1
|
Wang S, He P, Wu X, Zan F, Yuan Z, Zhou J, Xu M. It's time to reevaluate the list of priority polycyclic aromatic compounds: Evidence from a large urban shallow lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173988. [PMID: 38889819 DOI: 10.1016/j.scitotenv.2024.173988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/16/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Monitoring only 16 priority PAHs (Pri-PAHs) may greatly underestimate the pollutant load and toxicity of polycyclic aromatic compounds (PACs) in aquatic environments. There is an urgent need to reevaluate the list of priority PACs. To determine which PACs deserve priority monitoring, the occurrence, sources, and toxicity of 78 PACs, including 24 parent PAHs (Par-PAHs), 49 alkylated PAHs (Alk-PAHs), 3 oxygenated PAHs (OPAHs), carbazole, and dibenzothiophene were investigated for the first time in Lake Chaohu sediments, China. Concentrations of ∑Par-PAHs, ∑Alk-PAHs, and ∑OPAHs ranged from 35 to 165, 3.4-26, and 7.7-26 ng g-1, respectively. Concentrations of 16 Pri-PAHs have decreased by 1-2 orders of magnitude compared to a decade ago, owing to the effective implementation of PAHs emission control measures. Comparisons with the sediment quality guidelines indicated that 16 Pri-PAHs have negligible adverse effects on benthic organisms. Positive matrix factorization (PMF) model results showed that coal combustion was the major source of PACs (accounting for 23.5 %), followed by traffic emissions (23.4 %), petroleum volatilization (21.9 %), wood/biomass combustion (18.2 %), and biological/microbial transformation (13.1 %). The toxicity of PACs was assessed by calculating the BaP toxic equivalent concentrations (TEQBaP) and toxic units. It was found that Par-PAHs were the predominant toxic substances. In addition, monomethyl-BaPs, OPAHs, BeP, and 7,12-DMBaA should be prioritized for monitoring due to their noticeable contributions to overall toxicity. The contributions of different sources to the toxicity of PACs were determined based on PMF model results and TEQBaP values, which revealed that combustion sources mainly contributed to the comprehensive toxicity of PACs in Lake Chaohu sediments.
Collapse
Affiliation(s)
- Shanshan Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Wuhu Dongyuan New Country Developing Co., Ltd., Wuhu, Anhui 241000, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China; CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pengpeng He
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China.
| | - Fengyu Zan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Zijiao Yuan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Jiale Zhou
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Miaoqing Xu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| |
Collapse
|
2
|
Wu S, Li SX, Qiu J, Zhao HM, Li YW, Feng NX, Liu BL, Cai QY, Xiang L, Mo CH, Li QX. Accurate Prediction of Rat Acute Oral Toxicity and Reference Dose for Thousands of Polycyclic Aromatic Hydrocarbon Derivatives Based on Chemometric QSAR and Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39137267 DOI: 10.1021/acs.est.4c03966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Acute oral toxicity is currently not available for most polycyclic aromatic hydrocarbons (PAHs), especially their derivatives, because it is cost-prohibitive to experimentally determine all of them. Here, quantitative structure-activity relationship (QSAR) models using machine learning (ML) for predicting the toxicity of PAH derivatives were developed, based on oral toxicity data points of 788 individual substances of rats. Both the individual ML algorithm gradient boosting regression trees (GBRT) and the stacking ML algorithm (extreme gradient boosting + GBRT + random forest regression) provided the best prediction results with satisfactory determination coefficients for both cross-validation and the test set. It was found that those PAH derivatives with fewer polar hydrogens, more large-sized atoms, more branches, and lower polarizability have higher toxicity. Software based on the optimal ML-QSAR model was successfully developed to expand the application potential of the developed model, obtaining reliable prediction of pLD50 values and reference doses for 6893 external PAH derivatives. Among these chemicals, 472 were identified as moderately or highly toxic; 10 out of them had clear environment detection or use records. The findings provide valuable insights into the toxicity of PAHs and their derivatives, offering a standard platform for effectively evaluating chemical toxicity using ML-QSAR models.
Collapse
Affiliation(s)
- Shuang Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shi-Xin Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing Qiu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, United States
| |
Collapse
|
3
|
Song Q, Li X, Hou N, Pei C, Li D. Chemotaxis-mediated degradation of PAHs and heterocyclic PAHs under low-temperature stress by Pseudomonas fluorescens S01: Insights into the mechanisms of biodegradation and cold adaptation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133905. [PMID: 38422734 DOI: 10.1016/j.jhazmat.2024.133905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/06/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
As wellknown persistent contaminants, polycyclic aromatic hydrocarbons (PAHs) and heterocyclic polyaromatic hydrocarbons (Heterocyclic PAHs)'s fates in cryogenic environments are remains uncertain. Herein, strain S01 was identified as Pseudomonas fluorescens, a novel bacterium tolerant to low temperature and capable of degrading PAHs and heterocyclic PAHs. Strain S01 exhibited growth at 5-40 ℃ and degradation rate of mixed PAHs and heterocyclic PAHs reached 52% under low-temperature. Through comprehensive metabolomic, genomic, and transcriptomic analyses, we reconstructed the biodegradation pathway for PAHs and heterocyclic PAHs in S01 while investigating its response to low temperature. Further experiments involving deletion and replacement of methyl-accepting chemotaxis protein (MCP) confirmed its crucial role in enabling strain S01's adaptation to dual stress of low temperature and pollutants. Additionally, our analysis revealed that MCP was upregulated under cold stress which enhanced strain S01's motility capabilities leading to increased biofilm formation. The establishment of biofilm promoted preservation of distinct cellular membrane stability, thereby enhancing energy metabolism. Consequently, this led to heightened efficiency in pollutant degradation and improved cold resistance capabilities. Our findings provide a comprehensive understanding of the environmental fate of both PAHs and heterocyclic PAHs under low-temperature conditions while also shedding light on cold adaptation mechanism employed by strain S01.
Collapse
Affiliation(s)
- Qiuying Song
- Northeast Agricultural University, School of Resources and Environment, China
| | - Xianyue Li
- Northeast Agricultural University, School of Resources and Environment, China
| | - Ning Hou
- Northeast Agricultural University, School of Resources and Environment, China.
| | - Chenghao Pei
- Northeast Agricultural University, School of Resources and Environment, China
| | - Dapeng Li
- Northeast Agricultural University, School of Resources and Environment, China.
| |
Collapse
|
4
|
Nilén G, Larsson M, Hyötyläinen T, Keiter SH. A complex mixture of polycyclic aromatic compounds causes embryotoxic, behavioral, and molecular effects in zebrafish larvae (Danio rerio), and in vitro bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167307. [PMID: 37804991 DOI: 10.1016/j.scitotenv.2023.167307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Polycyclic aromatic compounds (PACs) are prevalent in the environment, typically found in complex mixtures and high concentrations. Our understanding of the effects of PACs, excluding the 16 priority polycyclic aromatic hydrocarbons (16 PAHs), remains limited. Zebrafish embryos and in vitro bioassays were utilized to investigate the embryotoxic, behavioral, and molecular effects of a soil sample from a former gasworks site in Sweden. Additionally, targeted chemical analysis was conducted to analyze 87 PACs in the soil, fish, water, and plate material. CALUX® assays were used to assess the activation of aryl hydrocarbon and estrogen receptors, as well as the inhibition of the androgen receptor. Larval behavior was measured by analyzing activity during light and darkness and in response to mechanical stimulation. Furthermore, qPCR analyses were performed on a subset of 36 genes associated with specific adverse outcomes, and the total lipid content in the larvae was measured. Exposure to the sample resulted in embryotoxic effects (LC50 = 0.480 mg dry matter soil/mL water). The mixture also induced hyperactivity in darkness and hypoactivity in light and in response to the mechanical stimulus. qPCR analysis revealed differential regulation of 15 genes, including downregulation of opn1sw1 (eye pigmentation) and upregulation of fpgs (heart failure). The sample caused significant responses in three bioassays (ERα-, DR-, and PAH-CALUX), and the exposed larvae exhibited elevated lipid levels. Chemical analysis identified benzo[a]pyrene as the predominant compound in the soil and approximately half of the total PAC concentration was attributed to the 16 PAHs. This study highlights the value of combining in vitro and in vivo methods with chemical analysis to assess toxic mechanisms at specific targets and to elucidate the possible interactions between various pathways in an organism. It also enhances our understanding of the risks associated with environmental mixtures of PACs and their distribution during toxicity testing.
Collapse
Affiliation(s)
- Greta Nilén
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Maria Larsson
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Tuulia Hyötyläinen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
5
|
Çelik G, Beil S, Stolte S, Markiewicz M. Environmental Hazard Screening of Heterocyclic Polyaromatic Hydrocarbons: Physicochemical Data and In Silico Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:570-581. [PMID: 36542499 DOI: 10.1021/acs.est.2c06915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Heterocyclic polyaromatic hydrocarbons (heterocyclic PAHs) are frequently found in the environment yet, compared to homocyclic PAHs, little attention has been paid to their environmental behavior and a comprehensive hazard assessment has not been undertaken. Surprisingly, the physicochemical data necessary to perform at least a screening-level assessment are also limited. To address this, we began by experimentally determining the physicochemical properties of heterocyclic PAHs, namely, water solubility (Sw), n-octanol-water partition coefficients (Kow), and organic carbon-water partition coefficients (Koc). The physicochemical data obtained in this study allowed for the development of clear structure-property relationships and evaluation of the predictive power of in silico models including conductor-like screening model for realistic solvation, the poly-parameter linear solvation energy relationship, and the quantitative structure-property relationship. Finally, heterocyclic and homocyclic PAHs were evaluated in terms of persistence, bioaccumulation, mobility, and toxicity to perform a screening-level comparative hazard assessment by integrating the data and evidence from multiple sources.
Collapse
Affiliation(s)
- Göksu Çelik
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062Dresden, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062Dresden, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062Dresden, Germany
| |
Collapse
|
6
|
Zhang J, Cui S, Shen L, Gao Y, Liu W, Zhang C, Zhuang S. Promotion of Bladder Cancer Cell Metastasis by 2-Mercaptobenzothiazole via Its Activation of Aryl Hydrocarbon Receptor Transcription: Molecular Dynamics Simulations, Cell-Based Assays, and Machine Learning-Driven Prediction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13254-13263. [PMID: 36087060 DOI: 10.1021/acs.est.2c05178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
2-Mercaptobenzothiazole (MBT) is an industrial chemical widely used for rubber products, corrosion inhibitors, and polymer materials with multiple environmental and exposure pathways. A growing body of evidence suggests its potential bladder cancer (BC) risk as a public health concern; however, the molecular mechanism remains poorly understood. Herein, we demonstrate the activation of the aryl hydrocarbon receptor (AhR) by MBT and reveal key events in carcinogenesis associated with BC. MBT alters conformational changes of AhR ligand binding domain (LBD) as revealed by 500 ns molecular dynamics simulations and activates AhR transcription with upregulation of AhR-target genes CYP1A1 and CYP1B1 to approximately 1.5-fold. MBT upregulates the expression of MMP1, the cancer cell metastasis biomarker, to 3.2-fold and promotes BC cell invasion through an AhR-mediated manner. MBT is further revealed to induce differentially expressed genes (DEGs) most enriched in cancer pathways by transcriptome profiling. The exposure of MBT at environmentally relevant concentrations induces BC risk via AhR signaling disruption, transcriptome aberration, and malignant cell metastasis. A machine learning-based model with an AUC value of 0.881 is constructed to successfully predict 31 MBT analogues. Overall, we provide molecular insight into the BC risk of MBT and develop an effective tool for rapid screening of AhR agonists.
Collapse
Affiliation(s)
- Jiachen Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shixuan Cui
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lilai Shen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuchen Gao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiping Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, Texas 77058, United States
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
7
|
Bandowe BAM, Lui KH, Jones T, BéruBé K, Adams R, Niu X, Wei C, Cao JJ, Lee SC, Chuang HC, Ho KF. The chemical composition and toxicological effects of fine particulate matter (PM 2.5) emitted from different cooking styles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117754. [PMID: 34284205 DOI: 10.1016/j.envpol.2021.117754] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The mass, chemical composition and toxicological properties of fine particulates (PM2.5) emitted from cooking activities in three Hong Kong based restaurants and two simulated cooking experiments were characterized. Extracts from the PM2.5 samples elicited significant biological activities [cell viability, generation of reactive oxygen species (ROS), DNA damage and inflammation effect (TNF-α)] in a dose-dependent manner. The composition of PAHs, oxygenated PAHs (OPAHs) and azaarenes (AZAs) mixtures differed between samples. The concentration ranges of the Σ30PAHs, Σ17OPAHs and Σ4AZAs and Σ7Carbonyls in the samples were 9627-23,452 pg m-3, 503-3700 pg m-3, 33-263 pg m-3 and 158 - 5328 ng m-3, respectively. Cell viability caused by extracts from the samples was positively correlated to the concentration of benzo[a]anthracene, indeno[1,2,3-cd]pyrene and 1,4-naphthoquinone in the PM2.5 extracts. Cellular ROS production (upon exposure to extracts) was positively correlated with the concentrations of PM2.5, decaldehyde, acridine, Σ17OPAHs and 7 individual OPAHs. TNF-α showed significant positive correlations with the concentrations of most chemical species (elemental carbon, 16 individual PAHs including benzo[a]pyrene, Σ30PAHs, SO42-, Ca2+, Ca, Na, K, Ti, Cr, Mn, Fe, Cu and Zn). The concentrations of Al, Ti, Mn, Σ30PAHs and 8 individual PAHs including benzo[a]pyrene in the samples were positively correlated with DNA damage caused by extracts from the samples. This study demonstrates that inhalation of PM2.5 emitted from cooking could result in adverse human health effects.
Collapse
Affiliation(s)
- Benjamin A Musa Bandowe
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012, Bern, Switzerland; Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - K H Lui
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Timothy Jones
- School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff, UK
| | - Kelly BéruBé
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK
| | - Rachel Adams
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff, UK
| | - Xinyi Niu
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Chong Wei
- Shanghai Carbon Data Research Center (SCDRC), CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 2010210, China
| | - Jun-Ji Cao
- Key Laboratory of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710075, China; Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
| | - S C Lee
- Department of Civil and Structural Engineering, Research Center of Urban Environmental Technology and Management, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - K F Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Trung NT, Anh HQ, Tue NM, Suzuki G, Takahashi S, Tanabe S, Khai NM, Hong TT, Dau PT, Thuy PC, Tuyen LH. Polycyclic aromatic hydrocarbons in airborne particulate matter samples from Hanoi, Vietnam: Particle size distribution, aryl hydrocarbon ligand receptor activity, and implication for cancer risk assessment. CHEMOSPHERE 2021; 280:130720. [PMID: 33964743 DOI: 10.1016/j.chemosphere.2021.130720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Concentrations and profiles of unsubstituted and methylated polycyclic aromatic hydrocarbons (PAHs and Me-PAHs) were analyzed in airborne particulate matter (PM) samples collected from high-traffic roads in Hanoi urban area. Levels of PAHs and Me-PAHs ranged from 210 to 660 (average 420) ng/m3 in total PM, and these pollutants were mainly associated with fine particles (PM2.5) rather than coarser ones (PM > 10 and PM10). Proportions of high-molecular-weight compounds (i.e., 5- and 6-ring) increased with decreasing particle size. Benzo[b+k]fluoranthene, indeno[1,2,3-cd]pyrene, and benzo[ghi]perylene were the most predominant compounds in the PM2.5 samples. In all the samples, Me-PAHs were less abundant than unsubstituted PAHs. The PAH-CALUX assays were applied to evaluate aryl hydrocarbon receptor (AhR) ligand activities in crude extracts and different fractions from the PM samples. Benzo[a]pyrene equivalents (BaP-EQs) derived by the PAH-CALUX assays for low polar fractions (mainly PAHs and Me-PAHs) ranged from 300 to 840 ng/m3, which were more consistent with theoretical values derived by using PAH-CALUX relative potencies (270-710 ng/m3) rather than conventional toxic equivalency factor-based values (22-69 ng/m3). Concentrations of PAHs and Me-PAHs highly correlated with bioassay-derived BaP-EQs. AhR-mediated activities of more polar compounds and interaction effects between PAH-related compounds were observed. By using PAH-CALUX BaP-EQs, the ILCR values ranged from 1.0 × 10-4 to 2.8 × 10-4 for adults and from 6.4 × 10-5 to 1.8 × 10-4 for children. Underestimation of cancer risk can be eliminated by using effect-directed method (e.g., PAH-CALUX) rather than chemical-specific approach.
Collapse
Affiliation(s)
- Nguyen Thanh Trung
- Faculty of Environmental Science, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Hoang Quoc Anh
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan; Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), Tsukuba, 305-8506, Japan
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Nguyen Manh Khai
- Faculty of Environmental Science, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Tran Thi Hong
- Faculty of Environmental Science, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Pham Thi Dau
- Faculty of Biology, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Pham Chau Thuy
- Faculty of Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, 12400, Viet Nam
| | - Le Huu Tuyen
- Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam.
| |
Collapse
|
9
|
Wallace SJ, de Solla SR, Head JA, Hodson PV, Parrott JL, Thomas PJ, Berthiaume A, Langlois VS. Polycyclic aromatic compounds (PACs) in the Canadian environment: Exposure and effects on wildlife. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114863. [PMID: 32599329 DOI: 10.1016/j.envpol.2020.114863] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 05/05/2023]
Abstract
Polycyclic aromatic compounds (PACs) are ubiquitous in the environment. Wildlife (including fish) are chronically exposed to PACs through air, water, sediment, soil, and/or dietary routes. Exposures are highest near industrial or urban sites, such as aluminum smelters and oil sands mines, or near natural sources such as forest fires. This review assesses the exposure and toxicity of PACs to wildlife, with a focus on the Canadian environment. Most published field studies measured PAC concentrations in tissues of invertebrates, fish, and birds, with fewer studies of amphibians and mammals. In general, PAC concentrations measured in Canadian wildlife tissues were under the benzo[a]pyrene (BaP) guideline for human consumption. Health effects of PAC exposure include embryotoxicity, deformities, cardiotoxicity, DNA damage, changes to DNA methylation, oxidative stress, endocrine disruption, and impaired reproduction. Much of the toxicity of PACs can be attributed to their bioavailability, and the extent to which certain PACs are transformed into more toxic metabolites by cytochrome P450 enzymes. As most mechanistic studies are limited to individual polycyclic aromatic hydrocarbons (PAHs), particularly BaP, research on other PACs and PAC-containing complex mixtures is required to understand the environmental significance of PAC exposure and toxicity. Additional work on responses to PACs in amphibians, reptiles, and semi-aquatic mammals, and development of molecular markers for early detection of biological responses to PACs would provide a stronger biological and ecological justification for regulating PAC emissions to protect Canadian wildlife.
Collapse
Affiliation(s)
- S J Wallace
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Quebec, QC, Canada
| | - S R de Solla
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - J A Head
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, Canada
| | - P V Hodson
- School of Environmental Studies, Queen's University, Kingston, ON, Canada
| | - J L Parrott
- Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - P J Thomas
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - A Berthiaume
- Science and Risk Assessment Directorate, Environment and Climate Change Canada, Gatineau, QC, Canada
| | - V S Langlois
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Quebec, QC, Canada.
| |
Collapse
|
10
|
Martínez-Gómez C, Valdehita A, Vethaak AD, Navas JM, León VM. Toxicity characterization of surface sediments from a Mediterranean coastal lagoon. CHEMOSPHERE 2020; 253:126710. [PMID: 32464757 DOI: 10.1016/j.chemosphere.2020.126710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of bioactive compounds and contaminant-associated effects was assessed by means of in vivo and in vitro assays using different extractable fractions of surface sediments from a contaminated coastal lagoon (Mar Menor, SE Spain). Sediment elutriates and clean seawater, previously exposed to whole sediment, were used for assessing the in vivo toxicity on embryo development of the sea urchin Paracentrotus lividus. Agonist and antagonist activities relating to estrogen and androgen receptors and agonist activities on aryl hydrocarbon receptor (expressed as ethoxyresorufin-O-deethylase (EROD) activities) were investigated in sediment extracts by using HER-Luc, AR-EcoScreenTM and fibroblast-like RTG-2 cell lines. Embryotoxicity effects were greater for sediment elutriates than those incubated in sediment-water interphase, implying that diffusion of bioactive chemicals can occur from sediments to sea water column, favoured by sediment disturbance events. In vitro results show the occurrence in extracts of compounds with estrogen antagonism, androgen antagonism and dioxin-like activities. Multidimensional scaling analysis classified the sampling sites into four sub-clusters according to their chemical-physical and biological similarities, relating in vitro bioactivity with the total organic carbon and known organic chemical load, with particular reference to total sum of PAHs, PCB 180, p,p-DDE and terbuthylazine. Overall, results pointed to the presence of unknown or unanalyzed biologically-active compounds in the sediments, mostly associated with the extracted polar fraction of the Mar Menor lagoon sediments. Our findings provide relevant information to be considered for the environmental management of contaminated coastal lagoons.
Collapse
Affiliation(s)
- Concepción Martínez-Gómez
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| | - Ana Valdehita
- INIA - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Ctra. de A Coruña, km 7.5, 28040, Madrid, Spain.
| | - A Dick Vethaak
- Deltares, Department of Marine and Coastal Systems, P.O. Box 177, 2600, MH, Delft, the Netherlands.
| | - José María Navas
- INIA - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Ctra. de A Coruña, km 7.5, 28040, Madrid, Spain.
| | - Víctor Manuel León
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| |
Collapse
|
11
|
Gabelova A. 7H-Dibenzo[c,g]carbazole: Metabolic pathways and toxicity. Chem Biol Interact 2020; 323:109077. [PMID: 32246921 DOI: 10.1016/j.cbi.2020.109077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/27/2020] [Indexed: 11/30/2022]
Abstract
7H-Dibenzo[c,g]carbazole (DBC), a local and systemic carcinogen in animal studies, is a common environmental pollutant. It generally co-occurs in a variety of organic complex mixtures derived from incomplete combustion of organic matter. Despite high lipophilicity, DBC is more water-soluble and faster metabolized than the homocyclic aromatics. Moreover, greater polarity, high bioaccumulation potential, and persistence in the environment may imply DBC's higher biological significance and impact on human health, even at lower concentrations. The biotransformation pathways of DBC are incompletely known and the ultimate carcinogenic metabolite(s) are not clearly identified as yet. Structure-biological studies suggest two ways of activation: at the ring carbon atoms and at the pyrrole nitrogen. It is supposed that the particular pathway of biotransformation might be connected with the tissue/organ specificity of DBC. Cytochrome P450 (CYP) family of enzymes plays a pivotal role in the metabolism of DBC; though, the one-electron activation and the aldo-keto reductase-catalyzed oxidation are also involved in metabolic activation. Additionally, DBC can be photoactivated even at physiologically relevant doses of UVA light due to the extended aromatic ring system resulting in strong genotoxicity and oxidative stress. The goal of this review is to summarize current knowledge on mechanisms of DBC activation and possible implications for toxicity, genotoxicity, and carcinogenicity.
Collapse
Affiliation(s)
- Alena Gabelova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, University Science Park for Biomedicine, 845 05, Bratislava, Slovakia.
| |
Collapse
|
12
|
Coulet M, Latado H, Moser M, Besselink H, Tate M, Minetto F, Cottet Fontannaz C, Serrant P, Mollergues J, Piguet D, Schilter B, Marin-Kuan M. Use of in vitro bioassays to facilitate read-across assessment of nitrogen substituted heterocycle analogues of polycyclic aromatic hydrocarbons. Toxicol In Vitro 2019; 59:281-291. [DOI: 10.1016/j.tiv.2019.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/10/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022]
|
13
|
Xu EG, Richardot WH, Li S, Buruaem L, Wei HH, Dodder NG, Schick SF, Novotny T, Schlenk D, Gersberg RM, Hoh E. Assessing Toxicity and in Vitro Bioactivity of Smoked Cigarette Leachate Using Cell-Based Assays and Chemical Analysis. Chem Res Toxicol 2019; 32:1670-1679. [DOI: 10.1021/acs.chemrestox.9b00201] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Elvis Genbo Xu
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - William H. Richardot
- School of Public Health, San Diego State University, San Diego, California 92182, United States
- San Diego State University Research Foundation, San Diego, California 92182, United States
| | - Shuying Li
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Lucas Buruaem
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Hung-Hsu Wei
- School of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Nathan G. Dodder
- School of Public Health, San Diego State University, San Diego, California 92182, United States
- San Diego State University Research Foundation, San Diego, California 92182, United States
| | - Suzaynn F. Schick
- Department of Medicine, Division of Occupational and Environmental Health, University of California, San Francisco San Francisco, California 94143, United States
| | - Thomas Novotny
- School of Public Health, San Diego State University, San Diego, California 92182, United States
- San Diego State University Research Foundation, San Diego, California 92182, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Richard M. Gersberg
- School of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
14
|
Markosyan AI, Airapetyan KK, Gabrielyan SA, Mamyan SS, Shirinyan VZ, Zakharov AV, Arsenyan FG, Avakimyan DA, Stepanyan GM. Synthesis and Antitumor and Antibacterial Activity of Novel Dihydronaphthaline and Dihydrobenzo[H]Quinazoline Derivatives. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01948-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Idowu O, Semple KT, Ramadass K, O'Connor W, Hansbro P, Thavamani P. Beyond the obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons. ENVIRONMENT INTERNATIONAL 2019; 123:543-557. [PMID: 30622079 DOI: 10.1016/j.envint.2018.12.051] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/02/2018] [Accepted: 12/21/2018] [Indexed: 05/07/2023]
Abstract
The genotoxic, mutagenic and carcinogenic effects of polar polycyclic aromatic hydrocarbons (polar PAHs) are believed to surpass those of their parent PAHs; however, their environmental and human health implications have been largely unexplored. Oxygenated PAHs (oxy-PAHs) is a critical class of polar PAHs associated with carcinogenic effects without enzymatic activation. They also cause an upsurge in reactive oxygen species (ROS) in living cells. This results in oxidative stress and other consequences, such as abnormal gene expressions, altered protein activities, mutagenesis, and carcinogenesis. Similarly, some nitrated PAHs (N-PAHs) are probable human carcinogens as classified by the International Agency for Research on Cancer (IARC). Heterocyclic PAHs (polar PAHs containing nitrogen, sulphur and oxygen atoms within the aromatic rings) have been shown to be potent endocrine disruptors, primarily through their estrogenic activities. Despite the high toxicity and enhanced environmental mobility of many polar PAHs, they have attracted only a little attention in risk assessment of contaminated sites. This may lead to underestimation of potential risks, and remediation end points. In this review, the toxicity of polar PAHs and their associated mechanisms of action, including their role in mutagenic, carcinogenic, developmental and teratogenic effects are critically discussed. This review suggests that polar PAHs could have serious toxicological effects on human health and should be considered during risk assessment of PAH-contaminated sites. The implications of not doing so were argued and critical knowledge gaps and future research requirements discussed.
Collapse
Affiliation(s)
- Oluyoye Idowu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Kavitha Ramadass
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Wayne O'Connor
- Port Stephens Fisheries Institute, NSW Department of Primary Industries, Port Stephens, Australia
| | - Phil Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; University of Technology Sydney, Faculty of Science, Ultimo, NSW 2007, Australia
| | - Palanisami Thavamani
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
16
|
Markosyan AI, Hayrapetyan KK, Gabrielyan SH, Shirinyan VZ, Mamyan SS, Avakimyan JA, Stepanyan GM. Some Transformations of 2-(Chloromethyl)-5,5-dimethyl-5,6-dihydrobenzo[h]quinazolin-4(3H)-one. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428018040152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Shen F, Ou ZB, Liu YJ, Liu W, Wang BF, Mao ZW, Le XY. Two Cu(II) complexes containing 2,4-diamino-6-(2-pyridyl)-1,3,5-triazine and amino acids: Synthesis, crystal structures, DNA/HSA binding, molecular docking, and in vitro cytotoxicity studies. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Determination of kinetic bioconcentration in mussels after short term exposure to polycyclic aromatic hydrocarbons. Heliyon 2017; 3:e00231. [PMID: 28203639 PMCID: PMC5292759 DOI: 10.1016/j.heliyon.2017.e00231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/21/2016] [Accepted: 01/05/2017] [Indexed: 11/22/2022] Open
Abstract
The kinetic bioconcentration of N-heterocyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in mussels (Mytilus galloprovincialis) after short waterborne exposure was studied. Benzo[a]pyrene (BaP), its analogue azaarene 10-azabenzo[a]pyrene (AzaBaP), and their mixture (Mix), were selected to monitor the changes in water concentrations over three days. Decay of both PAHs concentrations in water after 24 h of waterborne exposure to mussels at levels of 10 and 100 μg/L follows a first order kinetic with half-lives of 4–5 h, with residual levels of PAHs below 7%. While steady-state scenarios are well studied, there is a lack of information of what happens under non-steady-state conditions, the main purpose of our paper. A synergistic bioconcentration of the mixture was found (around 800 in the mix vs. around 400 for individual PAHs at 100 μg/L of waterborne exposure). It could be explained by the following reasons. The most polar AzaBaP does not compete with the most non-polar BaP for the same tissue compartments. Whereas BaP aggregate in hydrophobic areas, AzaBaP can also do in hydrophilic areas. Moreover, a chance for complex formation between them by charge-transfer stabilization mechanisms could make possible a higher bioaccumulation as a mixture. Instead, toxicological results suggest an additive behaviour in the mixture performance, dominated by BaP, which is the key PAH controlling phase I metabolization in mussels, since is approx. three times more toxic. These experiments provide useful indications for a rapid assessment of PAHs kinetic bioconcentration in mussels.
Collapse
|
19
|
Szterk A. Acridine derivatives (PANHs, azaarenes) in raw, fried or grilled pork from different origins, and PANH formation during pork thermal processing. J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2015.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Synthesis and Biological Activity of New 3-Ethyl-2-Thioxo-2,3-Dihydro-1H-Spiro[Benzo[h]-Quinazolin-5,1′-Cyclohexane]-4(6H)-One Derivatives. Pharm Chem J 2015. [DOI: 10.1007/s11094-015-1195-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Beníšek M, Kukučka P, Mariani G, Suurkuusk G, Gawlik BM, Locoro G, Giesy JP, Bláha L. Dioxins and dioxin-like compounds in composts and digestates from European countries as determined by the in vitro bioassay and chemical analysis. CHEMOSPHERE 2015; 122:168-175. [PMID: 25522853 DOI: 10.1016/j.chemosphere.2014.11.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/11/2014] [Accepted: 11/15/2014] [Indexed: 06/04/2023]
Abstract
Aerobic composting and anaerobic digestion plays an important role in reduction of organic waste by transforming the waste into humus, which is an excellent soil conditioner. However, applications of chemical-contaminated composts on soils may have unwanted consequences such as accumulation of persistent compounds and their transfer into food chains. The present study investigated burden of composts and digestates collected in 16 European countries (88 samples) by the compounds causing dioxin-like effects as determined by use of an in vitro transactivation assay to quantify total concentrations of aryl hydrocarbon receptor-(AhR) mediated potency. Measured concentrations of 2,3,7,8-Tetrachlorodibeno-p-dioxin (2,3,7,8-TCDD) equivalents (TEQbio) were compared to concentrations of polycyclic aromatic hydrocarbons (PAHs) and selected chlorinated compounds, including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), co-planar polychlorinated biphenyls (PCBs), indicator PCB congeners and organochlorine pesticides (OCPs). Median concentrations of TEQbio (dioxin-like compounds) determined by the in vitro assay in crude extracts of various types of composts ranged from 0.05 to 1.2 with a maximum 8.22μg (TEQbio)kg(-1) dry mass. Potencies were mostly associated with less persistent compounds such as PAHs because treatment with sulfuric acid removed bioactivity from most samples. The pan-European investigation of contamination by organic contaminants showed generally good quality of the composts, the majority of which were in compliance with conservative limits applied in some countries. Results demonstrate performance and added value of rapid, inexpensive, effect-based monitoring, and points out the need to derive corresponding effect-based trigger values for the risk assessment of complex contaminated matrices such as composts.
Collapse
Affiliation(s)
- Martin Beníšek
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Petr Kukučka
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Giulio Mariani
- European Commission, DG Joint Research Centre (JRC), Institute for Environment and Sustainability, Unit H.01-Water Resources Unit, Ispra, Italy
| | - Gert Suurkuusk
- European Commission, DG Joint Research Centre (JRC), Institute for Environment and Sustainability, Unit H.01-Water Resources Unit, Ispra, Italy
| | - Bernd M Gawlik
- European Commission, DG Joint Research Centre (JRC), Institute for Environment and Sustainability, Unit H.01-Water Resources Unit, Ispra, Italy
| | - Giovanni Locoro
- European Commission, DG Joint Research Centre (JRC), Institute for Environment and Sustainability, Unit H.01-Water Resources Unit, Ispra, Italy
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, SK, Canada; Department of Biology & Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; School of Biological Sciences, University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Luděk Bláha
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| |
Collapse
|
22
|
Larsson M, Giesy JP, Engwall M. AhR-mediated activities of polycyclic aromatic compound (PAC) mixtures are predictable by the concept of concentration addition. ENVIRONMENT INTERNATIONAL 2014; 73:94-103. [PMID: 25108069 DOI: 10.1016/j.envint.2014.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 05/23/2023]
Abstract
Risk assessments of polycyclic aromatic hydrocarbons (PAHs) are complicated because these compounds exist in the environment as complex mixtures of hundreds of individual PAHs and other related polycyclic aromatic compounds (PACs). In this study, the hypothesis that concentration addition (CA) can be used to predict the aryl hydrocarbon receptor (AhR)-mediated activity of PACs in mixtures containing various combinations of PACs was tested. AhR-mediated activities of 18 mixtures composed of two to 23 PACs, which included PAHs, azaarenes and oxygenated PAHs, were examined by the use of the AhR-based H4IIE-luc bioassay. Since greater AhR-mediated activities have been observed in soils contaminated by PAHs, investigations were done to test whether soil extract matrix or the presence of non-effect PACs might affect responses of the H4IIE-luc bioassay. Our results showed that AhR-mediated activities of mixtures of PACs could be predicted by the use of concentration addition. Additive activities of PACs in multi component mixtures along with the insignificant effect of the soil matrix support the use of concentration addition in mass balance calculations and AhR-based bioassays in risk assessment of environmental samples. However, independent action (IA) could not be used to predict the activity of mixtures of PACs.
Collapse
Affiliation(s)
- Maria Larsson
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicological Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Biology and Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Magnus Engwall
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
23
|
Markosyan AI, Gabrielyan SA, Arsenyan FG, Sukasyan RS. Synthesis and Anti-Monoamine Oxidase and Antitumor Properties of Novel 3H-Spiro[Benzo[H] Quinazoline-5,1′-Cyclohexane]-4(6H)-One Derivatives. Pharm Chem J 2014. [DOI: 10.1007/s11094-014-1112-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Sippula O, Stengel B, Sklorz M, Streibel T, Rabe R, Orasche J, Lintelmann J, Michalke B, Abbaszade G, Radischat C, Gröger T, Schnelle-Kreis J, Harndorf H, Zimmermann R. Particle emissions from a marine engine: chemical composition and aromatic emission profiles under various operating conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11721-11729. [PMID: 25202837 DOI: 10.1021/es502484z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The chemical composition of particulate matter (PM) emissions from a medium-speed four-stroke marine engine, operated on both heavy fuel oil (HFO) and distillate fuel (DF), was studied under various operating conditions. PM emission factors for organic matter, elemental carbon (soot), inorganic species and a variety of organic compounds were determined. In addition, the molecular composition of aromatic organic matter was analyzed using a novel coupling of a thermal-optical carbon analyzer with a resonance-enhanced multiphoton ionization (REMPI) mass spectrometer. The polycyclic aromatic hydrocarbons (PAHs) were predominantly present in an alkylated form, and the composition of the aromatic organic matter in emissions clearly resembled that of fuel. The emissions of species known to be hazardous to health (PAH, Oxy-PAH, N-PAH, transition metals) were significantly higher from HFO than from DF operation, at all engine loads. In contrast, DF usage generated higher elemental carbon emissions than HFO at typical load points (50% and 75%) for marine operation. Thus, according to this study, the sulfur emission regulations that force the usage of low-sulfur distillate fuels will also substantially decrease the emissions of currently unregulated hazardous species. However, the emissions of soot may even increase if the fuel injection system is optimized for HFO operation.
Collapse
Affiliation(s)
- O Sippula
- Department of Environmental Science, University of Eastern Finland , Kuopio, FI-70101, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tuyen LH, Tue NM, Suzuki G, Misaki K, Viet PH, Takahashi S, Tanabe S. Aryl hydrocarbon receptor mediated activities in road dust from a metropolitan area, Hanoi-Vietnam: contribution of polycyclic aromatic hydrocarbons (PAHs) and human risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 491-492:246-254. [PMID: 24522011 DOI: 10.1016/j.scitotenv.2014.01.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/23/2014] [Accepted: 01/23/2014] [Indexed: 06/03/2023]
Abstract
Dioxin-Responsive Chemical-Activated LUciferase gene eXpression assay (DR-CALUX) was applied to assess the total toxic activity of the mixture of PAHs and related compounds as well as dioxin-related compounds in road dust from urban areas of Hanoi, Vietnam. Road dust from Hanoi contained significantly higher DR-CALUX activities (3 to 39, mean 20 ng CALUX-TEQ/g dw) than those from a rural site (2 to 13, mean 5 ng CALUX-TEQ/g dw). The total concentrations of 24 major PAHs (Σ24PAHs) in urban road dust (0.1 to 5.5, mean 2.5 μg/g dw) were also 6 times higher than those in rural road dust (0.08 to 1.5, mean 0.4 μg/g dw). Diagnostic ratios of PAHs indicated vehicular engine combustion as the major PAH emission source in both sites. PAHs accounted for 0.8 to 60% (mean 10%) and 2 to 76% (mean 20%) of the measured CALUX-TEQs in road dust for Hanoi the rural site, respectively. Benzo[b]-/benzo[k]fluoranthenes were the major TEQ contributors among PAHs, whereas DRCs contributed <0.1% to CALUX-TEQs for both rural and urban sites. These results suggest TEQ contribution of other aryl hydrocarbon receptor agonists in road dust. Significant PAH concentrations in urban dust indicated high mutagenic and carcinogenic potencies. Estimated results of incremental life time cancer risk (ILCR) indicated that Vietnamese populations, especially those in urban areas such as Hanoi, are potentially exposed to high cancer risk via both dust ingestion and dermal contact. This is the first study on the exposure risk of AhR agonists, including PAHs and DRCs, in urban road dust from a developing country using a combined bio-chemical analytical approach.
Collapse
Affiliation(s)
- Le Huu Tuyen
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Japan; Research Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, 334 Nguyen Trai Street, Hanoi, Viet Nam
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Japan; Research Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, 334 Nguyen Trai Street, Hanoi, Viet Nam
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Japan
| | - Kentaro Misaki
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Japan
| | - Pham Hung Viet
- Research Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, 334 Nguyen Trai Street, Hanoi, Viet Nam
| | - Shin Takahashi
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Japan; Center of Advanced Technology for the Environment, Agricultural Faculty, Ehime University, 3-5-7 Tarumi, Matsuyama, Japan.
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Japan
| |
Collapse
|
26
|
Brinkmann M, Maletz S, Krauss M, Bluhm K, Schiwy S, Kuckelkorn J, Tiehm A, Brack W, Hollert H. Heterocyclic aromatic hydrocarbons show estrogenic activity upon metabolization in a recombinant transactivation assay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5892-901. [PMID: 24724806 DOI: 10.1021/es405731j] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Heterocyclic aromatic hydrocarbons (hetero-PAHs) are increasingly studied at contaminated sites; especially at former industrial facilities where coal tar-oil was handled, e.g., wood treatment plants, high concentrations of hetero-PAHs are frequently detected in groundwater plumes. In previous studies, fractions of groundwater with high estrogenic activity contained hetero-PAHs and their hydroxylated metabolites. To evaluate this preliminary evidence, selected hetero-PAHs were screened for their estrogenic activity in lyticase yeast estrogen screen (LYES) and ER CALUX. All tested substances were inactive in the LYES. Hetero-PAHs such as acridine, xanthene, indole, 2-methylbenzofuran, 2,3-dimethylbenzofuran, dibenzofuran, dibenzothiophene, quinoline, and 6-methylquinoline were positive in the ER CALUX, with estradiol equivalence factors (EEFs) from 2.85 × 10(-7) to 3.18 × 10(-5). The EEF values of these substances were comparable to those of other xenoestrogens (e.g., alkylphenols or bisphenol A) that are sometimes found in surface water. Chemical analyses revealed that T47Dluc cells could metabolize most of the substances. Among the metabolites (tentatively) identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) were hydroxides and their keto tautomers, sulfates, sulfoxides, and N-oxides. Because of their high concentrations measured in groundwater, we conclude that hetero-PAHs and metabolites may be a potential risk and should be the subject of further research.
Collapse
Affiliation(s)
- Markus Brinkmann
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University , Worringerweg 1, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Larsson M, Hagberg J, Giesy JP, Engwall M. Time-dependent relative potency factors for polycyclic aromatic hydrocarbons and their derivatives in the H4IIE-luc bioassay. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:943-53. [PMID: 24408822 DOI: 10.1002/etc.2517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/24/2013] [Accepted: 01/03/2014] [Indexed: 05/07/2023]
Abstract
The H4IIE-luc transactivation bioassay for aryl hydrocarbon receptor (AhR) agonists was used to investigate the relative potency factors (REPs) of 22 individual polycyclic aromatic hydrocarbons (PAHs) and their oxygenated-, methylated-, and N-containing derivatives (azaarenes), which are often present in PAH-contaminated soils. Naphthacene and dibenz[ah]acridine exhibited greater AhR-mediated potency, whereas lesser molecular-weight azaarenes were less potent AhR agonists. Six oxygenated PAHs had calculable REPs, but their potencies were less than their parent PAHs. Unlike the parent, unsubstituted PAHs, oxidation of methylated PAHs seemed to increase the AhR-mediated potency of the compounds, with 2-methylanthracene-9,10-dione being almost 2 times more potent than 2-methylanthracene. Both bioassay and gas chromatography-mass spectrometry analysis were used to examine the exposure time-dependent effects on the REPs at 24 h, 48 h, and 72 h of exposure in the H4IIE-luc transactivation bioassay. Changes in concentrations of 5 compounds including the model reference 2,3,7,8-tetrachlorodibenzo-p-dioxin in the cell culture wells were measured, and the amounts in the cell medium, in the cells, and adsorbed to the wells was determined and the influence on the REPs was studied. Declining REP values with increased duration of exposure were shown for all compounds, which we concluded were a consequence of the metabolism of PAHs and PAH derivatives in H4IIe-luc cells. The present study provides new knowledge regarding the degradation and distribution of compounds in the wells during exposure.
Collapse
Affiliation(s)
- Maria Larsson
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | | | | | | |
Collapse
|
28
|
The application of multistep extraction and liquid chromatography with fluorescence detection for analysis of azaarenes in edible oil samples. J Food Compost Anal 2014. [DOI: 10.1016/j.jfca.2014.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Synthesis and Antineoplastic Properties of 3-Substituted 5,5-Dimethylbenzo[h]Quinazolin-4(3H)-Ones. Pharm Chem J 2014. [DOI: 10.1007/s11094-014-1025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Genotoxicity of heterocyclic PAHs in the micronucleus assay with the fish liver cell line RTL-W1. PLoS One 2014; 9:e85692. [PMID: 24416442 PMCID: PMC3887109 DOI: 10.1371/journal.pone.0085692] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/05/2013] [Indexed: 11/24/2022] Open
Abstract
Heterocyclic aromatic hydrocarbons are, together with their un-substituted analogues, widely distributed throughout all environmental compartments. While fate and effects of homocyclic PAHs are well-understood, there are still data gaps concerning the ecotoxicology of heterocyclic PAHs: Only few publications are available investigating these substances using in vitro bioassays. Here, we present a study focusing on the identification and quantification of clastogenic and aneugenic effects in the micronucleus assay with the fish liver cell line RTL-W1 that was originally derived from rainbow trout (Oncorhynchus mykiss). Real concentrations of the test items after incubation without cells were determined to assess chemical losses due to, e.g., sorption or volatilization, by means of gas chromatography-mass spectrometry. We were able to show genotoxic effects for six compounds that have not been reported in vertebrate systems before. Out of the tested substances, 2,3-dimethylbenzofuran, benzothiophene, quinoline and 6-methylquinoline did not cause substantial induction of micronuclei in the cell line. Acridine caused the highest absolute induction. Carbazole, acridine and dibenzothiophene were the most potent substances compared with 4-nitroquinoline oxide, a well characterized genotoxicant with high potency used as standard. Dibenzofuran was positive in our investigation and tested negative before in a mammalian system. Chemical losses during incubation ranged from 29.3% (acridine) to 91.7% (benzofuran) and may be a confounding factor in studies without chemical analyses, leading to an underestimation of the real potency. The relative potency of the investigated substances was high compared with their un-substituted PAH analogues, only the latter being typically monitored as priority or indicator pollutants. Hetero-PAHs are widely distributed in the environment and even more mobile, e.g. in ground water, than homocyclic PAHs due to the higher water solubility. We conclude that this substance class poses a high risk to water quality and should be included in international monitoring programs.
Collapse
|
31
|
Wingfors H, Svensson K, Hägglund L, Hedenstierna S, Magnusson R. Emission factors for gases and particle-bound substances produced by firing lead-free small-caliber ammunition. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2014; 11:282-291. [PMID: 24188168 DOI: 10.1080/15459624.2013.858821] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Lead-free ammunition is becoming increasingly popular because of the environmental and human health issues associated with the use of leaded ammunition. However, there is a lack of data on the emissions produced by firing such ammunition. We report emission factors for toxic gases and particle-bound compounds produced by firing lead-free ammunition in a test chamber. Carbon monoxide, ammonia, and hydrogen cyanide levels within the chamber were analysed by Fourier transform infrared spectroscopy, while total suspended particles and respirable particles were determined gravimetrically. The metal content of the particulate emissions was determined and the associated organic compounds were characterized in detail using a method based on thermal desorption coupled to gas chromatography and mass spectrometry. The particulate matter (∼30 mg/round) consisted primarily of metals such as Cu, Zn, and Fe along with soot arising from incomplete combustion. Nitrogen-containing heterocyclic aromatic compounds such as carbazole, quinolone, and phenazine were responsible for some of the 25 most significant chromatographic peaks, together with PAHs, diphenylamine, and phthalates. Emission factors were determined for PAHs and oxygenated PAHs; the latter were less abundant in the gun smoke particles than in domestic dust and diesel combustion smoke. This may be due to the oxygen-deficient conditions that occur when the gun is fired. By using an electrical low pressure impactor, it was demonstrated that more than 90% of the particles produced immediately after firing the weapon had diameters of less than 30 nm, and so most of the gun smoke particles belonged to the nanoparticle regime.
Collapse
Affiliation(s)
- H Wingfors
- a FOI Swedish Defence Research Agency, CBRN Defence and Security , Umeå , Sweden
| | | | | | | | | |
Collapse
|
32
|
Quantitative assessment of the embryotoxic potential of NSO-heterocyclic compounds using zebrafish (Danio rerio). Reprod Toxicol 2012; 33:224-32. [DOI: 10.1016/j.reprotox.2011.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 12/03/2011] [Accepted: 12/07/2011] [Indexed: 11/17/2022]
|
33
|
Hinger G, Brinkmann M, Bluhm K, Sagner A, Takner H, Eisenträger A, Braunbeck T, Engwall M, Tiehm A, Hollert H. Some heterocyclic aromatic compounds are Ah receptor agonists in the DR-CALUX assay and the EROD assay with RTL-W1 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:1297-1304. [PMID: 21431309 DOI: 10.1007/s11356-011-0483-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 03/04/2011] [Indexed: 05/30/2023]
Abstract
PURPOSE Heterocyclic aromatic compounds containing nitrogen, sulfur, or oxygen heteroatoms (NSO-HET) have been detected in air, soil, marine, and freshwater systems. However, only few publications are available investigating NSO-HET using in vitro bioassays. To support better characterization of environmental samples, selected NSO-HET were screened for dioxin-like activity in two bioassays. METHODS The present study focuses on the identification and quantification of dioxin-like effects of 12 NSO-HET using the DR-CALUX assay, and the 7-ethoxyresorufin-O-deethylase (EROD) assay with the permanent fish liver cell line RTL-W1. Changes of the total medium compound concentrations during the test procedure due to, e.g., sorption or volatilization were quantified using GC/MS. RESULTS The NSO-HET benzofuran, 2,3-dimethylbenzofuran, dibenzofuran, dibenzothiophen, acridine, xanthene, and carbazole caused a response in the DR-CALUX assay. Only benzofuran and 2,3-dimethylbenzofuran were also positive in the EROD assay. All other compounds were inactive in the EROD assay. Relative potency (REP) values ranged from (2.80 ± 1.32) · 10(-8) to (3.26 ± 2.03) · 10(-6) in the DR-CALUX and from (3.26 ± 0.91) · 10(-7) to (4.87 ± 1.97) · 10(-7) in the EROD assay. CONCLUSIONS The REP values were comparable to those of larger polycyclic aromatic hydrocarbons, e.g., fluoranthene and pyrene. Thus, and because of the ubiquitous distribution of heterocyclic aromatic compounds in the environment, the provided data will further facilitate the bioanalytical and analytical characterization of environmental samples towards these toxicants.
Collapse
Affiliation(s)
- Gunnar Hinger
- Aquatic Toxicology and Ecology Section, Department of Zoology, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lübcke-von Varel U, Machala M, Ciganek M, Neca J, Pencikova K, Palkova L, Vondracek J, Löffler I, Streck G, Reifferscheid G, Flückiger-Isler S, Weiss JM, Lamoree M, Brack W. Polar compounds dominate in vitro effects of sediment extracts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:2384-2390. [PMID: 21348526 DOI: 10.1021/es103381y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Sediment extracts from three polluted sites of the river Elbe basin were fractionated using a novel online fractionation procedure. Resulting fractions were screened for mutagenic, aryl hydrocarbon receptor (AhR)-mediated, transthyretin (TTR)-binding, and estrogenic activities and their potency to inhibit gap junctional intercellular communication (GJIC) to compare toxicity patterns and identify priority fractions. Additionally, more than 200 compounds and compound classes were identified using GC-MS/MS, LC-MS/MS, and HPLC-DAD methods. For all investigated end points, major activities were found in polar fractions, which are defined here as fractions containing dominantly compounds with at least one polar functional group. Nonpolar PAH fractions contributed to mutagenic and AhR-mediated activities while inhibition of GJIC and estrogenic and TTR-binding activities were exclusively observed in the polar fractions. Known mutagens in polar fractions included nitro- and dinitro-PAHs, azaarenes, and keto-PAHs, while parent and monomethylated PAHs such as benzo[a]pyrene and benzofluoranthenes were identified in nonpolar fractions. Additionally, for one sample, high AhR-mediated activities were determined in one fraction characterized by PCDD/Fs, PCBs, and PCNs. Estrone, 17β-estradiol, 9H-benz[de]anthracen-7-one, and 4-nonylphenol were identified as possible estrogenic and TTR-binding compounds. Thus, not only nonpolar compounds such as PAHs, PCBs, and PCDD/Fs but also the less characterized and investigated more polar substances should be considered as potent mutagenic, estrogenic, AhR-inducing, TTR-binding, and GJIC-inhibiting components for future studies.
Collapse
|
35
|
Beníšek M, Kubincová P, Bláha L, Hilscherová K. The effects of PAHs and N-PAHs on retinoid signaling and Oct-4 expression in vitro. Toxicol Lett 2011; 200:169-75. [DOI: 10.1016/j.toxlet.2010.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 11/03/2010] [Accepted: 11/18/2010] [Indexed: 12/20/2022]
|
36
|
Lintelmann J, França MH, Hübner E, Matuschek G. A liquid chromatography–atmospheric pressure photoionization tandem mass spectrometric method for the determination of azaarenes in atmospheric particulate matter. J Chromatogr A 2010; 1217:1636-46. [DOI: 10.1016/j.chroma.2010.01.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/17/2009] [Accepted: 01/11/2010] [Indexed: 10/20/2022]
|
37
|
Beníšek M, Bláha L, Hilscherová K. Interference of PAHs and their N-heterocyclic analogs with signaling of retinoids in vitro. Toxicol In Vitro 2008; 22:1909-17. [DOI: 10.1016/j.tiv.2008.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 04/01/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
|
38
|
Błaszczyk U, Janoszka B. Analysis of azaarenes in pan fried meat and its gravy by liquid chromatography with fluorescence detection. Food Chem 2008; 109:235-42. [DOI: 10.1016/j.foodchem.2007.12.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 12/03/2007] [Accepted: 12/16/2007] [Indexed: 11/29/2022]
|
39
|
Bittner M, Hilscherová K, Giesy JP. Changes of AhR-mediated activity of humic substances after irradiation. ENVIRONMENT INTERNATIONAL 2007; 33:812-6. [PMID: 17467800 DOI: 10.1016/j.envint.2007.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 03/05/2007] [Accepted: 03/22/2007] [Indexed: 05/15/2023]
Abstract
Humic substances (HS) and natural organic matter (NOM) are natural organic compounds ubiquitous in the environment. However, some studies indicate that both HS and NOM can act as xenobiotics, e.g. induce hormone-like effects in fish, amphibians and invertebrates. Molecules of these substances contain a number of aromatic rings and conjugated double bonds--the so called chromophores. Irradiation of dissolved HS and NOM can lead to a series of photochemical reactions which can act on these substances itself, or on other substances present in aquatic environment along with HS and NOM such as e.g. xenobiotics. In our previous study, we have found significant interactions of five humic acids (HA) with cytosolic aryl hydrocarbon receptor (AhR) in an in vitro bioassay based on H4IIE-luc cells. In the present study, we have studied the changes in AhR-mediated activities both of HS and NOM after irradiation that simulated natural solar light. Nine different HS and two NOM samples were irradiated in Pyrex tubes with a medium-pressure mercury lamp for a duration of 0 to 52 h (which corresponds to 0-52 d natural solar radiation). Original concentrations of the samples were 50 mg L(-1), and the greatest concentration of HS and NOM photoproducts subsequently tested in the bioassay was 17 mg L(-1), which is an environmentally relevant concentration. After irradiation the absorbances of all the samples were less than the original materials. The AhR-mediated activity of the HA-Fluka and HA Sodium Salt were partially decreased by irradiation. The activities of other HS and NOM, that were either AhR-active or -inactive were not changed by irradiation. The results of the study demonstrate that AhR-mediated activities of two active HA is caused by both photo-stable and photo-labile AhR activators, while the other three active HA contain only photo-stable AhR activators. Potential mechanisms of the observed irradiation-induced changes in AhR-mediated activities are discussed.
Collapse
Affiliation(s)
- M Bittner
- RECETOX, Masaryk University, Kamenice 126/3, 62500 Brno, Czech Republic.
| | | | | |
Collapse
|
40
|
|