1
|
Hsu YT, Chang AM, Daubert D, Roberts F, Chen D, Trivedi HM, Gomez J, Darveau RP. Inflammation and tissue remodeling mediator expression during gingivitis: A comparison between experimental, naturally occurring gingivitis, and periodontal health. J Periodontol 2024; 95:1139-1149. [PMID: 38708772 DOI: 10.1002/jper.23-0692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The aim of this study is to evaluate the immune regulation and tissue remodeling responses during experimental gingivitis (EG) and naturally occurring gingivitis (NG) to provide a comprehensive analysis of host responses. Gingival crevicular fluid (GCF) was obtained from 2 human studies conducted in university settings. METHODS The EG study enrolling 26 volunteers provided controls for the baseline (Day 0) from healthy disease-free participants, while Day 21 (the end of EG induction of the same group) was used to represent EG. Twenty-six NG participants age-matched with those of the EG group were recruited. GCF samples were analyzed for 39 mediators of inflammatory/immune responses and tissue remodeling using commercially available bead-based multiplex immunoassays. The differences in GI and mediator expression among groups were determined at a 95% confidence level (p ≤ 0.05) by a 2-way analysis of variance (ANOVA) with a post-hoc Tukey's test. RESULTS Our findings showed that EG had a greater gingival index than NG and was healthy (p < 0.01 of all comparisons). Furthermore, EG showed significantly higher levels of MPO (p < 0.001), CCL3 (p < 0.05), and IL-1B (p < 0.001) than NG. In contrast, NG had increased levels of MIF (p < 0.05), Fractalkine (p < 0.001), angiogenin (p < 0.05), C3a (p < 0.001), BMP-2 (p < 0.001), OPN (p < 0.05), RANKL (p < 0.001), and MMP-13 (p < 0.001) than EG. CONCLUSIONS Consistent with the findings from chronic (NG) versus acute (EG) inflammatory lesions, these data reveal that NG displays greater immune regulation, angiogenesis, and bone remodeling compared to EG.
Collapse
Affiliation(s)
- Yung-Ting Hsu
- Department of Periodontics, University of Washington School of Dentistry, Seattle, Washington, USA
| | - Ana M Chang
- Department of Periodontics, University of Washington School of Dentistry, Seattle, Washington, USA
- College of Osteopathic Medicine, Pacific Northwest University of Health Sciences, Yakima, Washington, USA
| | - Diane Daubert
- Department of Periodontics, University of Washington School of Dentistry, Seattle, Washington, USA
| | - Frank Roberts
- Department of Periodontics, University of Washington School of Dentistry, Seattle, Washington, USA
| | - Dandan Chen
- Department of Periodontics, University of Washington School of Dentistry, Seattle, Washington, USA
| | - Harsh M Trivedi
- Department of Periodontics, University of Washington School of Dentistry, Seattle, Washington, USA
| | - Juliana Gomez
- Department of Periodontics, University of Washington School of Dentistry, Seattle, Washington, USA
| | - Rich P Darveau
- Department of Periodontics, University of Washington School of Dentistry, Seattle, Washington, USA
| |
Collapse
|
2
|
Korgaonkar J, Tarman AY, Ceylan Koydemir H, Chukkapalli SS. Periodontal disease and emerging point-of-care technologies for its diagnosis. LAB ON A CHIP 2024; 24:3326-3346. [PMID: 38874483 DOI: 10.1039/d4lc00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Periodontal disease (PD), a chronic inflammatory disorder that damages the tooth and its supporting components, is a common global oral health problem. Understanding the intricacies of these disorders, from gingivitis to severe PD, is critical for efficient treatment, diagnosis, and prevention in dental care. Periodontal biosensors and biomarkers are critical in improving oral health diagnostic skills. Clinicians may accomplish early identification, tailored therapy, and efficient tracking of periodontal diseases by using these technologies, ushering in a new age of accurate oral healthcare. Traditional periodontitis diagnostic methods frequently rely on physical probing and visual examinations, necessitating the development of point-of-care (POC) devices. As periodontal disorders necessitate more precise and rapid diagnosis, incorporating novel innovations in biosensors and biomarkers becomes increasingly crucial. These innovations improve our capacity to diagnose, monitor, and adapt periodontal therapies, bringing in the next phase of customized and effective dental healthcare. The review discusses the characteristics and stages of PD, clinical treatment techniques, prominent biomarkers and infection-associated factors that may be employed to determine PD, biomedical sensing, and POC appliances that have been created so far to diagnose stages of PD and its progression profile, as well as predicting future developments in this field.
Collapse
Affiliation(s)
- Jayesh Korgaonkar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering and Experiment Station, College Station, TX 77843, USA
| | - Azra Yaprak Tarman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering and Experiment Station, College Station, TX 77843, USA
| | - Hatice Ceylan Koydemir
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering and Experiment Station, College Station, TX 77843, USA
| | - Sasanka S Chukkapalli
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
3
|
Brito VGB, Patrocinio MS, Sousa MCL, Barreto AEA, Frasnelli SCT, Lara VS, Santos CF, Oliveira SHP. Mast cells contribute to alveolar bone loss in Spontaneously Hypertensive Rats with periodontal disease regulating cytokines production. PLoS One 2021; 16:e0247372. [PMID: 33661916 PMCID: PMC7932174 DOI: 10.1371/journal.pone.0247372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
Mast cells (MCs) play a pivotal role in inflammatory responses and had been studied in inflammatory bone disorders, however, their role in alveolar bone loss induced by periodontal disease (PD) is not yet fully understood. We, therefore, aimed to evaluate the effects of MCs depletion in the PD-induced alveolar bone loss in Wistar (W) and Spontaneously Hypertensive Rats (SHRs). PD was induced by ligating the lower first molars with silk thread one day after the MCs depletion, by the pre-treatment with compound 48/80 for 4 days. After 15 days of PD induction, the hemi-mandibles were surgically collected for qRT-PCR, histological analyses, immunostaining, and ELISA. Systolic blood pressure (SBP) was verified by tail plethysmography to confirm the hypertensive status, and SHR presented SBP >150 mmHg, and previous MC depletion alone or associated with PD did not alter this parameter. SHRs showed a more severe alveolar bone loss compared to W, and MC depletion significantly inhibited this response in both strains, with a more significant response in SHRs. MCs were less abundant in 48/80+PD groups, thus validating the previous MCs depletion in our model. PD increased the number of MC in the gingival tissue of SHR. Cytokine production (TNF-α, IL-6, IL-1β, and CXCL3) was constitutively higher in SHR and increased further after PD, which was also significantly reduced in the MCs-depleted animals. PD led to an increased expression of Opn, Rankl, Rank, Vtn, Itga5, Itgb5, Trap, and Ctsk in the mandible of W and SHRs, which was reversed in MCs-depleted animals. These results suggest that MCs significantly contributes to the PD-induced alveolar bone resorption, especially in the SHR, which is associated with a more severe PD progression compared to Wistar, partly explained by these cells contribution to the inflammatory status and mediator production, stimulating osteoclast-related response markers, which were reduced after MC depletion in our experimental model.
Collapse
Affiliation(s)
- Victor Gustavo Balera Brito
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Mariana Sousa Patrocinio
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | | | - Ayná Emanuelli Alves Barreto
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | | | - Vanessa Soares Lara
- Department of Biological Science, Bauru School of Dentistry, University of São Paulo (USP), SP, Brazil
| | - Carlos Ferreira Santos
- Department of Stomatology, Bauru School of Dentistry, University of São Paulo (USP), SP, Brazil
| | - Sandra Helena Penha Oliveira
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
- * E-mail:
| |
Collapse
|
4
|
Syed S, Kankara VR, Pathakota KR, Krishnan P, Mishra A. Evaluation of deoxypyridinoline levels in gingival crevicular fluid and serum as alveolar bone loss biomarker in patients with periodontitis. J Indian Soc Periodontol 2020; 24:322-328. [PMID: 32831504 PMCID: PMC7418550 DOI: 10.4103/jisp.jisp_256_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 12/26/2019] [Accepted: 01/20/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Several components of gingival crevicular fluid (GCF) reflect the course and predictability of periodontal disease and provide a pointer toward disease status. Potential biomarkers deoxypyridinoline (DPD), a metallophosphoesterase would correctly determine the presence of osteoclast-mediated bone turnover activity and seems to hold great promise as a predictive marker to determine bone destruction and active phases in the disease progression. Aim: The aim of the current study is proposed to investigate the biologic plausibility for the levels of DPD as biomarker in chronic periodontitis patients. Materials and Methods: The present cross-sectional study comprised 15 periodontally healthy and 15 chronic periodontitis patients who were age and genders matched, recruited from the outpatient department of Periodontics. GCF and blood samples for DPD estimation were collected from all the patients and analyzed using enzyme-linked immunosorbent assay kit. The clinical parameters such as clinical attachment loss (CAL), probing pocket depth (PPD), modified gingival index, bleeding index , and plaque index were recorded. Results: GCF DPD levels were significantly higher in chronic periodontitis patients when compared to periodontally healthy group. There were no significant correlations found among GCF and serum DPD levels with increasing age, gender, disease severity, and increase in PPD and CAL in both the groups. Conclusion: Within the limitations of this study, increased GCF DPD levels in chronic periodontitis can gauge ongoing periodontal destruction.
Collapse
Affiliation(s)
- Suhail Syed
- Department of Periodontics, Sri Sai College of Dental Surgery, Vikarabad, Telangana, India
| | - Vinathi Reddy Kankara
- Department of Periodontics, Sri Sai College of Dental Surgery, Vikarabad, Telangana, India
| | | | - Preethi Krishnan
- Department of Periodontics, Sri Sai College of Dental Surgery, Vikarabad, Telangana, India
| | - Ashank Mishra
- Department of Periodontics, Sri Sai College of Dental Surgery, Vikarabad, Telangana, India
| |
Collapse
|
5
|
Shazam H, Shaikh F, Hussain Z. Bone Turnover Markers in Chronic Periodontitis: A Literature Review. Cureus 2020; 12:e6699. [PMID: 32104633 PMCID: PMC7032598 DOI: 10.7759/cureus.6699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic periodontitis (CP) is a multifactorial oral inflammatory disease characterized by progressive destruction of bone and ultimate tooth loss. The alarming rise in the prevalence of periodontitis has led to the development of innovative diagnostic techniques. Several quantifiable biomarkers in the gingival crevicular fluid (GCF) and saliva of chronic periodontitis patients have been detected in the field of oral fluid diagnostics. Bone turnover biomarkers hold a valuable diagnostic potential in determining the extent of alveolar bone destruction and the risk of future bone loss. This review article highlights the importance of bone turnover markers in facilitating earlier detection, accurate diagnosis, and effective treatment strategies, leading to optimal clinical management of chronic periodontitis.
Collapse
Affiliation(s)
- Hamda Shazam
- Department of Oral Pathology, Ziauddin College of Dentistry, Ziauddin University, Karachi, PAK
| | - Fouzia Shaikh
- Department of Pathology, Ziauddin University, Karachi, PAK
| | - Zaheer Hussain
- Department of Periodontology, Altamash Institute of Dental Medicine, Karachi, PAK
| |
Collapse
|
6
|
Lee K, Lee BM, Park CK, Kim YH, Chung G. Ion Channels Involved in Tooth Pain. Int J Mol Sci 2019; 20:ijms20092266. [PMID: 31071917 PMCID: PMC6539952 DOI: 10.3390/ijms20092266] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023] Open
Abstract
The tooth has an unusual sensory system that converts external stimuli predominantly into pain, yet its sensory afferents in teeth demonstrate cytochemical properties of non-nociceptive neurons. This review summarizes the recent knowledge underlying this paradoxical nociception, with a focus on the ion channels involved in tooth pain. The expression of temperature-sensitive ion channels has been extensively investigated because thermal stimulation often evokes tooth pain. However, temperature-sensitive ion channels cannot explain the sudden intense tooth pain evoked by innocuous temperatures or light air puffs, leading to the hydrodynamic theory emphasizing the microfluidic movement within the dentinal tubules for detection by mechanosensitive ion channels. Several mechanosensitive ion channels expressed in dental sensory systems have been suggested as key players in the hydrodynamic theory, and TRPM7, which is abundant in the odontoblasts, and recently discovered PIEZO receptors are promising candidates. Several ligand-gated ion channels and voltage-gated ion channels expressed in dental primary afferent neurons have been discussed in relation to their potential contribution to tooth pain. In addition, in recent years, there has been growing interest in the potential sensory role of odontoblasts; thus, the expression of ion channels in odontoblasts and their potential relation to tooth pain is also reviewed.
Collapse
Affiliation(s)
- Kihwan Lee
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea.
| | - Byeong-Min Lee
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul 08826, Korea.
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea.
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea.
| | - Gehoon Chung
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul 08826, Korea.
- Dental Research Institute, Seoul National University, Seoul 03080, Korea.
| |
Collapse
|
7
|
Solé-Magdalena A, Martínez-Alonso M, Coronado CA, Junquera LM, Cobo J, Vega JA. Molecular basis of dental sensitivity: The odontoblasts are multisensory cells and express multifunctional ion channels. Ann Anat 2017; 215:20-29. [PMID: 28954208 DOI: 10.1016/j.aanat.2017.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/22/2017] [Accepted: 09/10/2017] [Indexed: 12/26/2022]
Abstract
Odontoblasts are the dental pulp cells responsible for the formation of dentin. In addition, accumulating data strongly suggest that they can also function as sensory cells that mediate the early steps of mechanical, thermic, and chemical dental sensitivity. This assumption is based on the expression of different families of ion channels involved in various modalities of sensitivity and the release of putative neurotransmitters in response to odontoblast stimulation which are able to act on pulp sensory nerve fibers. This review updates the current knowledge on the expression of transient-potential receptor ion channels and acid-sensing ion channels in odontoblasts, nerve fibers innervating them and trigeminal sensory neurons, as well as in pulp cells. Moreover, the innervation of the odontoblasts and the interrelationship been odontoblasts and nerve fibers mediated by neurotransmitters was also revisited. These data might provide the basis for novel therapeutic approaches for the treatment of dentin sensibility and/or dental pain.
Collapse
Affiliation(s)
- A Solé-Magdalena
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain
| | - M Martínez-Alonso
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain
| | - C A Coronado
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - L M Junquera
- Departamento de Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Servicio de Cirugía Maxilofacial, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - J Cobo
- Departamento de Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Instituto Asturiano de Odontología, Oviedo, Spain
| | - J A Vega
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile.
| |
Collapse
|
8
|
Tran PTH, Lee YH, Bhattarai JP, Park SJ, Yi HK, Han SK. Existence of ATP sensitive potassium currents on human periodontal ligament cells. Arch Oral Biol 2017; 76:48-54. [PMID: 28119170 DOI: 10.1016/j.archoralbio.2017.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Potassium channels of the ATP-sensitive family (KATP channel) are inhibited by increase in intracellular ATP. Electrophysiological studies have demonstrated that the kinetics and pharmacological properties of KATP channels vary among different tissues, suggesting structurally and functionally distinct types. There are studies showing human periodontal ligament (PDL) cells respond to mechanical stress by increasing ATP release, which participates in bone resorption or bone homeostasis. So, in this study we investigated the existence of KATP channel subunit and their single channel properties in human periodontal ligaments. MATERIALS & METHOD The human PDL cells were isolated from healthy erupted third molar. For patch-clamp experiments, human PDL fibroblasts were seeded on 3.5cm plastic dishes. The inside-out patch clamp recordings were performed under voltage clamp mode. Reverse transcriptase polymerase chain reaction (RT-PCR) was conducted to identify the channel subunits. All pair-wise comparisons were performed by Paired t-test. A P value <0.05 was considered significant. RESULTS We observed mRNA transcripts for Kir6.1, Kir6.2 and Sur2B subuits in the human PDL cells. In inside-out patch mode, the single channel conductance was 163pS at symmetrical K+ concentration of 140mM and inward rectification was seen in ATP-free bath solution. The reversal potential of the currents was found to be 0mV at symmetrical concentration (140mM) of K+ in bath solution. The single channel currents were almost blocked by adding 5mM ATP in the bath solution. However, the currents were not blocked by 100μM glibenclamide, a subunit specific KATP channel blocker. CONCLUSIONS These results indicate that human PDL cells express KATP channels subunit including Sur2B and Kir6.1 and Kir6.2 which are sensitive to ATP but insensitive to glibenclamide.
Collapse
Affiliation(s)
- Phuong Thi Huyen Tran
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Chonbuk National University, Jeonju, South Korea
| | - Young Hee Lee
- Department of Oral Biochemistry, School of Dentistry & Institute of Oral Bioscience, Chonbuk National University, Jeonju, South Korea
| | - Janardhan Prasad Bhattarai
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Chonbuk National University, Jeonju, South Korea
| | - Soo Joung Park
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Chonbuk National University, Jeonju, South Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry, School of Dentistry & Institute of Oral Bioscience, Chonbuk National University, Jeonju, South Korea
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Chonbuk National University, Jeonju, South Korea.
| |
Collapse
|
9
|
Nazar Majeed Z, Philip K, Alabsi AM, Pushparajan S, Swaminathan D. Identification of Gingival Crevicular Fluid Sampling, Analytical Methods, and Oral Biomarkers for the Diagnosis and Monitoring of Periodontal Diseases: A Systematic Review. DISEASE MARKERS 2016; 2016:1804727. [PMID: 28074077 PMCID: PMC5198140 DOI: 10.1155/2016/1804727] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/07/2016] [Accepted: 10/23/2016] [Indexed: 12/25/2022]
Abstract
Background. Several studies in the last decades have focused on finding a precise method for the diagnosis of periodontal disease in its early stages. Aim. To evaluate from current scientific literature the most common and precise method for gingival crevicular fluid (GCF) sample collection, biomarker analytical methods, and the variability of biomarker quantification, even when using the same analytical technique. Methodology. An electronic search was conducted on in vivo studies that presented clinical data on techniques used for GCF collection and biomarker analysis. Results. The results showed that 71.1%, 24.7%, and 4.1% of the studies used absorption, microcapillary, and washing techniques, respectively, in their gingival crevicular fluid collection. 73.1% of the researchers analyzed their samples by using enzyme-linked immunosorbent assay (ELISA). 22.6%, 19.5%, and 18.5% of the researchers included interleukin-1 beta (IL-1β), matrix metalloproteinase-8 (MMP-8), and tumor necrosis factor-alpha (TNF-α), respectively, in their studies as biomarkers for periodontal disease. Conclusion. IL-1β can be considered among the most common biomarkers that give precise results and can be used as an indicator of periodontal disease progression. Furthermore, paper strips are the most convenient and accurate method for gingival crevicular fluid collection, while enzyme-linked immunosorbent assay can be considered the most conventional method for the diagnosis of biofluids.
Collapse
Affiliation(s)
- Zeyad Nazar Majeed
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Periodontology, Faculty of Dentistry, University of Babylon, Babylon, Iraq
| | - Koshy Philip
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - A. M. Alabsi
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Saravanan Pushparajan
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Dasan Swaminathan
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Rody WJ, Elmaraghy S, McNeight AM, Chamberlain CA, Antal D, Dolce C, Wheeler TT, McGorray SP, Shaddox LM. Effects of different orthodontic retention protocols on the periodontal health of mandibular incisors. Orthod Craniofac Res 2016; 19:198-208. [PMID: 27647720 DOI: 10.1111/ocr.12129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2016] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To test the following two hypotheses: 1) different types of retainers result in distinct levels of biomarkers in gingival crevicular fluid (GCF) and 2) the retainer bonded to all mandibular anterior teeth induces more detrimental outcomes to the periodontium. SETTING AND SAMPLE POPULATION The Department of Orthodontics at the University of Florida. The population consisted of individuals in the retention phase of orthodontic treatment. MATERIAL AND METHODS This was a cross-sectional study that enrolled 36 individuals. Subjects in group 1 had retainers bonded to the mandibular canines only. Group 2 consisted of individuals having retainers bonded to all mandibular anterior teeth. Group 3 included patients using mandibular removable retainers. After clinical examination, GCF was collected from the mandibular incisor and biomarker levels were compared between the groups. RESULTS Plaque accumulation and gingivitis differed significantly among groups, with the highest median values in group 2 subjects. Pairwise comparison of the groups with respect to gingivitis showed significant differences between groups 1 and 2. Significant differences among groups were detected for RANKL, OPG, OPN, M-CSF, MMP-3, and MMP-9. The ratio RANKL/OPG was significantly higher in group 2 subjects, with pairwise comparisons indicating that groups 1 and 2 differed from group 3. CONCLUSION An association was found between orthodontic retention groups and GCF biomarker levels, which should be further explored in longitudinal studies. The presence of retainers bonded to all anterior teeth seems to increase plaque accumulation and gingivitis.
Collapse
Affiliation(s)
- W J Rody
- Department of Orthodontics, University of Florida, Gainesville, FL, USA.
| | - S Elmaraghy
- Department of Orthodontics, University of Florida, Gainesville, FL, USA
| | - A M McNeight
- Department of Orthodontics, University of Florida, Gainesville, FL, USA
| | - C A Chamberlain
- Department of Orthodontics, University of Florida, Gainesville, FL, USA
| | - D Antal
- Department of Orthodontics, University of Florida, Gainesville, FL, USA
| | - C Dolce
- Department of Orthodontics, University of Florida, Gainesville, FL, USA
| | - T T Wheeler
- Department of Orthodontics, University of Florida, Gainesville, FL, USA
| | - S P McGorray
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - L M Shaddox
- Department of Periodontology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Wohlfahrt JC, Aass AM, Granfeldt F, Lyngstadaas SP, Reseland JE. Sulcus fluid bone marker levels and the outcome of surgical treatment of peri-implantitis. J Clin Periodontol 2014; 41:424-31. [DOI: 10.1111/jcpe.12229] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Johan C. Wohlfahrt
- Department of Biomaterials; Institute of Clinical Dentistry; University of Oslo; Oslo Norway
- Department of Periodontology; Institute of Clinical Dentistry; University of Oslo; Oslo Norway
| | - Anne M. Aass
- Department of Periodontology; Institute of Clinical Dentistry; University of Oslo; Oslo Norway
| | - Finn Granfeldt
- Department of Biomaterials; Institute of Clinical Dentistry; University of Oslo; Oslo Norway
| | - Ståle P. Lyngstadaas
- Department of Biomaterials; Institute of Clinical Dentistry; University of Oslo; Oslo Norway
| | - Janne E. Reseland
- Department of Biomaterials; Institute of Clinical Dentistry; University of Oslo; Oslo Norway
| |
Collapse
|
12
|
Deleon-Pennell KY, de Castro Brás LE, Lindsey ML. Circulating Porphyromonas gingivalis lipopolysaccharide resets cardiac homeostasis in mice through a matrix metalloproteinase-9-dependent mechanism. Physiol Rep 2013; 1:e00079. [PMID: 24159380 PMCID: PMC3804276 DOI: 10.1002/phy2.79] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 08/05/2013] [Indexed: 12/24/2022] Open
Abstract
Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) circulates systemically in over 50% of periodontal disease (PD) patients and is associated with increased matrix metalloproteinase (MMP)-9. We hypothesized that low systemic Pg-LPS would stimulate an inflammatory response in the left ventricle (LV) through MMP-9, leading to a decrease in cardiac function. Wild-type (WT) and MMP-9 null mice (4-7 months old) were exposed for 1 or 28 days to low dose Pg-LPS or saline (n ≥ 6/group). MMP-9 significantly increased in WT mice LV at 1 and 28 days of exposure, compared to control (P < 0.05 for both). Fractional shortening decreased subtly yet significantly in WT mice by day 28 (31 ± 1%) compared to control (35 ± 1%; P < 0.05), and this decrease was attenuated in null (34 ± 1%) mice. Plasma cardiac troponin I levels were elevated in WT mice at day 28. Macrophage-related factors increased over twofold in WT plasma and LV after day 1 (monocyte chemoattractant protein-5, macrophage inflammatory protein (MIP)-1α, MIP-1γ, stem cell factor, Ccl12, Ccl9, Il8rb, Icam1, Itgb2, and Spp1; all P < 0.05), indicating a moderate inflammatory response. Levels returned to baseline by day 28, suggesting tolerance to Pg-LPS. In contrast, macrophage-related factors remained elevated in day 28 null mice, indicating a sustained defense against Pg-LPS stimulation. Consistent with these findings, LV macrophage numbers increased in both groups at day 1 and returned to baseline by day 28 in the WT mice only. Major histocompatibility complex (MCH) II remained elevated in the null group at day 28, confirming Pg-tolerance in the WT. Interestingly Il-1α, a regulator of macrophage immunosuppression, increased in the plasma of WT mice only on day 28, suggesting that Il-1α plays a role in tolerance in a MMP-9-dependent manner. In conclusion, circulating Pg-LPS induced tolerance in WT mice, resulting in significant LV changes and subtle cardiac dysfunction. MMP-9 played a major role in the regulation of chronic systemic inflammation and associated cardiac dysfunction.
Collapse
Affiliation(s)
- Kristine Y Deleon-Pennell
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Jackson Center for Heart Research, University of Mississippi Medical Center Jackson, Mississippi
| | - Lisandra E de Castro Brás
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Jackson Center for Heart Research, University of Mississippi Medical Center Jackson, Mississippi
| | - Merry L Lindsey
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Jackson Center for Heart Research, University of Mississippi Medical Center Jackson, Mississippi ; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center Jackson, Mississippi
| |
Collapse
|
13
|
Cutando A, López-Valverde A, Gómez-de-Diego R, Arias-Santiago S, de Vicente-Jiménez J. Effect of gingival application of melatonin on alkaline and acid phosphatase, osteopontin and osteocalcin in patients with diabetes and periodontal disease. Med Oral Patol Oral Cir Bucal 2013; 18:e657-63. [PMID: 23524437 PMCID: PMC3731095 DOI: 10.4317/medoral.18832] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/09/2013] [Indexed: 11/28/2022] Open
Abstract
Objectives: To assess the effect of topical application of melatonin to the gingiva on salivary fluid concentrations of acid phosphatase, alkaline phosphatase, osteopontin, and osteocalcin.
Study Design: Cross-sectional study of 30 patients with diabetes and periodontal disease and 30 healthy subjects. Diabetic patients were treated with topical application of melatonin (1% orabase cream formula) once daily for 20 days and controls with a placebo formulation.
Results: Before treatment with melatonin, diabetic patients showed significantly higher mean salivary levels of alkaline and acid phosphatase, osteopontin and osteocalcin than healthy subjects (P < 0.01). After treatment with melatonin, there was a statistically significant decrease of the gingival index (15.84± 10.3 vs 5.6 ± 5.1) and pocket depth (28.3 ± 19.5 vs 11.9 ± 9.0) (P < 0.001). Also, use of melatonin was associated with a significant reduction of the four biomarkers. Changes of salivary acid phosphatase and osteopontin correlated significantly with changes in the gingival index, whereas changes of alkaline phosphatase and osteopontin correlated significantly with changes in the pocket depth.
Conclusions: Treatment with topical melatonin was associated with an improvement in the gingival index and pocket depth, a reduction in salivary concentrations of acid phosphatase, alkaline phosphatase, osteopontin and osteocalcin.
Key words:Melatonin, diabetes mellitus, alkaline phosphatase, acid phosphatase, osteopontin, osteocalcin.
Collapse
Affiliation(s)
- Antonio Cutando
- Department of Special Care in Dentistry, School of Dentistry, University of Granada, Granada, Spain.
| | | | | | | | | |
Collapse
|
14
|
Lim JC, Mitchell CH. Inflammation, pain, and pressure--purinergic signaling in oral tissues. J Dent Res 2012; 91:1103-9. [PMID: 23042126 DOI: 10.1177/0022034512463239] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Signaling by extracellular purines such as ATP and adenosine has implications for dental research on multiple levels, with the association of purinergic signaling with inflammation, mechanical strain, and pain making the system particularly relevant for the specific challenges in the oral cavity. Oral tissues express a variety of G-protein-coupled P2Y receptors for ATP and P1 receptors for adenosine in addition to ionotropic P2X receptors for ATP. When these receptors are combined with the plethora of extracellular enzymes capable of manipulating extracellular agonist levels, a complex system for regulating oral health emerges, and recent findings have begun to identify a key role for purinergic signaling in oral pathophysiology. For example, the manipulation of extracellular ATP levels by P. gingivalis reduces inflammasome activation and apoptosis linked to P2X(7) receptor activation. Release of ATP by periodontal ligaments may link mechanical strain to bone remodeling. Activation of P2X receptors is implicated in dental pain, and receptor antagonists represent important targets for new analgesics. Altered levels of adenosine receptors in periodontal disease also suggest a role for nucleosides in dental signaling. The intricacies of the purinergic signaling system make it well-suited for the unique concerns of dental research, and future findings will doubtless confirm this importance.
Collapse
Affiliation(s)
- J C Lim
- Department of Anatomy, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
15
|
Patil PB, Patil BR. Saliva: A diagnostic biomarker of periodontal diseases. J Indian Soc Periodontol 2012; 15:310-7. [PMID: 22368352 PMCID: PMC3283925 DOI: 10.4103/0972-124x.92560] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 11/11/2011] [Indexed: 11/21/2022] Open
Abstract
Early detection of disease plays a crucial role in successful therapy. Early diagnosis and management reduces the severity and possible complications of the disease process. To overcome this challenge, medical researchers are devoted to finding molecular disease biomarkers that reveal a hidden lethal threat before the disease becomes complicated. Saliva, an important physiologic fluid, containing a highly complex mixture of substances, is rapidly gaining popularity as a diagnostic tool. Periodontal disease is a chronic disease of the oral cavity comprising a group of inflammatory conditions affecting the supporting structures of the dentition. In the field of periodontology, traditional clinical criteria are often insufficient for determining sites of active disease, for monitoring the response to therapy, or for measuring the degree of susceptibility to future disease progression. Saliva, as a mirror of oral and systemic health, is a valuable source for clinically relevant information because it contains biomarkers specific for the unique physiologic aspects of periodontal diseases. This review highlights the various potentials of saliva as a diagnostic biomarker for periodontal diseases.
Collapse
Affiliation(s)
- Priti Basgauda Patil
- Department of Periodontology, Tatyasaheb Kore Dental College and Research Centre, Maharashtra, India
| | | |
Collapse
|
16
|
Hans S, Mali AM. Estimation and comparison of osteopontin levels in plasma in subjects with healthy periodontium and generalized chronic periodontitis and its assessment after scaling and root planing. J Indian Soc Periodontol 2012; 16:354-7. [PMID: 23162328 PMCID: PMC3498703 DOI: 10.4103/0972-124x.100910] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 01/24/2012] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Osteopontin (OPN) is a bone matrix derivative, whose levels reflect active lesions of aggravated periodontal disease accompanied by alveolar bone resorption. OPN is also a component of human atherosclerotic plaque, suggesting a role of OPN in cardiovascular diseases. The present study was conducted to assess and compare plasma OPN levels in subjects with healthy periodontium and generalized chronic periodontitis and to evaluate the effect of scaling and root planing on Plasma OPN levels of generalized chronic periodontitis subjects. MATERIALS AND METHODS 40 gender matched subjects were divided into two equal groups, Group I- Healthy and Group II- Generalized chronic periodontitis, based on the Periodontal Disease Index. Blood samples were collected from the subjects at the time of clinical examination (Group I, II) and two months after Scaling and Root planning of Group II. Plasma OPN level was determined using a OPN Enzyme Immunometric Assay Kit (Quantikine). RESULTS The mean value of plasma OPN levels in subjects with generalized chronic periodontitis was higher (153.08 ng/ml) as compared to the subjects with Healthy periodontium (55.09 ng/ml). After treatment of generalized chronic periodontitis group, the level of plasma OPN decreased to 91.53 ng/ml. CONCLUSION The findings from the study suggest that Plasma OPN levels were highest in plasma from sites with periodontal destruction; however, scaling and root planing resulted in the reduction of OPN levels.
Collapse
Affiliation(s)
- Suruchi Hans
- Department of Periodontology and Implanotlogy, Bharati Vidyapeeth Dental College and Hospital, Katraj, Pune, Maharashtra, India
| | - Amita M. Mali
- Department of Periodontology and Implanotlogy, Bharati Vidyapeeth Dental College and Hospital, Katraj, Pune, Maharashtra, India
| |
Collapse
|
17
|
Khiste SV, Ranganath V, Nichani AS, Rajani V. Critical analysis of biomarkers in the current periodontal practice. J Indian Soc Periodontol 2011; 15:104-10. [PMID: 21976831 PMCID: PMC3183658 DOI: 10.4103/0972-124x.84376] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 08/10/2011] [Indexed: 11/30/2022] Open
Abstract
Periodontal disease is a chronic microbial infection that triggers inflammation-mediated loss of the periodontal ligament and alveolar bone that supports the teeth. Because of the increasing prevalence and associated comorbidities, there is a need for the development of new diagnostic tests that can detect the presence of active disease, predict future disease progression, and evaluate the response to periodontal therapy, thereby improving the clinical management of periodontal patients. The diagnosis of active phases of periodontal disease and the identification of patients at risk for active disease represent challenges for clinical investigators and practitioners. Advances in diagnostic research are moving toward methods whereby the periodontal risk can be identified and quantified by objective measures using biomarkers. Patients with periodontitis may have elevated circulating levels of specific inflammatory markers that can be correlated to the severity of the disease. Advances in the use of oral fluids as possible biological samples for objective measures of the current disease state, treatment monitoring, and prognostic indicators have boosted saliva- and other oral-based fluids to the forefront of technology. Gingival crevicular fluid (GCF) is an inflammatory exudate that can be collected at the gingival margin or within the gingival crevice. This article highlights recent advances in the use of biomarker-based disease diagnostics that focus on the identification of active periodontal disease from plaque biofilms, GCF, and saliva.
Collapse
Affiliation(s)
- Sujeet V Khiste
- Department of Periodontology, AECS Maaruti College of Dental Sciences and Research Centre, Bangalore, Karnataka, India
| | | | | | | |
Collapse
|
18
|
Pavasant P, Yongchaitrakul T. Role of mechanical stress on the function of periodontal ligament cells. Periodontol 2000 2011; 56:154-65. [PMID: 21501242 DOI: 10.1111/j.1600-0757.2010.00374.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Buduneli N, Kinane DF. Host-derived diagnostic markers related to soft tissue destruction and bone degradation in periodontitis. J Clin Periodontol 2011; 38 Suppl 11:85-105. [PMID: 21323706 DOI: 10.1111/j.1600-051x.2010.01670.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND A major challenge in clinical periodontics is to find a reliable molecular marker of periodontal tissue destruction with high sensitivity, specificity and utility. OBJECTIVES The aim of this systematic review is to evaluate available literature on 'the utility of molecular markers of soft and hard periodontal tissue destruction'. MATERIALS AND METHODS Based on the focused question, 'What is the utility of molecular markers of soft and hard periodontal tissue destruction', an electronic and manual search was conducted for human studies presenting clinical data for the potential of molecular markers of tissue destruction in biofluids; gingival crevicular fluid (GCF), saliva, and serum. RESULTS Papers fulfilling the inclusion criteria were selected. All relevant data from the selected papers were extracted and recorded in separate tables for molecules in GCF, saliva, and serum. CONCLUSION Within the defined limits of the Problem/Population, Intervention, Comparison, Outcome, the present analysis reveals that (a) no single or combination of markers exists that can disclose periodontal tissue destruction adequately; (b) while the most fruitful source of biomarkers for periodontal destruction appears to be in molecules tightly related to bone and soft tissue destruction, this remains to be objectively demonstrated. Currently, clinical measurements are still the most reliable.
Collapse
Affiliation(s)
- Nurcan Buduneli
- Department of Periodontology, School of Dentistry, Ege University, Izmir, Turkey.
| | | |
Collapse
|
20
|
Pradeep A, Kathariya R, Raghavendra N, Sharma A. Levels of Pentraxin-3 in Gingival Crevicular Fluid and Plasma in Periodontal Health and Disease. J Periodontol 2011; 82:734-41. [DOI: 10.1902/jop.2010.100526] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Abstract
Animal models and cell cultures have contributed new knowledge in biological sciences, including periodontology. Although cultured cells can be used to study physiological processes that occur during the pathogenesis of periodontitis, the complex host response fundamentally responsible for this disease cannot be reproduced in vitro. Among the animal kingdom, rodents, rabbits, pigs, dogs, and nonhuman primates have been used to model human periodontitis, each with advantages and disadvantages. Periodontitis commonly has been induced by placing a bacterial plaque retentive ligature in the gingival sulcus around the molar teeth. In addition, alveolar bone loss has been induced by inoculation or injection of human oral bacteria (e.g., Porphyromonas gingivalis) in different animal models. While animal models have provided a wide range of important data, it is sometimes difficult to determine whether the findings are applicable to humans. In addition, variability in host responses to bacterial infection among individuals contributes significantly to the expression of periodontal diseases. A practical and highly reproducible model that truly mimics the natural pathogenesis of human periodontal disease has yet to be developed.
Collapse
|
22
|
Barnes VM, Teles R, Trivedi HM, Devizio W, Xu T, Lee DP, Mitchell MW, Wulff JE, Milburn MV, Guo L. Assessment of the effects of dentifrice on periodontal disease biomarkers in gingival crevicular fluid. J Periodontol 2010; 81:1273-9. [PMID: 20450373 DOI: 10.1902/jop.2010.100070] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Periodontal disease has been studied primarily from clinical outcomes in lengthy human studies. Comprehensive biochemical profiling (metabolomics) has become a powerful tool for disease characterization and biomarker discovery. In a previous study, we performed a metabolomic analysis of gingival crevicular fluid collected from healthy, gingivitis, and periodontitis sites. Many metabolites associated with inflammation, oxidative stress, tissue degradation, and bacterial metabolism were found to be significantly induced by the diseases. METHODS A panel of 10 markers was selected from the previous metabolomic study based on their statistical significance. Thirty-nine chronic periodontitis subjects were randomly assigned to a toothpaste regimen: control dentifrice (n = 21) or triclosan-containing dentifrice ([CT] n = 18). Subjects were instructed to use their assigned dentifrice twice daily for 6 weeks. Gingival crevicular fluid samples from six healthy, six gingivitis, and three periodontitis sites were collected from each subject at baseline, 1 week, and 6 weeks. The relative levels of the markers in the samples were determined by mass spectrometry. One-sided matched-paired t tests were performed to compare data from healthy, gingivitis, and periodontitis sites. RESULTS Statistical analysis indicates that CT significantly decreased the levels of inosine, lysine, putrescine, and xanthine at the gingivitis sites as early as week 1. In contrast, control dentifrice had little effect. CONCLUSIONS This result provides biochemical confirmation for the therapeutic effects of CT on gingivitis. Biomarkers were significantly altered by CT before clinical changes were observed, suggesting that the markers have predicative value for disease state assessment.
Collapse
|
23
|
Oz HS, Chen T, Ebersole JL. A model for chronic mucosal inflammation in IBD and periodontitis. Dig Dis Sci 2010; 55:2194-202. [PMID: 19902356 DOI: 10.1007/s10620-009-1031-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 10/13/2009] [Indexed: 12/31/2022]
Abstract
BACKGROUND Chronic inflammation of mucosal surfaces is an aberrant immune response to luminal bacteria and generates an array of oxygen radicals leading to tissue destruction and loss of function, as noted in IBD and periodontitis. We hypothesized that mucosal injury after "oral delivery" of dextran sulfate sodium (DSS) or TNBS for an extended period of 18 weeks is reflected by chronic inflammatory responses in a time-dependent fashion. METHODS Dextran sulfate sodium was administered in the diet biweekly; TNBS or sham controls was administered orally twice a week. Additional groups received TNBS or sham injections into gingival tissue. RESULTS Animals tolerated oral applications with no severe clinical symptoms. The DSS-group developed diarrhea during the period of administration, and returned to normal during DSS abstinence. The TNBS-group developed no systemic clinical symptoms. Splenic length and weight increased in the DSS-group in a time-dependent fashion (P < 0.01) and remained normal in the TNBS-group. Colons from the DSS-group were significantly shortened (P < 0.001) and colonic weight increased compared with controls or the TNBS-group (P < 0.05). The DSS-group developed extensive dilation of the stomach wall, ileum, and megacolon, with abdominal fat deposits. In addition, the DSS-group showed dysregulated hepatic concentrations of antioxidants (i.e. cysteine, GSH, SAMe) in a time-dependent manner that correlated with a significance increase in alveolar bone resorption. Localized TNBS-mucosal delivery caused severe inflammation, granuloma formation, and rapid bone resorption. CONCLUSIONS This model of mucosal stimulation eliciting chronic inflammatory responses in the gut and oral cavity mimics aspects of IBD and periodontal disease progression in patients.
Collapse
Affiliation(s)
- Helieh S Oz
- MN310 Center for Oral Health Research, College of Dentistry and Department of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
24
|
Activation of RhoA and FAK induces ERK-mediated osteopontin expression in mechanical force-subjected periodontal ligament fibroblasts. Mol Cell Biochem 2009; 335:263-72. [PMID: 19798549 DOI: 10.1007/s11010-009-0276-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 09/16/2009] [Indexed: 12/28/2022]
Abstract
The precise mechanism by which Rho kinase translates the mechanical signals into OPN up-regulation in force-exposed fibroblasts has not been elucidated. Human periodontal ligament fibroblasts (hPLFs) were exposed to mechanical force by centrifuging the culture plates at a magnitude of 50 g/cm(2) for 60 min. At various times of the force application, they were processed for analyzing cell viability, trypan blue exclusion, and OPN expression at protein and RNA levels. Cellular mechanism(s) of the force-induced OPN up-regulation was also examined using various kinase inhibitors or antisense oligonucleotides specific to mechanosensitive factors. Centrifugal force up-regulated OPN expression and induced a rapid and transient increase in the phosphorylation of focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and Elk1. Pharmacological blockade of RhoA/Rho-associated coiled coil-containing kinase (ROCK) signaling markedly reduced force-induced FAK and ERK1/2 phosphorylation. Transfecting hPLFs with FAK antisense oligonucleotide diminished ERK1/2 activation and force-induced OPN expression. Further, ERK inhibitor inhibited significantly OPN expression, Elk1 phosphorylation, and activator protein-1 (AP-1)-DNA binding activation, but not FAK phosphorylation, in the force-applied cells. These results demonstrate that FAK signaling plays critical roles in force-induced OPN expression in hPLFs through interaction with Rho/ROCK as upstream effectors and ERK-Elk1/ERK-c-Fos as downstream effectors.
Collapse
|
25
|
Giannobile WV, Beikler T, Kinney JS, Ramseier CA, Morelli T, Wong DT. Saliva as a diagnostic tool for periodontal disease: current state and future directions. Periodontol 2000 2009; 50:52-64. [PMID: 19388953 DOI: 10.1111/j.1600-0757.2008.00288.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Sharma CG, Pradeep AR. Plasma and crevicular fluid osteopontin levels in periodontal health and disease. J Periodontal Res 2007; 42:450-5. [PMID: 17760823 DOI: 10.1111/j.1600-0765.2007.00968.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE The level of osteopontin in gingival crevicular fluid has been found to correlate with clinical measures of periodontal disease. The present study was designed to assess the relationship between clinical parameters and osteopontin levels of the gingival crevicular fluid from inflamed gingivae, periodontitis sites and after treatment of periodontitis sites, and to correlate them to the osteopontin levels of the plasma. MATERIAL AND METHODS Thirty, gender-matched subjects were divided into three groups--healthy, gingivitis and chronic periodontitis--based on modified gingival index scores and clinical attachment loss. The fourth group consisted of 10 subjects in the periodontitis group, 6-8 wk after initial therapy. Plasma and gingival crevicular fluid samples were collected and quantified for osteopontin using an enzyme immunoassay. RESULTS The highest mean gingival crevicular fluid and plasma osteopontin concentrations were observed in the periodontitis group (1575.01 and 1273.21 ng/mL, respectively) and the lowest in the healthy group (1194.80 and 476.35 ng/mL, respectively). After treatment of the periodontitis group, the level of osteopontin decreased to 1416.15 in gingival crevicular fluid and to 1051.68 ng/mL in plasma. In all groups the gingival crevicular fluid osteopontin levels showed a statistically significant positive correlation with that of plasma and clinical attachment loss. CONCLUSION Osteopontin levels were highest in the gingival crevicular fluid from sites with periodontal destruction; however, periodontal treatment resulted in the reduction of osteopontin levels. Gingival crevicular fluid and plasma osteopontin levels showed a positive correlation in all of the groups.
Collapse
Affiliation(s)
- C G Sharma
- Department of Periodontics, Government Dental College and Hospital, Bangalore, Karnataka, India.
| | | |
Collapse
|
27
|
Wongkhantee S, Yongchaitrakul T, Pavasant P. Mechanical stress induces osteopontin expression in human periodontal ligament cells through rho kinase. J Periodontol 2007; 78:1113-9. [PMID: 17539726 DOI: 10.1902/jop.2007.060433] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Mechanical stress such as orthodontic forces can produce mechanical damage and inflammatory reaction in the periodontium. Osteopontin (OPN) is a multifunctional cytokine that has been correlated with periodontal disease progression. Because the periodontal ligament (PDL) can be affected by stress and PDL cells are involved in periodontal destruction and remodeling, we aimed to study the influence of mechanical stress on the expression and regulation of OPN in human PDL (HPDL) cells. METHODS The mechanical stress was generated by continuous compressive force, and the expression of OPN was examined by reverse transcription-polymerase chain reaction and Western analysis. The application of inhibitors was used to examine the mechanism involved. RESULTS Both mRNA and protein expression of OPN significantly increased in a force-dependent manner. Increase of receptor activator of nuclear factor-kappa B ligand (RANKL) was also observed. Interestingly, application of indomethacin could abolish the induction of RANKL but not that of OPN, suggesting the cyclooxygenase-independent mechanism for stress-induced OPN expression. In addition, the upregulation of OPN was diminished by Rho kinase inhibitor but not by cytochalasin B. CONCLUSIONS Mechanical stress affects OPN expression in HPDL cells through the Rho kinase pathway. Because OPN participates in bone resorption and remodeling induced by mechanical and biologic signals, these results suggest the significance of stress-induced OPN in HPDL cells in alveolar bone resorption and remodeling.
Collapse
Affiliation(s)
- Suchart Wongkhantee
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | | | | |
Collapse
|
28
|
Kinney JS, Ramseier CA, Giannobile WV. Oral fluid-based biomarkers of alveolar bone loss in periodontitis. Ann N Y Acad Sci 2007; 1098:230-51. [PMID: 17435132 PMCID: PMC2570328 DOI: 10.1196/annals.1384.028] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Periodontal disease is a bacteria-induced chronic inflammatory disease affecting the soft and hard supporting structures encompassing the teeth. When left untreated, the ultimate outcome is alveolar bone loss and exfoliation of the involved teeth. Traditional periodontal diagnostic methods include assessment of clinical parameters and radiographs. Though efficient, these conventional techniques are inherently limited in that only a historical perspective, not current appraisal, of disease status can be determined. Advances in the use of oral fluids as possible biological samples for objective measures of current disease state, treatment monitoring, and prognostic indicators have boosted saliva and other oral-based fluids to the forefront of technology. Oral fluids contain locally and systemically derived mediators of periodontal disease, including microbial, host-response, and bone-specific resorptive markers. Although most biomarkers in oral fluids represent inflammatory mediators, several specific collagen degradation and bone turnover-related molecules have emerged as possible measures of periodontal disease activity. Pyridinoline cross-linked carboxyterminal telopeptide (ICTP), for example, has been highly correlated with clinical features of the disease and decreases in response to intervention therapies, and has been shown to possess predictive properties for possible future disease activity. One foreseeable benefit of an oral fluid-based periodontal diagnostic would be identification of highly susceptible individuals prior to overt disease. Timely detection and diagnosis of disease may significantly affect the clinical management of periodontal patients by offering earlier, less invasive, and more cost-effective treatment therapies.
Collapse
Affiliation(s)
- Janet S Kinney
- Department of Periodontics and Oral Medicine and Michigan Center for Oral Health Research, University of Michigan, Ann Arbor, Michigan 48106, USA
| | | | | |
Collapse
|