 36110, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
32
|
Spencer LH, Venkataraman YR, Crim R, Ryan S, Horwith MJ, Roberts SB. Carryover effects of temperature and pCO 2 across multiple Olympia oyster populations. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02060. [PMID: 31863716 DOI: 10.1002/eap.2060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 05/20/2023]
Abstract
Predicting how populations will respond to ocean change across generations is critical to effective conservation of marine species. One emerging factor is the influence of parental exposures on offspring phenotype, known as intergenerational carryover effects. Parental exposure may deliver beneficial or detrimental characteristics to offspring that can influence larval recruitment patterns, thus shaping how populations and community structure respond to ocean change. Impacts of adult exposure to elevated winter temperature and pCO2 on reproduction and offspring viability were examined in the Olympia oyster (Ostrea lurida) using three populations of adult, hatchery-reared O. lurida, plus an additional cohort spawned from one of the populations. Oysters were sequentially exposed to elevated temperature (+4°C, at 10°C), followed by elevated pCO2 (+2,204 μatm, at 3,045 μatm) during winter months. Male gametes were more developed after elevated temperature exposure and less developed after high pCO2 exposure, but there was no impact on female gametes or sex ratios. Oysters previously exposed to elevated winter temperature released larvae earlier, regardless of pCO2 exposure. Those exposed to elevated winter temperature as a sole treatment released more larvae on a daily basis but, when also exposed to high pCO2 , there was no effect. These combined results indicate that elevated winter temperature accelerates O. lurida spermatogenesis, resulting in earlier larval release and increased production, with elevated pCO2 exposure negating effects of elevated temperature. Altered recruitment patterns may therefore follow warmer winters due to precocious spawning, but these effects may be masked by coincidental high pCO2 . Offspring were reared in common conditions for 1 yr, then deployed for 3 months in four estuarine bays with distinct environmental conditions. Offspring of parents exposed to elevated pCO2 had higher survival rates in two of the four bays. This carryover effect demonstrates that parental conditions can have substantial ecologically relevant impacts that should be considered when predicting impacts of environmental change. Furthermore, Olympia oysters may be more resilient in certain environments when progenitors are pre-conditioned in stressful conditions. Combined with other recent studies, our work suggests that the Olympia may be more equipped than other oysters for the challenge of a changing ocean.
Collapse
Affiliation(s)
- Laura H Spencer
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, Washington, 98105, USA
| | - Yaamini R Venkataraman
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, Washington, 98105, USA
| | - Ryan Crim
- Puget Sound Restoration Fund, 8001 NE Day Road West, Bainbridge Island, Washington, 98110, USA
| | - Stuart Ryan
- Puget Sound Restoration Fund, 8001 NE Day Road West, Bainbridge Island, Washington, 98110, USA
| | - Micah J Horwith
- Washington State Department of Natural Resources, 1111 Washington Street SE, MS 47027, Olympia, Washington, 98504, USA
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, Washington, 98105, USA
| |
Collapse
|
33
|
Byrne M, Foo SA, Ross PM, Putnam HM. Limitations of cross- and multigenerational plasticity for marine invertebrates faced with global climate change. GLOBAL CHANGE BIOLOGY 2020; 26:80-102. [PMID: 31670444 DOI: 10.1111/gcb.14882] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/12/2019] [Indexed: 05/18/2023]
Abstract
Although cross generation (CGP) and multigenerational (MGP) plasticity have been identified as mechanisms of acclimation to global change, the weight of evidence indicates that parental conditioning over generations is not a panacea to rescue stress sensitivity in offspring. For many species, there were no benefits of parental conditioning. Even when improved performance was observed, this waned over time within a generation or across generations and fitness declined. CGP and MGP studies identified resilient species with stress tolerant genotypes in wild populations and selected family lines. Several bivalves possess favourable stress tolerance and phenotypically plastic traits potentially associated with genetic adaptation to life in habitats where they routinely experience temperature and/or acidification stress. These traits will be important to help 'climate proof' shellfish ventures. Species that are naturally stress tolerant and those that naturally experience a broad range of environmental conditions are good candidates to provide insights into the physiological and molecular mechanisms involved in CGP and MGP. It is challenging to conduct ecologically relevant global change experiments over the long times commensurate with the pace of changing climate. As a result, many studies present stressors in a shock-type exposure at rates much faster than projected scenarios. With more gradual stressor introduction over longer experimental durations and in context with conditions species are currently acclimatized and/or adapted to, the outcomes for sensitive species might differ. We highlight the importance to understand primordial germ cell development and the timing of gametogenesis with respect to stressor exposure. Although multigenerational exposure to global change stressors currently appears limited as a universal tool to rescue species in the face of changing climate, natural proxies of future conditions (upwelling zones, CO2 vents, naturally warm habitats) show that phenotypic adjustment and/or beneficial genetic selection is possible for some species, indicating complex plasticity-adaptation interactions.
Collapse
Affiliation(s)
- Maria Byrne
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Shawna A Foo
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
34
|
Zhao L, Liu B, An W, Deng Y, Lu Y, Liu B, Wang L, Cong Y, Sun X. Assessing the impact of elevated pCO 2 within and across generations in a highly invasive fouling mussel (Musculista senhousia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:322-331. [PMID: 31277000 DOI: 10.1016/j.scitotenv.2019.06.466] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Marine biofouling by the swiftly spreading invasive mussel (Musculista senhousia) has caused serious ecological and economic consequences in the global coastal waters. However, the fate of this highly invasive fouling species in a rapidly acidifying ocean remains unknown. Here, we demonstrated the impacts of ocean acidification within and across generations, to understand whether M. senhousia has the capacity to acclimate to changing ocean conditions. During the gonadal development, exposure of mussels to elevated pCO2 caused significant decreases of survival, growth performance and condition index, and shifted the whole-organism energy budget by inflating energy expenses to fuel compensatory processes, eventually impairing the success of spawning. Yet, rapid transgenerational acclimation occurred during the early life history stage and persisted into adulthood. Eggs spawned from CO2-exposed mussels were significantly bigger compared with those from non-CO2-exposed mussels, indicating increased maternal provisioning into eggs and hence conferring larvae resilience under harsh conditions. Larvae with a prior history of transgenerational exposure to elevated pCO2 developed faster and had a higher survival than those with no prior history of CO2 exposure. Transgenerational exposure significantly increased the number of larvae completing metamorphosis. While significant differences in shell growth were no longer observed during juvenile nursery and adult grow-out, transgenerationally exposed mussels displayed improved survival in comparison to non-transgenerationally exposed mussels. Metabolic plasticity arose following transgenerational acclimation, generating more energy available for fitness-related functions. Overall, the present study demonstrates the remarkable ability of M. senhousia to respond plastically and acclimate rapidly to changing ocean conditions.
Collapse
Affiliation(s)
- Liqiang Zhao
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Baozhan Liu
- CNOOC EnerTech-Safety & Environmental Protection Co., Tianjin 300457, China
| | - Wei An
- CNOOC EnerTech-Safety & Environmental Protection Co., Tianjin 300457, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yanan Lu
- College of Life Science and Fisheries, Dalian Ocean University, Dalian 116023, China
| | - Bingxin Liu
- Navigation College, Dalian Maritime University, Dalian 116026, China
| | - Li Wang
- College of Life Science and Fisheries, Dalian Ocean University, Dalian 116023, China
| | - Yuting Cong
- College of Life Science and Fisheries, Dalian Ocean University, Dalian 116023, China
| | - Xin Sun
- Dalian Zhangzidao Fishery Group Co. Ltd., Dalian 116002, China
| |
Collapse
|
35
|
Moore MP, Martin RA. On the evolution of carry-over effects. J Anim Ecol 2019; 88:1832-1844. [PMID: 31402447 DOI: 10.1111/1365-2656.13081] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/29/2019] [Indexed: 01/12/2023]
Abstract
The environment experienced early in life often affects the traits that are developed after an individual has transitioned into new life stages and environments. Because the phenotypes induced by earlier environments are then screened by later ones, these 'carry-over effects' influence fitness outcomes across the entire life cycle. While the last two decades have witnessed an explosion of studies documenting the occurrence of carry-over effects, little attention has been given to how they adapt and diversify. To aid future research in this area, we present a framework for the evolution of carry-over effects. Carry-over effects can evolve in two ways. First, the expression of traits later in life may become more or less dependent on the developmental processes of earlier stages (e.g., 'adaptive decoupling'). Genetic correlations between life stages then either strengthen or weaken. Alternatively, those influential developmental processes that begin early in life may become more or less sensitive to that earlier environment. Here, plasticity changes in all the traits that share those developmental pathways across the whole life cycle. Adaptive evolution of a carry-over effect is governed by selection on the induced phenotypes in the later stage, and also by selection on any developmentally linked traits in the earlier life stage. When these selective pressures conflict, the evolution of the carry-over effect will be biased towards maximizing performance in the life stage with stronger selection. Because life stages often contribute unequally to total fitness, the strength of selection in any one stage depends on: (a) the relationship between the traits and the stage-specific fitness components (e.g., juvenile survival, adult mating success), and (b) the reproductive value of the life stage. Considering the evolution of carry-over effects reveals several intriguing features of the evolution of life histories and phenotypic plasticity more generally. For instance, carry-over effects that manifest as maladaptive plasticity in one life stage may represent an adaptive strategy for maximizing fitness in stages with stronger selection. Additionally, adaptation to novel environments encountered early in the life cycle may be faster in the presence of carry-over effects that influence sexually selected traits.
Collapse
Affiliation(s)
- Michael P Moore
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
36
|
Uthicke S, Deshpande NP, Liddy M, Patel F, Lamare M, Wilkins MR. Little evidence of adaptation potential to ocean acidification in sea urchins living in "Future Ocean" conditions at a CO 2 vent. Ecol Evol 2019; 9:10004-10016. [PMID: 31534709 PMCID: PMC6745858 DOI: 10.1002/ece3.5563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 12/20/2022] Open
Abstract
Ocean acidification (OA) can be detrimental to calcifying marine organisms, with stunting of invertebrate larval development one of the most consistent responses. Effects are usually measured by short-term, within-generation exposure, an approach that does not consider the potential for adaptation. We examined the genetic response to OA of larvae of the tropical sea urchin Echinometra sp. C. raised on coral reefs that were either influenced by CO2 vents (pH ~ 7.9, future OA condition) or nonvent control reefs (pH 8.2). We assembled a high quality de novo transcriptome of Echinometra embryos (8 hr) and pluteus larvae (48 hr) and identified 68,056 SNPs. We tested for outlier SNPs and functional enrichment in embryos and larvae raised from adults from the control or vent sites. Generally, highest F ST values in embryos were observed between sites (intrinsic adaptation, most representative of the gene pool in the spawned populations). This comparison also had the highest number of outlier loci (40). In the other comparisons, classical adaptation (comparing larvae with adults from the control transplanted to either the control or vent conditions) and reverse adaptation (larvae from the vent site returned to the vent or explanted at the control), we only observed modest numbers of outlier SNPs (6-19) and only enrichment in two functional pathways. Most of the outliers detected were silent substitutions without adaptive potential. We conclude that there is little evidence of realized adaptation potential during early development, while some potential (albeit relatively low) exists in the intrinsic gene pool after more than one generation of exposure.
Collapse
Affiliation(s)
- Sven Uthicke
- Australian Institute of Marine ScienceTownsvilleQldAustralia
| | - Nandan P. Deshpande
- Systems Biology InitiativeSchool of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Michelle Liddy
- Department of Marine ScienceUniversity of OtagoDunedinNew Zealand
| | - Frances Patel
- Australian Institute of Marine ScienceTownsvilleQldAustralia
| | - Miles Lamare
- Department of Marine ScienceUniversity of OtagoDunedinNew Zealand
| | - Marc R. Wilkins
- Systems Biology InitiativeSchool of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNSWAustralia
| |
Collapse
|
37
|
Bogan SN, McMahon JB, Pechenik JA, Pires A. Legacy of Multiple Stressors: Responses of Gastropod Larvae and Juveniles to Ocean Acidification and Nutrition. THE BIOLOGICAL BULLETIN 2019; 236:159-173. [PMID: 31167086 DOI: 10.1086/702993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ocean acidification poses a significant threat to calcifying invertebrates by negatively influencing shell deposition and growth. An organism's performance under ocean acidification is not determined by the susceptibility of one single life-history stage, nor is it solely controlled by the direct physical consequences of ocean acidification. Shell development by one life-history stage is sometimes a function of the pH or pCO2 levels experienced during earlier developmental stages. Furthermore, environmental factors such as access to nutrition can buffer organismal responses of calcifying invertebrates to ocean acidification, or they can function as a co-occurring stressor when access is low. We reared larvae and juveniles of the planktotrophic marine gastropod Crepidula fornicata through combined treatments of nutritional stress and low pH, and we monitored how multiple stressors endured during the larval stage affected juvenile performance. Shell growth responded non-linearly to decreasing pH, significantly declining between pH 7.6 and pH 7.5 in larvae and juveniles. Larval rearing at pH 7.5 reduced juvenile growth as a carryover effect. Larval rearing at pH 7.6 reduced subsequent juvenile growth despite the absence of a negative impact on larval growth, demonstrating a latent effect. Low larval pH magnified the impact of larval nutritional stress on competence for metamorphosis and increased carryover effects of larval nutrition on juvenile growth. Trans-life-cycle effects of larval nutrition were thus modulated by larval exposure to ocean acidification.
Collapse
|
38
|
Liu Z, Li M, Yi Q, Wang L, Song L. The Neuroendocrine-Immune Regulation in Response to Environmental Stress in Marine Bivalves. Front Physiol 2018; 9:1456. [PMID: 30555334 PMCID: PMC6282093 DOI: 10.3389/fphys.2018.01456] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/26/2018] [Indexed: 12/27/2022] Open
Abstract
Marine bivalves, which include many species worldwide, from intertidal zones to hydrothermal vents and cold seeps, are important components of the ecosystem and biodiversity. In their living habitats, marine bivalves need to cope with a series of harsh environmental stressors, including biotic threats (bacterium, virus, and protozoan) and abiotic threats (temperature, salinity, and pollutants). In order to adapt to these surroundings, marine bivalves have evolved sophisticated stress response mechanisms, in which neuroendocrine regulation plays an important role. The nervous system and hemocyte are pillars of the neuroendocrine system. Various neurotransmitters, hormones, neuropeptides, and cytokines have been also characterized as signal messengers or effectors to regulate humoral and cellular immunity, energy metabolism, shell formation, and larval development in response to a vast array of environmental stressors. In this review substantial consideration will be devoted to outline the vital components of the neuroendocrine system identified in bivalves, as well as its modulation repertoire in response to environmental stressors, thereby illustrating the dramatic adaptation mechanisms of molluscs.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Functional Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Functional Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Functional Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| |
Collapse
|
39
|
Lu Y, Wang L, Wang L, Cong Y, Yang G, Zhao L. Deciphering carbon sources of mussel shell carbonate under experimental ocean acidification and warming. MARINE ENVIRONMENTAL RESEARCH 2018; 142:141-146. [PMID: 30337051 DOI: 10.1016/j.marenvres.2018.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Ocean acidification and warming is widely reported to affect the ability of marine bivalves to calcify, but little is known about the underlying mechanisms. In particular, the response of their calcifying fluid carbonate chemistry to changing seawater carbonate chemistry remains poorly understood. The present study deciphers sources of the dissolved inorganic carbon (DIC) in the calcifying fluid of the blue mussel (Mytilus edulis) reared at two pH (8.1 and 7.7) and temperature (16 and 22 °C) levels for five weeks. Stable carbon isotopic ratios of seawater DIC, mussel soft tissues and shells were measured to determine the relative contribution of seawater DIC and metabolically generated carbon to the internal calcifying DIC pool. At pH 8.1, the percentage of seawater DIC synthesized into shell carbonate decreases slightly from 83.8% to 80.3% as temperature increases from 16 to 22 °C. Under acidified conditions, estimates of percent seawater DIC incorporation decreases clearly to 65.6% at 16 °C and to 62.3% at 22 °C, respectively. These findings indicate that ongoing ocean acidification and warming may interfere with the calcification physiology of M. edulis through interfering with its ability to efficiently extract seawater DIC to the calcifying front.
Collapse
Affiliation(s)
- Yanan Lu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Li Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Lianshun Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yuting Cong
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Guojun Yang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Liqiang Zhao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan; Institute of Geosciences, University of Mainz, Mainz, 55128, Germany.
| |
Collapse
|
40
|
Lemasson AJ, Hall-Spencer JM, Fletcher S, Provstgaard-Morys S, Knights AM. Indications of future performance of native and non-native adult oysters under acidification and warming. MARINE ENVIRONMENTAL RESEARCH 2018; 142:178-189. [PMID: 30352700 DOI: 10.1016/j.marenvres.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Globally, non-native species (NNS) have been introduced and now often entirely replace native species in captive aquaculture; in part, a result of a perceived greater resilience of NSS to climate change and disease. Here, the effects of ocean acidification and warming on metabolic rate, feeding rate, and somatic growth was assessed using two co-occurring species of oysters - the introduced Pacific oyster Magallana gigas (formerly Crassostrea gigas), and native flat oyster Ostrea edulis. Biological responses to increased temperature and pCO2 combinations were tested, the effects differing between species. Metabolic rates and energetic demands of both species were increased by warming but not by elevated pCO2. While acidification and warming did not affect the clearance rate of O. edulis, M. gigas displayed a 40% decrease at 750 ppm pCO2. Similarly, the condition index of O. edulis was unaffected, but that of M. gigas was negatively impacted by warming, likely due to increased energetic demands that were not compensated for by increased feeding. These findings suggest differing stress from anthropogenic CO2 emissions between species and contrary to expectations, this was higher in introduced M. gigas than in the native O. edulis. If these laboratory findings hold true for populations in the wild, then continued CO2 emissions can be expected to adversely affect the functioning and structure of M. gigas populations with significant ecological and economic repercussions, especially for aquaculture. Our findings strengthen arguments in favour of investment in O. edulis restoration in UK waters.
Collapse
Affiliation(s)
- Anaëlle J Lemasson
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, Plymouth University, Plymouth, UK; Marine Conservation and Policy Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK.
| | - Jason M Hall-Spencer
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, Plymouth University, Plymouth, UK; Shimoda Marine Research Centre, Tsukuba University, Japan
| | - Stephen Fletcher
- Marine Conservation and Policy Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK; UN Environment World Conservation Monitoring Centre, Cambridge, UK
| | - Samuel Provstgaard-Morys
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, Plymouth University, Plymouth, UK
| | - Antony M Knights
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, Plymouth University, Plymouth, UK
| |
Collapse
|
41
|
Diaz R, Lardies MA, Tapia FJ, Tarifeño E, Vargas CA. Transgenerational Effects of pCO 2-Driven Ocean Acidification on Adult Mussels Mytilus chilensis Modulate Physiological Response to Multiple Stressors in Larvae. Front Physiol 2018; 9:1349. [PMID: 30374307 PMCID: PMC6196759 DOI: 10.3389/fphys.2018.01349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/06/2018] [Indexed: 11/18/2022] Open
Abstract
The effect of CO2-driven ocean acidification (OA) on marine biota has been extensively studied mostly on a single stage of the life cycle. However, the cumulative and population-level response to this global stressor may be biased due to transgenerational effects and their impacts on physiological plasticity. In this study, we exposed adult mussels Mytilus chilensis undergoing gametogenesis to two pCO2 levels (550 and 1200 μatm) for 16 weeks, aiming to understand if prolonged exposure of reproductive individuals to OA can affect the performance of their offspring, which, in turn, were reared under multiple stressors (pCO2, temperature, and dissolved cadmium). Our results indicate dependence between the level of pCO2 of the broodstock (i.e., parental effect) and the performance of larval stages in terms of growth and physiological rates, as a single effect of temperature. While main effects of pCO2 and cadmium were observed for larval growth and ingestion rates, respectively, the combined exposure to stressors had antagonistic effects. Moreover, we found a suppression of feeding activity in post-spawning broodstock upon high pCO2 conditions. Nevertheless, this observation was not reflected in the final weight of the broodstock and oocyte diameter. Due to the ecological and socioeconomic importance of mussels' species around the globe, the potential implications of maternal effects for the physiology, survival, and recruitment of larvae under combined global-change stressors warrant further investigation.
Collapse
Affiliation(s)
- Rosario Diaz
- Graduate Program in Oceanography, Department of Oceanography, Universidad de Concepción, Concepción, Chile
- Aquatic Ecosystem Functioning Laboratory (LAFE), Environmental Sciences Center EULA, Universidad de Concepción, Concepción, Chile
- Department of Aquatic System, Faculty of Environmental Sciences, Universidad de Concepción, Concepción, Chile
- Center for the Study of Multiple-Drivers on Marine Socio-Ecological Systems (MUSELS), Universidad de Concepción, Concepción, Chile
- Millennium Institute of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Marco A. Lardies
- Center for the Study of Multiple-Drivers on Marine Socio-Ecological Systems (MUSELS), Universidad de Concepción, Concepción, Chile
- Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Fabián J. Tapia
- Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| | - Eduardo Tarifeño
- Department of Zoology, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Cristian A. Vargas
- Aquatic Ecosystem Functioning Laboratory (LAFE), Environmental Sciences Center EULA, Universidad de Concepción, Concepción, Chile
- Department of Aquatic System, Faculty of Environmental Sciences, Universidad de Concepción, Concepción, Chile
- Center for the Study of Multiple-Drivers on Marine Socio-Ecological Systems (MUSELS), Universidad de Concepción, Concepción, Chile
- Millennium Institute of Oceanography, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
42
|
Lo HKA, Chan KYK. Negative effects of microplastic exposure on growth and development of Crepidula onyx. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:588-595. [PMID: 29107898 DOI: 10.1016/j.envpol.2017.10.095] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 05/22/2023]
Abstract
Microplastics exposure could be detrimental to marine organisms especially under high concentrations. However, few studies have considered the multiphasic nature of marine invertebrates' life history and investigated the impact of experiencing microplastics during early development on post-metamorphic stages (legacy effect). Many planktonic larvae can feed selectively and it is unclear whether such selectivity could modulate the impact of algal food-sized microplastic. In this two-stage experiment, veligers of Crepidula onyx were first exposed to additions of algae-sized micro-polystyrene (micro-PS) beads at different concentrations, including ones that were comparable their algal diet. These additions were then either halted or continued after settlement. At environmentally relevant concentration (ten 2-μm microplastic beads ml-1), larval and juvenile C. onyx was not affected. At higher concentrations, these micro-PS fed larvae consumed a similar amount of algae compared to those in control but grew relatively slower than those in the control suggesting that ingestion and/or removal of microplastic was/were energetically costly. These larvae also settled earlier at a smaller size compared to the control, which could negatively affect post-settlement success. Juvenile C. onyx receiving continuous micro-PS addition had slower growth rates. Individuals only exposed to micro-PS during their larval stage continued to have slower growth rates than those in the control even if micro-PS had been absent in their surroundings for 65 days highlighting a legacy effect of microplastic exposure.
Collapse
Affiliation(s)
- Hau Kwan Abby Lo
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Kit Yu Karen Chan
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
43
|
Donelan SC, Trussell GC. Synergistic effects of parental and embryonic exposure to predation risk on prey offspring size at emergence. Ecology 2017; 99:68-78. [PMID: 29083481 DOI: 10.1002/ecy.2067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/20/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022]
Abstract
Cues signaling predation risk can strongly influence prey phenotypes both within and between generations. Parental and embryonic effects have been shown to operate independently in response to predation risk, but how they interact to shape offspring life history traits remains largely unknown. Here, we conducted experiments to examine the synergistic impacts of parental and embryonic experiences with predation risk on offspring size at emergence in the snail, Nucella lapillus, which is an ecologically important intermediate consumer on rocky intertidal shores. We found that when embryos were exposed to predation risk, the offspring of risk-experienced parents emerged larger than those of parents that had no risk experience. This response was not the result of increased development time, greater resource availability, or fewer emerging offspring, but may have occurred because both parental and embryonic experiences with risk increased growth efficiency, perhaps by reducing embryonic respiration rates under risk. Our results highlight the potential for organisms to be influenced by a complex history of environmental signals with important consequences for individual fitness and predator-prey interactions.
Collapse
Affiliation(s)
- Sarah C Donelan
- Marine Science Center and the Department of Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts, 01908, USA
| | - Geoffrey C Trussell
- Marine Science Center and the Department of Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts, 01908, USA
| |
Collapse
|
44
|
Gavery MR, Roberts SB. Epigenetic considerations in aquaculture. PeerJ 2017; 5:e4147. [PMID: 29230373 PMCID: PMC5723431 DOI: 10.7717/peerj.4147] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
Epigenetics has attracted considerable attention with respect to its potential value in many areas of agricultural production, particularly under conditions where the environment can be manipulated or natural variation exists. Here we introduce key concepts and definitions of epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, review the current understanding of epigenetics in both fish and shellfish, and propose key areas of aquaculture where epigenetics could be applied. The first key area is environmental manipulation, where the intention is to induce an ‘epigenetic memory’ either within or between generations to produce a desired phenotype. The second key area is epigenetic selection, which, alone or combined with genetic selection, may increase the reliability of producing animals with desired phenotypes. Based on aspects of life history and husbandry practices in aquaculture species, the application of epigenetic knowledge could significantly affect the productivity and sustainability of aquaculture practices. Conversely, clarifying the role of epigenetic mechanisms in aquaculture species may upend traditional assumptions about selection practices. Ultimately, there are still many unanswered questions regarding how epigenetic mechanisms might be leveraged in aquaculture.
Collapse
Affiliation(s)
- Mackenzie R Gavery
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Steven B Roberts
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
45
|
Hoshijima U, Wong JM, Hofmann GE. Additive effects of pCO 2 and temperature on respiration rates of the Antarctic pteropod Limacina helicina antarctica. CONSERVATION PHYSIOLOGY 2017; 5:cox064. [PMID: 29218223 PMCID: PMC5710650 DOI: 10.1093/conphys/cox064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/09/2017] [Accepted: 11/04/2017] [Indexed: 06/07/2023]
Abstract
The Antarctic pteropod, Limacina helicina antarctica, is a dominant member of the zooplankton in the Ross Sea and supports the vast diversity of marine megafauna that designates this region as an internationally protected area. Here, we observed the response of respiration rate to abiotic stressors associated with global change-environmentally relevant temperature treatments (-0.8°C, 4°C) and pH treatments reflecting current-day and future modeled extremes (8.2, 7.95 and 7.7 pH at -0.8°C; 8.11, 7.95 and 7.7 pH at 4°C). Sampling repeatedly over a 14-day period in laboratory experiments and using microplate respirometry techniques, we found that the metabolic rate of juvenile pteropods increased in response to low-pH exposure (pH 7.7) at -0.8°C, a near-ambient temperature. Similarly, metabolic rate increased when pteropods were exposed simultaneously to multiple stressors: lowered pH conditions (pH 7.7) and a high temperature (4°C). Overall, the results showed that pCO2 and temperature interact additively to affect metabolic rates in pteropods. Furthermore, we found that L. h. antarctica can tolerate acute exposure to temperatures far beyond its maximal habitat temperature. Overall, L. h. antarctica appears to be susceptible to pH and temperature stress, two abiotic stressors which are expected to be especially deleterious for ectothermic marine metazoans in polar seas.
Collapse
Affiliation(s)
- Umihiko Hoshijima
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620,USA
| | - Juliet M Wong
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620,USA
| | - Gretchen E Hofmann
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620,USA
| |
Collapse
|
46
|
Gosselin JL, Zabel RW, Anderson JJ, Faulkner JR, Baptista AM, Sandford BP. Conservation planning for freshwater-marine carryover effects on Chinook salmon survival. Ecol Evol 2017; 8:319-332. [PMID: 29321874 PMCID: PMC5756849 DOI: 10.1002/ece3.3663] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 02/03/2023] Open
Abstract
Experiences of migratory species in one habitat may affect their survival in the next habitat, in what is known as carryover effects. These effects are especially relevant for understanding how freshwater experience affects survival in anadromous fishes. Here, we study the carryover effects of juvenile salmon passage through a hydropower system (Snake and Columbia rivers, northwestern United States). To reduce the direct effect of hydrosystem passage on juveniles, some fishes are transported through the hydrosystem in barges, while the others are allowed to migrate in-river. Although hydrosystem survival of transported fishes is greater than that of their run-of-river counterparts, their relative juvenile-to-adult survival (hereafter survival) can be less. We tested for carryover effects using generalized linear mixed effects models of survival with over 1 million tagged Chinook salmon, Oncorhynchus tshawytscha (Walbaum) (Salmonidae), migrating in 1999-2013. Carryover effects were identified with rear-type (wild vs. hatchery), passage-type (run-of-river vs. transported), and freshwater and marine covariates. Importantly, the Pacific Decadal Oscillation (PDO) index characterizing cool/warm (i.e., productive/nonproductive) ocean phases had a strong influence on the relative survival of rear- and passage-types. Specifically, transportation benefited wild Chinook salmon more in cool PDO years, while hatchery counterparts benefited more in warm PDO years. Transportation was detrimental for wild Chinook salmon migrating early in the season, but beneficial for later season migrants. Hatchery counterparts benefited from transportation throughout the season. Altogether, wild fish could benefit from transportation approximately 2 weeks earlier during cool PDO years, with still a benefit to hatchery counterparts. Furthermore, we found some support for hypotheses related to higher survival with increased river flow, high predation in the estuary and plume areas, and faster migration and development-related increased survival with temperature. Thus, pre- and within-season information on local- and broad-scale conditions across habitats can be useful for planning and implementing real-time conservation programs.
Collapse
Affiliation(s)
- Jennifer L Gosselin
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| | - Richard W Zabel
- Northwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration Seattle WA USA
| | - James J Anderson
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| | - James R Faulkner
- Northwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration Seattle WA USA
| | | | - Benjamin P Sandford
- Northwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration Pasco WA USA
| |
Collapse
|
47
|
Klockmann M, Kleinschmidt F, Fischer K. Carried over: Heat stress in the egg stage reduces subsequent performance in a butterfly. PLoS One 2017; 12:e0180968. [PMID: 28708887 PMCID: PMC5510857 DOI: 10.1371/journal.pone.0180968] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/23/2017] [Indexed: 11/25/2022] Open
Abstract
Increasing heat stress caused by anthropogenic climate change may pose a substantial challenge to biodiversity due to associated detrimental effects on survival and reproduction. Therefore, heat tolerance has recently received substantial attention, but its variation throughout ontogeny and effects carried over from one developmental stage to another remained largely neglected. To explore to what extent stress experienced early in life affects later life stages, we here investigate effects of heat stress experienced in the egg stage throughout ontogeny in the tropical butterfly Bicyclus anynana. We found that detrimental effects of heat stress in the egg stage were detectable in hatchlings, larvae and even resulting adults, as evidenced by decreased survival, growth, and body mass. This study shows that even in holometabalous insects with discrete life stages effects of stress experienced early in life are carried over to later stages, substantially reducing subsequent fitness. We argue that such effects need to be considered when trying to forecast species responses to climate change.
Collapse
Affiliation(s)
- Michael Klockmann
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
- * E-mail:
| | | | - Klaus Fischer
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| |
Collapse
|
48
|
Bylenga CH, Cummings VJ, Ryan KG. High resolution microscopy reveals significant impacts of ocean acidification and warming on larval shell development in Laternula elliptica. PLoS One 2017; 12:e0175706. [PMID: 28423059 PMCID: PMC5396886 DOI: 10.1371/journal.pone.0175706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 03/30/2017] [Indexed: 11/19/2022] Open
Abstract
Environmental stressors impact marine larval growth rates, quality and sizes. Larvae of the Antarctic bivalve, Laternula elliptica, were raised to the D-larvae stage under temperature and pH conditions representing ambient and end of century projections (-1.6°C to +0.4°C and pH 7.98 to 7.65). Previous observations using light microscopy suggested pH had no influence on larval abnormalities in this species. Detailed analysis of the shell using SEM showed that reduced pH is in fact a major stressor during development for this species, producing D-larvae with abnormal shapes, deformed shell edges and irregular hinges, cracked shell surfaces and even uncalcified larvae. Additionally, reduced pH increased pitting and cracking on shell surfaces. Thus, apparently normal larvae may be compromised at the ultrastructural level and these larvae would be in poor condition at settlement, reducing juvenile recruitment and overall survival. Elevated temperatures increased prodissoconch II sizes. However, the overall impacts on larval shell quality and integrity with concurrent ocean acidification would likely overshadow any beneficial results from warmer temperatures, limiting populations of this prevalent Antarctic species.
Collapse
Affiliation(s)
- Christine H. Bylenga
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- * E-mail:
| | - Vonda J. Cummings
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | - Ken G. Ryan
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
49
|
Zhao L, Schöne BR, Mertz-Kraus R, Yang F. Sodium provides unique insights into transgenerational effects of ocean acidification on bivalve shell formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 577:360-366. [PMID: 27823823 DOI: 10.1016/j.scitotenv.2016.10.200] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/11/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Ocean acidification is likely to have profound impacts on marine bivalves, especially on their early life stages. Therefore, it is imperative to know whether and to what extent bivalves will be able to acclimate or adapt to an acidifying ocean over multiple generations. Here, we show that reduced seawater pH projected for the end of this century (i.e., pH7.7) led to a significant decrease of shell production of newly settled juvenile Manila clams, Ruditapes philippinarum. However, juveniles from parents exposed to low pH grew significantly faster than those from parents grown at ambient pH, exhibiting a rapid transgenerational acclimation to an acidic environment. The sodium composition of the shells may shed new light on the mechanisms responsible for beneficial transgenerational acclimation. Irrespective of parental exposure, the amount of Na incorporated into shells increased with decreasing pH, implying active removal of excessive protons through the Na+/H+ exchanger which is known to depend on the Na+ gradient actively built up by the Na+/K+-ATPase as a driving force. However, the shells with a prior history of transgenerational exposure to low pH recorded significantly lower amounts of Na than those with no history of acidic exposure. It therefore seems very likely that the clams may implement less costly and more ATP-efficient ion regulatory mechanisms to maintain pH homeostasis in the calcifying fluid following transgenerational acclimation. Our results suggest that marine bivalves may have a greater capacity to acclimate or adapt to ocean acidification by the end of this century than currently understood.
Collapse
Affiliation(s)
- Liqiang Zhao
- Institute of Geosciences, University of Mainz, Joh.-J.-Becher-Weg 21, 55128 Mainz, Germany
| | - Bernd R Schöne
- Institute of Geosciences, University of Mainz, Joh.-J.-Becher-Weg 21, 55128 Mainz, Germany.
| | - Regina Mertz-Kraus
- Institute of Geosciences, University of Mainz, Joh.-J.-Becher-Weg 21, 55128 Mainz, Germany
| | - Feng Yang
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| |
Collapse
|
50
|
|