1
|
Salhi L, Rijkschroeff P, Van Hede D, Laine ML, Teughels W, Sakalihasan N, Lambert F. Blood Biomarkers and Serologic Immunological Profiles Related to Periodontitis in Abdominal Aortic Aneurysm Patients. Front Cell Infect Microbiol 2022; 11:766462. [PMID: 35096635 PMCID: PMC8798408 DOI: 10.3389/fcimb.2021.766462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Periodontitis is a chronic inflammatory gum disease associated with systemic diseases such as cardiovascular diseases. AIM To investigate the association of systemic blood biomarkers, C-reactive protein (CRP), levels of lipopolysaccharide (LPS), and IgG levels against periodontal pathogens Aggregatibacter actinomycetemcomitans (Aa) and Porphyromonas gingivalis (Pg) with the stability, based on the aortic diameter, the growth rate and the eligibility for surgical intervention, of patients with abdominal aortic aneurysm (AAA). METHODS Patients with stable AAA (n = 30) and unstable AAA (n = 31) were recruited. The anti-A. actinomycetemcomitans and anti-P. gingivalis IgG levels were analyzed by ELISA, the LPS analysis was performed by using the limulus amebocyte lysate (LAL) test, and plasma levels of CRP were determined using an immune turbidimetric method. The association between these blood systemic biomarkers, AAA features, periodontal clinical parameters and oral microbial profiles were explored. Regression models were used to test the relationship between variables. RESULTS The presence of antibodies against Pg and Aa, LPS and high CRP concentrations were found in all AAA patients. The IgG levels were similar in patients with stable and unstable AAA (both for Aa and Pg). Among investigated blood biomarkers, only CRP was associated with AAA stability. The amount of LPS in saliva, supra, and subgingival plaque were significantly associated with the systemic LPS (p <0.05). CONCLUSIONS This post-hoc study emphasizes the presence of antibodies against Pg and Aa, LPS and high CRP concentrations in all AAA patients. The presence of Pg in saliva and subgingival plaque was significantly associated with the blood LPS levels. For further studies investigating periodontitis and systemic diseases, specific predictive blood biomarkers should be considered instead of the use of antibodies alone.
Collapse
Affiliation(s)
- Leila Salhi
- Department of Periodontology, Buccal Surgery and Implantology, Faculty of Medicine, Liège, Belgium
| | - Patrick Rijkschroeff
- Department of Periodontology , Academic Centre for Dentistry Amsterdam, Vrije Universiteit (VU) Amsterdam, Amsterdam, Netherlands
| | - Dorien Van Hede
- Department of Periodontology, Buccal Surgery and Implantology, Faculty of Medicine, Liège, Belgium
| | - Marja L. Laine
- Department of Periodontology , Academic Centre for Dentistry Amsterdam, Vrije Universiteit (VU) Amsterdam, Amsterdam, Netherlands
| | - Wim Teughels
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Natzi Sakalihasan
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine, Liège, Belgium
| | - France Lambert
- Department of Periodontology, Buccal Surgery and Implantology, Faculty of Medicine, Liège, Belgium
| |
Collapse
|
2
|
Larsson L, Garaicoa-Pazmino C, Asa'ad F, Castilho RM. Understanding the role of endotoxin tolerance in chronic inflammatory conditions and periodontal disease. J Clin Periodontol 2021; 49:270-279. [PMID: 34970759 DOI: 10.1111/jcpe.13591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This review aims to present the current understanding of endotoxin tolerance (ET) in chronic inflammatory diseases and explores the potential connection with periodontitis. SUMMARY Subsequent exposure to lipopolysaccharides (LPS) triggers ET, a phenomenon regulated by different mechanisms and pathways, including toll-like receptors (TLRs), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), apoptosis of immune cells, epigenetics, and microRNAs (miRNAs). These mechanisms interconnect ET with chronic inflammatory diseases that include periodontitis. While the direct correlation between ET and periodontal destruction has not been fully elucidated, emerging reports point towards the potential tolerization of human periodontal ligament cells (hPDLCs) and gingival tissues with a significant reduction of TLR levels. CONCLUSIONS There is a potential link between ET and periodontal diseases. Future studies should explore the crucial role of ET in the pathogenesis of periodontal diseases as evidence of a tolerized oral mucosa may represent an intrinsic mechanism capable of regulating the oral immune response. A clear understanding of this host immune regulatory mechanism might lead to effective and more predictable therapeutic strategies to treat chronic inflammatory diseases and periodontitis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lena Larsson
- Department of Periodontology Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Carlos Garaicoa-Pazmino
- Department of Periodontics, University of Iowa, College of Dentistry and Dental Clinics, Iowa City, IA, USA.,School of Dentistry, Espíritu Santo University, Samborondon, Ecuador
| | - Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Oral Biochemistry, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Yu Y, Jiang L, Li J, Lei L, Li H. Hexokinase 2-mediated glycolysis promotes receptor activator of NF-κB ligand expression in Porphyromonas gingivalis lipopolysaccharide-treated osteoblasts. J Periodontol 2021; 93:1036-1047. [PMID: 34585393 DOI: 10.1002/jper.21-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/25/2021] [Accepted: 09/19/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glucose metabolism plays a pivotal role in sustaining the inflammatory response to microbial stimulation by providing sufficient energy in immune cells. The main purpose of our study was to explore whether hexokinase 2 (HK2)-mediated glycolysis affected the expression of receptor activator of NF-κB Ligand (RANKL) in Porphyromonas gingivalis lipopolysaccharide (P. gingivalis-LPS)-treated osteoblasts and evaluate the potential involvement of the AKT/PI3K pathway activation during HK2-mediated glycolysis. METHODS Primary mice osteoblasts were treated with P. gingivalis-LPS, whereas the HK2 inhibitor (Lonidamine, LND) and small interference RNA were used to restrain HK2 expression. Conditioned medium from osteoblasts was utilized for culturing osteoclast precursors. The mRNA and protein levels of genes involved in glycolysis and bone metabolism including RANKL and osteoprotegerin (OPG) were detected by real-time PCR and western blotting. HK2 and lactate levels were detected by ELISA. Tartrate-resistant acid phosphatase (TRAP) staining was utilized to assess osteoclast formation. The involvement of the AKT/PI3K pathway in osteoblasts was explored by Western blotting. RESULTS P. gingivalis-LPS enhanced HK2 expression along with rising glycolysis in osteoblasts. LND and HK2-knockdown decreased RANKL expression and the RANKL/OPG ratio in osteoblasts, leading to less osteoclast formation from osteoclast precursors as evidenced by TRAP staining, while the osteogenic potential and proliferation of osteoblasts were not affected by HK2-knockdown. Moreover, P. gingivalis-LPS activated the AKT/PI3K pathway, which could regulate HK2 and RANKL expression in osteoblasts. CONCLUSIONS HK2-mediated glycolysis promoted RANKL in osteoblasts and enhanced osteoclast differentiation. Targeting glycolysis may provide novel therapeutic methods for reducing alveolar bone loss.
Collapse
Affiliation(s)
- Yi Yu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lishan Jiang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingwen Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lang Lei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Houxuan Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Cold Atmospheric Plasma Jet as a Possible Adjuvant Therapy for Periodontal Disease. Molecules 2021; 26:molecules26185590. [PMID: 34577061 PMCID: PMC8470429 DOI: 10.3390/molecules26185590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Due to the limitations of traditional periodontal therapies, and reported cold atmospheric plasma anti-inflammatory/antimicrobial activities, plasma could be an adjuvant therapy to periodontitis. Porphyromonas gingivalis was grown in blood agar. Standardized suspensions were plated on blood agar and plasma-treated for planktonic growth. For biofilm, dual-species Streptococcus gordonii + P. gingivalis biofilm grew for 48 h and then was plasma-treated. XTT assay and CFU counting were performed. Cytotoxicity was accessed immediately or after 24 h. Plasma was applied for 1, 3, 5 or 7 min. In vivo: Thirty C57BI/6 mice were subject to experimental periodontitis for 11 days. Immediately after ligature removal, animals were plasma-treated for 5 min once-Group P1 (n = 10); twice (Day 11 and 13)-Group P2 (n = 10); or not treated-Group S (n = 10). Mice were euthanized on day 15. Histological and microtomography analyses were performed. Significance level was 5%. Halo diameter increased proportionally to time of exposure contrary to CFU/mL counting. Mean/SD of fibroblasts viability did not vary among the groups. Plasma was able to inhibit P. gingivalis in planktonic culture and biofilm in a cell-safe manner. Moreover, plasma treatment in vivo, for 5 min, tends to improve periodontal tissue recovery, proportionally to the number of plasma applications.
Collapse
|
5
|
Nichols FC, Clark RB, Maciejewski MW, Provatas AA, Balsbaugh JL, Dewhirst FE, Smith MB, Rahmlow A. A novel phosphoglycerol serine-glycine lipodipeptide of Porphyromonas gingivalis is a TLR2 ligand. J Lipid Res 2020; 61:1645-1657. [PMID: 32912852 PMCID: PMC7707167 DOI: 10.1194/jlr.ra120000951] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic periodontal microorganism strongly associated with tissue-destructive processes in human periodontitis. Following oral infection with P. gingivalis, the periodontal bone loss in mice is reported to require the engagement of Toll-like receptor 2 (TLR2). Serine-glycine lipodipeptide or glycine aminolipid classes of P. gingivalis engage human and mouse TLR2, but a novel lipid class reported here is considerably more potent in engaging TLR2 and the heterodimer receptor TLR2/TLR6. The novel lipid class, termed Lipid 1256, consists of a diacylated phosphoglycerol moiety linked to a serine-glycine lipodipeptide previously termed Lipid 654. Lipid 1256 is approximately 50-fold more potent in engaging TLR2 than the previously reported serine-glycine lipid classes. Lipid 1256 also stimulates cytokine secretory responses from peripheral blood monocytes and is recovered in selected oral and intestinal Bacteroidetes organisms. Therefore, these findings suggest that Lipid 1256 may be a microbial TLR2 ligand relevant to chronic periodontitis in humans.
Collapse
Affiliation(s)
- Frank C Nichols
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA.
| | - Robert B Clark
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA; Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Mark W Maciejewski
- Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Anthony A Provatas
- Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, USA
| | - Jeremy L Balsbaugh
- Center for Open Research Resources and Equipment, University of Connecticut, Storrs, CT, USA
| | - Floyd E Dewhirst
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA; Department of Oral Medicine, Harvard School of Dental Medicine, Boston, MA, USA
| | - Michael B Smith
- Department of Chemistry, University of Connecticut, Storrs, CT USA
| | - Amanda Rahmlow
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| |
Collapse
|
6
|
Chopra A, Bhat SG, Sivaraman K. Porphyromonas gingivalis adopts intricate and unique molecular mechanisms to survive and persist within the host: a critical update. J Oral Microbiol 2020; 12:1801090. [PMID: 32944155 PMCID: PMC7482874 DOI: 10.1080/20002297.2020.1801090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
is an obligate, asaccharolytic, gram-negative bacteria commonly associated with increased periodontal and systemic inflammation. P. gingivalis is known to survive and persist within the host tissues as it modulates the entire ecosystem by either engineering its environment or modifying the host's immune response. It interacts with various host receptors and alters signaling pathways of inflammation, complement system, cell cycle, and apoptosis. P. gingivalis is even known to induce suicidal cell death of the host and other microbes in its vicinity with the emergence of pathobiont species. Recently, new molecular and immunological mechanisms and virulence factors of P. gingivalis that increase its chance of survival and immune evasion within the host have been discovered. Thus, the present paper aims to provide a consolidated update on the new intricate and unique molecular mechanisms and virulence factors of P. gingivalis associated with its survival, persistence, and immune evasion within the host.
Collapse
Affiliation(s)
- Aditi Chopra
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subraya G. Bhat
- College of Dentistry, Imam Abdul Rahman Faisal University, Dammam, KSA
| | - Karthik Sivaraman
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
7
|
Zhang F, Özdemir B, Nguyen PQ, Andrukhov O, Rausch-Fan X. Methanandamide diminish the Porphyromonas gingivalis lipopolysaccharide induced response in human periodontal ligament cells. BMC Oral Health 2020; 20:107. [PMID: 32295577 PMCID: PMC7161139 DOI: 10.1186/s12903-020-01087-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The endocannabinoid system is involved in the regulation of periodontal tissue homeostasis. Synthetic cannabinoid methanandamide (Meth-AEA) has improved stability and affinity to cannabinoid receptors compared to its endogenous analog anandamide. In the present study, we investigated the effect of methanandamide on the production of pro-inflammatory mediators in primary human periodontal ligament cells (hPdLCs). METHODS hPdLCs were treated with Meth-AEA for 24 h, and the resulting production of interleukin (IL)-6, IL-8, and monocyte chemotactic protein (MCP)-1 was measured in the absence or the presence of Porphyromonas gingivalis lipopolysaccharide (LPS). Additionally, the effect of Meth-AEA on the proliferation/viability of hPdLCs was measured by the MTT method. RESULTS Methanandamide at a concentration of 10 μM significantly inhibited P. gingivalis LPS induced production of IL-6, IL-8, and MCP-1. Basal production of IL-6 and IL-8 was slightly enhanced by 10 μM Meth-AEA. No effect of Meth-AEA on the basal production of MCP-1 was observed. Meth-AEA in concentrations up to 10 μM did not affect the proliferation/viability of hPdLCs, but significantly inhibited it at a concentration of 30 μM. CONCLUSION Our study suggests that the inflammatory response in periodontal ligament cells could be influenced by the activation of the cannabinoid system, which might be potentially involved in the progression of periodontal disease.
Collapse
Affiliation(s)
- Fengqiu Zhang
- Department of Periodontology, Capital Medical University School of Stomatology, Beijing, China
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Burcu Özdemir
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Phuong Quynh Nguyen
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| |
Collapse
|
8
|
Dommisch H, Skora P, Hirschfeld J, Olk G, Hildebrandt L, Jepsen S. The guardians of the periodontium—sequential and differential expression of antimicrobial peptides during gingival inflammation. Results from in vivo and in vitro studies. J Clin Periodontol 2019; 46:276-285. [DOI: 10.1111/jcpe.13084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/22/2019] [Accepted: 02/10/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Henrik Dommisch
- Department of Periodontology and Synoptic DentistryCharité – Universitätsmedizin Berlin Berlin Germany
- Department of Oral Health SciencesUniversity of Washington Seattle Washington
| | - Philipp Skora
- Department of Periodontology, Operative and Preventive DentistryUniversity Hospital Bonn Bonn Germany
| | - Josefine Hirschfeld
- Department of Periodontology, Operative and Preventive DentistryUniversity Hospital Bonn Bonn Germany
- College of Medical and Dental SciencesPeriodontal Research GroupUniversity of Birmingham Birmingham UK
| | - Gabriela Olk
- Department of Periodontology, Operative and Preventive DentistryUniversity Hospital Bonn Bonn Germany
| | - Laura Hildebrandt
- Department of Periodontology, Operative and Preventive DentistryUniversity Hospital Bonn Bonn Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive DentistryUniversity Hospital Bonn Bonn Germany
| |
Collapse
|
9
|
Gomes BPFDA, Herrera DR. Etiologic role of root canal infection in apical periodontitis and its relationship with clinical symptomatology. Braz Oral Res 2018; 32:e69. [PMID: 30365610 DOI: 10.1590/1807-3107bor-2018.vol32.0069] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Abstract
Evidence shows the polymicrobial etiology of endodontic infections, in which bacteria and their products are the main agents for the development, progression, and dissemination of apical periodontitis. Microbial factors in necrotic root canals (e.g., endotoxin) may spread into apical tissue, evoking and supporting a chronic inflammatory load. Thus, apical periodontitis is the result of the complex interplay between microbial factors and host defense against invasion of periradicular tissues. This review of the literature aims to discuss the complex network between endodontic infectious content and host immune response in apical periodontitis. A better understanding of the relationship of microbial factors with clinical symptomatology is important to establish appropriate therapeutic procedures for a more predictable outcome of endodontic treatment.
Collapse
Affiliation(s)
| | - Daniel Rodrigo Herrera
- Universidade Estadual de Campinas -Unicamp, Piracicaba Dental School, Department of Restorative Dentistry, Piracicaba, SP, Brazil
| |
Collapse
|
10
|
Blufstein A, Behm C, Nguyen PQ, Rausch-Fan X, Andrukhov O. Human periodontal ligament cells exhibit no endotoxin tolerance upon stimulation with Porphyromonas gingivalis lipopolysaccharide. J Periodontal Res 2018; 53:589-597. [PMID: 29582430 PMCID: PMC6055822 DOI: 10.1111/jre.12549] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2018] [Indexed: 01/12/2023]
Abstract
Background/Objectives Endotoxin tolerance is characterized by a state of hyporesponsiveness after confrontation with endotoxins such as lipopolysaccharides (LPS) at low concentrations. The aim of this study was to investigate, whether pretreatment with Porphyromonas gingivalis leads to endotoxin tolerance induction and possible alterations in toll‐like receptor (TLR) 2‐ and 4‐induced response in human periodontal ligament cells (hPDLCs). Material and Methods Primary hPDLCs were pretreated with P. gingivalis (0.1 or 0.3 μg/mL) LPS for 24 hours and afterwards treated with one of the following stimuli: P. gingivalis LPS (1 μg/mL); TLR4 agonist Escherichia coli LPS (0.1 μg/mL; 1 μg/mL); TLR2 agonist Pam3CSK4 (0.1 μg/mL; 1 μg/mL). The protein expression of interleukin (IL)‐6, IL‐8 and monocyte chemotactic protein‐1 was analyzed with quantitative polymerase chain reaction and enzyme‐linked immunosorbent assay. Gene expression levels of TLR2 and TLR4 were determined by quantitative polymerase chain reaction. Results Pretreatment of cells with low concentrations of P. gingivalis LPS did not result in lower production of IL‐6, IL‐8 and monocyte chemotactic protein‐1 compared to control group. In some cases, pretreated cells exhibited lower gene expression levels of TLR2 and TLR4 compared to non‐pretreated cells. Conclusion The results of this study implicate that hPDLCs do not develop endotoxin tolerance. Furthermore, the amplitude of the inflammatory response shows no significant dependency on TLR2 and TLR4 expression levels.
Collapse
Affiliation(s)
- A Blufstein
- School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - C Behm
- School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - P Q Nguyen
- School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - X Rausch-Fan
- School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - O Andrukhov
- School of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Walker J, Reichelt KV, Obst K, Widder S, Hans J, Krammer GE, Ley JP, Somoza V. Identification of an anti-inflammatory potential of Eriodictyon angustifolium compounds in human gingival fibroblasts. Food Funct 2018; 7:3046-55. [PMID: 27248833 DOI: 10.1039/c6fo00482b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyphenol-rich plant extracts have been shown to possess anti-inflammatory activity against oral pathogen-induced cytokine release in model systems of inflammation. Here, it was hypothesized that a flavanone-rich extract of E. angustifolium exhibits an anti-inflammatory potential against endotoxin-induced inflammatory response in human gingival fibroblasts (HGF-1). HGF-1 cells were stimulated with lipopolysaccharide from Porphyromonas gingivalis (pg-LPS) to release pro-inflammatory cytokines. Concentrations of interleukins IL-6 and IL-8 and macrophage chemoattractant protein-1 in the incubation media upon stimulation were determined by means of magnetic bead analysis. A crude ethanol/water extract of E. angustifolium (EE) was fractionated via gel permeation chromatography into a flavanone-rich fraction (FF) and an erionic acid-rich fraction (EF). Individual flavanones and erionic acids as well as EE, EF and FF were tested in the pg-LPS-stimulated HGF-1 cells for their anti-inflammatory potential. The E. angustifolium extract possessed anti-inflammatory potential in this model system, attenuating the pg-LPS-induced release of IL-6 by up to 52.0 ± 15.5%. Of the individual flavanones, eriodictyol and naringenin had the most pronounced effect. However, a mixture of the flavanones did not possess the same effect as the entire flavanoid fraction, indicating that other compounds may contribute to the anti-inflammatory potential of E. angustifolium. For the first time, an anti-inflammatory potential of E. angustifolium and containing erionic acids has been determined.
Collapse
Affiliation(s)
- Jessica Walker
- Department of Nutritional and Physiological Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | | | - Katja Obst
- Symrise AG, Mühlenfeldstrasse, 37603 Holzminden, Germany
| | - Sabine Widder
- Symrise AG, Mühlenfeldstrasse, 37603 Holzminden, Germany
| | - Joachim Hans
- Symrise AG, Mühlenfeldstrasse, 37603 Holzminden, Germany
| | | | - Jakob P Ley
- Symrise AG, Mühlenfeldstrasse, 37603 Holzminden, Germany
| | - Veronika Somoza
- Department of Nutritional and Physiological Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
12
|
Gingipain of Porphyromonas gingivalis manipulates M1 macrophage polarization through C5a pathway. In Vitro Cell Dev Biol Anim 2017. [DOI: 10.1007/s11626-017-0164-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Jayaprakash K, Demirel I, Gunaltay S, Khalaf H, Bengtsson T. PKC, ERK/p38 MAP kinases and NF-κB targeted signalling play a role in the expression and release of IL-1β and CXCL8 in Porphyromonas gingivalis-infected THP1 cells. APMIS 2017; 125:623-633. [PMID: 28493507 DOI: 10.1111/apm.12701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
Abstract
Porphyromonas gingivalis is a keystone pathogen in periodontitis and is gaining importance in cardiovascular pathogenesis. Protease-activated receptors (PARs), toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD) on monocytes recognize the structural components on P. gingivalis, inducing inflammatory intermediates. Here, we elucidate the modulation of PARs, TLRs, NODs, and the role of MAPK and NF-κB in IL-1β and CXCL8 release. THP1 cells were stimulated with P. gingivalis wild-type W50 and its isogenic gingipain mutants: Rgp mutant E8 and Kgp mutant K1A. We observed modulation of PARs, TLRs, NOD, IL-1β and CXCL8 expression by P. gingivalis. Gingipains hydrolyse IL-1β and CXCL8, which is more evident for IL-1β accumulation at 24 h. Inhibition of PKC (protein kinase C), p38 and ERK (extracellular signal-regulated kinases) partially reduced P. gingivalis-induced IL-1β at 6 h, whereas PKC and ERK reduced CXCL8 at both 6 and 24 h. Following NF-κB inhibition, P. gingivalis-induced IL-1β and CXCL8 were completely suppressed to basal levels. Overall, TLRs, PARs and NOD possibly act in synergy with PKC, MAPK ERK/p38 and NF-κB in P. gingivalis-induced IL-1β and CXCL8 release from THP1 cells. These pro-inflammatory cytokines could affect leucocytes in circulation and exacerbate other vascular inflammatory conditions such as atherosclerosis.
Collapse
Affiliation(s)
| | - Isak Demirel
- Department of Medical Sciences, Örebro University, Örebro, Sweden
| | - Sezin Gunaltay
- Department of Medical Sciences, Örebro University, Örebro, Sweden
| | - Hazem Khalaf
- Department of Medical Sciences, Örebro University, Örebro, Sweden
| | | |
Collapse
|
14
|
Liu Z, Hu Y, Yu P, Lin M, Huang G, Kawai T, Taubman M, Wang Z, Xiaozhe H. Toll-like receptor agonists Porphyromonas gingivalis LPS and CpG differentially regulate IL-10 competency and frequencies of mouse B10 cells. J Appl Oral Sci 2017; 25:90-100. [PMID: 28198981 PMCID: PMC5289405 DOI: 10.1590/1678-77572016-0277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/20/2016] [Indexed: 02/08/2023] Open
Abstract
IL-10 expressing regulatory B cells (B10) play a key role in immune system balance by limiting excessive inflammatory responses. Effects of toll-like receptor signaling and co-stimulatory molecules on B10 activity during innate and adaptive immune responses are not fully understood.
Collapse
Affiliation(s)
- Zhiqiang Liu
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, Massachusetts, United States.,Capital Medical University, Beijing ChaoYang Hospital, Department of Stomatology, Beijing, China
| | - Yang Hu
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, Massachusetts, United States
| | - Pei Yu
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, Massachusetts, United States.,Sichuan University, West China School of Stomatology, State Key Laboratory of Oral Diseases, Chengdu, Sichuan, China
| | - Mei Lin
- Capital Medical University, Beijing ChaoYang Hospital, Department of Stomatology, Beijing, China
| | - Grace Huang
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, Massachusetts, United States
| | - Toshihisa Kawai
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, Massachusetts, United States
| | - Martin Taubman
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, Massachusetts, United States
| | - Zuomin Wang
- Capital Medical University, Beijing ChaoYang Hospital, Department of Stomatology, Beijing, China
| | - Han Xiaozhe
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, Massachusetts, United States
| |
Collapse
|
15
|
Nociti FH, Foster BL, Barros SP, Darveau RP, Somerman MJ. Cementoblast Gene Expression is Regulated by Porphyromonas gingivalis Lipopolysaccharide Partially via Toll-like Receptor-4/MD-2. J Dent Res 2016; 83:602-7. [PMID: 15271967 DOI: 10.1177/154405910408300804] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lipopolysaccharides are potent inflammatory mediators considered to contribute to destruction of periodontal tissues. Here, we hypothesized that Porphyromonas gingivalis lipopolysaccharide (P-LPS) treatment would regulate gene expression in murine cementoblasts through Toll-like receptor 4. Real-time (RT)-PCR and Northern blot analysis indicated that P-LPS decreased expression of transcripts for osteocalcin (OCN) and receptor activator of nuclear factor κB ligand (RANKL). In contrast, a dose-dependent up-regulation in mRNA levels for osteopontin (OPN) and osteoprotegerin (OPG) was observed. Similarly, ELISA demonstrated decreased RANKL and increased OPG levels. A monoclonal antibody specific for mouse TLR-4/MD-2 partially neutralized the P-LPS effect on cementoblasts. These results indicate that exposure of cementoblasts to P-LPS can alter cell function by regulating markers of osteoclastic activity ( e.g., RANKL/OPG), thereby potentially affecting the inflammation-associated resorption of mineralized tissues.
Collapse
MESH Headings
- Animals
- Antigens, Ly/drug effects
- Antigens, Ly/genetics
- Antigens, Ly/metabolism
- Blotting, Northern
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured
- Dental Cementum/cytology
- Dental Cementum/drug effects
- Dental Cementum/metabolism
- Dose-Response Relationship, Drug
- Gene Expression Regulation/drug effects
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Lipopolysaccharide Receptors/drug effects
- Lipopolysaccharide Receptors/genetics
- Lipopolysaccharide Receptors/metabolism
- Lipopolysaccharides/pharmacology
- Lymphocyte Antigen 96
- Membrane Glycoproteins/drug effects
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Transgenic
- NF-kappa B/metabolism
- Osteocalcin/genetics
- Osteocalcin/metabolism
- Osteoclasts/drug effects
- Osteoclasts/metabolism
- Osteopontin
- Osteoprotegerin
- Porphyromonas gingivalis
- RANK Ligand
- RNA, Messenger/analysis
- Receptor Activator of Nuclear Factor-kappa B
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Tumor Necrosis Factor
- Reverse Transcriptase Polymerase Chain Reaction
- Sialoglycoproteins/genetics
- Sialoglycoproteins/metabolism
- Toll-Like Receptor 4
- Toll-Like Receptors
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- F H Nociti
- Department of Prosthodontics/Periodontics, Division of Periodontics, School of Dentistry at Piracicaba, University of Campinas, Brazil
| | | | | | | | | |
Collapse
|
16
|
Abstract
BACKGROUND AND OBJECTIVE Selective killing of pathogens by laser is possible due to the difference in absorption of photon energy by pathogens and host tissues. The optical properties of pathogenic microorganisms are used along with the known optical properties of soft tissues in calculations of the laser-induced thermal response of pathogen colonies embedded in a tissue model. The objective is to define the laser parameters that optimize pathogen destruction and depth of the bactericidal effect. MATERIALS AND METHODS The virtual periodontium is a computational model of the optical and time-dependent thermal properties of infected periodontal tissues. The model simulates the periodontal procedure: Laser Sulcular Debridement.1 Virtual pathogen colonies are placed at different depths in the virtual periodontium to determine the depth for effective bactericidal effects given various laser parameters (wavelength, peak power, pulse duration, scan rate, fluence rate) and differences in pathogen sensitivities. RESULTS Accumulated background heat from multiple passes increases the depth of the bactericidal effect. In visible and near-IR wavelengths the large difference in absorption between normal soft tissue and Porphyromonas gingivalis (Pg) and Prevotella intermedia (Pi) results in selective destruction. Diode laser (810 nm) efficacy and depth of the bactericidal effect are variable and dependent on hemin availability. Both pulsed-Nd:YAG and the 810 nm diode lasers achieve a 2-3 mm deep damage zone for pigmented Pg and Pi in soft tissue without surface damage (selective photoantisepsis). The model predicts no selectivity for the Er:YAG laser (2,940 nm). Depth of the bactericidal effect is highly dependent on pathogen absorption coefficient. Highly sensitive pathogens may be destroyed as deep as 5-6 mm in soft tissue. Short pulse durations enable confinement of the thermal event to the target. Temporal selectivity is achieved by adjusting pulse duration based on target size. CONCLUSION The scatter-limited phototherapy model of the infected periodontium is applied to develop a proper dosimetry for selective photoantisepsis. Dosimetry planning is essential to the development of a new treatment modality. Lasers Surg. Med. 48:763-773, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David M Harris
- Biomedical Consultants & Associates, Inc., Paradise, California 95969.
| | - Lou Reinisch
- Academic Affairs, New York Institute of Technology, Old Westbury, New York 11568
| |
Collapse
|
17
|
Santegoets KCM, Wenink MH, Braga FAV, Cossu M, Lamers-Karnebeek FBG, van Riel PLCM, Sturm PDJ, van den Berg WB, Radstake TRDJ. Impaired Porphyromonas gingivalis-Induced Tumor Necrosis Factor Production by Dendritic Cells Typifies Patients With Rheumatoid Arthritis. Arthritis Rheumatol 2016; 68:795-804. [PMID: 26606260 DOI: 10.1002/art.39514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 11/12/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The prevalence of periodontitis is increased in patients with rheumatoid arthritis (RA), and the severity of periodontitis can affect the level of arthritis. Porphyromonas gingivalis is one of the main bacteria involved in periodontitis. Our aim was to determine if there are differences in the innate immune response against P gingivalis between healthy controls and RA patients. METHODS Monocyte-derived dendritic cells (DCs) from healthy controls, RA patients, and patients with psoriatic arthritis (PsA) were stimulated with P gingivalis, a range of other bacteria, and Toll-like receptor agonists. Cytokine production was determined, and blocking studies were performed to determine which receptors were involved in differential recognition of P gingivalis. Effects on T cell cytokines were also determined in cultures of peripheral blood mononuclear cells (PBMCs). RESULTS Upon stimulation with P gingivalis, RA patient DCs produced less tumor necrosis factor as compared to healthy control DCs, which was not observed in PsA patients or upon stimulation with other bacteria. In addition, P gingivalis-mediated activation of RA patient PBMCs showed a clear reduction of interferon-γ production. Among the various possible underlying mechanisms investigated, only blockade of CR3 abolished the difference between RA patients and healthy controls, suggesting the involvement of CR3 in this process. CONCLUSION Immune cells from RA patients display a reduced response to P gingivalis, which has functional consequences for the immune response. This may result in prolonged survival of P gingivalis, possibly driving autoantibody formation and a self-perpetuating loop of chronic inflammation. The possible role of CR3 in this process warrants further investigation.
Collapse
Affiliation(s)
- Kim C M Santegoets
- University Medical Center Utrecht, Utrecht, The Netherlands, and Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark H Wenink
- University Medical Center Utrecht, Utrecht, The Netherlands, and Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Marta Cossu
- University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Wang YH, Nemati R, Anstadt E, Liu Y, Son Y, Zhu Q, Yao X, Clark RB, Rowe DW, Nichols FC. Serine dipeptide lipids of Porphyromonas gingivalis inhibit osteoblast differentiation: Relationship to Toll-like receptor 2. Bone 2015; 81:654-661. [PMID: 26409254 PMCID: PMC4641032 DOI: 10.1016/j.bone.2015.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/15/2015] [Accepted: 09/19/2015] [Indexed: 11/16/2022]
Abstract
Porphyromonas gingivalis is a periodontal pathogen strongly associated with loss of attachment and supporting bone for teeth. We have previously shown that the total lipid extract of P. gingivalis inhibits osteoblast differentiation through engagement of Toll-like receptor 2 (TLR2) and that serine dipeptide lipids of P. gingivalis engage both mouse and human TLR2. The purpose of the present investigation was to determine whether these serine lipids inhibit osteoblast differentiation in vitro and in vivo and whether TLR2 engagement is involved. Osteoblasts were obtained from calvaria of wild type or TLR2 knockout mouse pups that also express the Col2.3GFP transgene. Two classes of serine dipeptide lipids, termed Lipid 654 and Lipid 430, were tested. Osteoblast differentiation was monitored by cell GFP fluorescence and osteoblast gene expression and osteoblast function was monitored as von Kossa stained mineral deposits. Osteoblast differentiation and function were evaluated in calvarial cell cultures maintained for 21 days. Lipid 654 significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation and this inhibition was dependent on TLR2 engagement. Lipid 430 also significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation but these effects were only partially attributed to engagement of TLR2. More importantly, Lipid 430 stimulated TNF-α and RANKL gene expression in wild type cells but not in TLR2 knockout cells. Finally, osteoblast cultures were observed to hydrolyze Lipid 654 to Lipid 430 and this likely occurs through elevated PLA2 activity in the cultured cells. In conclusion, our results show that serine dipeptide lipids of P. gingivalis inhibit osteoblast differentiation and function at least in part through engagement of TLR2. The Lipid 430 serine class also increased the expression of genes that could increase osteoclast activity. We conclude that Lipid 654 and Lipid 430 have the potential to promote TLR2-dependent bone loss as is reported in experimental periodontitis following oral infection with P. gingivalis. These results also support the conclusion that serine dipeptide lipids are involved in alveolar bone loss in chronic periodontitis.
Collapse
Affiliation(s)
- Yu-Hsiung Wang
- Department of Craniofacial Sciences, University of Connecticut School of Dental Medicine, Farmington, CT 06030, USA
| | - Reza Nemati
- From the Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA
| | - Emily Anstadt
- Department of Immunology and Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Yaling Liu
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT 06030, USA
| | - Young Son
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT 06030, USA
| | - Qiang Zhu
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT 06030, USA
| | - Xudong Yao
- From the Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Robert B Clark
- Department of Immunology and Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - David W Rowe
- Department of Reconstuctive Sciences, University of Connecticut School of Dental Medicine, Farmington, CT 06030, USA
| | - Frank C Nichols
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT 06030, USA.
| |
Collapse
|
19
|
Gölz L, Memmert S, Rath-Deschner B, Jäger A, Appel T, Baumgarten G, Götz W, Frede S. Hypoxia and P. gingivalis synergistically induce HIF-1 and NF-κB activation in PDL cells and periodontal diseases. Mediators Inflamm 2015; 2015:438085. [PMID: 25861162 PMCID: PMC4377543 DOI: 10.1155/2015/438085] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/08/2015] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is characterized by deep periodontal pockets favoring the proliferation of anaerobic bacteria like Porphyromonas gingivalis (P. gingivalis), a periodontal pathogen frequently observed in patients suffering from periodontal inflammation. Therefore, the aim of the present study was to investigate the signaling pathways activated by lipopolysaccharide (LPS) of P. gingivalis (LPS-PG) and hypoxia in periodontal ligament (PDL) cells. The relevant transcription factors nuclear factor-kappa B (NF-κB) and hypoxia inducible factor-1 (HIF-1) were determined. In addition, we analyzed the expression of interleukin- (IL-) 1β, matrix metalloproteinase-1 (MMP-1), and vascular endothelial growth factor (VEGF) in PDL cells on mRNA and protein level. This was accomplished by immunohistochemistry of healthy and inflamed periodontal tissues. We detected time-dependent additive effects of LPS-PG and hypoxia on NF-κB and HIF-1α activation in PDL cells followed by an upregulation of IL-1β, MMP-1, and VEGF expression. Immunohistochemistry performed on tissue samples of gingivitis and periodontitis displayed an increase of NF-κB, HIF-1, and VEGF immunoreactivity in accordance with disease progression validating the importance of the in vitro results. To conclude, the present study underlines the significance of NF-κB and HIF-1α and their target genes VEGF, IL-1β, and MMP-1 in P. gingivalis and hypoxia induced periodontal inflammatory processes.
Collapse
Affiliation(s)
- L. Gölz
- Department of Orthodontics, Dental Clinic, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| | - S. Memmert
- Department of Orthodontics, Dental Clinic, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| | - B. Rath-Deschner
- Department of Orthodontics, Dental Clinic, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| | - A. Jäger
- Department of Orthodontics, Dental Clinic, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| | - T. Appel
- Center of Dento-Maxillo-Facial Medicine, University Hospital of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - G. Baumgarten
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| | - W. Götz
- Department of Orthodontics, Dental Clinic, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| | - S. Frede
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| |
Collapse
|
20
|
Porphyromonas gingivalis lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages but induces inflammatory cytokines. Infect Immun 2014; 82:4190-203. [PMID: 25047849 DOI: 10.1128/iai.02325-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Porphyromonas gingivalis is associated with chronic periodontitis, an inflammatory disease of the tooth's supporting tissues. Macrophages are important in chronic inflammatory conditions, infiltrating tissue and becoming polarized to an M1 or M2 phenotype. As responses to stimuli differ between these phenotypes, we investigated the effect of P. gingivalis lipopolysaccharide (LPS) on M1 and M2 macrophages. M1 and M2 polarized macrophages were produced from murine bone marrow macrophages (BMMϕ) primed with gamma interferon (IFN-γ) or interleukin-4 (IL-4), respectively, and incubated with a low or high dose of P. gingivalis LPS or control TLR2 and TLR4 ligands. In M1-Mϕ, the high dose of P. gingivalis LPS (10 μg/ml) significantly increased the expression of CD40, CD86, inducible nitric oxide synthase, and nitric oxide secretion. The low dose of P. gingivalis LPS (10 ng/ml) did not induce costimulatory or antibacterial molecules but did increase the secretion of IL-1α, IL-6, IL-12p40, IL-12p70, and tumor necrosis factor alpha (TNF-α). P. gingivalis LPS marginally increased the expression of CD206 and YM-1, but it did enhance arginase expression by M2-Mϕ. Furthermore, the secretion of the chemokines KC, RANTES, eotaxin, and MCP-1 from M1, M2, and nonpolarized Mϕ was enhanced by P. gingivalis LPS. TLR2/4 knockout macrophages combined with the TLR activation assays indicated that TLR2 is the main activating receptor for P. gingivalis LPS and whole cells. In conclusion, although P. gingivalis LPS weakly activated M1-Mϕ or M2-Mϕ compared to control TLR ligands, it induced the secretion of inflammatory cytokines, particularly TNF-α from M1-Mϕ and IL-10 from M2-Mϕ, as well as chemotactic chemokines from polarized macrophages.
Collapse
|
21
|
Porphyromonas gingivalis exacerbates ligature-induced, RANKL-dependent alveolar bone resorption via differential regulation of Toll-like receptor 2 (TLR2) and TLR4. Infect Immun 2014; 82:4127-34. [PMID: 25047844 DOI: 10.1128/iai.02084-14] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptors (TLRs) play a key role in the innate immune responses to periodontal pathogens in periodontal disease. The present study was performed to determine the roles of TLR2 and TLR4 signaling in alveolar bone resorption, using a Porphyromonas gingivalis-associated ligature-induced periodontitis model in mice. Wild-type (WT), Tlr2(-/-), and Tlr4(-/-) mice (8 to 10 weeks old) in the C57/BL6 background were used. Silk ligatures were applied to the maxillary second molars in the presence or absence of live P. gingivalis infection. Ligatures were removed from the second molars on day 14, and mice were kept for another 2 weeks before sacrifice for final analysis (day 28). On day 14, there were no differences in alveolar bone resorption and gingival RANKL expression between mice treated with ligation plus P. gingivalis infection and mice treated with ligation alone. Gingival interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) expression was increased, whereas IL-10 expression was decreased in WT and Tlr2(-/-) mice but not in Tlr4(-/-) mice. On day 28, WT and Tlr4(-/-) mice treated with ligation plus P. gingivalis infection showed significantly increased bone loss and gingival RANKL expression compared to those treated with ligation alone, whereas such an increase was diminished in Tlr2(-/-) mice. Gingival TNF-α upregulation and IL-10 downregulation were observed only in WT and Tlr4(-/-) mice, not in Tlr2(-/-) mice. In all mice, bone resorption induced by ligation plus P. gingivalis infection was antagonized by local anti-RANKL antibody administration. This study suggests that P. gingivalis exacerbates ligature-induced, RANKL-dependent periodontal bone resorption via differential regulation of TLR2 and TLR4 signaling.
Collapse
|
22
|
Distinct lipid a moieties contribute to pathogen-induced site-specific vascular inflammation. PLoS Pathog 2014; 10:e1004215. [PMID: 25010102 PMCID: PMC4092147 DOI: 10.1371/journal.ppat.1004215] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/16/2014] [Indexed: 01/11/2023] Open
Abstract
Several successful pathogens have evolved mechanisms to evade host defense, resulting in the establishment of persistent and chronic infections. One such pathogen, Porphyromonas gingivalis, induces chronic low-grade inflammation associated with local inflammatory bone loss and systemic inflammation manifested as atherosclerosis. P. gingivalis expresses an atypical lipopolysaccharide (LPS) structure containing heterogeneous lipid A species, that exhibit Toll-like receptor-4 (TLR4) agonist or antagonist activity, or are non-activating at TLR4. In this study, we utilized a series of P. gingivalis lipid A mutants to demonstrate that antagonistic lipid A structures enable the pathogen to evade TLR4-mediated bactericidal activity in macrophages resulting in systemic inflammation. Production of antagonistic lipid A was associated with the induction of low levels of TLR4-dependent proinflammatory mediators, failed activation of the inflammasome and increased bacterial survival in macrophages. Oral infection of ApoE−/− mice with the P. gingivalis strain expressing antagonistic lipid A resulted in vascular inflammation, macrophage accumulation and atherosclerosis progression. In contrast, a P. gingivalis strain producing exclusively agonistic lipid A augmented levels of proinflammatory mediators and activated the inflammasome in a caspase-11-dependent manner, resulting in host cell lysis and decreased bacterial survival. ApoE−/− mice infected with this strain exhibited diminished vascular inflammation, macrophage accumulation, and atherosclerosis progression. Notably, the ability of P. gingivalis to induce local inflammatory bone loss was independent of lipid A expression, indicative of distinct mechanisms for induction of local versus systemic inflammation by this pathogen. Collectively, our results point to a pivotal role for activation of the non-canonical inflammasome in P. gingivalis infection and demonstrate that P. gingivalis evades immune detection at TLR4 facilitating chronic inflammation in the vasculature. These studies support the emerging concept that pathogen-mediated chronic inflammatory disorders result from specific pathogen-mediated evasion strategies resulting in low-grade chronic inflammation. Several human pathogens express structurally divergent forms of lipid A, the endotoxic portion of lipopolysaccharide (LPS), as a strategy to evade host innate immune detection and establish persistent infection. Expression of modified lipid A species promotes pathogen evasion of host recognition by Toll-like receptor-4 (TLR4) and the non-canonical inflammasome. The Gram-negative oral anaerobe, Porphyromonas gingivalis, expresses lipid A structures that function as TLR4 agonists or antagonists, or are immunologically inert. It is currently unclear how modulation of P. gingivalis lipid A expression contributes to innate immune recognition, survival, and the ability of the pathogen to induce local and systemic inflammation. In this study, we demonstrate that P. gingivalis expression of antagonist lipid A species results in attenuated production of proinflammatory mediators and evasion of non-canonical inflammasome activation, facilitating bacterial survival in the macrophage. Infection of atherosclerosis-prone ApoE−/− mice with this strain resulted in progression of chronic inflammation in the vasculature. Notably, the ability of P. gingivalis to induce local inflammatory bone loss was independent of lipid A modifications, supporting distinct mechanisms for induction of local versus systemic inflammation. Our work demonstrates that evasion of immune detection at TLR4 contributes to pathogen persistence and facilitates low-grade chronic inflammation.
Collapse
|
23
|
Different effects of Porphyromonas gingivalis lipopolysaccharide and TLR2 agonist Pam3CSK4 on the adhesion molecules expression in endothelial cells. Odontology 2013; 103:19-26. [DOI: 10.1007/s10266-013-0146-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/24/2013] [Indexed: 10/25/2022]
|
24
|
Serine lipids of Porphyromonas gingivalis are human and mouse Toll-like receptor 2 ligands. Infect Immun 2013; 81:3479-89. [PMID: 23836823 DOI: 10.1128/iai.00803-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The total cellular lipids of Porphyromas gingivalis, a known periodontal pathogen, were previously shown to promote dendritic cell activation and inhibition of osteoblasts through engagement of Toll-like receptor 2 (TLR2). The purpose of the present investigation was to fractionate all lipids of P. gingivalis and define which lipid classes account for the TLR2 engagement, based on both in vitro human cell assays and in vivo studies in mice. Specific serine-containing lipids of P. gingivalis, called lipid 654 and lipid 430, were identified in specific high-performance liquid chromatography fractions as the TLR2-activating lipids. The structures of these lipids were defined using tandem mass spectrometry and nuclear magnetic resonance methods. In vitro, both lipid 654 and lipid 430 activated TLR2-expressing HEK cells, and this activation was inhibited by anti-TLR2 antibody. In contrast, TLR4-expressing HEK cells failed to be activated by either lipid 654 or lipid 430. Wild-type (WT) or TLR2-deficient (TLR2(-/-)) mice were injected with either lipid 654 or lipid 430, and the effects on serum levels of the chemokine CCL2 were measured 4 h later. Administration of either lipid 654 or lipid 430 to WT mice resulted in a significant increase in serum CCL2 levels; in contrast, the administration of lipid 654 or lipid 430 to TLR2(-/-) mice resulted in no increase in serum CCL2. These results thus identify a new class of TLR2 ligands that are produced by P. gingivalis that likely play a significant role in mediating inflammatory responses both at periodontal sites and, potentially, in other tissues where these lipids might accumulate.
Collapse
|
25
|
Shaik-Dasthagirisaheb YB, Huang N, Baer MT, Gibson FC. Role of MyD88-dependent and MyD88-independent signaling in Porphyromonas gingivalis-elicited macrophage foam cell formation. Mol Oral Microbiol 2013; 28:28-39. [PMID: 23194377 PMCID: PMC3543481 DOI: 10.1111/omi.12003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2012] [Indexed: 12/13/2022]
Abstract
Clinical studies and experimental modeling identify a potential link between periodontal disease and periodontal pathogens such as Porphyromonas gingivalis and atherosclerosis and formation of macrophage foam cells. Toll-like receptors and molecules governing their intracellular signaling pathways such as MyD88 play roles in atherosclerosis, as well as host response to P. gingivalis. The aim of this study was to define roles of MyD88 and TRIF during macrophage foam cell formation in response to P. gingivalis. In the presence of human low-density lipoprotein (LDL) mouse bone-marrow-derived macrophages (BMφ) cultured with P. gingivalis responded with significant reduction in tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). The BMφ stained strongly with oil red O, regardless of whether bacterial challenge occurred concurrent with or before LDL treatment. Heat-killed P. gingivalis stimulated foam cell formation in a similar way to live bacteria. The BMφ from MyD88-knockout and Lps2 mice revealed a significant role for MyD88, and a minor role for TRIF in P. gingivalis-elicited foam cell formation. Porphyromonas gingivalis-elicited TNF-α and IL-6 were affected by MyD88 ablation and to a lesser extent by TRIF status. These data indicate that LDL affects the TNF-α and IL-6 response of macrophages to P. gingivalis challenge and that MyD88 and TRIF play important roles in P. gingivalis-elicited foam cell formation.
Collapse
Affiliation(s)
| | - Nasi Huang
- Section of Infectious Diseases, Department of Medicine, Boston University Medical Center, Boston, MA 02118
| | | | - Frank C. Gibson
- Section of Infectious Diseases, Department of Medicine, Boston University Medical Center, Boston, MA 02118
| |
Collapse
|
26
|
Ding PH, Wang CY, Darveau RP, Jin LJ. Nuclear factor-κB and p38 mitogen-activated protein kinase signaling pathways are critically involved in Porphyromonas gingivalis lipopolysaccharide induction of lipopolysaccharide-binding protein expression in human oral keratinocytes. Mol Oral Microbiol 2012. [PMID: 23194012 DOI: 10.1111/omi.12010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lipopolysaccharide (LPS) -binding protein (LBP) plays a crucial role in innate host response to bacterial challenge. Porphyromonas gingivalis is a keystone pathogen in periodontal disease and the shift of P. gingivalis LPS lipid A structure from penta-acylated (LPS(1690)) to tetra-acylated (LPS(1435/1449)) isoform may significantly contribute to periodontal pathogenesis. We recently demonstrated that LBP is expressed in human gingiva and contributes to periodontal homeostasis. Furthermore, different isoforms of P. gingivalis LPS differently modulate the immuno-inflammatory response, and P. gingivalis LPS(1690) induces LBP expression in human oral keratinocytes (HOKs). This study further examined the signaling mechanisms of P. gingivalis LPS(1690) -induced and Escherichia coli LPS-induced LBP expression in HOKs. Both P. gingivalis LPS(1690) and E. coli LPS were potent inducers of LBP expression in HOKs. The former activated phosphorylation of IκBα, p65, p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), whereas the latter phosphorylated IκBα, p38 MAPK and SAPK/JNK. A nuclear translocation of NF-κB transcription factor was confirmed upon stimulation by both forms of LPS. Further blocking assay showed that P. gingivalis LPS(1690) induction of LBP was through NF-κB and p38 MPAK pathways, whereas E. coli LPS-induced LBP expression was mediated by NF-κB, p38 MPAK and JNK pathways. This study demonstrates that NF-κB and p38 MAPK signaling pathways are involved in P. gingivalis LPS(1690) induction of LBP expression in HOKs. The current findings could enhance the understanding of the molecular mechanisms of innate defense in maintenance of periodontal homeostasis.
Collapse
Affiliation(s)
- P-H Ding
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | |
Collapse
|
27
|
Liu B, Cheng L, Liu D, Wang J, Zhang X, Shu R, Liang J. Role of p38 Mitogen-Activated Protein Kinase Pathway inPorphyromonas gingivalisLipopolysaccharide–Induced VCAM-1 Expression in Human Aortic Endothelial Cells. J Periodontol 2012; 83:955-62. [DOI: 10.1902/jop.2011.110406] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Ding PH, Wang CY, Darveau RP, Jin L. Porphyromonas gingivalis LPS stimulates the expression of LPS-binding protein in human oral keratinocytes in vitro. Innate Immun 2012; 19:66-75. [PMID: 22736337 DOI: 10.1177/1753425912450348] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
LPS-binding protein (LBP) functions as a crucial molecule in innate immune responses to bacterial challenge. Our study has shown the expression of LBP in human gingiva and its significant association with periodontal health and disease. Porphyromonas gingivalis is a key pathogen of periodontal disease. P. gingivalis LPS as a main virulence factor is strongly involved in periodontal pathogenesis and it displays a significant lipid A structural heterogeneity. Currently, it remains unknown whether, and to what extent, the lipid A structural heterogeneity of P. gingivalis LPS affects LBP expression. The present study investigated the expression profile of LBP in human oral keratinocytes (HOKs) stimulated by two isoforms of P. gingivalis LPS [tetra- (LPS(1435/1449)) and penta-acylated (LPS(1690))] and Escherichia coli LPS, and the involvement of TLRs in LBP expression. The results showed that the expression of LBP mRNA and peptide was significantly up-regulated by P. gingivalis LPS(1690) and E. coli LPS, while P. gingivalis LPS(1435/1449) did not affect LBP expression. Blocking assay and siRNA gene silencing revealed that P. gingivalis LPS(1690)-induced LBP expression was through both TLR2 and TLR4. This in vitro study demonstrates that P. gingivalis LPS with a lipid A structural heterogeneity differentially modulates LBP expression in HOKs.
Collapse
Affiliation(s)
- Pei-Hui Ding
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Murakami Y, Machino M, Fujisawa S. Porphyromonas gingivalis Fimbria-Induced Expression of Inflammatory Cytokines and Cyclooxygenase-2 in Mouse Macrophages and Its Inhibition by the Bioactive Compounds Fibronectin and Melatonin. ISRN DENTISTRY 2012; 2012:350859. [PMID: 22545218 PMCID: PMC3321536 DOI: 10.5402/2012/350859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 01/29/2012] [Indexed: 01/06/2023]
Abstract
Porphyromonas gingivalis (Pg) fimbriae, in addition to lipopolysaccharide, are involved in the pathogenesis of periodontal disease. At the same time, bioactive compounds such as fibronectin (FN) and melatonin in saliva and gingival crevicular fluid have been reported to exert a preventive effect against periodontitis. Here, we review current knowledge regarding the potent inhibitory effects of FN and melatonin against Pg fimbria-induced induction of proinflammatory cytokines, cyclooxygenase-2 (COX-2) expression, and NF-kappa B activation in mouse macrophages and discuss their possible clinical application for prevention of periodontal diseases induced by oral bacteria.
Collapse
Affiliation(s)
- Yukio Murakami
- Division of Oral Diagnosis, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado-City, Saitama 350-0283, Japan
| | | | | |
Collapse
|
30
|
Farquharson D, Butcher JP, Culshaw S. Periodontitis, Porphyromonas, and the pathogenesis of rheumatoid arthritis. Mucosal Immunol 2012; 5:112-20. [PMID: 22274780 DOI: 10.1038/mi.2011.66] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Epidemiological data indicate a link between rheumatoid arthritis (RA) and periodontal disease (PD). In vitro and in vivo studies have sought to dissect potential mechanisms by which PD may contribute to initiation and progression of RA. However, these are both multifactorial, chronic diseases, and their complex etiologies and pathogenesis themselves remain incompletely understood. Could there really be an etiological link or does this simply represent a statistical coincidence muddied by common risk factors? This review seeks to provide background on these two diseases in the context of recent discoveries suggesting that their pathogenesis may be related. In particular, the process of citrullination, a post-translational protein modification, has been highlighted as a process common to both diseases. The evidence for a relationship between the diseases is explored and its potential mechanisms discussed.
Collapse
Affiliation(s)
- D Farquharson
- Infection and Immunity Research Group, University of Glasgow Dental School, School of Medicine, Glasgow, UK
| | | | | |
Collapse
|
31
|
Free lipid A isolated from Porphyromonas gingivalis lipopolysaccharide is contaminated with phosphorylated dihydroceramide lipids: recovery in diseased dental samples. Infect Immun 2011; 80:860-74. [PMID: 22144487 DOI: 10.1128/iai.06180-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recent reports indicate that Porphyromonas gingivalis mediates alveolar bone loss or osteoclast modulation through engagement of Toll-like receptor 2 (TLR2), though the factors responsible for TLR2 engagement have yet to be determined. Lipopolysaccharide (LPS) and lipid A, lipoprotein, fimbriae, and phosphorylated dihydroceramides of P. gingivalis have been reported to activate host cell responses through engagement of TLR2. LPS and lipid A are the most controversial in this regard because conflicting evidence has been reported concerning the capacity of P. gingivalis LPS or lipid A to engage TLR2 versus TLR4. In the present study, we first prepared P. gingivalis LPS by the Tri-Reagent method and evaluated this isolate for contamination with phosphorylated dihydroceramide lipids. Next, the lipid A prepared from this LPS was evaluated for the presence of phosphorylated dihydroceramide lipids. Finally, we characterized the lipid A by the matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and electrospray-MS methods in order to quantify recovery of lipid A in lipid extracts from diseased teeth or subgingival plaque samples. Our results demonstrate that both the LPS and lipid A derived from P. gingivalis are contaminated with phosphorylated dihydroceramide lipids. Furthermore, the lipid extracts derived from diseased teeth or subgingival plaque do not contain free lipid A constituents of P. gingivalis but contain substantial amounts of phosphorylated dihydroceramide lipids. Therefore, the free lipid A of P. gingivalis is not present in measurable levels at periodontal disease sites. Our results also suggest that the TLR2 activation of host tissues attributed to LPS and lipid A of P. gingivalis could actually be mediated by phosphorylated dihydroceramides.
Collapse
|
32
|
Meulman T, Peruzzo DC, Stipp RN, Gonçalves PF, Sallum EA, Casati MZ, Goncalves RB, Nociti FH. Impact of Porphyromonas gingivalis inoculation on ligature-induced alveolar bone loss. A pilot study in rats. J Periodontal Res 2011; 46:629-36. [PMID: 21726226 DOI: 10.1111/j.1600-0765.2011.01385.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is a polymicrobial infection characterized by the loss of connective tissue attachment, periodontal ligament and alveolar bone. The aim of this study was to evaluate the impact of Porphyromonas gingivalis inoculation on the ligature-induced alveolar bone loss (ABL) model in rats. MATERIAL AND METHODS Forty male Wistar rats were randomly assigned to the following groups: G1, control (n = 10); G2, ligature-induced ABL (n = 15); and G3, ligature-induced ABL + P. gingivalis inoculation (n = 15). Rats in G2 and G3 were killed 15, 21 and 30 d after ligature placement, and the following parameters were assessed: microbiological load; ABL; and interleukin (IL)-1β (Il1beta)/Il1ra, Il6/Il10 and Rankl/osteoprotegerin (Opg) mRNA ratios in the gingival tissues, as determined by quantitative PCR. RESULTS Microbiological analyses demonstrated that rats in G1, G2 and G3 were positive for the presence of bacteria (determined using PCR amplification of the 16S gene), but that only the treatment sites of rats in G3 were positive for P. gingivalis at all time-points investigated. Histometrically, significant bone loss (p<0.001) was observed for both ligated groups (G2 and G3) compared with the nonligated group (G1), with higher ABL observed for G2 at all the experimental time-points. Furthermore, gene-expression analysis demonstrated that the presence of P. gingivalis in the dentogingival area significantly decreased the Il1β/Il1ra, Il6/Il10 and Rankl/Opg mRNA ratios compared with ligature alone. CONCLUSION Within the limits of this pilot study, it was concluded that inoculation of P. gingivalis affected the ligature-induced ABL model by the induction of an anti-inflammatory and antiresorptive host response.
Collapse
Affiliation(s)
- T Meulman
- Division of Periodontics, School of Dentistry at Piracicaba, State University of Campinas, Piracicaba, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Shaik-Dasthagirisaheb YB, Kantarci A, Gibson FC. Immune response of macrophages from young and aged mice to the oral pathogenic bacterium Porphyromonas gingivalis. IMMUNITY & AGEING 2010; 7:15. [PMID: 21114831 PMCID: PMC3001696 DOI: 10.1186/1742-4933-7-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/29/2010] [Indexed: 11/12/2022]
Abstract
Periodontal disease is a chronic inflammatory gum disease that in severe cases leads to tooth loss. Porphyromonas gingivalis (Pg) is a bacterium closely associated with generalized forms of periodontal disease. Clinical onset of generalized periodontal disease commonly presents in individuals over the age of 40. Little is known regarding the effect of aging on inflammation associated with periodontal disease. In the present study we examined the immune response of bone marrow derived macrophages (BMM) from young (2-months) and aged (1-year and 2-years) mice to Pg strain 381. Pg induced robust expression of cytokines; tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10, chemokines; neutrophil chemoattractant protein (KC), macrophage colony stimulating factor (MCP)-1, macrophage inflammatory protein (MIP)-1α and regulated upon activation normal T cell expressed and secreted (RANTES), as well as nitric oxide (NO, measured as nitrite), and prostaglandin E2 (PGE2) from BMM of young mice. BMM from the 2-year age group produced significantly less TNF-α, IL-6 and NO in response to Pg as compared with BMM from 2-months and 1-year of age. We did not observe any difference in the levels of IL-1β, IL-10 and PGE2 produced by BMM in response to Pg. BMM from 2-months and 1-year of age produced similar levels of all chemokines measured with the exception of MCP-1, which was reduced in BMM from 1-year of age. BMM from the 2-year group produced significantly less MCP-1 and MIP-1α compared with 2-months and 1-year age groups. No difference in RANTES production was observed between age groups. Employing a Pg attenuated mutant, deficient in major fimbriae (Pg DPG3), we observed reduced ability of the mutant to stimulate inflammatory mediator expression from BMMs as compared to Pg 381, irrespective of age. Taken together these results support senescence as an important facet of the reduced immunological response observed by BMM of aged host to the periodontal pathogen Pg.
Collapse
Affiliation(s)
- Yazdani B Shaik-Dasthagirisaheb
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | |
Collapse
|
35
|
Saverino D, Schito AM, Mannini A, Penco S, Bassi AM, Piatti G. Quinolone/fluoroquinolone susceptibility in Escherichia coli correlates with human polymicrobial bacteriuria and with in vitro interleukine-8 suppression. ACTA ACUST UNITED AC 2010; 61:84-93. [PMID: 21070386 DOI: 10.1111/j.1574-695x.2010.00751.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Urinary tract infections (UTIs) are frequently polymicrobial diseases mainly sustained by Escherichia coli in association with other opportunistic pathogens. Cystitis and pyelonephritis are usually accompanied by an inflammatory response, which includes neutrophil recruitment. Uropathogenic E. coli possess the ability to evade host defenses, modulating the innate immune response. The aim of this study was to determine whether particular E. coli strains correlate with polymicrobial bacteriuria and whether escape from the early host defenses and microbial synergy could lead to mixed UTIs. We evaluated 188 E. coli-positive urine samples and assessed the relationships among polymicrobism, neutrophil presence and several traits of E. coli isolates (virulence factors such as hlyA, fimA, papC and their relative products, i.e. hemolysin, type 1 and P fimbriae, and cnf1, their phylogenetic group) and their ability to suppress cytokine response in 5637 bladder epithelial cells. Escherichia coli susceptibility toward quinolones and fluoroquinolones, known to be linked to the pathogenicity of this species, was also considered. We found significant correlations among polymicrobial bacteriuria, absence of pyuria and quinolone/fluoroquinolone susceptibility of E. coli isolates and their enhanced capability to suppress interleukin-8 urothelial production when compared with the patterns induced by the resistant strains.
Collapse
Affiliation(s)
- Daniele Saverino
- Department of Experimental Medicine, Section of Human Anatomy, University of Genova, Genova, Italy
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Polybacterial challenge effects on cytokine/chemokine production by macrophages and dendritic cells. Inflamm Res 2010; 60:119-25. [PMID: 20798974 DOI: 10.1007/s00011-010-0242-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 08/02/2010] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate the polymicrobial infection of periodontal disease, which elicits inflammatory mediators/cytokines/chemokines in the local gingival tissues, and a polybacterial challenge of antigen-presenting cells, e.g. macrophages and dendritic cells (DCs), at the mucosal surface. MATERIALS AND METHODS The cytokine/chemokine profiles of human macrophages and DCs in response to polybacterial challenges were investigated. RESULTS Oral Gram-negative bacteria elicited significantly greater IL-8 levels from macrophages, compared to Gram-positive bacteria. Gram-positive bacteria did not show synergism in inducing this chemokine from macrophages. In contrast, pairs of oral Gram-negative bacteria elicited synergistic production of IL-8 by macrophages. Similar results were not observed with TNFα, which only appeared additive with the polybacterial challenge. Selected Gram-negative bacterial pairs synergized in IL-6 production by immature DCs. In mature DCs (mDCs), a Porphyromonas gingivalis/Fusobacterium nucleatum and Porphyromonas intermedia/F. nucleatum polybacterial challenge resulted in significant synergism for IL-6 and TNFα levels. However, only the Pi/Fn combination synergized for IL-12 production and there appeared to be no polybacterial effect on IL-10 production by the mDCs. CONCLUSIONS These results indicate that a polybacterial challenge of cells linking innate and adaptive immune responses results in varied response profiles that are dependent upon the characteristics of the microorganisms that are components of the polybacterial complex.
Collapse
|
38
|
Porphyromonas gingivalis lipids inhibit osteoblastic differentiation and function. Infect Immun 2010; 78:3726-35. [PMID: 20584977 DOI: 10.1128/iai.00225-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Porphyromonas gingivalis produces unusual sphingolipids that are known to promote inflammatory reactions in gingival fibroblasts and Toll-like receptor 2 (TLR2)-dependent secretion of interleukin-6 from dendritic cells. The aim of the present study was to examine whether P. gingivalis lipids inhibit osteoblastic function. Total lipids from P. gingivalis and two fractions, phosphoglycerol dihydroceramides and phosphoethanolamine dihydroceramides, were prepared free of lipid A. Primary calvarial osteoblast cultures derived from 5- to 7-day-old CD-1 mice were used to examine the effects of P. gingivalis lipids on mineralized nodule formation, cell viability, apoptosis, cell proliferation, and gene expression. P. gingivalis lipids inhibited osteoblast differentiation and fluorescence expression of pOBCol2.3GFP in a concentration-dependent manner. However, P. gingivalis lipids did not significantly alter osteoblast proliferation, viability, or apoptosis. When administered during specific intervals of osteoblast growth, P. gingivalis total lipids demonstrated inhibitory effects on osteoblast differentiation only after the proliferation stage of culture. Reverse transcription-PCR confirmed the downregulation of osteoblast marker genes, including Runx2, ALP, OC, BSP, OPG, and DMP-1, with concurrent upregulation of RANKL, tumor necrosis factor alpha, and MMP-3 genes. P. gingivalis total lipids and lipid fractions inhibited calvarial osteoblast gene expression and function in vivo, as determined by the loss of expression of another osteoblast differentiation reporter, pOBCol3.6GFPcyan, and reduced uptake of Alizarin complexone stain. Finally, lipid inhibition of mineral nodule formation in vitro was dependent on TLR2 expression. Our results indicate that inhibition of osteoblast function and gene expression by P. gingivalis lipids represents a novel mechanism for altering alveolar bone homeostasis at periodontal disease sites.
Collapse
|
39
|
|
40
|
Regulation of protease-activated receptor-2 expression in gingival fibroblasts and Jurkat T cells byPorphyromonas gingivalis. Cell Biol Int 2010; 34:287-92. [DOI: 10.1042/cbi20090290] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Baer MT, Huang N, Gibson FC. Scavenger receptor A is expressed by macrophages in response to Porphyromonas gingivalis, and participates in TNF-alpha expression. ACTA ACUST UNITED AC 2010; 24:456-63. [PMID: 19832797 DOI: 10.1111/j.1399-302x.2009.00538.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Porphyromonas gingivalis is a periodontopathic bacterium closely associated with generalized aggressive periodontal disease. Pattern recognition receptors (PRRs) participate in host response to this organism. It is likely that PRRs not previously recognized as part of the host response to P. gingivalis also participate in host response to this organism. METHODS AND RESULTS Employing qRT-PCR, we observed increased msr1 gene expression at 2, 6, and 24 h of culture with P. gingivalis strain 381. Flow cytometry revealed increased surface expression of SR-A protein by the 24 h time point. Macrophages cultured with an attachment impaired P. gingivalis fimA- mutant (DPG3) expressed intermediate levels of SR-A expression. Heat-killed P. gingivalis stimulated SR-A expression similar to live bacteria, and purified P. gingivalis capsular polysaccharide stimulated macrophage SR-A expression, indicating that live whole organisms are not necessary for SR-A protein expression in macrophage response. As SR-A is known to play a role in lipid uptake by macrophages, we tested the ability of low-density lipoprotein (LDL) to influence the SR-A response of macrophages to P. gingivalis, and observed no effect of LDL on P. gingivalis-elicited SR-A expression. Lastly, we observed that SR-A knockout (SR-A(-/-)) mouse macrophages produced significantly more tumor necrosis factor (TNF)-alpha than wild type mouse macrophages cultured with P. gingivalis. CONCLUSION These data identify that SR-A is expressed by macrophages in response to P. gingivalis, and support that this molecule plays a role in TNF-alpha production by macrophages to this organism.
Collapse
Affiliation(s)
- M T Baer
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
42
|
Huang MTH, Taxman DJ, Holley-Guthrie EA, Moore CB, Willingham SB, Madden V, Parsons RK, Featherstone GL, Arnold RR, O'Connor BP, Ting JPY. Critical role of apoptotic speck protein containing a caspase recruitment domain (ASC) and NLRP3 in causing necrosis and ASC speck formation induced by Porphyromonas gingivalis in human cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:2395-404. [PMID: 19201894 DOI: 10.4049/jimmunol.0800909] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Periodontal disease is a chronic inflammatory disorder that leads to the destruction of tooth-supporting tissue and affects 10-20 million people in the U.S. alone. The oral pathogen Porphyromonas gingivalis causes inflammatory host response leading to periodontal and other secondary inflammatory diseases. To identify molecular components that control host response to P. gingivalis in humans, roles for the NLR (NBD-LRR) protein, NLRP3 (cryopyrin, NALP3), and its adaptor apoptotic speck protein containing a C-terminal caspase recruitment domain (ASC) were studied. P. gingivalis strain A7436 induces cell death in THP1 monocytic cells and in human primary peripheral blood macrophages. This process is ASC and NLRP3 dependent and can be replicated by P. gingivalis LPS and Escherichia coli. P. gingivalis-induced cell death is caspase and IL-1 independent and exhibits morphological features consistent with necrosis including loss of membrane integrity and release of cellular content. Intriguingly, P. gingivalis-induced cell death is accompanied by the formation of ASC aggregation specks, a process not previously described during microbial infection. ASC specks are observed in P. gingivalis-infected primary human mononuclear cells and are dependent on NLRP3. This work shows that P. gingivalis causes ASC- and NLRP3-dependent necrosis, accompanied by ASC speck formation.
Collapse
Affiliation(s)
- Max Tze-Han Huang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Diya Zhang, Lili Chen, Shenglai Li, Zhiyuan Gu, Jie Yan. Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-1beta, TNF-alpha and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate Immun 2008; 14:99-107. [PMID: 18713726 DOI: 10.1177/1753425907088244] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lipopolysaccharide (LPS) derived from the periodontal pathogen Porphyromonas gingivalis has been shown to differ from enterobacterial LPS in structure and function; therefore, the Toll-like receptors (TLRs) and the intracellular inflammatory signaling pathways are accordingly different. To elucidate the signal transduction pathway of P. gingivalis, LPS-induced pro-inflammatory cytokine production in the human monocytic cell line THP-1 was measured by ELISA, and the TLRs were determined by the blocking test using anti-TLRs antibodies. In addition, specific inhibitors as well as Phospho-ELISA kits were used to analyze the intracellular signaling pathways. Escherichia coli LPS was used as the control. In this study, P. gingivalis LPS showed the ability to induce cytokine production in THP-1 cells and its induction was significantly (P < 0.05) suppressed by anti-TLR2 antibody or JNK inhibitor, and the phosphorylation level of JNK was significantly increased (P < 0.05). These results indicate that TLR2-JNK is the main signaling pathway of P. gingivalis LPS-induced cytokine production, while the cytokine induction by E. coli LPS was mainly via TLR4-NF-kappaB and TLR4-p38MAPK. This suggests that P. gingivalis LPS differs from E. coli LPS in its signaling pathway in THP-1 cells, and that the TLR2-JNK pathway might play a significant role in P. gingivalis LPS-induced chronic inflammatory periodontal disease.
Collapse
Affiliation(s)
- Diya Zhang
- Department of Stomatology, The Second Afiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
44
|
Inomata M, Into T, Ishihara Y, Nakashima M, Noguchi T, Matsushita K. Arginine-specific gingipain A from Porphyromonas gingivalis induces Weibel-Palade body exocytosis and enhanced activation of vascular endothelial cells through protease-activated receptors. Microbes Infect 2007; 9:1500-6. [PMID: 17913538 DOI: 10.1016/j.micinf.2007.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 08/07/2007] [Accepted: 08/09/2007] [Indexed: 12/21/2022]
Abstract
Gingipains, cysteine proteases derived from Porphyromonas gingivalis, are important virulence factors in periodontal diseases. We found that arginine-specific gingipain A (RgpA) increased the responsiveness of vascular endothelial cells to P. gingivalis lipopolysaccharides (LPS) and P. gingivalis whole cells to induce enhanced IL-8 production through protease-activated receptors (PARs) and phospholipase C (PLC) gamma. We therefore investigated whether RgpA-induced enhanced cell activation is mediated through exocytosis of Weibel-Palade bodies (WPBs) because they store vasoactive substances. RgpA rapidly activated PAR- and PLCgamma-dependent WPB exocytosis. In addition, angiopoietin (Ang)-2, a substance of WPB, enhanced IL-8 production by P. gingivalis LPS, suggesting that Ang-2 mediates the RgpA-induced enhanced cell responses. Thus, we propose a novel role for RgpA in induction of a proinflammatory event through PAR-mediated WPB exocytosis, which may be an important step for enhanced endothelial responses to P. gingivalis.
Collapse
Affiliation(s)
- Megumi Inomata
- Department of Oral Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Izakovicova Holla L, Buckova D, Fassmann A, Roubalikova L, Vanek J. Lack of association between chronic periodontitis and the Toll-like receptor 4 gene polymorphisms in a Czech population. J Periodontal Res 2007; 42:340-4. [PMID: 17559631 DOI: 10.1111/j.1600-0765.2006.00954.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is a bacterially induced chronic inflammatory disease and a major cause of tooth loss among adults. Toll-like receptors are signal molecules essential for the cellular response to bacterial cell wall components. The aim of this study was to investigate relationships between chronic periodontitis and variations in the TLR4 gene. MATERIAL AND METHODS A total of 171 patients with chronic periodontitis and 218 unrelated controls were genotyped for the Asp299Gly (896A>G) and Thr399Ile (1196C>T) polymorphisms of the TLR4 gene. RESULTS Both variants were in nearly complete linkage disequilibrium. No homozygotes for the less common alleles, 299Gly and 399Thr, respectively, were found. The prevalence of the Asp299Gly and the Thr399Ile heterozygotes was 5.3% and 5.0% in controls, and 7.0% and 7.0% in periodontitis patients. CONCLUSION In conclusion, TLR4 gene polymorphisms were not significantly associated with the susceptibility to, or severity of, chronic periodontitis in our population.
Collapse
Affiliation(s)
- L Izakovicova Holla
- Department of Pathological Physiology and Clinic of Stomatology, Medical Faculty, Masaryk University Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
46
|
Albiger B, Dahlberg S, Henriques-Normark B, Normark S. Role of the innate immune system in host defence against bacterial infections: focus on the Toll-like receptors. J Intern Med 2007; 261:511-28. [PMID: 17547708 DOI: 10.1111/j.1365-2796.2007.01821.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The innate immunity plays a critical role in host protection against pathogens and it relies amongst others on pattern recognition receptors such as the Toll-like receptors (TLRs) and the nucleotide-binding oligomerization domains proteins (NOD-like receptors, NLRs) to alert the immune system of the presence of invading bacteria. Since their recent discovery less than a decade ago, both TLRs and NLRs have been shown to be crucial in host protection against microbial infections but also in homeostasis of the colonizing microflora. They recognize specific microbial ligands and with the use of distinct adaptor molecules, they activate different signalling pathways that in turns trigger subsequent inflammatory and immune responses that allows a immediate response towards bacterial infections and the initiation of the long-lasting adaptive immunity. In this review, we will focus on the role of the TLRs against bacterial infections in humans in contrast to mice that have been used extensively in experimental models of infections and discuss their role in controlling normal flora or nonpathogenic bacteria. We also highlight how bacteria can evade recognition by TLRs.
Collapse
Affiliation(s)
- B Albiger
- Medical Microbiology, Department of Laboratory Medicine, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|
47
|
Milward MR, Chapple ILC, Wright HJ, Millard JL, Matthews JB, Cooper PR. Differential activation of NF-kappaB and gene expression in oral epithelial cells by periodontal pathogens. Clin Exp Immunol 2007; 148:307-24. [PMID: 17355248 PMCID: PMC1868880 DOI: 10.1111/j.1365-2249.2007.03342.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2007] [Indexed: 12/01/2022] Open
Abstract
To investigate the molecular effects of the periodontopathogens Fusobacterium nucleatum (FN) and Porphyromonas gingivalis (PG) on the oral epithelium, the H400 oral epithelial cell line was cultured in the presence of non-viable bacteria. Following confirmation of the presence of transcripts for the bacterial pattern recognition receptors in H400 cells, Toll-like receptors -2, -4 and -9, and components of the NF-kappaB signalling pathway, immunocytochemical analyses were performed showing that NF-kappaB was activated within 1 h of exposure to both periodontopathogens. A significantly greater number of NF-kappaB nuclear translocations were apparent following H400 cell exposure to FN as compared with PG. Gene expression analyses indicated that transcripts known to be regulated by the NF-kappaB pathway, including cytokines/chemokines TNF-alpha, IL-1beta, IL-8, MCP-1/CCL2 and GM-CSF, were up-regulated following 4 and 24 h of exposure to both periodontopathogens. In addition, H400 periodontopathogen exposure resulted in differential regulation of transcripts for several cytokeratin gene family members. Consistent with the immunocytochemical data, microarray results indicated that FN induced a greater number of gene expression changes than PG following 24 h of exposure, 609 and 409 genes, respectively. Ninety-one genes were commonly differentially expressed by both periodontopathogens and represented biological processes commonly associated with periodontitis. Gene expression analyses by reserve transcriptase-polymerase chain reaction (RT-PCR) of molecules identified from the microarray data sets, including Heme oxygenase-1, lysyl oxidase, SOD2, CCL20 and calprotectin components, confirmed their differential expression profiles induced by the two periodontopathogens. FN and PG have clearly different molecular effects on oral epithelial cells, potentially highlighting the importance of the composition of the plaque biofilm in periodontitis pathogenesis.
Collapse
Affiliation(s)
- M R Milward
- Periodontology, School of Dentistry, University of Birmingham, Birmingham B4 6NN, UK
| | | | | | | | | | | |
Collapse
|
48
|
Goodridge HS, McGuiness S, Houston KM, Egan CA, Al-Riyami L, Alcocer MJC, Harnett MM, Harnett W. Phosphorylcholine mimics the effects of ES-62 on macrophages and dendritic cells. Parasite Immunol 2007; 29:127-37. [PMID: 17266740 DOI: 10.1111/j.1365-3024.2006.00926.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Modulation of macrophage/dendritic cell (DC) cytokine production by the filarial nematode phosphorylcholine (PC)-containing product, ES-62, is mediated by Toll-like receptor (TLR) 4 and signal transduction depends on the TLR adaptor MyD88. Intriguingly, comparison of TLR4 knock-out (ko) mice with TLR4 mutant C3H/HeJ mice indicates that ES-62 cytokine responses are not dependent on the Pro712 residue of TLR4, which is crucial for the response to bacterial lipopolysaccharide (LPS). Because other immunomodulatory effects of ES-62 have been attributed to PC we have now investigated, using PC conjugated to ovalbumin (PC-Ova), whether PC is responsible for the interaction of ES-62 with TLR4. PC-Ova mimicked the modulation of interleukin (IL)-12 production by ES-62 in a TLR4- and MyD88-dependent manner and as with native ES-62, PC-Ova effects were not dependent on Pro712. Furthermore, both native ES-62 and PC-Ova suppressed Akt phosphorylation, whereas neither altered the activation of p38 or Erk MAP kinases. To rule out any role for the ES-62 protein component, we tested a PC-free recombinant ES-62 (rES-62) generated in the yeast Pichia pastoris. Surprisingly, rES-62 also modulated IL-12 production, but in a TLR4/MyD88-independent manner. Furthermore, rES-62 strongly activated both the p38 and Erk MAP kinases and Akt. However, recent biophysical analysis suggests there are differences in folding/shape between native and rES-62 and hence data obtained with the latter should be treated with caution. Nevertheless, although our study indicates that PC is likely to be primarily responsible for the modulation of cytokine production observed with native ES-62, an immunomodulatory role for the protein component cannot be ruled out.
Collapse
Affiliation(s)
- H S Goodridge
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow G11, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Shelburne CE, Coopamah MD, Sweier DG, An FYP, Lopatin DE. HtpG, the Porphyromonas gingivalis HSP-90 homologue, induces the chemokine CXCL8 in human monocytic and microvascular vein endothelial cells. Cell Microbiol 2007; 9:1611-9. [PMID: 17346315 DOI: 10.1111/j.1462-5822.2007.00897.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CXCL8 (interlukin 8, IL-8) has a diverse spectrum of biological activities including T cell, neutrophil and basophil chemotactic properties. It is produced by a wide variety of cell types and plays a significant role in the initiation of the acute inflammatory response. During inflammation, CXCL8 attracts and activates leukocytes at the site of infection leading to leukocyte infiltration, which can lead to tissue damage. Porphyromonas gingivalis, an aetiological agent of periodontitis, induces production of CXCL8 from several types of cells via its LPS and outer membrane proteins. Bacterial chaperones elicit a strong pro-inflammatory response in cells of the innate immune system. In P. gingivalis the htpG gene codes for the homologue of human Hsp90, a chaperone that associates with transcription factors, hormone receptors and protein kinases, affecting signal transduction pathways. CXCL8 mRNA and CXCL8 protein production was induced in monocytic/human microvascular vein endothelial cells treated with P. gingivalis cells or rHtpG protein. Blocking of receptors CD91 and TLR4 reduced the production of CXCL8 by rHtpG either using receptor-specific antibody or by siRNA silencing. Pre-incubation of P. gingivalis rHtpG preparations with human anti-HtpG significantly inhibited CXCL8 production. A P. gingivalis HtpG disruption mutant also induced less CXCL8 mRNA and protein. These results suggest that P. gingivalis HtpG might be involved in CXCL8-mediated immunopathogenesis.
Collapse
Affiliation(s)
- Charles E Shelburne
- Department of Biologic and Materials Sciences, School of Dentistry, The University of Michigan, Ann Arbor, MI 48108, USA.
| | | | | | | | | |
Collapse
|
50
|
Bostanci N, Allaker R, Johansson U, Rangarajan M, Curtis MA, Hughes FJ, McKay IJ. Interleukin-1? stimulation in monocytes by periodontal bacteria: antagonistic effects of Porphyromonas gingivalis. ACTA ACUST UNITED AC 2007; 22:52-60. [PMID: 17241171 DOI: 10.1111/j.1399-302x.2007.00322.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Periodontal pathogenic bacteria are associated with elevated levels of interleukin-1alpha (IL-1alpha) but it is unclear if all species can induce cytokine production equally. Porphyromonas gingivalis may be able antagonize IL-1alpha induced by other species through the activity of its proteases or lipopolysaccharide (LPS). Monomac-6 cells and primary human monocytes were treated with culture supernatants from Porphyromonas gingivalis, Fusobacterium nucleatum, Campylobacter rectus, Actinobacillus actinomycetemcomitans, Prevotella intermedius, Veillonella atypical and Prevotella nigrescens. IL-1alpha protein levels were measured after 6 h of incubation. In addition, monocytes were co-stimulated with supernatants from P. gingivalis and other bacteria. The role of P. gingivalis proteases was tested using Arg-X and Lys-X mutant strains. The role of LPS was investigated using purified P. gingivalis LPS and polymixin depletion. All species tested induced significant IL-1alpha production, but P. gingivalis was the weakest. Co-stimulation of monocytes with P. gingivalis antagonized the ability of other bacterial species to induce IL-1alpha production. This effect was at its greatest with C. rectus (resulting in a 70% reduction). Gingipain mutant strains and chemical inhibition of protease activity did not reduce antagonistic activity. However, 100 ng/ml of P. gingivalis LPS can reproduce the antagonistic activity of P. gingivalis culture supernatants. Periodontitis-associated bacterial species stimulate IL-1alpha production by monocytes. P. gingivalis can antagonize this effect, and its LPS appears to be the crucial component. This study highlights the importance of mixed infections in the pathogenesis of periodontal disease because reduction of pro-inflammatory cytokine levels may impair the ability of the host to tackle infection.
Collapse
Affiliation(s)
- N Bostanci
- Centre for Adult Oral Health, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London, UK
| | | | | | | | | | | | | |
Collapse
|