1
|
Tortorelli CM, Latimer AM, Young DJN. Moderating effects of past wildfire on reburn severity depend on climate and initial severity in Western US forests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3023. [PMID: 39148306 DOI: 10.1002/eap.3023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 05/10/2024] [Indexed: 08/17/2024]
Abstract
Rising global fire activity is increasing the prevalence of repeated short-interval burning (reburning) in forests worldwide. In forests that historically experienced frequent-fire regimes, high-severity fire exacerbates the severity of subsequent fires by increasing prevalence of shrubs and/or by creating drier understory conditions. Low- to moderate-severity fire, in contrast, can moderate future fire behavior by reducing fuel loads. The extent to which previous fires moderate future fire severity will powerfully affect fire-prone forest ecosystem trajectories over the next century. Further, knowing where and when a wildfire may act as a landscape-scale fuel treatment can help direct pre- and post-fire management efforts. We leverage satellite imagery and fire progression mapping to model reburn dynamics within forests that initially burned at low/moderate severity in 726 unique fire pair events over a 36-year period across four large fire-prone Western US ecoregions. We ask (1) how strong are the moderating effects of low- to moderate-severity fire on future fire severity, (2) how long do moderating effects last, and (3) how does the time between fires (a proxy for fuel accumulation) interact with initial fire severity, day-of-burning weather conditions, and climate to influence reburn severity. Short-interval reburns primarily occurred in dry- and moist-mixed conifer forests with historically frequent-fire regimes. Previous fire moderated reburn severity in all ecoregions with the strongest effects occurring in the California Coast and Western Mountains and the average duration of moderating effects ranging from 13 years in the Western Mountains to >36 years in the California Coast. The strength and duration of moderating effects depended on climate and initial fire severity in some regions, reflecting differences in post-fire fuel accumulation. In the California Coast, moderating effects lasted longer in cooler and wetter forests. In the Western Mountains, moderating effects were stronger and longer lasting in forests that initially burned at higher severity. Moderating effects were largely robust to fire weather, suggesting that previous fire can mediate future fire severity even under extreme conditions. Our findings demonstrate that low- to moderate-severity fire buffers future fire severity in historically frequent-fire forests, underlining the importance of wildfire as a restoration tool for adapting to global change.
Collapse
Affiliation(s)
- Claire M Tortorelli
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Andrew M Latimer
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Derek J N Young
- Department of Plant Sciences, University of California, Davis, California, USA
| |
Collapse
|
2
|
Calhoun KL, Connor T, Gaynor KM, Van Scoyoc A, McInturff A, Kreling SES, Brashares JS. Movement behavior in a dominant ungulate underlies successful adjustment to a rapidly changing landscape following megafire. MOVEMENT ECOLOGY 2024; 12:53. [PMID: 39085926 PMCID: PMC11293098 DOI: 10.1186/s40462-024-00488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/23/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Movement plays a key role in allowing animal species to adapt to sudden environmental shifts. Anthropogenic climate and land use change have accelerated the frequency of some of these extreme disturbances, including megafire. These megafires dramatically alter ecosystems and challenge the capacity of several species to adjust to a rapidly changing landscape. Ungulates and their movement behaviors play a central role in the ecosystem functions of fire-prone ecosystems around the world. Previous work has shown behavioral plasticity is an important mechanism underlying whether large ungulates are able to adjust to recent changes in their environments effectively. Ungulates may respond to the immediate effects of megafire by adjusting their movement and behavior, but how these responses persist or change over time following disturbance is poorly understood. METHODS We examined how an ecologically dominant ungulate with strong site fidelity, Columbian black-tailed deer (Odocoileus hemionus columbianus), adjusted its movement and behavior in response to an altered landscape following a megafire. To do so, we collected GPS data from 21 individual female deer over the course of a year to compare changes in home range size over time and used resource selection functions (RSFs) and hidden Markov movement models (HMMs) to assess changes in behavior and habitat selection. RESULTS We found compelling evidence of adaptive capacity across individual deer in response to megafire. Deer avoided exposed and severely burned areas that lack forage and could be riskier for predation immediately following megafire, but they later altered these behaviors to select areas that burned at higher severities, potentially to take advantage of enhanced forage. CONCLUSIONS These results suggest that despite their high site fidelity, deer can navigate altered landscapes to track rapid shifts in encounter risk with predators and resource availability. This successful adjustment of movement and behavior following extreme disturbance could help facilitate resilience at broader ecological scales.
Collapse
Affiliation(s)
- Kendall L Calhoun
- Department of Environmental, Science, Policy, and Management, University of California Berkeley, 137 Mulford #3114, Berkeley, CA, 94720, USA.
- , 210 Wellman Hall, Berkeley, CA, 94720, USA.
| | - Thomas Connor
- Department of Environmental, Science, Policy, and Management, University of California Berkeley, 137 Mulford #3114, Berkeley, CA, 94720, USA
| | - Kaitlyn M Gaynor
- Departments of Zoology & Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Amy Van Scoyoc
- Department of Environmental, Science, Policy, and Management, University of California Berkeley, 137 Mulford #3114, Berkeley, CA, 94720, USA
| | - Alex McInturff
- Washington Cooperative Fish and Wildlife Research Unit, School of Environmental and Forest Sciences, U.S. Geological Survey, University of Washington, Seattle, WA, USA
| | - Samantha E S Kreling
- School of Environmental and Forest Sciences, University of Washington, University of Washington, Anderson Hall, Box 352100, Seattle, WA, 98195, USA
| | - Justin S Brashares
- Department of Environmental, Science, Policy, and Management, University of California Berkeley, 137 Mulford #3114, Berkeley, CA, 94720, USA
| |
Collapse
|
3
|
Carrión-Paladines V, Correa-Quezada L, Valdiviezo Malo H, Zurita Ruáles J, Pereddo Tumbaco A, Zambrano Pisco M, Lucio Panchi N, Jiménez Álvarez L, Benítez Á, Loján-Córdova J. Exploring the ethnobiological practices of fire in three natural regions of Ecuador, through the integration of traditional knowledge and scientific approaches. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2024; 20:60. [PMID: 38845008 PMCID: PMC11155166 DOI: 10.1186/s13002-024-00699-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
This study examines the convergence between traditional and scientific knowledge regarding the use of fire and its potential to trigger wildfires, with possible impacts on ecosystems and human well-being. The research encompasses three distinct natural regions of Ecuador: the coast, the highlands, and the Amazon. Data on traditional fire use were collected through semi-structured interviews with 791 members from five local communities. These data were compared with climatic variables (rainfall (mm), relative humidity (%), wind speed (km/h), and wind direction) to understand the climatic conditions conducive to wildfires and their relationship with human perceptions. Furthermore, the severity of fires over the past 4 years (2019-2022) was assessed using remote sensing methods, employing the Normalized Burn Ratio (NBR) and the difference between pre-fire and post-fire conditions (NBR Pre-fire-NBR Post-fire). The results revealed a significant alignment between traditional knowledge, climatic data, and many fires, which were of low severity, suggesting potential benefits for ecosystems. These findings not only enable the identification of optimal techniques and timing for traditional burns but also contribute to human well-being by maintaining a harmonious balance between communities and their environment. Additionally, they provide valuable insights for the development of more inclusive and effective integrated fire management strategies in these natural areas of Ecuador.
Collapse
Affiliation(s)
- Vinicio Carrión-Paladines
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto S/N, C.P. 11 01 608, Loja, Ecuador.
| | - Liliana Correa-Quezada
- Departamento de Ciencias Jurídicas, Universidad Técnica Particular de Loja, San Cayetano Alto S/N, Loja, 1101608, Ecuador
| | - Huayra Valdiviezo Malo
- Licenciatura en Gestión Ambiental, Universidad Técnica Particular de Loja, San Cayetano Alto S/N, Loja, 1101608, Ecuador
| | - Jonathan Zurita Ruáles
- Licenciatura en Gestión Ambiental, Universidad Técnica Particular de Loja, San Cayetano Alto S/N, Loja, 1101608, Ecuador
| | - Allison Pereddo Tumbaco
- Licenciatura en Gestión Ambiental, Universidad Técnica Particular de Loja, San Cayetano Alto S/N, Loja, 1101608, Ecuador
| | - Marcos Zambrano Pisco
- Licenciatura en Gestión Ambiental, Universidad Técnica Particular de Loja, San Cayetano Alto S/N, Loja, 1101608, Ecuador
| | - Nataly Lucio Panchi
- Licenciatura en Gestión Ambiental, Universidad Técnica Particular de Loja, San Cayetano Alto S/N, Loja, 1101608, Ecuador
| | - Leticia Jiménez Álvarez
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto S/N, C.P. 11 01 608, Loja, Ecuador
| | - Ángel Benítez
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto S/N, C.P. 11 01 608, Loja, Ecuador
| | - Julia Loján-Córdova
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto S/N, C.P. 11 01 608, Loja, Ecuador
| |
Collapse
|
4
|
Hanson CT, Chi TY, Baker BC, Khosla M, Dorsey MK. Postfire reproduction of a serotinous conifer, the giant sequoia, in the Nelder Grove, California. Ecol Evol 2024; 14:e11213. [PMID: 38571806 PMCID: PMC10990047 DOI: 10.1002/ece3.11213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
The giant sequoia, a serotinous conifer naturally occurring in mixed-conifer forests of the southern and central Sierra Nevada, California, USA, is the world's largest tree species. Giant sequoia reproduction has been severely lacking over the past century, due to fire exclusion, creating a significant conservation threat. Previous research on postfire sequoia reproduction in high-severity fire areas, relative to low- and moderate-severity areas, is limited. At 6 years postfire, we investigated giant sequoia reproduction in a high-severity fire area, and nearby low-/mixed-severity fire areas, in the Nelder Grove, which burned in 2017 in the Railroad fire. Postfire giant sequoia reproduction was positively correlated with fire severity in terms of density, height (growth), and proportion (relative to other conifer species), and sequoia seedling/sapling density was positively correlated with percent shrub cover. There was no correlation between distance to live sequoia seed source and density of sequoia reproduction. More research is needed in other mixed-severity fire areas, with larger high-severity fire patches, to determine whether a similar postfire response occurs elsewhere.
Collapse
Affiliation(s)
| | | | | | | | - Michael K. Dorsey
- Rob and Melani Walton Sustainability Solutions ServiceArizona State UniversityTempeArizonaUSA
| |
Collapse
|
5
|
Goodwin MJ, Hurteau MD. The effect of shrub cover on conifer water-use patterns, growth and response to precipitation variability in the southern Sierra Nevada. TREE PHYSIOLOGY 2024; 44:tpae004. [PMID: 38198740 DOI: 10.1093/treephys/tpae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
As wildfires increase in size and severity, large areas of forest are undergoing substantial increases in shrub cover. In forests where water is the limiting resource, the partitioning of soil water between shrubs and young trees may determine how shrubs affect tree growth and water-stress. Here we evaluated juvenile trees (average age = 32 years) of two dominant conifer species in the southern Sierra Nevada of California (Abies concolor (white fir) and Pinus jeffreyi (Jeffrey pine)) growing in the presence or absence of shrubs. The two shrub species included Arctostaphylos patula and Ceanothus cordulatus, a nitrogen-fixing species. We analyzed the δ2H and δ18O values of xylem water for both tree and shrub species to assess how shrub cover affects the water-uptake patterns of conifers and whether there is niche partitioning between trees and shrubs. We found that growing near shrubs did not have a significant effect on the water source dynamics of either tree species, with similar source water contributions calculated for conifers growing in both the presence and absence of shrubs. Using a tree-ring analysis of growth and δ13C from 2016 to 2021, a period of high precipitation variability, we found that shrub cover had a positive effect on tree growth while decreasing carbon discrimination, which may be due to increased nitrogen availability from Ceanothus cordulatus. Overall, our results suggest that growing in the presence of shrubs does not alter the water uptake patterns of white fir and Jeffrey pine and instead may have a positive effect on the growth rates of these species during both wet and dry years.
Collapse
Affiliation(s)
- Marissa J Goodwin
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, NM 87131, USA
| | - Matthew D Hurteau
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, NM 87131, USA
| |
Collapse
|
6
|
Kennedy MC, Johnson MC, Harrison SC. Model analysis of post-fire management and potential reburn fire behavior. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119664. [PMID: 38042073 DOI: 10.1016/j.jenvman.2023.119664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 12/04/2023]
Abstract
Recent trends in wildfire area burned have been characterized by large patches with high densities of standing dead trees, well outside of historical range of variability in many areas and presenting forest managers with difficult decisions regarding post-fire management. Post-fire tree harvesting, commonly called salvage logging, is a controversial management tactic that is often undertaken to recoup economic loss and, more recently, also to reduce future fuel hazard, especially when coupled with surface fuel reduction. It is unclear, however, whether the reductions in future fuels translate to meaningful changes to reburn fire behavior, particularly in the context of potentially detrimental effects of harvest on other ecosystem services. We used observed post-fire snag structure in four high severity burn scars located in the Western United States that had variable post-fire snag basal area (13.3-63.9 mg ha-2) to initialize a simulation study of future coarse and fine woody fuel hazard and associated reburn fire behavior and effects. We compared untreated controls to intensive and intermediate intensity harvest treatments, both simulated and actual. All treatments showed some number of years of extreme fire behavior during which flame lengths exceeded thresholds associated with wildfire resistance to control, implying that future fuel reductions achieved by the treatments did not translate to conditions conducive for effective reburn fire management. Harvested stands had less severe soil fire effects (soil heating and smoldering duration) than untreated controls, explained by lower predicted peak coarse woody fuels (CWD) in the harvested stands. At higher pre-treatment snag basal area, harvested stands better maintained CWD within the range desired to maintain ecosystem functions such as nutrient cycling and wildlife habitat. These simulation results indicate that, even with reduced fuel hazard, salvage treatments may still be associated with severe fire behavior for some time after wildfire, but achieved reductions in coarse woody fuels may also reduce some soil fire effects. Tradeoffs in the effects of post-fire harvest must be considered carefully in the context of forest regeneration, local conditions that govern salvage methods, snag fall and decomposition, and associated potential reburn fire effects.
Collapse
Affiliation(s)
- Maureen C Kennedy
- University of Washington, Tacoma, School of Interdisciplinary Arts and Sciences, Division of Sciences and Mathematics, 1900 Commerce St, Tacoma, WA, 98402, USA.
| | - Morris C Johnson
- US Forest Service, Pacific Northwest Research Station, 400 North 34th Street, Suite 201, Seattle, WA, 98103, USA
| | - Sarah C Harrison
- US Forest Service, Pacific Northwest Research Station, 400 North 34th Street, Suite 201, Seattle, WA, 98103, USA; University of Washington, Seattle, School and Environmental and Forest Sciences, PO Box 352100, Seattle, WA, 98195, USA
| |
Collapse
|
7
|
Gale MG, Cary GJ, van Dijk AIJM, Yebra M. Untangling fuel, weather and management effects on fire severity: Insights from large-sample LiDAR remote sensing analysis of conditions preceding the 2019-20 Australian wildfires. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119474. [PMID: 37925987 DOI: 10.1016/j.jenvman.2023.119474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Evaluation of fire severity reduction strategies requires the quantification of intervention outcomes and, more broadly, the extent to which fuel characteristics affect fire severity. However, investigations are currently limited by the availability of accurate data on fire severity predictors, particularly relating to fuel. Here, we used airborne LiDAR data collected before the 2019-20 Australian Black Summer fires to investigate the contribution of fuel structure to fire severity under a range of weather conditions. Fire severity was estimated using the Relative Burn Ratio calculated from Sentinel-2 optical remote sensing imagery. We modelled the effects of various fuel structure estimates and other environmental predictors using Random Forest models. In addition to variables estimated at each observation point, we investigated the influence of surrounding landscape characteristics using an innovative method to estimate fireline progression direction. Our models explained 63-76% of fire severity variance using parsimonious predictor sets. Fuel cover in the understorey and canopy, and vertical vegetation heterogeneity, were positively associated with fire severity. Up-fire burnt area and recent planned and unplanned fire reduced fire severity, whereby unplanned fire provided a longer-lasting reduction of fire severity (up to 15 years) than planned fire (up to 10 years). Although fuel structure and land management effects were important predictors, weather and canopy height effects were dominant. By mapping continuous interactions between weather and fuel-related variables, we found strong evidence of diminishing fuel effects below 20-40% relative air humidity. While our findings suggest that land management interventions can provide meaningful fire severity reduction, they also highlight the risk of warmer and drier future climates constraining these advantages.
Collapse
Affiliation(s)
- Matthew G Gale
- Fenner School of Environment & Society, The Australian National University, Canberra, ACT, 2601, Australia.
| | - Geoffrey J Cary
- Fenner School of Environment & Society, The Australian National University, Canberra, ACT, 2601, Australia
| | - Albert I J M van Dijk
- Fenner School of Environment & Society, The Australian National University, Canberra, ACT, 2601, Australia
| | - Marta Yebra
- Fenner School of Environment & Society, The Australian National University, Canberra, ACT, 2601, Australia; School of Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
8
|
Weeks J, Miller JED, Steel ZL, Batzer EE, Safford HD. High‐severity fire drives persistent floristic homogenization in human‐altered forests. Ecosphere 2023. [DOI: 10.1002/ecs2.4409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Affiliation(s)
- JonahMaria Weeks
- Department of Environmental Science and Policy University of California‐Davis Davis California USA
| | - Jesse E. D. Miller
- Department of Environmental Science and Policy University of California‐Davis Davis California USA
- Department of Biology Stanford University Palo Alto California USA
| | - Zachary L. Steel
- Department of Environmental, Science and Management University of California‐Berkeley Berkeley California USA
- USFS Rocky Mountain Research Station Fort Collins Colorado USA
| | - Evan E. Batzer
- Department of Plant Sciences University of California‐Davis Davis California USA
| | - Hugh D. Safford
- Department of Environmental Science and Policy University of California‐Davis Davis California USA
- Vibrant Planet Incline Village Nevada USA
| |
Collapse
|
9
|
Williams JN, Safford HD, Enstice N, Steel ZL, Paulson AK. High‐severity burned area and proportion exceed historic conditions in Sierra Nevada, California, and adjacent ranges. Ecosphere 2023. [DOI: 10.1002/ecs2.4397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- J. N. Williams
- Department of Environmental Science and Policy University of California Davis California USA
| | - H. D. Safford
- Department of Environmental Science and Policy University of California Davis California USA
- Vibrant Planet Incline Village Nevada USA
| | - N. Enstice
- California Department of Conservation Sacramento California USA
- California Sierra Nevada Conservancy Auburn California USA
| | - Z. L. Steel
- USDA Forest Service Rocky Mountain Research Station Fort Collins Colorado USA
| | - A. K. Paulson
- USDA Forest Service, Humboldt‐Toiyabe National Forest Sparks Nevada USA
| |
Collapse
|
10
|
Ursell T, Safford HD. Nucleation sites and forest recovery under high shrub competition. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2711. [PMID: 36161678 PMCID: PMC10078307 DOI: 10.1002/eap.2711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 06/16/2023]
Abstract
Forests currently face numerous stressors, raising questions about processes of forest recovery as well as the role of humans in stimulating recovery by planting trees that might not otherwise regenerate. Theoretically, planted trees can also provide a seed source for further recruitment once the planted trees become reproductive, acting as "nucleation" sites; however, it is unclear whether changing site conditions over time (e.g., through the growth of competitors like woody shrubs) influences establishment in the long term, even if seed availability increases. We tested the nucleation concept in a system where shrub competition is known to influence tree establishment and growth, performing an observational study of sites within and close to newly reproductive planted stands in yellow-pine (YP) and mixed-conifer ecosystems in the Sierra Nevada, California. We surveyed and then modeled both seedling occurrence and density as a function of distance to seed sources, competing woody vegetation, and other environmental characteristics. We found that proximity to a planted stand was associated with an increase in the probability of YP seedlings (species more likely to originate from the planted stand) from 0.33 at 35 m from the planted stand to 0.56 directly adjacent to the stand and 0.65 within the stand. However, we found no significant effect of proximity on YP seedling density. This proximity effect suggests that seed availability continues to be a driver of recruitment several decades postwildfire, though other processes may influence the expected density of recruits. Proxies for competitive pressure (shrub volume and shrub cover) were not significant, suggesting that competing vegetation did not have a major influence on recruitment. Though seedling presence and density appeared to be independent of shrub impacts, we did find that shrubs were significantly taller than seedlings. Therefore, we suggest that shrubs may not limit seedling establishment, but they may negatively affect seedlings' ability to grow and serve as a seed source for further recruitment and forest expansion. Altogether, we find that planting may provide a statistically significant but small role in driving recruitment outside of the planted site.
Collapse
Affiliation(s)
- Tara Ursell
- Graduate Group in EcologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Hugh D. Safford
- Department of Environmental Science and PolicyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
11
|
Kocher SD, Wade D. Effects of Post-Fire Timber Harvest and Mastication on Shrub Regrowth in the Sierra Nevada Mountains: A Lake Tahoe Case Study. NORTHWEST SCIENCE 2022. [DOI: 10.3955/046.095.0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Susan D. Kocher
- University of California Agriculture and Natural Resources, Central Sierra MCP, 311 Fair Lane, Placerville, California 95667
| | - Daylin Wade
- University of California Agriculture and Natural Resources, Central Sierra MCP, 311 Fair Lane, Placerville, California 95667
| |
Collapse
|
12
|
Nemens DG, Kidd KR, Varner JM, Wing B. Recurring wildfires provoke type conversion in dry western forests. Ecosphere 2022. [DOI: 10.1002/ecs2.4184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Deborah G. Nemens
- School of Environmental and Forest Sciences University of Washington Seattle Washington USA
- Pacific Wildland Fire Sciences Laboratory USDA Forest Service Pacific Northwest Research Station Seattle Washington USA
| | - Kathryn R. Kidd
- Arthur Temple College of Forestry and Agriculture Stephen F. Austin State University Nacogdoches Texas USA
| | | | - Brian Wing
- USDA Forest Service Pacific Southwest Research Station Redding California USA
| |
Collapse
|
13
|
Comparing Fire Extent and Severity Mapping between Sentinel 2 and Landsat 8 Satellite Sensors. REMOTE SENSING 2022. [DOI: 10.3390/rs14071661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mapping of fire extent and severity across broad landscapes and timeframes using remote sensing approaches is valuable to inform ecological research, biodiversity conservation and fire management. Compiling imagery from various satellite sensors can assist in long-term fire history mapping; however, inherent sensor differences need to be considered. The New South Wales Fire Extent and Severity Mapping (FESM) program uses imagery from Sentinel and Landsat satellites, along with supervised classification algorithms, to produce state-wide fire maps over recent decades. In this study, we compared FESM outputs from Sentinel 2 and Landsat 8 sensors, which have different spatial and spectral resolutions. We undertook independent accuracy assessments of both Sentinel 2 and Landsat 8 sensor algorithms using high-resolution aerial imagery from eight training fires. We also compared the FESM outputs from both sensors across 27 case study fires. We compared the mapped areas of fire severity classes between outputs and assessed the classification agreement at random sampling points. Our independent accuracy assessment demonstrated very similar levels of accuracy for both sensor algorithms. We also found that there was substantial agreement between the outputs from the two sensors. Agreement on the extent of burnt versus unburnt areas was very high, and the severity classification of burnt areas was typically either in agreement between the sensors or in disagreement by only one severity class (e.g., low and moderate severity or high and extreme severity). Differences between outputs are likely partly due to differences in sensor resolution (10 m and 30 m pixel sizes for Sentinel 2 and Landsat 8, respectively) and may be influenced by landscape complexity, such as terrain roughness and foliage cover. Overall, this study supports the combined use of both sensors in remote sensing applications for fire extent and severity mapping.
Collapse
|
14
|
Wilson N, Bradstock R, Bedward M. Influence of fuel structure derived from terrestrial laser scanning (TLS) on wildfire severity in logged forests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114011. [PMID: 34735830 DOI: 10.1016/j.jenvman.2021.114011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Logging and wildfire can reduce the height of the forest canopy and the distance to the understorey vegetation below. These conditions may increase the likelihood of high severity wildfire (canopy scorch or consumption), which may explain the greater prevalence of high severity wildfire in some recently logged or burnt forests. However, the effects of these structural characteristics on wildfire severity have not clearly been demonstrated. OBJECTIVES We aimed to assess how the structure of forests affected by logging and wildfire influence the probability of high severity wildfire. METHODS We used terrestrial laser scanning to measure the connectivity of canopy and understorey vegetation in forests at various stages of recovery after logging and wildfire (approximately 0-80 years since disturbance). These sites were subsequently burnt by mixed severity wildfire during the 2019-20 'Black Summer' fire season in south-eastern Australia. We assessed how these forest structure metrics affected the probability of high severity wildfire. RESULTS The probability of high severity fire decreased as the canopy base height increased, and the distance between the canopy base and understorey increased. High severity wildfire was less likely in forests with taller understoreys and greater canopy or understorey cover, but these effects were not considered causal. Fire weather was the strongest driver of wildfire severity, which was also affected by topography. CONCLUSIONS These findings demonstrate a link between forest structure characteristics, that are strongly shaped by antecedent logging and fire, and fire severity. They also indicate that vertical fuel structure should be incorporated into assessments of fire risk.
Collapse
Affiliation(s)
- Nicholas Wilson
- Centre for Environmental Risk Management of Bushfires, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Ross Bradstock
- Centre for Environmental Risk Management of Bushfires, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Michael Bedward
- Centre for Environmental Risk Management of Bushfires, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
15
|
Mukhortova L, Krivobokov L, Schepaschenko D. Postfire dynamics of standing dead tree stock in northern boreal forests. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225200038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Wildfire is one of the main forest disturbing factors in the boreal zone of Siberia that can cause significant changes in tree stands dynamics. Tree mortality caused by fire can significantly increase a standing dead tree pool that is one of the poorly studied components of forest ecosystems. The aim of this study was assessing of post-fire changes in the standing dead tree pool in northern boreal larch forests of Central Siberia (Russia). We analyzed dynamics of the standing dead tree stock on experimental plots, which were affected by wildfire of moderate severity in 2013. The stock of standing dead trees was measured on these plots before and 1, 2, and 7 years after the fire. It was found that about half of the pre-fire standing dead trees fall down during the first year after the fire. At the same time, tree mortality caused by the fire significantly contributed to the total standing dead tree stock in these ecosystems. Our study showed that a significant part of the pre-fire standing dead trees and trees killed by fire can remain standing after the moderate severity fire. This standing dead wood conserves carbon for a long time.
Collapse
|
16
|
Prichard SJ, Hessburg PF, Hagmann RK, Povak NA, Dobrowski SZ, Hurteau MD, Kane VR, Keane RE, Kobziar LN, Kolden CA, North M, Parks SA, Safford HD, Stevens JT, Yocom LL, Churchill DJ, Gray RW, Huffman DW, Lake FK, Khatri‐Chhetri P. Adapting western North American forests to climate change and wildfires: 10 common questions. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02433. [PMID: 34339088 PMCID: PMC9285930 DOI: 10.1002/eap.2433] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 05/22/2023]
Abstract
We review science-based adaptation strategies for western North American (wNA) forests that include restoring active fire regimes and fostering resilient structure and composition of forested landscapes. As part of the review, we address common questions associated with climate adaptation and realignment treatments that run counter to a broad consensus in the literature. These include the following: (1) Are the effects of fire exclusion overstated? If so, are treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4) Should active forest management, including forest thinning, be concentrated in the wildland urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the primary objective of fuel reduction treatments to assist in future firefighting response and containment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem too great? Can we ever catch up? (9) Will planting more trees mitigate climate change in wNA forests? And (10) is post-fire management needed or even ecologically justified? Based on our review of the scientific evidence, a range of proactive management actions are justified and necessary to keep pace with changing climatic and wildfire regimes and declining forest heterogeneity after severe wildfires. Science-based adaptation options include the use of managed wildfire, prescribed burning, and coupled mechanical thinning and prescribed burning as is consistent with land management allocations and forest conditions. Although some current models of fire management in wNA are averse to short-term risks and uncertainties, the long-term environmental, social, and cultural consequences of wildfire management primarily grounded in fire suppression are well documented, highlighting an urgency to invest in intentional forest management and restoration of active fire regimes.
Collapse
Affiliation(s)
- Susan J. Prichard
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
| | - Paul F. Hessburg
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
- U.S. Forest Service PNW Research StationWenatcheeWashington98801USA
| | - R. Keala Hagmann
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
- Applegate Forestry LLCCorvallisOregon97330USA
| | - Nicholas A. Povak
- U.S. Forest ServicePacific Southwest Research StationInstitute of Forest Genetics2480 Carson RoadPlacervilleCalifornia95667USA
| | - Solomon Z. Dobrowski
- University of Montana College of Forestry and ConservationMissoulaMontana59812USA
| | - Matthew D. Hurteau
- University of New Mexico Biology DepartmentAlbuquerqueNew Mexico87131‐0001USA
| | - Van R. Kane
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
| | - Robert E. Keane
- U.S. Forest Service Rocky Mountain Research StationMissoula Fire Sciences LaboratoryMissoulaMontana59808USA
| | - Leda N. Kobziar
- Department of Natural Resources and SocietyUniversity of IdahoMoscowIdaho83844USA
| | - Crystal A. Kolden
- School of EngineeringUniversity of California MercedMercedCalifornia95343USA
| | - Malcolm North
- U.S. Forest Service Pacific Southwest Research Station1731 Research ParkDavisCalifornia95618USA
| | - Sean A. Parks
- U.S. Forest Service Aldo Leopold Wilderness Research InstituteMissoulaMontana59801USA
| | - Hugh D. Safford
- U.S. Forest Service Pacific Southwest Research StationAlbanyCalifornia94710USA
| | - Jens T. Stevens
- U.S. Geological Survey Fort Collins Science CenterNew Mexico Landscapes Field StationSanta FeNew Mexico87544USA
| | - Larissa L. Yocom
- Department of Wildland Resources and Ecology CenterUtah State University College of Agriculture and Applied SciencesLoganUtah84322USA
| | - Derek J. Churchill
- Washington State Department of Natural Resources Forest Health ProgramOlympiaWashington98504USA
| | - Robert W. Gray
- R.W. Gray ConsultingChilliwackBritish ColumbiaV2R2N2Canada
| | - David W. Huffman
- Northern Arizona University Ecological Restoration InstituteFlagstaffArizona86011USA
| | - Frank K. Lake
- U.S. Forest Service Pacific Southwest Research StationArcataCalifornia95521USA
| | - Pratima Khatri‐Chhetri
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
| |
Collapse
|
17
|
Hagmann RK, Hessburg PF, Prichard SJ, Povak NA, Brown PM, Fulé PZ, Keane RE, Knapp EE, Lydersen JM, Metlen KL, Reilly MJ, Sánchez Meador AJ, Stephens SL, Stevens JT, Taylor AH, Yocom LL, Battaglia MA, Churchill DJ, Daniels LD, Falk DA, Henson P, Johnston JD, Krawchuk MA, Levine CR, Meigs GW, Merschel AG, North MP, Safford HD, Swetnam TW, Waltz AEM. Evidence for widespread changes in the structure, composition, and fire regimes of western North American forests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02431. [PMID: 34339067 PMCID: PMC9285092 DOI: 10.1002/eap.2431] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 05/06/2023]
Abstract
Implementation of wildfire- and climate-adaptation strategies in seasonally dry forests of western North America is impeded by numerous constraints and uncertainties. After more than a century of resource and land use change, some question the need for proactive management, particularly given novel social, ecological, and climatic conditions. To address this question, we first provide a framework for assessing changes in landscape conditions and fire regimes. Using this framework, we then evaluate evidence of change in contemporary conditions relative to those maintained by active fire regimes, i.e., those uninterrupted by a century or more of human-induced fire exclusion. The cumulative results of more than a century of research document a persistent and substantial fire deficit and widespread alterations to ecological structures and functions. These changes are not necessarily apparent at all spatial scales or in all dimensions of fire regimes and forest and nonforest conditions. Nonetheless, loss of the once abundant influence of low- and moderate-severity fires suggests that even the least fire-prone ecosystems may be affected by alteration of the surrounding landscape and, consequently, ecosystem functions. Vegetation spatial patterns in fire-excluded forested landscapes no longer reflect the heterogeneity maintained by interacting fires of active fire regimes. Live and dead vegetation (surface and canopy fuels) is generally more abundant and continuous than before European colonization. As a result, current conditions are more vulnerable to the direct and indirect effects of seasonal and episodic increases in drought and fire, especially under a rapidly warming climate. Long-term fire exclusion and contemporaneous social-ecological influences continue to extensively modify seasonally dry forested landscapes. Management that realigns or adapts fire-excluded conditions to seasonal and episodic increases in drought and fire can moderate ecosystem transitions as forests and human communities adapt to changing climatic and disturbance regimes. As adaptation strategies are developed, evaluated, and implemented, objective scientific evaluation of ongoing research and monitoring can aid differentiation of warranted and unwarranted uncertainties.
Collapse
Affiliation(s)
- R. K. Hagmann
- College of the Environment‐SEFSUniversity of WashingtonSeattleWashington98195USA
- Applegate Forestry LLCCorvallisOregon97330USA
| | - P. F. Hessburg
- College of the Environment‐SEFSUniversity of WashingtonSeattleWashington98195USA
- USDA‐FS, Forestry Sciences LaboratoryPacific Northwest Research StationWenatcheeWashington98801USA
| | - S. J. Prichard
- College of the Environment‐SEFSUniversity of WashingtonSeattleWashington98195USA
| | - N. A. Povak
- USDA‐FS, Forestry Sciences LaboratoryPacific Northwest Research StationWenatcheeWashington98801USA
- USDA‐FS, Pacific Southwest Research StationPlacervilleCalifornia95667USA
| | - P. M. Brown
- Rocky Mountain Tree‐Ring ResearchFort CollinsColorado80526USA
| | - P. Z. Fulé
- School of ForestryNorthern Arizona UniversityFlagstaffArizona86011USA
| | - R. E. Keane
- Missoula Fire Sciences LaboratoryUSDA‐FS, Rocky Mountain Research StationMissoulaMontana59808USA
| | - E. E. Knapp
- USDA‐FS, Pacific Southwest Research StationReddingCalifornia96002USA
| | - J. M. Lydersen
- Fire and Resource Assessment ProgramCalifornia Department of Forestry and Fire ProtectionSacramentoCalifornia94244USA
| | | | - M. J. Reilly
- USDA‐FS, Pacific Northwest Research StationCorvallisOregon97333USA
| | - A. J. Sánchez Meador
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizona86011USA
| | - S. L. Stephens
- Department of Environmental Science, Policy, and ManagementUniversity of California–BerkeleyBerkeleyCalifornia94720USA
| | - J. T. Stevens
- U.S. Geological SurveyFort Collins Science CenterNew Mexico Landscapes Field StationSanta FeNew Mexico87508USA
| | - A. H. Taylor
- Department of Geography, Earth and Environmental Systems InstituteThe Pennsylvania State UniversityUniversity ParkPennsylvania16802USA
| | - L. L. Yocom
- Department of Wildland Resources and the Ecology CenterUtah State UniversityLoganUtah84322USA
| | - M. A. Battaglia
- USDA‐FS, Rocky Mountain Research StationFort CollinsColorado80526USA
| | - D. J. Churchill
- Washington State Department of Natural ResourcesOlympiaWashington98504USA
| | - L. D. Daniels
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBritish ColumbiaV6T 1Z4Canada
| | - D. A. Falk
- School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonArizona85721USA
- Laboratory of Tree‐Ring ResearchUniversity of ArizonaTucsonArizona85721USA
| | - P. Henson
- Oregon Fish and Wildlife OfficeUSDI Fish & Wildlife ServicePortlandOregon97232USA
| | - J. D. Johnston
- College of ForestryOregon State UniversityCorvallisOregon97333USA
| | - M. A. Krawchuk
- College of ForestryOregon State UniversityCorvallisOregon97333USA
| | - C. R. Levine
- Spatial Informatics GroupPleasantonCalifornia94566USA
| | - G. W. Meigs
- Washington State Department of Natural ResourcesOlympiaWashington98504USA
| | - A. G. Merschel
- College of ForestryOregon State UniversityCorvallisOregon97333USA
| | - M. P. North
- USDA‐FS, Pacific Southwest Research StationMammoth LakesCalifornia93546USA
| | - H. D. Safford
- USDA‐FS, Pacific Southwest RegionVallejoCalifornia94592USA
| | - T. W. Swetnam
- Laboratory of Tree‐Ring ResearchUniversity of ArizonaTucsonArizona85721USA
| | - A. E. M. Waltz
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizona86011USA
| |
Collapse
|
18
|
Hessburg PF, Prichard SJ, Hagmann RK, Povak NA, Lake FK. Wildfire and climate change adaptation of western North American forests: a case for intentional management. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02432. [PMID: 34339086 PMCID: PMC9285088 DOI: 10.1002/eap.2432] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 05/05/2023]
Abstract
Forest landscapes across western North America (wNA) have experienced extensive changes over the last two centuries, while climatic warming has become a global reality over the last four decades. Resulting interactions between historical increases in forested area and density and recent rapid warming, increasing insect mortality, and wildfire burned areas, are now leading to substantial abrupt landscape alterations. These outcomes are forcing forest planners and managers to identify strategies that can modify future outcomes that are ecologically and/or socially undesirable. Past forest management, including widespread harvest of fire- and climate-tolerant large old trees and old forests, fire exclusion (both Indigenous and lightning ignitions), and highly effective wildfire suppression have contributed to the current state of wNA forests. These practices were successful at meeting short-term demands, but they match poorly to modern realities. Hagmann et al. review a century of observations and multi-scale, multi-proxy, research evidence that details widespread changes in forested landscapes and wildfire regimes since the influx of European colonists. Over the preceding 10 millennia, large areas of wNA were already settled and proactively managed with intentional burning by Indigenous tribes. Prichard et al. then review the research on management practices historically applied by Indigenous tribes and currently applied by some managers to intentionally manage forests for resilient conditions. They address 10 questions surrounding the application and relevance of these management practices. Here, we highlight the main findings of both papers and offer recommendations for management. We discuss progress paralysis that often occurs with strict adherence to the precautionary principle; offer insights for dealing with the common problem of irreducible uncertainty and suggestions for reframing management and policy direction; and identify key knowledge gaps and research needs.
Collapse
Affiliation(s)
- Paul F. Hessburg
- USDA‐FS, Pacific Northwest Research Station1133 N. Western AvenueWenatcheeWashington98801USA
- College of the Environment‐SEFSUniversity of WashingtonSeattleWashington98195USA
| | - Susan J. Prichard
- College of the Environment‐SEFSUniversity of WashingtonSeattleWashington98195USA
| | - R. Keala Hagmann
- College of the Environment‐SEFSUniversity of WashingtonSeattleWashington98195USA
- Applegate Forestry LLCCorvallisOregon97330USA
| | - Nicholas A. Povak
- USDA‐FS, Pacific Northwest Research Station1133 N. Western AvenueWenatcheeWashington98801USA
- USDA‐FS, Pacific Southwest Research Station2480 Carson RoadPlacervilleCalifornia95667USA
| | - Frank K. Lake
- USDA‐FS, Pacific Southwest Research Station1700 Bayview DriveArcataCalifornia95521USA
| |
Collapse
|
19
|
Taylor AH, Harris LB, Drury SA. Drivers of fire severity shift as landscapes transition to an active fire regime, Klamath Mountains, USA. Ecosphere 2021. [DOI: 10.1002/ecs2.3734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Alan H. Taylor
- Department of Geography Earth and Environmental Systems Institute The Pennsylvania State University University Park Pennsylvania USA
| | - Lucas B. Harris
- Department of Geography Earth and Environmental Systems Institute The Pennsylvania State University University Park Pennsylvania USA
| | - Stacy A. Drury
- Pacific Southwest Research Station USDA Forest Service Davis California 95618 USA
| |
Collapse
|
20
|
Jager HI, Long JW, Malison RL, Murphy BP, Rust A, Silva LGM, Sollmann R, Steel ZL, Bowen MD, Dunham JB, Ebersole JL, Flitcroft RL. Resilience of terrestrial and aquatic fauna to historical and future wildfire regimes in western North America. Ecol Evol 2021; 11:12259-12284. [PMID: 34594498 PMCID: PMC8462151 DOI: 10.1002/ece3.8026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 01/08/2023] Open
Abstract
Wildfires in many western North American forests are becoming more frequent, larger, and severe, with changed seasonal patterns. In response, coniferous forest ecosystems will transition toward dominance by fire-adapted hardwoods, shrubs, meadows, and grasslands, which may benefit some faunal communities, but not others. We describe factors that limit and promote faunal resilience to shifting wildfire regimes for terrestrial and aquatic ecosystems. We highlight the potential value of interspersed nonforest patches to terrestrial wildlife. Similarly, we review watershed thresholds and factors that control the resilience of aquatic ecosystems to wildfire, mediated by thermal changes and chemical, debris, and sediment loadings. We present a 2-dimensional life history framework to describe temporal and spatial life history traits that species use to resist wildfire effects or to recover after wildfire disturbance at a metapopulation scale. The role of fire refuge is explored for metapopulations of species. In aquatic systems, recovery of assemblages postfire may be faster for smaller fires where unburned tributary basins or instream structures provide refuge from debris and sediment flows. We envision that more-frequent, lower-severity fires will favor opportunistic species and that less-frequent high-severity fires will favor better competitors. Along the spatial dimension, we hypothesize that fire regimes that are predictable and generate burned patches in close proximity to refuge will favor species that move to refuges and later recolonize, whereas fire regimes that tend to generate less-severely burned patches may favor species that shelter in place. Looking beyond the trees to forest fauna, we consider mitigation options to enhance resilience and buy time for species facing a no-analog future.
Collapse
Affiliation(s)
- Henriette I. Jager
- Environmental Sciences DivisionOak Ridge National Laboratory (ORNL)Oak RidgeTNUSA
| | - Jonathan W. Long
- U.S. Department of AgriculturePacific Southwest Research StationDavisCAUSA
| | - Rachel L. Malison
- Flathead Lake Biological StationThe University of MontanaPolsonMTUSA
| | - Brendan P. Murphy
- School of Environmental ScienceSimon Fraser UniversityBurnabyBCCanada
| | - Ashley Rust
- Civil and Environmental Engineering DepartmentColorado School of MinesGoldenCOUSA
| | - Luiz G. M. Silva
- Institute for Land, Water and SocietyCharles Sturt UniversityAlburyNSWAustralia
- Department of CivilEnvironmental and Geomatic EngineeringStocker LabInstitute of Environmental EngineeringETH ZurichZürichSwitzerland
| | - Rahel Sollmann
- Department of Wildlife, Fish, and Conservation BiologyUniversity of California DavisDavisCAUSA
| | - Zachary L. Steel
- Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyCAUSA
| | - Mark D. Bowen
- Thomas Gast & Associates Environmental ConsultantsArcataCAUSA
| | - Jason B. Dunham
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science CenterCorvallisORUSA
| | - Joseph L. Ebersole
- Center for Public Health and Environmental AssessmentPacific Ecological Systems DivisionU.S. Environmental Protection AgencyCorvallisORUSA
| | | |
Collapse
|
21
|
Barker JW, Price OF, Jenkins ME. Patterns of flammability after a sequence of mixed‐severity wildfire in dry eucalypt forests of southern Australia. Ecosphere 2021. [DOI: 10.1002/ecs2.3715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- James W. Barker
- Centre for Environmental Risk Management of Bushfires University of Wollongong Wollongong New South Wales 2522 Australia
| | - Owen F. Price
- Centre for Environmental Risk Management of Bushfires University of Wollongong Wollongong New South Wales 2522 Australia
| | - Meaghan E. Jenkins
- NSW Rural Fire Service Headquarters 4 Murray Rose Ave Sydney Olympic Park New South Wales 2127 Australia
| |
Collapse
|
22
|
Downing WM, Meigs GW, Gregory MJ, Krawchuk MA. Where and why do conifer forests persist in refugia through multiple fire events? GLOBAL CHANGE BIOLOGY 2021; 27:3642-3656. [PMID: 33896078 PMCID: PMC8362119 DOI: 10.1111/gcb.15655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/02/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Changing wildfire regimes are causing rapid shifts in forests worldwide. In particular, forested landscapes that burn repeatedly in relatively quick succession may be at risk of conversion when pre-fire vegetation cannot recover between fires. Fire refugia (areas that burn less frequently or severely than the surrounding landscape) support post-fire ecosystem recovery and the persistence of vulnerable species in fire-prone landscapes. Observed and projected fire-induced forest losses highlight the need to understand where and why forests persist in refugia through multiple fires. This research need is particularly acute in the Klamath-Siskiyou ecoregion of southwest Oregon and northwest California, USA, where expected increases in fire activity and climate warming may result in the loss of up to one-third of the region's conifer forests, which are the most diverse in western North America. Here, we leverage recent advances in fire progression mapping and weather interpolation, in conjunction with a novel application of satellite smoke imagery, to model the key controls on fire refugia occurrence and persistence through one, two, and three fire events over a 32-year period. Hotter-than-average fire weather was associated with lower refugia probability and higher fire severity. Refugia that persisted through three fire events appeared to be partially entrained by landscape features that offered protection from fire, suggesting that topographic variability may be an important stabilizing factor as forests pass through successive fire filters. In addition, smoke density strongly influenced fire effects, with fire refugia more likely to occur when smoke was moderate or dense in the morning, a relationship attributable to reduced incoming solar radiation resulting from smoke shading. Results from this study could inform management strategies designed to protect fire-resistant portions of biologically and topographically diverse landscapes.
Collapse
Affiliation(s)
- William M. Downing
- Department of Forest Ecosystems and SocietyCollege of ForestryOregon State UniversityCorvallisOR97331USA
| | - Garrett W. Meigs
- Washington State Department of Natural ResourcesOlympiaWA98504USA
| | - Matthew J. Gregory
- Department of Forest Ecosystems and SocietyCollege of ForestryOregon State UniversityCorvallisOR97331USA
| | - Meg A. Krawchuk
- Department of Forest Ecosystems and SocietyCollege of ForestryOregon State UniversityCorvallisOR97331USA
| |
Collapse
|
23
|
Fernández-Guisuraga JM, Suárez-Seoane S, García-Llamas P, Calvo L. Vegetation structure parameters determine high burn severity likelihood in different ecosystem types: A case study in a burned Mediterranean landscape. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112462. [PMID: 33831636 DOI: 10.1016/j.jenvman.2021.112462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
The design and implementation of pre-fire management strategies in heterogeneous landscapes requires the identification of the ecological conditions contributing to the most adverse effects of wildfires. This study evaluates which features of pre-fire vegetation structure, estimated through broadband land surface albedo and Light Detection and Ranging (LiDAR) data fusion, promote high wildfire damage across several fire-prone ecosystems dominated by either shrub (gorse, heath and broom) or tree species (Pyrenean oak and Scots pine). Topography features were also considered since they can assist in the identification of priority areas where vegetation structure needs to be managed. The case study was conducted within the scar of a mixed-severity wildfire that occurred in the Western Mediterranean Basin. Burn severity was estimated using the differenced Normalized Burn Ratio index computed from Sentinel-2 multispectral instrument (MSI) Level 2 A at 10 m of spatial resolution and validated in the field using the Composite Burn Index (CBI). Ordinal regression models were implemented to evaluate high burn severity outcome based on three groups of predictors: topography, pre-fire broadband land surface albedo computed from Sentinel-2 and pre-fire LiDAR metrics. Models were validated both by 10-fold cross-validation and external validation. High burn severity was largely ecosystem-dependent. In oak and pine forest ecosystems, severe damage was promoted by a high canopy volume (model accuracy = 79%) and a low canopy base height (accuracy = 82%), respectively. Land surface albedo, which is directly related to aboveground biomass and vegetation cover, outperformed LiDAR metrics to predict high burn severity in ecosystems with sparse vegetation. This is the case of gorse and broom shrub ecosystems (accuracy of 80% and 77%, respectively). The effect of topography was overwhelmed by that of the vegetation structure portion of the fire triangle behavior, except for heathlands, in which warm and steep slopes played a key role in high burn severity outcome together with horizontal and vertical fuel continuity (accuracy = 71%). The findings of this study support the fusion of LiDAR and satellite albedo data to assist forest managers in the development of ecosystem-specific management actions aimed at reducing wildfire damage and promote ecosystem resilience.
Collapse
Affiliation(s)
| | - Susana Suárez-Seoane
- Department of Organisms and Systems Biology (BOS, Ecology Unit) and Research Unit of Biodiversity (UMIB; UO-CSIC-PA), University of Oviedo, Oviedo, Mieres, Spain
| | - Paula García-Llamas
- Area of Ecology, Faculty of Biological and Environmental Sciences, University of León, 24071, León, Spain
| | - Leonor Calvo
- Area of Ecology, Faculty of Biological and Environmental Sciences, University of León, 24071, León, Spain
| |
Collapse
|
24
|
Incorporating Shrub Neighborhood Dynamics to Predict Forest Succession Trajectories in an Altered Fire Regime. Ecosystems 2021. [DOI: 10.1007/s10021-021-00645-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Useful Life of Prescribed Fires in a Southern Mediterranean Basin: An Application to Pinus pinaster Stands in the Sierra Morena Range. FORESTS 2021. [DOI: 10.3390/f12040486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prescribed fire is a globally relevant fuel treatment for surface fuel management and wildfire hazard reduction. However, Mediterranean ecosystems are adapted to low and moderate fires; hence, the useful life of prescribed fires is limited. Useful life is defined as the effective rotation length of prescribed fires to mitigate fire spread based on critical surface intensity for crown combustion. In this sense, the useful life of a prescribed fire focuses on surface fuel dynamics and its potential fire behavior. In Pinus pinaster stands, the useful life can be established between 0 and 4 years. Canopy base height, time elapsed from the burning, postfire precipitation, and fine fuel moisture content during the burning were identified as the most important variables in postburn fuel dynamics. Other stand characteristics and postfire precipitation can improve the fine fuel and live fuel dynamics models. Our findings support prescribed fires as an effective fuel treatment in the medium term for forest fire prevention, according to stand characteristics and burning implementation conditions. In this sense, forest managers can use the proposed decision tree to identify the useful life of each prescribed fire based on fine fuel moisture content during burning implementation.
Collapse
|
26
|
Abstract
Pyrodiversity or variation in spatio-temporal fire patterns is increasingly recognized as an important determinant of ecological pattern and process, yet no consensus surrounds how best to quantify the phenomenon and its drivers remain largely untested. We present a generalizable functional diversity approach for measuring pyrodiversity, which incorporates multiple fire regime traits and can be applied across scales. Further, we tested the socioecological drivers of pyrodiversity among forests of the western United States. Largely mediated by burn activity, pyrodiversity was positively associated with actual evapotranspiration, climate water deficit, wilderness designation, elevation and topographic roughness but negatively with human population density. These results indicate pyrodiversity is highest in productive areas with pronounced annual dry periods and minimal fire suppression. This work can facilitate future pyrodiversity studies including whether and how it begets biodiversity among taxa, regions and fire regimes.
Collapse
Affiliation(s)
- Zachary L Steel
- Department of Environmental Science, Policy and Management, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Brandon M Collins
- Center for Fire Research and Outreach, University of California, Berkeley, CA 94720, USA.,USDA Forest Service, Pacific Southwest Research Station, Davis, CA 95618, USA
| | - David B Sapsis
- California Department of Forestry and Fire Protection, Sacramento, CA 95814, USA
| | - Scott L Stephens
- Department of Environmental Science, Policy and Management, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
27
|
Steel ZL, Fogg AM, Burnett R, Roberts LJ, Safford HD. When bigger isn’t better—Implications of large high‐severity wildfire patches for avian diversity and community composition. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Zachary L. Steel
- Department of Environmental Science and Policy University of California Davis CA USA
- Department of Environmental Science, Policy, and Management University of California–Berkeley Berkeley CA USA
| | | | | | | | - Hugh D. Safford
- Department of Environmental Science and Policy University of California Davis CA USA
- United States Department of Agriculture Forest ServicePacific Southwest Region Vallejo CA USA
| |
Collapse
|
28
|
Wayman RB, Safford HD. Recent bark beetle outbreaks influence wildfire severity in mixed-conifer forests of the Sierra Nevada, California, USA. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02287. [PMID: 33426715 DOI: 10.1002/eap.2287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 06/12/2023]
Abstract
In temperate forests, elevated frequency of drought related disturbances will likely increase the incidence of interactions between disturbances such as bark beetle epidemics and wildfires. Our understanding of the influence of recent drought and insect-induced tree mortality on wildfire severity has largely lacked information from forests adapted to frequent fire. A recent unprecedented tree mortality event in California's Sierra Nevada provides an opportunity to examine this disturbance interaction in historically frequent-fire forests. Using field data collected within areas of recent tree mortality that subsequently burned in wildfire, we examined whether and under what conditions wildfire severity relates to severity of prefire tree mortality in Sierra Nevada mixed-conifer forests. We collected data on 180 plots within the 2015 Rough Fire and 2016 Cedar Fire footprints (California, USA). Our analyses identified prefire tree mortality as influential on all measures of wildfire severity (basal area killed by fire, RdNBR, and canopy torch) on the Cedar Fire, although it was less influential than fire weather (relative humidity). Prefire tree mortality was influential on two of three fire-severity measures on the Rough Fire, and was the most important predictor of basal area killed by fire; topographic position was influential on two metrics. On the Cedar Fire, the influence of prefire mortality on basal area killed by fire was greater under milder weather conditions. All measures of fire severity increased as prefire mortality increased up to prefire mortality levels of approximately 30-40%; further increases did not result in greater fire severity. The interacting disturbances shifted a pine-dominated system (Rough Fire) to a cedar-pine-fir system, while the pre-disturbance fir-cedar system (Cedar Fire) saw its dominant species unchanged. Managers of historically frequent-fire forests will benefit from utilizing this information when prioritizing fuels reduction treatments in areas of recent tree mortality, as it is the first empirical study to document a relationship between prefire mortality and subsequent wildfire severity in these systems. This study contributes to a growing body of evidence that the influence of prefire tree mortality on wildfire severity in temperate coniferous forests may depend on other conditions capable of driving extreme wildfire behavior, such as weather.
Collapse
Affiliation(s)
- Rebecca B Wayman
- Department of Environmental Science and Policy, University of California, Davis, 95616, USA
| | - Hugh D Safford
- Department of Environmental Science and Policy, University of California, Davis, 95616, USA
- Pacific Southwest Region, USDA Forest Service, Vallejo, California, 94592, USA
| |
Collapse
|
29
|
Brewen CJ, Berrill JP, Ritchie MW, Boston K, Dagley CM, Jones B, Coppoletta M, Burnett CL. 76-year decline and recovery of aspen mediated by contrasting fire regimes: Long-unburned, infrequent and frequent mixed-severity wildfire. PLoS One 2021; 16:e0232995. [PMID: 33539349 PMCID: PMC7861421 DOI: 10.1371/journal.pone.0232995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022] Open
Abstract
Quaking aspen (Populus tremuloides) is a valued, minor component on northeastern California landscapes. It provides a wide range of ecosystem services and has been in decline throughout the region for the last century. This decline may be explained partially by the lack of fire on the landscape due to heavier fire suppression, as aspen benefit from fire that eliminates conifer competition and stimulates reproduction through root suckering. However, there is little known about how aspen stand area changes in response to overlapping fire. Our study area in northeastern California on the Lassen, Modoc and Plumas National Forests has experienced recent large mixed-severity wildfires where aspen was present, providing an opportunity to study the re-introduction of fire. We observed two time periods; a 52-year absence of fire from 1941 to 1993 preceding a 24-year period of wildfire activity from 1993 to 2017. We utilized aerial photos and satellite imagery to delineate aspen stands and assess conifer cover percent. We chose aspen stands in areas where wildfires overlapped (twice-burned), where only a single wildfire burned, and areas that did not burn within the recent 24-year period. We observed these same stands within the first period of fire exclusion for comparison (i.e., 1941-1993). In the absence of fire, all aspen stand areas declined and all stands experienced increases in conifer composition. After wildfire, stands that burned experienced a release from conifer competition and increased in stand area. Stands that burned twice or at high severity experienced a larger removal of conifer competition than stands that burned once at low severity, promoting expansion of aspen stand area. Stands with less edge:area ratio also expanded in area more with fire present. Across both time periods, stand movement, where aspen stand footprints were mostly in new areas compared to footprints of previous years, was highest in smaller stands. In the fire exclusion period, smaller stands exhibited greater loss of area and changes in location (movement) than in the return of fire period, highlighting their vulnerability to loss via succession to conifers in the absence of disturbances that provide adequate growing space for aspen over time.
Collapse
Affiliation(s)
- Cerena J. Brewen
- USDA Forest Service, Lassen National Forest, Eagle Lake Ranger District, Susanville, California, United States of America
- * E-mail:
| | - John-Pascal Berrill
- Department of Forestry and Wildland Resources, Humboldt State University, Arcata, California, United States of America
| | - Martin W. Ritchie
- USDA Forest Service, Pacific Southwest Research Station, Redding, California, United States of America
| | | | - Christa M. Dagley
- Department of Forestry and Wildland Resources, Humboldt State University, Arcata, California, United States of America
| | - Bobette Jones
- USDA Forest Service, Lassen National Forest, Eagle Lake Ranger District, Susanville, California, United States of America
| | - Michelle Coppoletta
- USDA Forest Service, Sierra Cascade Province, Quincy, California, United States of America
| | - Coye L. Burnett
- USDA Forest Service, Lassen National Forest, Almanor Ranger District, Chester, California, United States of America
| |
Collapse
|
30
|
Effects of Production of Woody Pellets in the Southeastern United States on the Sustainable Development Goals. SUSTAINABILITY 2021. [DOI: 10.3390/su13020821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wood-based pellets are produced in the southeastern United States (SE US) and shipped to Europe for the generation of heat and power. Effects of pellet production on selected Sustainability Development Goals (SDGs) are evaluated using industry information, available energy consumption data, and published research findings. Challenges associated with identifying relevant SDG goals and targets for this particular bioenergy supply chain and potential deleterious impacts are also discussed. We find that production of woody pellets in the SE US and shipments to displace coal for energy in Europe generate positive effects on affordable and clean energy (SDG 7), decent work and economic growth (SDG 8), industry innovation and infrastructure (SDG 9), responsible consumption and production (SDG 12), and life on land (SDG 15). Primary strengths of the pellet supply chain in the SE US are the provisioning of employment in depressed rural areas and the displacement of fossil fuels. Weaknesses are associated with potential impacts on air, water, and biodiversity that arise if the resource base and harvest activities are improperly managed. The SE US pellet supply chain provides an opportunity for transition to low-carbon industries and innovations while incentivizing better resource management.
Collapse
|
31
|
Jones GM, Gutiérrez RJ, Block WM, Carlson PC, Comfort EJ, Cushman SA, Davis RJ, Eyes SA, Franklin AB, Ganey JL, Hedwall S, Keane JJ, Kelsey R, Lesmeister DB, North MP, Roberts SL, Rockweit JT, Sanderlin JS, Sawyer SC, Solvesky B, Tempel DJ, Wan HY, Westerling AL, White GC, Peery MZ. Spotted owls and forest fire: Comment. Ecosphere 2020. [DOI: 10.1002/ecs2.3312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Gavin M. Jones
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| | - R. J. Gutiérrez
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
- Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota St. Paul Minnesota USA
| | - William M. Block
- USDA Forest ServiceRocky Mountain Research Station Flagstaff Arizona USA
| | - Peter C. Carlson
- Department of Fish, Wildlife and Conservation Biology Colorado State University Fort Collins Colorado USA
| | - Emily J. Comfort
- College of Forestry Oregon State University Corvallis Oregon USA
| | - Samuel A. Cushman
- USDA Forest ServiceRocky Mountain Research Station Flagstaff Arizona USA
| | | | | | - Alan B. Franklin
- USDA National Wildlife Research Center Fort Collins Colorado USA
| | - Joseph L. Ganey
- USDA Forest ServiceRocky Mountain Research Station Flagstaff Arizona USA
| | - Shaula Hedwall
- US Fish and Wildlife ServiceArizona Fish & Wildlife Conservation Office Flagstaff Arizona USA
| | - John J. Keane
- USDA Forest ServicePacific Southwest Research Station Davis California USA
| | - Rodd Kelsey
- The Nature Conservancy Sacramento California USA
| | | | - Malcolm P. North
- USDA Forest ServicePacific Southwest Research Station Davis California USA
- The John Muir Institute University of California Davis California USA
| | | | - Jeremy T. Rockweit
- Department of Fish, Wildlife and Conservation Biology Colorado State University Fort Collins Colorado USA
| | - Jamie S. Sanderlin
- USDA Forest ServiceRocky Mountain Research Station Flagstaff Arizona USA
| | | | - Ben Solvesky
- Sierra Forest Legacy Garden Valley California USA
| | - Douglas J. Tempel
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| | - Ho Yi Wan
- School of Public and Community Health Sciences University of Montana Missoula Montana USA
| | - A. LeRoy Westerling
- Sierra Nevada Research Institute University of California Merced California USA
| | - Gary C. White
- Department of Fish, Wildlife and Conservation Biology Colorado State University Fort Collins Colorado USA
| | - M. Zachariah Peery
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| |
Collapse
|
32
|
Mapping Burned Areas of Mato Grosso State Brazilian Amazon Using Multisensor Datasets. REMOTE SENSING 2020. [DOI: 10.3390/rs12223827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Quantifying forest fires remain a challenging task for the implementation of public policies aimed to mitigate climate change. In this paper, we propose a new method to provide an annual burned area map of Mato Grosso State located in the Brazilian Amazon region, taking advantage of the high spatial and temporal resolution sensors. The method consists of generating the vegetation, soil, and shade fraction images by applying the Linear Spectral Mixing Model (LSMM) to the Landsat-8 OLI (Operational Land Imager), PROBA-V (Project for On-Board Autonomy–Vegetation), and Suomi NPP-VIIRS (National Polar-Orbiting Partnership-Visible Infrared Imaging Radiometer Suite) datasets. The shade fraction images highlight the burned areas, in which values are represented by low reflectance of ground targets, and the mapping was performed using an unsupervised classifier. Burned areas were evaluated in terms of land use and land cover classes over the Amazon, Cerrado and Pantanal biomes in the Mato Grosso State. Our results showed that most of the burned areas occurred in non-forested areas (66.57%) and old deforestation (21.54%). However, burned areas over forestlands (11.03%), causing forest degradation, reached more than double compared with burned areas identified in consolidated croplands (5.32%). The results obtained were validated using the Sentinel-2 data and compared with active fire data and existing global burned areas products, such as the MODIS (Moderate Resolution Imaging Spectroradiometer product) MCD64A1 and MCD45A1, and Fire CCI (ESA Climate Change Initiative) products. Although there is a good visual agreement among the analyzed products, the areas estimated were quite different. Our results presented correlation of 51% with Sentinel-2 and agreement of r2 = 0.31, r2 = 0.29, and r2 = 0.43 with MCD64A1, MCD45A1, and Fire CCI products, respectively. However, considering the active fire data, it was achieved the better performance between active fire presence and burn mapping (92%). The proposed method provided a general perspective about the patterns of fire in various biomes of Mato Grosso State, Brazil, that are important for the environmental studies, specially related to fire severity, regeneration, and greenhouse gas emissions.
Collapse
|
33
|
García-Llamas P, Suárez-Seoane S, Fernández-Manso A, Quintano C, Calvo L. Evaluation of fire severity in fire prone-ecosystems of Spain under two different environmental conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110706. [PMID: 32778251 DOI: 10.1016/j.jenvman.2020.110706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/11/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Severe fires associated to climate change and land cover changes are becoming more frequent in Mediterranean Europe. The influence of environmental drivers on fire severity, especially under different environmental conditions is still not fully understood. In this study we aim to determine the main environmental variables that control fire severity in large fires (>500 ha) occurring in fire-prone ecosystems under two different environmental conditions following a transition (Mediterranean-Oceanic)-Mediterranean climatic gradient within the Iberian Peninsula, and to provide management recommendations to mitigate fire damage. We estimated fire severity as the differenced Normalized Burn Ratio, through images obtained from Landsat 8 OLI. We also examined the relative influence of pre-fire vegetation structure (vegetation composition and configuration), pre-fire weather conditions, fire history and topography on fire severity using Random Forest machine learning algorithms. The results indicated that the severity of fires occurring along the transition (Mediterranean-Oceanic)-Mediterranean climatic gradient was primarily controlled by pre-fire vegetation composition. Nevertheless, the effect of vegetation composition was strongly dependent on interactions with fire recurrence and pre-fire vegetation structural configuration. The relationship between fire severity, weather and topographic predictors was not consistent among fires occurring in the Mediterranean-Oceanic transition and Mediterranean sites. In the Mediterranean-Oceanic transition site, fire severity was determined by weather conditions (i.e., summer cumulative rainfall), rather than being associated to topography, suggesting that the control exerted by topography may be overwhelmed by weather controls. Conversely, results showed that topography only had a major effect on fire severity in the Mediterranean site. The results of this study highlight the need to prioritise fuel treatments aiming at breaking fuel continuity and reducing fuel loads as an effective management strategy to mitigate fire damage in areas of high fire recurrence.
Collapse
Affiliation(s)
- Paula García-Llamas
- Biodiversity and Environmental Management Dpt., Faculty of Biological and Environmental Sciences, University of León, Campus de Vegazana s/n, 24071, León, Spain; Institute of Environmental Research (IMA), University of Léon, 24071, León, Spain.
| | - Susana Suárez-Seoane
- University of Oviedo. Department of Organisms and Systems Biology (Ecology Unit) and Research Unit of Biodiversity (UO-CSIC-PA), Oviedo, Mieres, Spain
| | - Alfonso Fernández-Manso
- Agrarian Science and Engineering Department, University of León, Av. Astorga s/n, 24400, Ponferrada, Spain
| | - Carmen Quintano
- Electronic Technology Department, Sustainable Forest Management Research Institute, University of Valladolid, Spanish National Institute for Agriculture and Food Research and Technology (INIA), C/Francisco Mendizábal s/n, 47014, Valladolid, Spain
| | - Leonor Calvo
- Biodiversity and Environmental Management Dpt., Faculty of Biological and Environmental Sciences, University of León, Campus de Vegazana s/n, 24071, León, Spain; Institute of Environmental Research (IMA), University of Léon, 24071, León, Spain
| |
Collapse
|
34
|
Busby SU, Moffett KB, Holz A. High‐severity and short‐interval wildfires limit forest recovery in the Central Cascade Range. Ecosphere 2020. [DOI: 10.1002/ecs2.3247] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sebastian U. Busby
- Department of Geography Portland State University 1721 SW Broadway Portland Oregon97201USA
| | - Kevan B. Moffett
- School of the Environment Washington State University Vancouver Washington98686USA
| | - Andrés Holz
- Department of Geography Portland State University 1721 SW Broadway Portland Oregon97201USA
| |
Collapse
|
35
|
|
36
|
Povak NA, Churchill DJ, Cansler CA, Hessburg PF, Kane VR, Kane JT, Lutz JA, Larson AJ. Wildfire severity and postfire salvage harvest effects on long‐term forest regeneration. Ecosphere 2020. [DOI: 10.1002/ecs2.3199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Nicholas A. Povak
- USDA‐Forest Service Pacific Northwest Research Station 1133 N Western Avenue Wenatchee Washington98801‐1229USA
- Oak Ridge Institute for Science and Education (ORISE) Oak Ridge Tennessee37830USA
| | - Derek J. Churchill
- Washington State Department of Natural Resources Forest Health and Resiliency Division Olympia Washington98504USA
| | - C. Alina Cansler
- School of Environmental and Forest Sciences University of Washington Box 352100 Seattle Washington98195USA
| | - Paul F. Hessburg
- USDA‐Forest Service Pacific Northwest Research Station 1133 N Western Avenue Wenatchee Washington98801‐1229USA
- School of Environmental and Forest Sciences University of Washington Box 352100 Seattle Washington98195USA
| | - Van R. Kane
- School of Environmental and Forest Sciences University of Washington Box 352100 Seattle Washington98195USA
| | - Jonathan T. Kane
- School of Environmental and Forest Sciences University of Washington Box 352100 Seattle Washington98195USA
| | - James A. Lutz
- Quinney College of Natural Resources & Ecology Center Utah State University Logan Utah84322USA
| | - Andrew J. Larson
- W.A. Franke College of Forestry & Conservation University of Montana Missoula Montana59812USA
| |
Collapse
|
37
|
Abstract
The goal of this research was to characterize the impact of invasive riparian vegetation on burn severity patterns and fluvial topographic change in an urban Mediterranean riverine system (Med-sys) after fire in San Diego, California. We assessed standard post-fire metrics under urban conditions with non-native vegetation and utilized field observations to quantify vegetation and fluvial geomorphic processes. Field observations noted both high vegetation loss in the riparian area and rapidly resprouting invasive grass species such as Arundo donax (Giant Reed) after fire. Satellite-based metrics that represent vegetation biomass underestimated the initial green canopy loss, as did volumetric data derived from three-dimensional terrestrial laser scanning data. Field measurements were limited to a small sample size but demonstrated that the absolute maximum topographic changes were highest in stands of Arundo donax (0.18 to 0.67 m). This work is the first quantification of geomorphic alterations promoted by non-native vegetation after fire and highlights potential grass–fire feedbacks that can contribute to geomorphic disruption. Our results support the need for ground-truthing or higher resolution when using standard satellite-based indices to assess post-fire conditions in urban open spaces, especially when productive invasive vegetation are present, and they also emphasize restoring urban waterways to native vegetation conditions.
Collapse
|
38
|
Foster DE, Battles JJ, Collins BM, York RA, Stephens SL. Potential wildfire and carbon stability in frequent‐fire forests in the Sierra Nevada: trade‐offs from a long‐term study. Ecosphere 2020. [DOI: 10.1002/ecs2.3198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Daniel E. Foster
- Ecosystem Sciences Division Department of Environmental Science, Policy, and Management University of California Berkeley California94720USA
| | - John J. Battles
- Ecosystem Sciences Division Department of Environmental Science, Policy, and Management University of California Berkeley California94720USA
| | - Brandon M. Collins
- Center for Fire Research and Outreach University of California Berkeley California94720USA
- USDA Forest Service Pacific Southwest Research Station Davis California95618USA
| | - Robert A. York
- Ecosystem Sciences Division Department of Environmental Science, Policy, and Management University of California Berkeley California94720USA
| | - Scott L. Stephens
- Ecosystem Sciences Division Department of Environmental Science, Policy, and Management University of California Berkeley California94720USA
| |
Collapse
|
39
|
Coop JD, Parks SA, Stevens-Rumann CS, Crausbay SD, Higuera PE, Hurteau MD, Tepley A, Whitman E, Assal T, Collins BM, Davis KT, Dobrowski S, Falk DA, Fornwalt PJ, Fulé PZ, Harvey BJ, Kane VR, Littlefield CE, Margolis EQ, North M, Parisien MA, Prichard S, Rodman KC. Wildfire-Driven Forest Conversion in Western North American Landscapes. Bioscience 2020; 70:659-673. [PMID: 32821066 PMCID: PMC7429175 DOI: 10.1093/biosci/biaa061] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Changing disturbance regimes and climate can overcome forest ecosystem resilience. Following high-severity fire, forest recovery may be compromised by lack of tree seed sources, warmer and drier postfire climate, or short-interval reburning. A potential outcome of the loss of resilience is the conversion of the prefire forest to a different forest type or nonforest vegetation. Conversion implies major, extensive, and enduring changes in dominant species, life forms, or functions, with impacts on ecosystem services. In the present article, we synthesize a growing body of evidence of fire-driven conversion and our understanding of its causes across western North America. We assess our capacity to predict conversion and highlight important uncertainties. Increasing forest vulnerability to changing fire activity and climate compels shifts in management approaches, and we propose key themes for applied research coproduced by scientists and managers to support decision-making in an era when the prefire forest may not return.
Collapse
Affiliation(s)
- Jonathan D Coop
- School of Environment and Sustainability, Western Colorado University, Gunnison
| | - Sean A Parks
- Research ecologist with the Aldo Leopold Wilderness Research Institute, Rocky Mountain Research Station, US Forest Service, Missoula, Montana
| | | | - Shelley D Crausbay
- Senior scientist with Conservation Science Partners, Fort Collins, Colorado
| | - Philip E Higuera
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana
| | | | - Alan Tepley
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada
| | - Ellen Whitman
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada
| | - Timothy Assal
- Department of Geography, Kent State University, Kent, Ohio
| | - Brandon M Collins
- Fire Research and Outreach, University of California, Berkeley, Berkeley, California, and with the Pacific Southwest Research Station, US Forest Service, in Davis, California
| | - Kimberley T Davis
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula
| | | | - Donald A Falk
- Natural Resources and the Environment, University of Arizona, Tucson
| | - Paula J Fornwalt
- Rocky Mountain Research Station, US Forest Service, Fort Collins, Colorado
| | - Peter Z Fulé
- School of Forestry, Northern Arizona University, Flagstaff
| | - Brian J Harvey
- School of Environmental and Forest Sciences, University of Washington, Seattle
| | - Van R Kane
- School of Environmental and Forest Sciences, University of Washington, Seattle
| | - Caitlin E Littlefield
- Caitlin Littlefield is a postdoctoral research associate, Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington
| | - Ellis Q Margolis
- US Geological Survey, New Mexico Landscapes Field Station, Santa Fe
| | - Malcolm North
- US Forest Service, Pacific Southwest Research Station, Mammoth Lakes, California
| | - Marc-André Parisien
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada
| | - Susan Prichard
- School of Environmental and Forest Sciences, University of Washington, Seattle
| | - Kyle C Rodman
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison
| |
Collapse
|
40
|
Prichard SJ, Povak NA, Kennedy MC, Peterson DW. Fuel treatment effectiveness in the context of landform, vegetation, and large, wind-driven wildfires. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02104. [PMID: 32086976 DOI: 10.1002/eap.2104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/03/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Large wildfires (>50,000 ha) are becoming increasingly common in semiarid landscapes of the western United States. Although fuel reduction treatments are used to mitigate potential wildfire effects, they can be overwhelmed in wind-driven wildfire events with extreme fire behavior. We evaluated drivers of fire severity and fuel treatment effectiveness in the 2014 Carlton Complex, a record-setting complex of wildfires in north-central Washington State. Across varied topography, vegetation, and distinct fire progressions, we used a combination of simultaneous autoregression (SAR) and random forest (RF) approaches to model drivers of fire severity and evaluated how fuel treatments mitigated fire severity. Predictor variables included fuel treatment type, time since treatment, topographic indices, vegetation and fuels, and weather summarized by progression interval. We found that the two spatial regression methods are generally complementary and are instructive as a combined approach for landscape analyses of fire severity. Simultaneous autoregression improves upon traditional linear models by incorporating information about neighboring pixel burn severity, which avoids type I errors in coefficient estimates and incorrect inferences. Random forest modeling provides a flexible modeling environment capable of capturing complex interactions and nonlinearities while still accounting for spatial autocorrelation through the use of spatially explicit predictor variables. All treatment areas burned with higher proportions of moderate and high-severity fire during early fire progressions, but thin and underburn, underburn only, and past wildfires were more effective than thin-only and thin and pile burn treatments. Treatment units had much greater percentages of unburned and low severity area in later progressions that burned under milder fire weather conditions, and differences between treatments were less pronounced. Our results provide evidence that strategic placement of fuels reduction treatments can effectively reduce localized fire spread and severity even under severe fire weather. During wind-driven fire spread progressions, fuel treatments that were located on leeward slopes tended to have lower fire severity than treatments located on windward slopes. As fire and fuels managers evaluate options for increasing landscape resilience to future climate change and wildfires, strategic placement of fuel treatments may be guided by retrospective studies of past large wildfire events.
Collapse
Affiliation(s)
- Susan J Prichard
- School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, Washington, 98195-2100, USA
| | - Nicholas A Povak
- USDA Forest Service, Pacific Northwest Research Station, Wenatchee Forestry Sciences Lab, Wenatchee, Washington, 98801, USA
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, 37830, USA
| | - Maureen C Kennedy
- Sciences and Mathematics, Division of the School of Interdisciplinary Arts and Sciences, University of Washington - Tacoma, Tacoma, Washington, 98801, USA
| | - David W Peterson
- USDA Forest Service, Pacific Northwest Research Station, Wenatchee Forestry Sciences Lab, Wenatchee, Washington, 98801, USA
| |
Collapse
|
41
|
|
42
|
Koontz MJ, North MP, Werner CM, Fick SE, Latimer AM. Local forest structure variability increases resilience to wildfire in dry western U.S. coniferous forests. Ecol Lett 2020; 23:483-494. [PMID: 31922344 DOI: 10.1111/ele.13447] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/06/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022]
Abstract
A 'resilient' forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine-scale variability in forest structure, which may then interrupt fuel continuity and prevent future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is challenging for vast, long-lived forest ecosystems. We quantify forest structural variability and fire severity across >30 years and >1000 wildfires in California's Sierra Nevada. We find that greater variability in forest structure increases resilience by reducing rates of fire-induced tree mortality and that the scale of this effect is local, manifesting at the smallest spatial extent of forest structure tested (90 × 90 m). Resilience of these forests is likely compromised by structural homogenisation from a century of fire suppression, but could be restored with management that increases forest structural variability.
Collapse
Affiliation(s)
- Michael J Koontz
- Graduate Group in Ecology, University of California, Davis, CA, USA.,Department of Plant Sciences, University of California, Davis, CA, USA.,Earth Lab, University of Colorado-Boulder, Boulder, CO, USA
| | - Malcolm P North
- Department of Plant Sciences, University of California, Davis, CA, USA.,Pacific Southwest Research Station, USDA Forest Service, Mammoth Lakes, CA, USA
| | - Chhaya M Werner
- Department of Plant Sciences, University of California, Davis, CA, USA.,Center for Population Biology, University of California, Davis, CA, USA.,German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Germany
| | - Stephen E Fick
- US Geological Survey, Southwest Biological Science Center, Moab, UT, USA.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Andrew M Latimer
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
43
|
Bristow KD, Harding LE, Lucas RW, McCall TC. Influence of fire severity and vegetation treatments on mule deer (Odocoileus hemionus) winter habitat use on the Kaibab Plateau, Arizona. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an19373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Wildfire and vegetation treatments affect mule deer (Odocoileus hemionus) populations across the western United States. However, the relative influence of fire and treatments on habitat use by mule deer in Arizona is not well defined.
Aims
We examined locations of mule deer on the Kaibab Plateau in northern Arizona, so as to determine the influence of vegetation treatments and wildfire severity on deer habitat-use patterns across their winter range where fires and treatments had occurred previously.
Methods
We used locations (n = 11297) from 21 adult female mule deer fitted with global positioning system collars to model probability of use as a function of habitat covariates.
Key results
The best model describing winter-range habitat use by mule deer on the Kaibab Plateau included covariates describing the age of vegetation treatments and fire severity. Increased deer use in winter was associated with areas of lower terrain ruggedness and reduced snow depths. Deer use also increased in areas that experienced a higher average fire severity, resulting in decreased vegetation heights. Among treatment age classes, deer use was greatest in areas containing vegetation treatments that were ≤6 years old, but negatively associated with treatments that were >6 years old.
Conclusions
Vegetation treatments designed to remove or reduce less palatable tree and shrub species to improve forage conditions may increase the use of winter habitats by deer on the Kaibab Plateau. Similarly, prescribed fire and rangeland treatments designed to return areas to a more natural fire regime and, thereby, generate new plant growth, may improve winter-range habitat conditions for mule deer.
Implications
Similar treatment strategies may also benefit mule deer populations throughout the western USA, by improving forage conditions on critical habitats and reducing the potential for catastrophic wildfire.
Collapse
|
44
|
Krofcheck DJ, Litvak ME, Hurteau MD. Allometric relationships for
Quercus gambelii
and
Robinia neomexicana
for biomass estimation following disturbance. Ecosphere 2019. [DOI: 10.1002/ecs2.2905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Dan J. Krofcheck
- Department of Biology University of New Mexico Albuquerque New Mexico USA
| | - Marcy E. Litvak
- Department of Biology University of New Mexico Albuquerque New Mexico USA
| | - Matthew D. Hurteau
- Department of Biology University of New Mexico Albuquerque New Mexico USA
| |
Collapse
|
45
|
Richter C, Rejmánek M, Miller JED, Welch KR, Weeks J, Safford H. The species diversity × fire severity relationship is hump‐shaped in semiarid yellow pine and mixed conifer forests. Ecosphere 2019. [DOI: 10.1002/ecs2.2882] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Clark Richter
- Department of Evolution and Ecology University of California – Davis Davis California USA
| | - Marcel Rejmánek
- Department of Evolution and Ecology University of California – Davis Davis California USA
| | | | - Kevin R. Welch
- Department of Plant Sciences University of California – Davis Davis California USA
| | - JonahMaria Weeks
- Department of Environmental Science and Policy University of California – Davis Davis California USA
| | - Hugh Safford
- Department of Environmental Science and Policy University of California – Davis Davis California USA
- USDA Forest Service Pacific Southwest Region Vallejo California USA
| |
Collapse
|
46
|
Hessburg PF, Miller CL, Parks SA, Povak NA, Taylor AH, Higuera PE, Prichard SJ, North MP, Collins BM, Hurteau MD, Larson AJ, Allen CD, Stephens SL, Rivera-Huerta H, Stevens-Rumann CS, Daniels LD, Gedalof Z, Gray RW, Kane VR, Churchill DJ, Hagmann RK, Spies TA, Cansler CA, Belote RT, Veblen TT, Battaglia MA, Hoffman C, Skinner CN, Safford HD, Salter RB. Climate, Environment, and Disturbance History Govern Resilience of Western North American Forests. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00239] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Turner MG, Braziunas KH, Hansen WD, Harvey BJ. Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Proc Natl Acad Sci U S A 2019; 116:11319-11328. [PMID: 31110003 PMCID: PMC6561258 DOI: 10.1073/pnas.1902841116] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Subalpine forests in the northern Rocky Mountains have been resilient to stand-replacing fires that historically burned at 100- to 300-year intervals. Fire intervals are projected to decline drastically as climate warms, and forests that reburn before recovering from previous fire may lose their ability to rebound. We studied recent fires in Greater Yellowstone (Wyoming, United States) and asked whether short-interval (<30 years) stand-replacing fires can erode lodgepole pine (Pinus contorta var. latifolia) forest resilience via increased burn severity, reduced early postfire tree regeneration, reduced carbon stocks, and slower carbon recovery. During 2016, fires reburned young lodgepole pine forests that regenerated after wildfires in 1988 and 2000. During 2017, we sampled 0.25-ha plots in stand-replacing reburns (n = 18) and nearby young forests that did not reburn (n = 9). We also simulated stand development with and without reburns to assess carbon recovery trajectories. Nearly all prefire biomass was combusted ("crown fire plus") in some reburns in which prefire trees were dense and small (≤4-cm basal diameter). Postfire tree seedling density was reduced sixfold relative to the previous (long-interval) fire, and high-density stands (>40,000 stems ha-1) were converted to sparse stands (<1,000 stems ha-1). In reburns, coarse wood biomass and aboveground carbon stocks were reduced by 65 and 62%, respectively, relative to areas that did not reburn. Increased carbon loss plus sparse tree regeneration delayed simulated carbon recovery by >150 years. Forests did not transition to nonforest, but extreme burn severity and reduced tree recovery foreshadow an erosion of forest resilience.
Collapse
Affiliation(s)
- Monica G Turner
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706;
| | - Kristin H Braziunas
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| | | | - Brian J Harvey
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195
| |
Collapse
|
48
|
Shifting States, Altered Fates: Divergent Fuel Moisture Responses after High Frequency Wildfire in an Obligate Seeder Eucalypt Forest. FORESTS 2019. [DOI: 10.3390/f10050436] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High frequency wildfires can shift the structure and composition of obligate seeder forests and initiate replacement with alternative vegetation states. In some forests, the alternative stable state is drier and more easily burned by subsequent fires, driving a positive feedback that promotes further wildfire and perpetuates alternative stable states. Mountain Ash (Eucalyptus regnans (F.Muell.)) forests are highly valued for their biodiversity, water, timber and carbon. Fires are a natural part of the lifecycle of these forests, but too frequent fires can eliminate Mountain Ash and trigger a transition to lower stature, non-eucalypt forests which are dominated by understorey species. This study sought to better understand the fuel moisture dynamics of alternative stable states resulting from high frequency wildfires. A vegetation mosaic in the Central Highlands, Victoria created a unique opportunity to measure fuel moisture in adjacent forest stands that differed in overstorey species composition and time since fire. Specifically, we measured fuel moisture and microclimate at two eucalypt sites (9 and 79 years old) and three non-eucalypt sites (two 9 year old and one 79 year old). Fuel availability, defined here as the number of days surface fuels were below 16% and dry enough to ignite and sustain fire, was calculated to estimate flammability. Fuel availability differed between sites, particularly as a function of time since fire, with recently burnt sites available to burn more often (4–17 versus 0–3 days). There were differences in fuel availability between non-eucalypt sites of the same age, suggesting that high frequency fire does not always lead to the same vegetation condition or outcome for fuel availability. This indicates there is potential for both positive and negative flammability feedbacks following state transition depending on the composition of the non-eucalypt state. This is the first study to provide empirical insight into the fuel moisture dynamics of alternative stable states in Mountain Ash forests.
Collapse
|
49
|
Ponderosa Pine Regeneration, Wildland Fuels Management, and Habitat Conservation: Identifying Trade-Offs Following Wildfire. FORESTS 2019. [DOI: 10.3390/f10030286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increasing wildfires in western North American conifer forests have led to debates surrounding the application of post-fire management practices. There is a lack of consensus on whether (and to what extent) post-fire management assists or hinders managers in achieving goals, particularly in under-studied regions like eastern ponderosa pine forests. This makes it difficult for forest managers to balance among competing interests. We contrast structural and community characteristics across unburned ponderosa pine forest, severely burned ponderosa pine forest, and severely burned ponderosa pine forest treated with post-fire management with respect to three management objectives: ponderosa pine regeneration, wildland fuels control, and habitat conservation. Ponderosa pine saplings were more abundant in treated burned sites than untreated burned sites, suggesting increases in tree regeneration following tree planting; however, natural regeneration was evident in both unburned and untreated burned sites. Wildland fuels management greatly reduced snags and coarse woody debris in treated burned sites. Understory cover measurements revealed bare ground and fine woody debris were more strongly associated with untreated burned sites, and greater levels of forbs and grass were more strongly associated with treated burned sites. Wildlife habitat was greatly reduced following post-fire treatments. There were no tree cavities in treated burned sites, whereas untreated burned sites had an average of 27 ± 7.68 cavities per hectare. Correspondingly, we found almost double the avian species richness in untreated burned sites compared to treated burned sites (22 species versus 12 species). Unburned forests and untreated burned areas had the same species richness, but hosted unique avian communities. Our results indicate conflicting outcomes with respect to management objectives, most evident in the clear costs to habitat conservation following post-fire management application.
Collapse
|
50
|
Parks SA, Dobrowski SZ, Shaw JD, Miller C. Living on the edge: trailing edge forests at risk of fire‐facilitated conversion to non‐forest. Ecosphere 2019. [DOI: 10.1002/ecs2.2651] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Sean A. Parks
- Aldo Leopold Wilderness Research Institute Rocky Mountain Research Station US Forest Service 790 E. Beckwith Avenue Missoula Montana 59801 USA
| | - Solomon Z. Dobrowski
- W.A. Franke College of Forestry and Conservation University of Montana Missoula Montana 59812 USA
| | - John D. Shaw
- Forest Inventory and Analysis Rocky Mountain Research Station 507 25th Street Ogden Utah 84322 USA
| | - Carol Miller
- Aldo Leopold Wilderness Research Institute Rocky Mountain Research Station US Forest Service 790 E. Beckwith Avenue Missoula Montana 59801 USA
| |
Collapse
|