1
|
Shekouhi R, Mumtaz M, Naqvi H, Azizi A, Crawford KM, Jacobs BN, Chim H. Treatment Options for Buerger Disease: A Systematic Review and Meta-Analysis of Outcomes. J Surg Res 2025; 306:371-381. [PMID: 39847853 DOI: 10.1016/j.jss.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 12/03/2024] [Accepted: 12/25/2024] [Indexed: 01/25/2025]
Abstract
INTRODUCTION Uncertainties exist regarding the optimal management strategy for patients with thromboangiitis obliterans (TAOs). The aim of this study was to investigate the safety and effectiveness of common interventions used for treating patients with TAO. METHODS Endovascular treatment, revascularization, sympathectomy, stem cell therapy (SCT), and nonsurgical interventions were selected for inclusion in the study. Changes in mean visual analogue scale score and ankle brachial index (ABI) values were evaluated. In addition, the rate of ulcer healing, postintervention amputation, and overall complication rates were compared across interventions. RESULTS A total of 1262 TAO patients (1159 males, 84 females), with a mean age of 38.4 ± 7.8 ys, were included in this systematic review. With an amputation rate of 16.6%, the endovascular treatment group showed statistically significant improvements in mean ABI and visual analogue scale scores (P < 0.05). There was a greater increase in ABI postoperatively with endovascular treatment compared to SCT (P < 0.05), and also a greater increase in ABI postoperatively with revascularization compared to SCT (P < 0.05). Meta-regression showed that both endovascular treatment and open surgical revascularization were superior to stem cell treatment for postoperative mean ABI improvement (P < 0.05). Interestingly, the rate of postoperative amputation was lower in the SCT group compared with the other two interventions. CONCLUSIONS Our results indicated that all three interventions may be a reasonable therapeutic option for TAO. Endovascular intervention and open revascularization demonstrated superior outcomes.
Collapse
Affiliation(s)
- Ramin Shekouhi
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, Florida
| | - Mohammed Mumtaz
- College of Medicine, University of Florida, Gainesville, Florida
| | - Humza Naqvi
- Alabama College of Osteopathic Medicine, Dothan, Alabama
| | - Armina Azizi
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, Florida
| | - Kristina M Crawford
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, Florida
| | - Benjamin N Jacobs
- Division of Vascular Surgery & Endovascular Therapy, Department of Surgery, University of Florida, Gainesville, Florida
| | - Harvey Chim
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, Florida.
| |
Collapse
|
2
|
Barcena AJR, Perez JVD, Bernardino MR, Damasco JA, San Valentin EMD, Klusman C, Martin B, Canlas GM, Heralde FM, Fowlkes N, Bouchard RR, Cheng J, Huang SY, Melancon MP. Bismuth-infused perivascular wrap facilitates delivery of mesenchymal stem cells and attenuation of neointimal hyperplasia in rat arteriovenous fistulas. BIOMATERIALS ADVANCES 2025; 166:214052. [PMID: 39341164 PMCID: PMC11725062 DOI: 10.1016/j.bioadv.2024.214052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have emerged as novel therapies for supporting arteriovenous fistula (AVF) maturation, and bioresorbable polymeric scaffolds have enabled sustained MSC delivery into maturing AVFs. However, the radiolucency of biopolymeric wraps prevents in vivo monitoring of their integrity and location, hindering long-term preclinical investigations. METHODS We infused bismuth nanoparticles (BiNPs) into polycaprolactone (PCL) to fabricate an electrospun perivascular wrap capable of MSC delivery and conducive to longitudinal monitoring using conventional imaging. We tested the wraps' effects on the attenuation of markers of neointimal hyperplasia (i.e., endothelial dysfunction, hypoxia, and inflammation), the leading cause of AVF failure, in rats with induced chronic kidney disease (n = 3 per time point) for the following groups: control (no wrap), PCL wrap, PCL with MSCs, PCL-Bi (BiNP-infused wrap), and PCL-Bi with MSCs. RESULTS Physicochemical characterization and in vitro biocompatibility tests revealed that BiNP infusion did not alter the wrap's non-cytotoxicity toward vascular cells, hemocompatibility, and capacity for MSC loading but facilitated long-term monitoring via micro-computed tomography. After 8 weeks, all treatment groups demonstrated significant improvement in wall-to-lumen ratio on ultrasonography (P < 0.001), neointima-to-lumen ratio on histomorphometry (P < 0.001), and attenuation of neointimal hypoxia on immunohistochemistry (P < 0.05). Compared to non-MSC wraps, MSC-loaded wraps not only attenuated endothelial dysfunction and neointimal inflammation but also reduced hypoxia and inflammation across all vascular layers. CONCLUSION These results demonstrate that MSC delivery through a radiopaque polymeric wrap could enhance AVF patency outcomes through the inhibition of multiple pathways inducing AVF failure.
Collapse
Affiliation(s)
- Allan John R Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Joy Vanessa D Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Marvin R Bernardino
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jossana A Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erin Marie D San Valentin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carleigh Klusman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin Martin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Francisco M Heralde
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Natalie Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard R Bouchard
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jizhong Cheng
- Division of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven Y Huang
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marites P Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center, UTHealth Houston, Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Jia M, Wang J, Lin C, Zhang Q, Xue Y, Huang X, Ren Y, Chen C, Liu Y, Xu Y. Hydrogel Strategies for Female Reproduction Dysfunction. ACS NANO 2024; 18:30132-30152. [PMID: 39437800 DOI: 10.1021/acsnano.4c05634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Infertility is an important issue for human reproductive health, with over half of all cases of infertility associated with female factors. Dysfunction of the complex female reproductive system may cause infertility. In clinical practice, female infertility is often treated with oral medications and/or surgical procedures, and ultimately with assisted reproductive technologies. Owing to their excellent biocompatibility, low immunogenicity, and adjustable mechanical properties, hydrogels are emerging as valuable tools in the reconstruction of organ function, supplemented by tissue engineering techniques to increase their structure and functionality. Hydrogel-based female reproductive reconstruction strategies targeting the pathological mechanisms of female infertility may provide alternatives for the treatment of ovarian, endometrium/uterine, and fallopian tube dysfunction. In this review, we provide a general introduction to the basic physiology and pathology of the female reproductive system, the limitations of current infertility treatments, and the lack of translation from animal models to human reproductive physiology. We further provide an overview of the current and future potential applications of hydrogels in the treatment of female reproductive system dysfunction, highlighting the great prospects of hydrogel-based strategies in the field of translational medicine, along with the significant challenges to be overcome.
Collapse
Affiliation(s)
- Minxuan Jia
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jiamin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- The Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong 510080, China
| | - Chubing Lin
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Qingyan Zhang
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- The Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong 510080, China
| | - Yueguang Xue
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xin Huang
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yan Ren
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Ying Liu
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yanwen Xu
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- The Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong 510080, China
| |
Collapse
|
4
|
Hegde M, Singh AK, Kannan S, Kolkundkar U, Seetharam RN. Therapeutic Applications of Engineered Mesenchymal Stromal Cells for Enhanced Angiogenesis in Cardiac and Cerebral Ischemia. Stem Cell Rev Rep 2024; 20:2138-2154. [PMID: 39305405 PMCID: PMC11554727 DOI: 10.1007/s12015-024-10787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 11/12/2024]
Abstract
Ischemic diseases are characterized by obstruction of blood flow to the respective organs, of which ischemia of the heart and brain are the most prominent manifestations with shared pathophysiological mechanisms and risk factors. While most revascularization therapies aim to restore blood flow, this can be challenging due to the limited therapeutic window available for treatment approaches. For a very long time, mesenchymal stromal cells have been used to treat cerebral and cardiac ischemia. However, their application is restricted either by inefficient mode of delivery or the low cell survival rates following implantation into the ischemic microenvironment. Nonetheless, several studies are currently focusing on using of mesenchymal stromal cells engineered to overexpress therapeutic genes as a cell-based gene therapy to restore angiogenesis. This review delves into the utilization of MSCs for angiogenesis and the applications of engineered MSCs for the treatment of cardiac and cerebral ischemia. Moreover, the safety issues related to the genetic modification of MSCs have also been discussed.
Collapse
Affiliation(s)
- Madhavi Hegde
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Suresh Kannan
- Stempeutics Research Pvt. Ltd., 3rd Floor, Manipal Hospitals Whitefield #143, EPIP Industrial Area, ITPL Main Road, Bangalore, 560 048, India
| | - Udaykumar Kolkundkar
- Stempeutics Research Pvt. Ltd., 3rd Floor, Manipal Hospitals Whitefield #143, EPIP Industrial Area, ITPL Main Road, Bangalore, 560 048, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
5
|
Chen YK, Mohamed AH, Amer Alsaiari A, Olegovich Bokov D, Ali Patel A, Al Abdulmonem W, Shafie A, Adnan Ashour A, Azhar Kamal M, Ahmad F, Ahmad I. The role of mesenchymal stem cells in the treatment and pathogenesis of psoriasis. Cytokine 2024; 182:156699. [PMID: 39033730 DOI: 10.1016/j.cyto.2024.156699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Psoriasis, a prevalent inflammatory skin condition impacting millions globally, continues to pose treatment challenges, despite the availability of multiple therapies. This underscores the demand for innovative treatments. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option due to their capacity to modulate the immune system and facilitate tissue healing. Recent research indicates that MSCs don't just work through direct cell-to-cell interactions but also release extracellular vesicles (EVs), containing various bioactive substances like proteins, lipids, and nucleic acids. This article explores our current knowledge of psoriasis's origins and the potential utilization of MSCs and their EVs, particularly exosomes, in managing the condition. Additionally, we delve into how MSCs and EVs function in therapy, including their roles in regulating immune responses and promoting tissue repair. Lastly, we discuss the obstacles and opportunities associated with translating MSC-based treatments for psoriasis into clinical practice.
Collapse
Affiliation(s)
- Yan-Kun Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518109, China; Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, China
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil 51001, Hilla, Iraq.
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Ayyub Ali Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
6
|
Xu C, Xie Y, Wang B. Genetically modified mesenchymal stromal cells: a cell-based therapy offering more efficient repair after myocardial infarction. Stem Cell Res Ther 2024; 15:323. [PMID: 39334266 PMCID: PMC11438184 DOI: 10.1186/s13287-024-03942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Myocardial infarction (MI) is a serious complication of coronary artery disease. This condition is common worldwide and has a profound impact on patients' lives and quality of life. Despite significant advances in the treatment of heart disease in modern medicine, the efficient treatment of MI still faces a number of challenges. Problems such as scar formation and loss of myocardial function after a heart attack still limit patients' recovery. Therefore, the search for a new therapeutic tool that can promote repair and regeneration of myocardial tissue has become crucial. In this context, mesenchymal stromal cells (MSCs) have attracted much attention as a potential therapeutic tool. MSCs are a class of adult stem cells with multidirectional differentiation potential, derived from bone marrow, fat, placenta and other tissues, and possessing properties such as self-renewal and immunomodulation. The application of MSCs may provide a new direction for the treatment of MI. These stem cells have the potential to differentiate into cardiomyocytes and vascular endothelial cells in damaged tissue and to repair and protect myocardial tissue through anti-inflammatory, anti-fibrotic and pro-neovascularization mechanisms. However, the clinical results of MSCs transplantation for the treatment of MI are less satisfactory due to the limitations of the native function of MSCs. Genetic modification has overcome problems such as the low survival rate of transplanted MSCs in vivo and enhanced their functions of promoting neovascularization and differentiation into cardiomyocytes, paving the way for them to become an effective tool for repair therapy after MI. In previous studies, MSCs have shown some therapeutic potential in experimental animals and preliminary clinical trials. This review aims to provide readers with a comprehensive and in-depth understanding to promote the wider application of engineering MSCs in the field of MI therapy, offering new hope for recovery and improved survival of cardiac patients.
Collapse
Affiliation(s)
- Congwang Xu
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese, Medicine321 Zhongshan Road, Nanjing, 210008, People's Republic of China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese, Medicine321 Zhongshan Road, Nanjing, 210008, People's Republic of China.
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, People's Republic of China.
| |
Collapse
|
7
|
Wan X, Zhang W, Dai L, Chen L. The Role of Extracellular Vesicles in Bone Regeneration and Associated Bone Diseases. Curr Issues Mol Biol 2024; 46:9269-9285. [PMID: 39329900 PMCID: PMC11430372 DOI: 10.3390/cimb46090548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoscale particles with a lipid bilayer membrane structure secreted by various cell types. Nearly all human cells secrete EVs, primarily mediating intercellular communication. In recent years, scientists have discovered that EVs can carry multiple biological cargos, such as DNA, non-coding RNAs (ncRNAs), proteins, cytokines, and lipids, and mediate intercellular signal transduction. Bone is a connective tissue with a nerve supply and high vascularization. The repair process after injury is highly complex, involving interactions among multiple cell types and biological signaling pathways. Bone regeneration consists of a series of coordinated osteoconductive and osteoinductive biological processes. As mediators of intercellular communication, EVs can promote bone regeneration by regulating osteoblast-mediated bone formation, osteoclast-mediated bone resorption, and other pathways. This review summarizes the biogenesis of EVs and the mechanisms by which EV-mediated intercellular communication promotes bone regeneration. Additionally, we focus on the research progress of EVs in various diseases related to bone regeneration. Finally, based on the above research, we explore the clinical applications of engineered EVs in the diagnosis and treatment of bone regeneration-related diseases.
Collapse
Affiliation(s)
- Xinyue Wan
- School of Medicine, Chongqing University, Chongqing 400030, China; (X.W.); (W.Z.); (L.D.)
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing 400030, China; (X.W.); (W.Z.); (L.D.)
| | - Lingyan Dai
- School of Medicine, Chongqing University, Chongqing 400030, China; (X.W.); (W.Z.); (L.D.)
| | - Liang Chen
- School of Medicine, Chongqing University, Chongqing 400030, China; (X.W.); (W.Z.); (L.D.)
- Department of Bone and Soft Tissue Oncology, Chongqing University Cancer Hospital, Chongqing University School of Medicine, Chongqing 400030, China
| |
Collapse
|
8
|
Urrata V, Toia F, Cammarata E, Franza M, Montesano L, Cordova A, Di Stefano AB. Characterization of the Secretome from Spheroids of Adipose-Derived Stem Cells (SASCs) and Its Potential for Tissue Regeneration. Biomedicines 2024; 12:1842. [PMID: 39200306 PMCID: PMC11351933 DOI: 10.3390/biomedicines12081842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
INTRODUCTION Spheroids are spherical aggregates of cells that mimic the three-dimensional (3D) architecture of tissues more closely than traditional two dimensional (2D) cultures. Spheroids of adipose stem cells (SASCs) show special features such as high multilineage differentiation potential and immunomodulatory activity. These properties have been attributed to their secreted factors, such as cytokines and growth factors. Moreover, a key role is played by the extracellular vesicles (EVs), which lead a heterogeneous cargo of proteins, mRNAs, and small RNAs that interfere with the pathways of the recipient cells. PURPOSE The aim of this work was to characterize the composition of the secretome and exosome from SASCs and evaluate their regenerative potential. MATERIALS AND METHODS SASCs were extracted from adipose samples of healthy individuals after signing informed consent. The exosomes were isolated and characterized by Dinamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Western blotting analyses. The expression of mRNAs and miRNAs were evaluated through real-time PCR. Lastly, a wound-healing assay was performed to investigate their regenerative potential on different cell cultures. RESULTS The SASCs' exosomes showed an up-regulation of NANOG and SOX2 mRNAs, typical of stemness maintenance, as well as miR126 and miR146a, related to angiogenic and osteogenic processes. Moreover, the exosomes showed a regenerative effect. CONCLUSIONS The SASCs' secretome carried paracrine signals involved in stemness maintenance, pro-angiogenic and pro-osteogenic differentiation, immune system regulation, and regeneration.
Collapse
Affiliation(s)
- Valentina Urrata
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
| | - Francesca Toia
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Emanuele Cammarata
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Mara Franza
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Luigi Montesano
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Adriana Cordova
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Anna Barbara Di Stefano
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
| |
Collapse
|
9
|
Liu Y, Lyons CJ, Ayu C, O’Brien T. Enhancing endothelial colony-forming cells for treating diabetic vascular complications: challenges and clinical prospects. Front Endocrinol (Lausanne) 2024; 15:1396794. [PMID: 39076517 PMCID: PMC11284052 DOI: 10.3389/fendo.2024.1396794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/14/2024] [Indexed: 07/31/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia, leading to various vascular complications. Accumulating evidence indicates that endothelial colony-forming cells (ECFCs) have attractive prospects for repairing and restoring blood vessels. Thus, ECFCs may be a novel therapeutic option for diabetic patients with vascular complications who require revascularization therapy. However, it has been reported that the function of ECFCs is impaired in DM, which poses challenges for the autologous transplantation of ECFCs. In this review, we summarize the molecular mechanisms that may be responsible for ECFC dysfunction and discuss potential strategies for improving the therapeutic efficacy of ECFCs derived from patients with DM. Finally, we discuss barriers to the use of ECFCs in human studies in light of the fact that there are no published reports using these cells in humans.
Collapse
Affiliation(s)
| | | | | | - Timothy O’Brien
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| |
Collapse
|
10
|
Wu X, Yuan P, Wei N, Ma C, Fu M, Wu W. Extracellular vesicles derived from "serum and glucose" deprived HUCMSCs promoted skin wound healing through enhanced angiogenesis. Mol Cell Biochem 2024:10.1007/s11010-024-05058-1. [PMID: 38967721 DOI: 10.1007/s11010-024-05058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Extracellular vesicles (EVs) produced from MSCs were currently considered as a novel therapeutic agent for skin tissue regeneration and repair. Preconditioning stem cells may activate more molecular pathways and release more bioactive agents. In this study, we obtained EVs from normal (N-EVs) and serum- and glucose-deprived (SGD-EVs) human umbilical cord mesenchymal stem cells (HUCMSCs), and showed that SGD-EVs promoted the migration, proliferation, and tube formation of HUVECs in vitro. In vivo experiments utilizing a rat model show that both N-EVs and SGD-EVs boosted angiogenesis of skin defects and accelerated skin wound healing, while treating wounds with SGD-EVs led to faster skin healing and enhanced angiogenesis. miRNA sequencing showed that miR-29a-3p was abundant in SGD-EVs, and overexpressing miR-29a-3p enhanced the angiogenic ability of HUVECs, while inhibiting miR-29a-3p presented the opposite effect. Further studies demonstrated that miR-29a-3p directly targeted CTNNBIP1, which mediated angiogenesis of HUCMSCs-derived EVs through inhibiting CTNNBIP1 to activate Wnt/β-catenin signaling pathway. Taken together, these findings suggested that SGD-EVs promote angiogenesis via transferring miR-29a-3p, and activation of Wnt/β-catenin signaling pathway played a crucial role in SGD-EVs-induced VEGFA production during wound angiogenesis. Our results offered a new avenue for modifying EVs to enhance tissue angiogenesis and augment its role in skin repair.
Collapse
Affiliation(s)
- Xiaopeng Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, China
| | - Pingping Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Na Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, China
| | - Chaoqun Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Mingdi Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Wei Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
11
|
Park JM, Rahmati M, Lee SC, Shin JI, Kim YW. Effects of mesenchymal stem cell on dopaminergic neurons, motor and memory functions in animal models of Parkinson's disease: a systematic review and meta-analysis. Neural Regen Res 2024; 19:1584-1592. [PMID: 38051903 PMCID: PMC10883506 DOI: 10.4103/1673-5374.387976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/09/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Parkinson's disease is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, and although restoring striatal dopamine levels may improve symptoms, no treatment can cure or reverse the disease itself. Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson's disease. Mesenchymal stem cells are considered a promising option due to fewer ethical concerns, a lower risk of immune rejection, and a lower risk of teratogenicity. We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function, memory, and preservation of dopaminergic neurons in a Parkinson's disease animal model. We searched bibliographic databases (PubMed/MEDLINE, Embase, CENTRAL, Scopus, and Web of Science) to identify articles and included only peer-reviewed in vivo interventional animal studies published in any language through June 28, 2023. The study utilized the random-effect model to estimate the 95% confidence intervals (CI) of the standard mean differences (SMD) between the treatment and control groups. We use the systematic review center for laboratory animal experimentation's risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment. A total of 33 studies with data from 840 Parkinson's disease model animals were included in the meta-analysis. Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test. Among the stem cell types, the bone marrow MSCs with neurotrophic factor group showed largest effect size (SMD [95% CI] = -6.21 [-9.50 to -2.93], P = 0.0001, I2 = 0.0 %). The stem cell treatment group had significantly more tyrosine hydroxylase positive dopaminergic neurons in the striatum ([95% CI] = 1.04 [0.59 to 1.49], P = 0.0001, I2 = 65.1 %) and substantia nigra (SMD [95% CI] = 1.38 [0.89 to 1.87], P = 0.0001, I2 = 75.3 %), indicating a protective effect on dopaminergic neurons. Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route (SMD [95% CI] = -2.59 [-3.25 to -1.94], P = 0.0001, I2 = 74.4 %). The memory test showed significant improvement only in the intravenous route (SMD [95% CI] = 4.80 [1.84 to 7.76], P = 0.027, I2 = 79.6 %). Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson's disease. Further research is required to determine the optimal stem cell types, modifications, transplanted cell numbers, and delivery methods for these protocols.
Collapse
Affiliation(s)
- Jong Mi Park
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
| | - Sang Chul Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Wook Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Chao CL, Applewhite B, Reddy NK, Matiuto N, Dang C, Jiang B. Advances and challenges in regenerative therapies for abdominal aortic aneurysm. Front Cardiovasc Med 2024; 11:1369785. [PMID: 38895536 PMCID: PMC11183335 DOI: 10.3389/fcvm.2024.1369785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a significant source of mortality worldwide and carries a mortality of greater than 80% after rupture. Despite extensive efforts to develop pharmacological treatments, there is currently no effective agent to prevent aneurysm growth and rupture. Current treatment paradigms only rely on the identification and surveillance of small aneurysms, prior to ultimate open surgical or endovascular repair. Recently, regenerative therapies have emerged as promising avenues to address the degenerative changes observed in AAA. This review briefly outlines current clinical management principles, characteristics, and pharmaceutical targets of AAA. Subsequently, a thorough discussion of regenerative approaches is provided. These include cellular approaches (vascular smooth muscle cells, endothelial cells, and mesenchymal stem cells) as well as the delivery of therapeutic molecules, gene therapies, and regenerative biomaterials. Lastly, additional barriers and considerations for clinical translation are provided. In conclusion, regenerative approaches hold significant promise for in situ reversal of tissue damages in AAA, necessitating sustained research and innovation to achieve successful and translatable therapies in a new era in AAA management.
Collapse
Affiliation(s)
- Calvin L. Chao
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brandon Applewhite
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL, United States
| | - Nidhi K. Reddy
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Natalia Matiuto
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Caitlyn Dang
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Bin Jiang
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL, United States
| |
Collapse
|
13
|
Phelps J, Hart DA, Mitha AP, Duncan NA, Sen A. Extracellular Vesicles Generated by Mesenchymal Stem Cells in Stirred Suspension Bioreactors Promote Angiogenesis in Human-Brain-Derived Endothelial Cells. Int J Mol Sci 2024; 25:5219. [PMID: 38791256 PMCID: PMC11121007 DOI: 10.3390/ijms25105219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Interrupted blood flow in the brain due to ischemic injuries such as ischemic stroke or traumatic brain injury results in irreversible brain damage, leading to cognitive impairment associated with inflammation, disruption of the blood-brain barrier (BBB), and cell death. Since the BBB only allows entry to a small class of drugs, many drugs used to treat ischemia in other tissues have failed in brain-related disorders. The administration of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) has shown promise in improving the functional recovery of the brain following cerebral ischemia by inducing blood vessel formation. To facilitate such a treatment approach, it is necessary to develop bioprocesses that can produce therapeutically relevant MSC-EVs in a reproducible and scalable manner. This study evaluated the feasibility of using stirred suspension bioreactors (SSBs) to scale-up the serum-free production of pro-angiogenic MSC-EVs under clinically relevant physioxic conditions. It was found that MSCs grown in SSBs generated EVs that stimulated angiogenesis in cerebral microvascular endothelial cells, supporting the use of SSBs to produce MSC-EVs for application in cerebral ischemia. These properties were impaired at higher cell confluency, outlining the importance of considering the time of harvest when developing bioprocesses to manufacture EV populations.
Collapse
Affiliation(s)
- Jolene Phelps
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada;
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada; (D.A.H.); (A.P.M.)
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB T2N 4Z6, Canada;
| | - David A. Hart
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada; (D.A.H.); (A.P.M.)
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB T2N 4Z6, Canada;
- Department of Surgery, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
- Faculty of Kinesiology, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada
| | - Alim P. Mitha
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada; (D.A.H.); (A.P.M.)
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 1403 29 Street N.W., Calgary, AB T2N 2T9, Canada
| | - Neil A. Duncan
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB T2N 4Z6, Canada;
- Department of Surgery, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada;
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada; (D.A.H.); (A.P.M.)
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB T2N 4Z6, Canada;
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada
| |
Collapse
|
14
|
Abraham M, Kori I, Vishwakarma U, Goel S. Comprehensive assessment of goat adipose tissue-derived mesenchymal stem cells cultured in different media. Sci Rep 2024; 14:8380. [PMID: 38600175 PMCID: PMC11006890 DOI: 10.1038/s41598-024-58465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have demonstrated potential in treating livestock diseases that are unresponsive to conventional therapies. MSCs derived from goats, a valuable model for studying orthopaedic disorders in humans, offer insights into bone formation and regeneration. Adipose tissue-derived MSCs (ADSCs) are easily accessible and have a high capacity for expansion. Although the choice of culture media significantly influences the biological properties of MSCs, the optimal media for goat ADSCs (gADSCs) remains unclear. This study aimed to assess the effects of four commonly used culture media on gADSCs' culture characteristics, stem cell-specific immunophenotype, and differentiation. Results showed that MEM, DMEM/F12, and DMEM-LG were superior in maintaining cell morphology and culture parameters of gADSCs, such as cell adherence, metabolic activity, colony-forming potential, and population doubling. Conversely, DMEM-HG exhibited poor performance across all evaluated parameters. The gADSCs cultured in DMEM/F12 showed enhanced early proliferation and lower apoptosis. The cell surface marker distribution exhibited superior characteristics in gADSCs cultured in MEM and DMEM/F12. In contrast, the distribution was inferior in gADSCs cultured in DMEM-LG. DMEM/F12 and DMEM-LG culture media demonstrated a significantly higher potential for chondrogenic differentiation and DMEM-LG for osteogenic differentiation. In conclusion, DMEM/F12 is a suitable culture medium for propagating gADSCs as it effectively maintains cell morphology, growth parameters, proliferation and lower apoptosis while exhibiting desirable expression patterns of MSC-specific markers. These findings contribute to optimising culture conditions for gADSCs, enhancing their potential applications in disease treatment and regenerative medicine.
Collapse
Affiliation(s)
- Michelle Abraham
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| | - Ibraz Kori
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Utkarsha Vishwakarma
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Sandeep Goel
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India.
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India.
| |
Collapse
|
15
|
Heikkinen J, Tanner T, Bergmann U, Palosaari S, Lehenkari P. Cigarette smoke and nicotine effect on human mesenchymal stromal cell wound healing and osteogenic differentiation capacity. Tob Induc Dis 2024; 22:TID-22-54. [PMID: 38496254 PMCID: PMC10943629 DOI: 10.18332/tid/185281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs) play a crucial role in promoting tissue regeneration and healing, particularly in bone tissue. Both smoking and nicotine use are known to delay and inhibit the healing process in patients. This study aims at delineating these cellular effects by comparing the impact of nicotine alone to cigarette smoke with equivalent nicotine content, and shedding light on potential differences in the healing process. METHODS We examined how cigarette smoke and nicotine affect the migration, proliferation, and osteogenic differentiation of human patient-derived MSCs in vitro, as well as the secretion of cytokines IL-6 and IL-8. We measured nicotine concentration of the cigarette smoke extract (CSE) to clarify the role of the nicotine in the effect of the cigarette smoke. RESULTS MSCs exposed to nicotine-concentration-standardized CSE exhibited impaired wound healing capability, and at high concentrations, increased cell death. At lower concentrations, CSE dose-dependently impaired migration, proliferation, and osteogenic differentiation, and increased IL-8 secretion. Nicotine impaired proliferation and decreased PINP secretion. While there was a trend for elevated IL-6 levels by nicotine in undifferentiated MSCs, these changes were not statistically significant. Exposure of MSCs to equivalent concentrations of nicotine consistently elicited stronger responses by CSE and had a more pronounced effect on all studied parameters. Our results suggest that the direct effect of cigarette smoke on MSCs contributes to impaired MSC function, that adds to the nicotine effects. CONCLUSIONS Cigarette smoke extract reduced the migration, proliferation, and osteogenic differentiation in MSCs in vitro, while nicotine alone reduced proliferation. Cigarette smoke impairs the osteogenic and regenerative ability of MSCs in a direct cytotoxic manner. Cytotoxic effect of nicotine alone impairs regenerative ability of MSCs, but it only partly explains cytotoxic effects of cigarette smoke. Direct effect of cigarette smoke, and partly nicotine, on MSCs could contribute to the smoking-related negative impact on long-term bone health, especially in bone healing.
Collapse
Affiliation(s)
- Janne Heikkinen
- Research Unit of Translational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Tarja Tanner
- Research Unit of Oral Health Sciences, University of Oulu, Oulu, Finland
- Dental Training Clinic, Oulu, Finland
| | - Ulrich Bergmann
- Proteomics and Protein Analysis, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sanna Palosaari
- Research Unit of Translational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Petri Lehenkari
- Research Unit of Translational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Division of Orthopedic Surgery, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
16
|
Long R, Wang S. Exosomes from preconditioned mesenchymal stem cells: Tissue repair and regeneration. Regen Ther 2024; 25:355-366. [PMID: 38374989 PMCID: PMC10875222 DOI: 10.1016/j.reth.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
As a prominent research area in tissue repair and regeneration, mesenchymal stem cells (MSCs) have garnered substantial attention for their potential in the treatment of various diseases. It is now widely recognized that the therapeutic effects of MSCs primarily occur through paracrine mechanisms. Among these mechanisms, exosomes play a crucial role by exerting a series of regulatory effects on surrounding cells and tissues. While exosomes have shown promise in treating various diseases, they do have some limitations, such as limited secretion, poor targeting, and single functionality. However, MSC preconditioning can enhance the production of exosomes, lead to more stable functionality and improve therapeutic effects. Moreover, exosomes could also serve as carriers for specific drugs or genes, enabling more precise treatments of diseases. This review summarizes the most recent literatures on how preconditioning of MSCs influences the regenerative potential of their exosomes in tissue repair and provides new insights into the therapeutic application of exosomes derived from MSCs.
Collapse
Affiliation(s)
- Ruili Long
- School and Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shuai Wang
- School and Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
17
|
Mahmoudian-Sani MR, Fattahi N, Hashemzadeh Chaleshtori M, Asgharzade S. MIR96 Has Good Potential to Differentiate Human Bone Marrow-Derived Mesenchymal Stem Cells into Photoreceptor-Like Cells. EXP CLIN TRANSPLANT 2024; 22:148-155. [PMID: 38511985 DOI: 10.6002/ect.2023.0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
OBJECTIVES MicroRNAs play an important role in the development and function of neuron cells. Among these, the miRNA known as MIR96 is abundantly expressed in mammalian retina and significantly affects differentiation, maturation, and survival of human photoreceptor cells. In this study, a mimic to miRNA-96 was transfected into human bone marrowderived mesenchymal stem cells to explore the biological functions of MIR96 at differentiation processing. MATERIALS AND METHODS A mimic to miRNA-96 and a competitive control were transfected into human bone marrow-derived mesenchymal stem cells using Lipofectamine. After 24 and 48 hours, we evaluated changes in expression levels of genes associated with neural progenitor and photoreceptor differentiation (OTX2, NRL, protein kinase C, SLC1A1, and recoverin) by real-time polymerase chain reaction. In addition, we measured expression of mRNA and protein of the CRX gene (neuroretinal progenitor cell marker) and the RHO gene (terminal differentiation marker) using real-time polymerase chain reaction and immunocytochemistry, respectively. RESULTS Real-time polymerase chain reaction results showed increased levels of RHO and recoverin mRNA after 24 hours in transfected cells. In addition, mRNA levels of OTX2, CRX, NRL, RHO, recoverin, and protein kinase C increased after 48 hours in transfected cells. Immunocytochemistry results confirmed these findings by demonstrating RHO and CRX at both 24 and 48 hours in transfected cells. CONCLUSIONS Control of the expression of MIR96 can be a good strategy to promote cell differentiation and can be used in cell therapy for retinal degeneration. Our results showed that human bone marrow-derived mesenchymal stem cells can differentiate into photoreceptor cells after transfection with MIR96. These results support therapeutic use of MIR96 in retinal degeneration and suggest human bone marrowderived mesenchymal stem cells as a promising tool for interventions.
Collapse
Affiliation(s)
- Mohammad-Reza Mahmoudian-Sani
- From the Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | | |
Collapse
|
18
|
Paresishvili T, Kakabadze Z. Freeze-Dried Mesenchymal Stem Cells: From Bench to Bedside. Review. Adv Biol (Weinh) 2024; 8:e2300155. [PMID: 37990389 DOI: 10.1002/adbi.202300155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Indexed: 11/23/2023]
Abstract
This review describes the freeze-dried mesenchymal stem cells (MSCs) and their ability to restore damaged tissues and organs. An analysis of the literature shows that after the lyophilization MSCs retain >80% of paracrine factors and that the mechanism of their action on the restoration of damaged tissues and organs is similar to the mechanism of action of paracrine factors in fresh and cryopreserved mesenchymal stem cells. Based on the own materials, the use of paracrine factors of freeze-dried MSCs in vivo and in vitro for the treatment of various diseases of organs and tissues has shown to be effective. The study also discusses about the advantages and disadvantages of freeze-dried MSCs versus cryopreserved MSCs. However, for the effective use of freeze-dried MSCs in clinical practice, a more detailed study of the mechanism of interaction of paracrine factors of freeze-dried MSCs with target cells and tissues is required. It is also necessary to identify possible other specific paracrine factors of freeze-dried MSCs. In addition, develop new therapeutic strategies for the use of freeze-dried MSCs in regenerative medicine and tissue bioengineering.
Collapse
Affiliation(s)
- Teona Paresishvili
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, 0186, Georgia
| | - Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, 0186, Georgia
| |
Collapse
|
19
|
Ya J, Pellumbaj J, Hashmat A, Bayraktutan U. The Role of Stem Cells as Therapeutics for Ischaemic Stroke. Cells 2024; 13:112. [PMID: 38247804 PMCID: PMC10814781 DOI: 10.3390/cells13020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Stroke remains one of the leading causes of death and disability worldwide. Current reperfusion treatments for ischaemic stroke are limited due to their narrow therapeutic window in rescuing ischaemic penumbra. Stem cell therapy offers a promising alternative. As a regenerative medicine, stem cells offer a wider range of treatment strategies, including long-term intervention for chronic patients, through the reparation and replacement of injured cells via mechanisms of differentiation and proliferation. The purpose of this review is to evaluate the therapeutic role of stem cells for ischaemic stroke. This paper discusses the pathology during acute, subacute, and chronic phases of cerebral ischaemic injury, highlights the mechanisms involved in mesenchymal, endothelial, haematopoietic, and neural stem cell-mediated cerebrovascular regeneration, and evaluates the pre-clinical and clinical data concerning the safety and efficacy of stem cell-based treatments. The treatment of stroke patients with different types of stem cells appears to be safe and efficacious even at relatively higher concentrations irrespective of the route and timing of administration. The priming or pre-conditioning of cells prior to administration appears to help augment their therapeutic impact. However, larger patient cohorts and later-phase trials are required to consolidate these findings.
Collapse
Affiliation(s)
| | | | | | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neurosciences, Queens Medical Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
20
|
Arjmand B, Alavi-Moghadam S, Rezaei-Tavirani M, Kokabi-Hamidpour S, Arjmand R, Gilany K, Rajaeinejad M, Rahim F, Namazi N, Larijani B. GMP-Compliant Mesenchymal Stem Cell-Derived Exosomes for Cell-Free Therapy in Cancer. Methods Mol Biol 2024; 2736:163-176. [PMID: 36515892 DOI: 10.1007/7651_2022_467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is categorized as one of the life-threatening disease in the world, which has recently been associated with a significant increase in the incidence and prevalence rate. Hence, the discovery of effective approaches for prevention, early diagnosis, and effective treatment for cancer has been prioritized by oncology researchers. In recent decades, mesenchymal stem cells show great potential to advance the field of regenerative medicine and oncology research due to representing prominent characteristics. Recently, studies indicate that mesenchymal stem cells can play an important role by secreting extracellular vesicles like exosomes in modulating the biological functions of target cells through paracrine regulation. Indeed, the exosomes derived from mesenchymal stem cells can represent the same therapeutic potential as parent cells with fewer side effects. Therefore, it can be demonstrated that exosomes can be a suitable drug delivery candidate in regenerative medicine and targeted therapy. It is also noteworthy that as the use of exosome therapy becomes more common in clinical studies, the importance of improving basic criteria such as safety, efficiency, and quality of stem cell products will also be highlighted. Based on this concept, the good manufacturing practice principles were put forward to examine the standard of cell products from different qualitative and quantitative aspects to progress the cell therapy. In other words, the principles of good manufacturing practice should be observed not only in the extraction and isolation of stem cells but also in the extraction of products related to stem cells such as exosomes in the field of treatment.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shayesteh Kokabi-Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| |
Collapse
|
21
|
Hsieh DJY, Tsai BCK, Barik P, Shibu MA, Kuo CH, Kuo WW, Lin PY, Shih CY, Lin SZ, Ho TJ, Huang CY. Human adipose-derived stem cells preconditioned with a novel herbal formulation Jing Shi attenuate doxorubicin-induced cardiac damage. Aging (Albany NY) 2023; 15:9167-9181. [PMID: 37708248 PMCID: PMC10522400 DOI: 10.18632/aging.205026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Pathological cardiac hypertrophy is a considerable contributor to global disease burden. Chinese herbal medicine (CHM) has been used to treat cardiovascular diseases since antiquity. Enhancing stem cell-mediated recovery through CHM represents a promising approach for protection against doxorubicin (Dox)-induced cardiac hypertrophy. Herein, we investigated whether human adipose-derived stem cells (hADSCs) preconditioned with novel herbal formulation Jing Si (JS) improved protective ability of stem cells against doxorubicin-induced cardiac damage. The effect of JS on hADSC viability and migration capacity was determined via MTT and migration assays, respectively. Co-culture of hADSC or JS-preconditioned hADSCs with H9c2 cells was analyzed with immunoblot, flow cytometry, TUNEL staining, LC3B staining, F-actin staining, and MitoSOX staining. The in vivo study was performed M-mode echocardiography after the treatment of JS and JS-preconditioned hADSCs by using Sprague Dawley (SD) rats. Our results indicated that JS at doses below 100 μg/mL had less cytotoxicity in hADSC and JS-preconditioned hADSCs exhibited better migration. Our results also revealed that DOX enhanced apoptosis, cardiac hypertrophy, and mitochondrial reactive oxygen species in DOX-challenged H9c2 cells, while H9c2 cells co-cultured with JS-preconditioned hADSCs alleviated these effects. It also enhanced the expression of autophagy marker LC3B, mTOR and CHIP in DOX-challenged H9c2 cells after co-culture with JS-preconditioned hADSCs. In Dox-challenged rats, the ejection fraction and fractional shortening improved in DOX-challenged SD rats exposed to JS-preconditioned hADSCs. Taken together, our data indicate that JS-preconditioned stem cells exhibit a cardioprotective capacity both in vitro and in vivo, highlighting the value of this therapeutic approach for regenerative therapy.
Collapse
Affiliation(s)
- Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Parthasarathi Barik
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, USA
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | | | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan
| |
Collapse
|
22
|
Zhang X, Huang Y, Liu Y, Liu Y, He X, Ma X, Gan C, Zou X, Wang S, Shu K, Lei T, Zhang H. Local transplantation of mesenchymal stem cells improves encephalo-myo-synangiosis-mediated collateral neovascularization in chronic brain ischemia. Stem Cell Res Ther 2023; 14:233. [PMID: 37667370 PMCID: PMC10478472 DOI: 10.1186/s13287-023-03465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND To explore whether local transplantation of mesenchymal stem cells (MSCs) in temporal muscle can promote collateral angiogenesis and to analyze its main mechanisms of promoting angiogenesis. METHODS Bilateral carotid artery stenosis (BCAS) treated mice were administrated with encephalo-myo-synangiosis (EMS), and bone marrow mesenchymal stem cells (BMSCs) were transplanted into the temporal muscle near the cerebral cortex. On the 30th day after EMS, the Morris water maze, immunofluorescence, laser speckle imaging, and light sheet microscopy were performed to evaluate angiogenesis; In addition, rats with bilateral common carotid artery occlusion were also followed by EMS surgery, and BMSCs from GFP reporter rats were transplanted into the temporal muscle to observe the survival time of BMSCs. Then, the concentrated BMSC-derived conditioned medium (BMSC-CM) was used to stimulate HUVECs and BMECs for ki-67 immunocytochemistry, CCK-8, transwell and chick chorioallantoic membrane assays. Finally, the cortical tissue near the temporal muscle was extracted after EMS, and proteome profiler (angiogenesis array) as well as RT-qPCR of mRNA or miRNA was performed. RESULTS The results of the Morris water maze 30 days after BMSC transplantation in BCAS mice during the EMS operation, showed that the cognitive impairment in the BCAS + EMS + BMSC group was alleviated (P < 0.05). The results of immunofluorescence, laser speckle imaging, and light sheet microscopy showed that the number of blood vessels, blood flow and astrocytes increased in the BCAS + EMS + BMSC group (P < 0.05). The BMSCs of GFP reporter rats were applied to EMS and showed that the transplanted BMSCs could survive for up to 14 days. Then, the results of ki-67 immunocytochemistry, CCK-8 and transwell assays showed that the concentrated BMSC-CM could promote the proliferation and migration of HUVECs and BMECs (P < 0.05). Finally, the results of proteome profiler (angiogenesis array) in the cerebral cortex showed that the several pro-angiogenesis factors (such as MMP-3, MMP-9, IGFBP-2 or IGFBP-3) were notably highly expressed in MSC transplantation group compared to others. CONCLUSIONS Local MSCs transplantation together with EMS surgery can promote angiogenesis and cognitive behavior in chronic brain ischemia mice. Our study illustrated that MSC local transplantation can be the potential therapeutical option for improving EMS treatment efficiency which might be translated into clinical application.
Collapse
Affiliation(s)
- Xincheng Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Yuan Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Yanchao Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Xuejun He
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Xiaopeng Ma
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Chao Gan
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
23
|
Luo Z, Li X, Wang L, Shu C. Impact of the transforming growth factor-β pathway on vascular restenosis and its mechanism. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1252-1259. [PMID: 37875366 PMCID: PMC10930841 DOI: 10.11817/j.issn.1672-7347.2023.230064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 10/26/2023]
Abstract
As a crucial regulatory molecule in the context of vascular stenosis, transforming growth factor-β (TGF-β), plays a pivotal role in its initiation and progression. TGF-β, a member of the TGF-β superfamily, can bind to the TGF-β receptor and transduce extracellular to intracellular signals through canonical Smad dependent or noncanonical signaling pathways to regulate cell growth, proliferation, differentiation, and apoptosis. Restenosis remains one of the most challenging problems in cardiac, cerebral, and peripheral vascular disease worldwide. The mechanisms for occurrence and development of restenosis are diverse and complex. The TGF-β pathway exhibits diversity across various cell types. Hence, clarifying the specific roles of TGF-β within different cell types and its precise impact on vascular stenosis provides strategies for future research in the field of stenosis.
Collapse
Affiliation(s)
- Zhongchen Luo
- Institute of Vascular Diseases, Central South University, Changsha 410011.
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Xin Li
- Institute of Vascular Diseases, Central South University, Changsha 410011
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Lunchang Wang
- Institute of Vascular Diseases, Central South University, Changsha 410011
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Chang Shu
- Institute of Vascular Diseases, Central South University, Changsha 410011.
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011.
- Center of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Science, Beijing 100037, China.
| |
Collapse
|
24
|
Park JH, Lee JR, Park S, Kim YJ, Yoon JK, Park HS, Hyun J, Joung YK, Lee TI, Bhang SH. Subaqueous 3D stem cell spheroid levitation culture using anti-gravity bioreactor based on sound wave superposition. Biomater Res 2023; 27:51. [PMID: 37208764 DOI: 10.1186/s40824-023-00383-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Recently, various studies have revealed that 3D cell spheroids have several advantages over 2D cells in stem cell culture. However, conventional 3D spheroid culture methods have some disadvantages and limitations such as time required for spheroid formation and complexity of the experimental process. Here, we used acoustic levitation as cell culture platform to overcome the limitation of conventional 3D culture methods. METHODS In our anti-gravity bioreactor, continuous standing sonic waves created pressure field for 3D culture of human mesenchymal stem cells (hMSCs). hMSCs were trapped and aggerated in pressure field and consequently formed spheroids. The structure, viability, gene and protein expression of spheroids formed in the anti-gravity bioreactor were analyzed by electron microscope, immunostaining, polymerase chain reaction, and western blot. We injected hMSC spheroids fabricated by anti-gravity bioreactor into the mouse hindlimb ischemia model. Limb salvage was quantified to evaluate therapeutic efficacy of hMSC spheroids. RESULTS The acoustic levitation in anti-gravity bioreactor made spheroids faster and more compact compared to the conventional hanging drop method, which resulted in the upregulation of angiogenic paracrine factors of hMSCs, such as vascular endothelial growth factor and angiopoietin 2. Injected hMSCs spheroids cultured in the anti-gravity bioreactor exhibited improved therapeutic efficacy, including the degree of limb salvage, capillary formation, and attenuation of fibrosis and inflammation, for mouse hindlimb ischemia model compared to spheroids formed by the conventional hanging drop method. CONCLUSION Our stem cell culture system using acoustic levitation will be proposed as a new platform for the future 3D cell culture system.
Collapse
Affiliation(s)
- Jung Hwan Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ju-Ro Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, Korea
| | - Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Gyeonggi-Do, Anseong-Si, 17540, Republic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, University of Science and Technology, Republic of Korea, Seoul, 02792, Republic of Korea
| | - Tae Il Lee
- Department of Materials Science and Engineering, Gachon University, Gyeonggi-Do, Seongnam-Si, 13120, Republic of Korea.
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
25
|
Di Vito A, Bria J, Antonelli A, Mesuraca M, Barni T, Giudice A, Chiarella E. A Review of Novel Strategies for Human Periodontal Ligament Stem Cell Ex Vivo Expansion: Are They an Evidence-Based Promise for Regenerative Periodontal Therapy? Int J Mol Sci 2023; 24:ijms24097798. [PMID: 37175504 PMCID: PMC10178011 DOI: 10.3390/ijms24097798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Periodontitis is a gingiva disease sustained by microbially associated and host-mediated inflammation that results in the loss of the connective periodontal tissues, including periodontal ligament and alveolar bone. Symptoms include swollen gingiva, tooth loss and, ultimately, ineffective mastication. Clinicians utilize regenerative techniques to rebuild and recover damaged periodontal tissues, especially in advanced periodontitis. Human periodontal ligament stem cells (hPDLSCs) are considered an appealing source of stem cells for regenerative therapy in periodontium. hPDLSCs manifest the main properties of mesenchymal stem cells, including the ability to self-renew and to differentiate in mesodermal cells. Significant progress has been made for clinical application of hPDLSCs; nevertheless, some problems remain, including the small number of cells isolated from each sample. In recent decades, hPDLSC ex vivo expansion and differentiation have been improved by modifying cell culture conditions, especially with the supplementation of cytokines' or growth factors' mix, chemicals, and natural compounds, or by using the decellularized extracellular matrix. Here, we analyzed the changes in stemness properties and differentiation potential of hPDLSCs when culturing in alternative media. In addition, we focused on the possibility of replacing FBS with human emoderivates to minimize the risks of xenoimmunization or zoonotic transmission when cells are expanded for therapeutic purposes.
Collapse
Affiliation(s)
- Anna Di Vito
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Jessica Bria
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Alessandro Antonelli
- Department of Health Science, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Mesuraca
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Tullio Barni
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Amerigo Giudice
- Department of Health Science, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Emanuela Chiarella
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
26
|
Prakash N, Kim J, Jeon J, Kim S, Arai Y, Bello AB, Park H, Lee SH. Progress and emerging techniques for biomaterial-based derivation of mesenchymal stem cells (MSCs) from pluripotent stem cells (PSCs). Biomater Res 2023; 27:31. [PMID: 37072836 PMCID: PMC10114339 DOI: 10.1186/s40824-023-00371-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
The use of mesenchymal stem cells (MSCs) for clinical purposes has skyrocketed in the past decade. Their multilineage differentiation potentials and immunomodulatory properties have facilitated the discovery of therapies for various illnesses. MSCs can be isolated from infant and adult tissue sources, which means they are easily available. However, this raises concerns because of the heterogeneity among the various MSC sources, which limits their effective use. Variabilities arise from donor- and tissue-specific differences, such as age, sex, and tissue source. Moreover, adult-sourced MSCs have limited proliferation potentials, which hinders their long-term therapeutic efficacy. These limitations of adult MSCs have prompted researchers to develop a new method for generating MSCs. Pluripotent stem cells (PSCs), such as embryonic stem cells and induced PSCs (iPSCs), can differentiate into various types of cells. Herein, a thorough review of the characteristics, functions, and clinical importance of MSCs is presented. The existing sources of MSCs, including adult- and infant-based sources, are compared. The most recent techniques for deriving MSCs from iPSCs, with a focus on biomaterial-assisted methods in both two- and three-dimensional culture systems, are listed and elaborated. Finally, several opportunities to develop improved methods for efficiently producing MSCs with the aim of advancing their various clinical applications are described.
Collapse
Affiliation(s)
- Nityanand Prakash
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jiseong Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jieun Jeon
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Siyeon Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, 06911, Korea.
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| |
Collapse
|
27
|
Peng X, Cheng C, Zhang X, He X, Liu Y. Design and Application Strategies of Natural Polymer Biomaterials in Artificial Ovaries. Ann Biomed Eng 2023; 51:461-478. [PMID: 36629950 DOI: 10.1007/s10439-022-03125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/25/2022] [Indexed: 01/12/2023]
Abstract
For certain types of cancer patients, ovarian transplantation has a risk of malignant cancer cell infection. However, the autologous transplantation of an artificial ovary is safe and effective, guarantees the normal development of isolated follicles, regular oocyte maturation, and ovulation, partially restores endocrine function, and enables the patient to regain reproductive ability. Despite the complexity of the natural ovary, some progress has been made in the repair or replacement of reproductive tissues with the use of various biomaterials. This article reviews the physical structure, biomechanical properties, design elements, preparation routes, construction and practical use of natural polymer materials, usually hydrogel scaffolds, such as alginate, fibrin, gelatin, collagen, agarose, and acellular ovarian matrix in the preparation of artificial ovaries. We summarize how these materials can be made into artificial ovaries to achieve the conditions for fertility through follicle and oocyte development and identify several major issues to overcome for the future development of artificial ovaries, including how to establish blood recirculation, and how to establish hormone synthesis and release channels. This review is intended to provide a reference for the use of natural polymer biomaterials in reproductive clinics.
Collapse
Affiliation(s)
- Xu Peng
- West China School of Basic Medical Sciences & Forensic Medicine, Experimental and Research Animal Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xiaomei Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Experimental and Research Animal Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xueling He
- West China School of Basic Medical Sciences & Forensic Medicine, Experimental and Research Animal Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yan Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Experimental and Research Animal Institute, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
28
|
Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Based Modulation of Obstructive Sleep Apnea. Int J Mol Sci 2023; 24:ijms24043708. [PMID: 36835120 PMCID: PMC9958695 DOI: 10.3390/ijms24043708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells that reside in almost all postnatal tissues where, due to the potent regenerative, pro-angiogenic and immunomodulatory properties, regulate tissue homeostasis. Obstructive sleep apnea (OSA) induces oxidative stress, inflammation and ischemia which recruit MSCs from their niches in inflamed and injured tissues. Through the activity of MSC-sourced anti-inflammatory and pro-angiogenic factors, MSCs reduce hypoxia, suppress inflammation, prevent fibrosis and enhance regeneration of damaged cells in OSA-injured tissues. The results obtained in large number of animal studies demonstrated therapeutic efficacy of MSCs in the attenuation of OSA-induced tissue injury and inflammation. Herewith, in this review article, we emphasized molecular mechanisms which are involved in MSC-based neo-vascularization and immunoregulation and we summarized current knowledge about MSC-dependent modulation of OSA-related pathologies.
Collapse
|
29
|
Feng Z, Su X, Wang T, Sun X, Yang H, Guo S. The Role of Microsphere Structures in Bottom-Up Bone Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020321. [PMID: 36839645 PMCID: PMC9964570 DOI: 10.3390/pharmaceutics15020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Bone defects have caused immense healthcare concerns and economic burdens throughout the world. Traditional autologous allogeneic bone grafts have many drawbacks, so the emergence of bone tissue engineering brings new hope. Bone tissue engineering is an interdisciplinary biomedical engineering method that involves scaffold materials, seed cells, and "growth factors". However, the traditional construction approach is not flexible and is unable to adapt to the specific shape of the defect, causing the cells inside the bone to be unable to receive adequate nourishment. Therefore, a simple but effective solution using the "bottom-up" method is proposed. Microspheres are structures with diameters ranging from 1 to 1000 µm that can be used as supports for cell growth, either in the form of a scaffold or in the form of a drug delivery system. Herein, we address a variety of strategies for the production of microspheres, the classification of raw materials, and drug loading, as well as analyze new strategies for the use of microspheres in bone tissue engineering. We also consider new perspectives and possible directions for future development.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xin Su
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Ting Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China
- Correspondence: (X.S.); (S.G.)
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China;
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
- Correspondence: (X.S.); (S.G.)
| |
Collapse
|
30
|
Shang L, Zhang R, Yan J, Lu Y, Zhang S, Sun Y, Cheng H, Liu Y, Lin J. Sustainable Production and Activity Determination of Serum-Free Conditioned Medium from Menstrual Blood-Derived Endometrial Stem Cells. Appl Biochem Biotechnol 2023; 195:1109-1121. [PMID: 36327033 PMCID: PMC9630812 DOI: 10.1007/s12010-022-04205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Mesenchymal stem cells (MSCs) have exhibited great potential as a regenerative medicine, and MSC-derived paracrine effects, mainly including the secretion of various bioactive factors, play critical roles in MSC-based therapies. MSC-derived serum-free conditioned medium (MSC-CM) is defined as the secretome of MSC-derived bioactive factors and is considered a new cell-free therapeutic agent for disease treatment. However, the MSC-CM used in previous studies was prepared by a nearly disposable method that the MSCs were discarded after preparing MSC-CM, and the preparation time was variable; simultaneously, the viability changes of MSCs after MSC-CM preparation are still unknown. Therefore, this study takes MenSCs as a research project and aims to explore the suitable period of sustainable MenSC-CM preparation rather than using a disposable method. As expected, our results confirmed that MenSC-CM improves viability of both naïve targeted cells and H2O2-injured targeted cells, and suggested that 36 h is suitable for sustainable MenSC-CM preparation in which the angiogenic factors almost reach to the peak. Simultaneously, the MenSCs used to prepare the MenSC-CM for 36 h also maintained preferable cell viability and could be sustainably used for further MenSC-CM preparation. Moreover, the in vivo results further confirmed the improvement of MenSC-CM on promoting skin wound healing. Consequently, our results not only provide support for optimizing MSC-CM sustainable preparation based on various MSCs but also promote the comprehensive application of MenSCs in the clinic.
Collapse
Affiliation(s)
- Lingrui Shang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, East of JinSui Road, Xinxiang, 453003 Henan Province China
| | - Ruiyun Zhang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, East of JinSui Road, Xinxiang, 453003 Henan Province China
| | - Jiaxing Yan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003 China
| | - Yilin Lu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, East of JinSui Road, Xinxiang, 453003 Henan Province China
| | - Shenghui Zhang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, East of JinSui Road, Xinxiang, 453003 Henan Province China
| | - Yuliang Sun
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, East of JinSui Road, Xinxiang, 453003 Henan Province China ,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003 China
| | - Hongbin Cheng
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003 China ,The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039 China
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, East of JinSui Road, Xinxiang, 453003 Henan Province China
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, East of JinSui Road, Xinxiang, 453003 Henan Province China ,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003 China
| |
Collapse
|
31
|
Paracrine and Autocrine Effects of VEGF Are Enhanced in Human eMSC Spheroids. Int J Mol Sci 2022; 23:ijms232214324. [PMID: 36430800 PMCID: PMC9695450 DOI: 10.3390/ijms232214324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The mechanisms underlying the therapeutic potential of MSCs are the focus of intense research. We studied human MSCs isolated from desquamated endometrium (eMSCs), which, as previously shown, have high regenerative potential in various disease models. The aim was to evaluate the role of secreted VEGF in stimulating angiogenesis and maintaining eMSC viability and migration, which is important for improving the therapeutic properties of MSCs. We compared three eMSC cultures differing in the level of VEGF secretion: 3D spheroids, monolayer eMSCs, and monolayer eMSCs with VEGF knockdown. Spheroid eMSCs produced higher amounts of VEGF and had the strongest paracrine effect on HUVEC. eMSCs with VEGF knockdown did not stimulate angiogenesis. Monolayered eMSCs expressed VEGFR1, while spheroid eMSCs expressed both VEGFR1 and VEGFR2 receptors. The knockdown of VEGF caused a significant decrease in the viability and migration of eMSCs. eMSCs from 3D spheroids enhanced proliferation and migration in response to exogenous VEGF, in contrast to monolayered eMSCs. Our results suggest that the VEGF-VEGFR1 loop appears to be autocrine-involved in maintaining the viability of eMSCs, and VEGFR2 expression enhances their response to exogenous VEGF, so the angiogenic potential of eMSC can be up- or downregulated by intrinsic VEGF signals.
Collapse
|
32
|
Choi M, Yang YB, Park S, Rahaman S, Tripathi G, Lee BT. Effect of Co-culture of mesenchymal stem cell and glomerulus endothelial cell to promote endothelialization under optimized perfusion flow rate in whole renal ECM scaffold. Mater Today Bio 2022; 17:100464. [PMID: 36325425 PMCID: PMC9619032 DOI: 10.1016/j.mtbio.2022.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
In recent era, many researches on implantable bio-artificial organs has been increased owing to large gap between donors and receivers. Comprehensive organ based researches on perfusion culture for cell injury using different flow rate have not been conducted at the cellular level. The present study investigated the co-culture of rat glomerulus endothelial cell (rGEC) and rat bone marrow mesenchymal stem cells (rBMSC) to develop micro vascularization in the kidney scaffolds culturing by bioreactor system. To obtain kidney scaffold, extracted rat kidneys were decellularized by 1% sodium dodecyl sulfate (SDS), 1% triton X-100, and distilled water. Expanded rGECs were injected through decellularized kidney scaffold artery and cultured using bioreactor system. Vascular endothelial cells adhered and proliferated on the renal ECM scaffold in the bioreactor system for 3, 7 and 14 days. Static, 1 ml/min and 2 ml/min flow rates (FR) were tested and among them, 1 ml/min flow rate was selected based on cell viability, glomerulus character, inflammation/endothelialization proteins expression level. However, the flow injury was still existed on primary cell cultured at vessel in kidney scaffold. Therefore, co-culture of rGEC + rBMSC found suitable to possibly solve this problem and resulted increased cell proliferation and micro-vascularization in the glomerulus, reducing inflammation and cell death which induced by flow injury. The optimized perfusion rate under rGEC + rBMSC co-culture conditions resulted in enhanced endocellularization to make ECM derived implantable renal scaffold and might be useful as a way of treatment of the acute renal failure.
Collapse
Affiliation(s)
- Minji Choi
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, South Korea
| | - Yu-Bin Yang
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| | - Seongsu Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, South Korea
| | - Sohanur Rahaman
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, South Korea
| | - Garima Tripathi
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, South Korea,Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea,Corresponding author. Department of Regenerative Medicine, College of Medicine, Soonchunhyang University.
| |
Collapse
|
33
|
Urrata V, Trapani M, Franza M, Moschella F, Di Stefano AB, Toia F. Analysis of MSCs' secretome and EVs cargo: Evaluation of functions and applications. Life Sci 2022; 308:120990. [PMID: 36155182 DOI: 10.1016/j.lfs.2022.120990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Valentina Urrata
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marco Trapani
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy
| | - Mara Franza
- Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Francesco Moschella
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Anna Barbara Di Stefano
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Francesca Toia
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
34
|
Pignatelli C, Campo F, Neroni A, Piemonti L, Citro A. Bioengineering the Vascularized Endocrine Pancreas: A Fine-Tuned Interplay Between Vascularization, Extracellular-Matrix-Based Scaffold Architecture, and Insulin-Producing Cells. Transpl Int 2022; 35:10555. [PMID: 36090775 PMCID: PMC9452644 DOI: 10.3389/ti.2022.10555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Intrahepatic islet transplantation is a promising β-cell replacement strategy for the treatment of type 1 diabetes. Instant blood-mediated inflammatory reactions, acute inflammatory storm, and graft revascularization delay limit islet engraftment in the peri-transplant phase, hampering the success rate of the procedure. Growing evidence has demonstrated that islet engraftment efficiency may take advantage of several bioengineering approaches aimed to recreate both vascular and endocrine compartments either ex vivo or in vivo. To this end, endocrine pancreas bioengineering is an emerging field in β-cell replacement, which might provide endocrine cells with all the building blocks (vascularization, ECM composition, or micro/macro-architecture) useful for their successful engraftment and function in vivo. Studies on reshaping either the endocrine cellular composition or the islet microenvironment have been largely performed, focusing on a single building block element, without, however, grasping that their synergistic effect is indispensable for correct endocrine function. Herein, the review focuses on the minimum building blocks that an ideal vascularized endocrine scaffold should have to resemble the endocrine niche architecture, composition, and function to foster functional connections between the vascular and endocrine compartments. Additionally, this review highlights the possibility of designing bioengineered scaffolds integrating alternative endocrine sources to overcome donor organ shortages and the possibility of combining novel immune-preserving strategies for long-term graft function.
Collapse
Affiliation(s)
- Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Campo
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Neroni
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
35
|
Azizi Z, Abbaszadeh R, Sahebnasagh R, Norouzy A, Motevaseli E, Maedler K. Bone marrow mesenchymal stromal cells for diabetes therapy: touch, fuse, and fix? Stem Cell Res Ther 2022; 13:348. [PMID: 35883121 PMCID: PMC9327419 DOI: 10.1186/s13287-022-03028-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) have anti-inflammatory and pro-survival properties. Naturally, they do not express human leukocyte antigen class II surface antigens and have immunosuppressive capabilities. Together with their relatively easy accessibility and expansion, they are an attractive tool for organ support in transplantation and regenerative therapy. Autologous BM-MSC transplantation alone or together with transplanted islets improves β-cell function, graft survival, and glycemic control in diabetes. Albeit MSCs’ capacity to transdifferentiate into β-cell is limited, their protective effects are mediated mainly by paracrine mechanisms through BM-MSCs circulating through the body. Direct cell–cell contact and spontaneous fusion of BM-MSCs with injured cells, although at a very low rate, are further mechanisms of their supportive effect and for tissue regeneration. Diabetes is a disease of long-term chronic inflammation and cell therapy requires stable, highly functional cells. Several tools and protocols have been developed by mimicking natural fusion events to induce and accelerate fusion in vitro to promote β-cell-specific gene expression in fused cells. BM-MSC-islet fusion before transplantation may be a strategy for long-term islet survival and improved function. This review discusses the cell-protective and anti-inflammatory characteristics of BM-MSCs to boost highly functional insulin-producing cells in vitro and in vivo, and the efficacy of their fusion with β-cells as a path to promote β-cell regeneration.
Collapse
Affiliation(s)
- Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St, Keshavarz Blvd., Tehran, Iran.
| | - Roya Abbaszadeh
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St, Keshavarz Blvd., Tehran, Iran
| | - Amir Norouzy
- Department of Energy & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St, Keshavarz Blvd., Tehran, Iran
| | - Kathrin Maedler
- Islet Biology Laboratory, Centre for Biomolecular Interactions Bremen, University of Bremen,, Leobener Straße 5, NW2, 28359, Bremen, Germany.
| |
Collapse
|
36
|
Liu P, Qin L, Liu C, Mi J, Zhang Q, Wang S, Zhuang D, Xu Q, Chen W, Guo J, Wu X. Exosomes Derived From Hypoxia-Conditioned Stem Cells of Human Deciduous Exfoliated Teeth Enhance Angiogenesis via the Transfer of let-7f-5p and miR-210-3p. Front Cell Dev Biol 2022; 10:879877. [PMID: 35557954 PMCID: PMC9086315 DOI: 10.3389/fcell.2022.879877] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/18/2022] [Indexed: 01/08/2023] Open
Abstract
Physiological root resorption of deciduous teeth is a normal phenomenon. How the angiogenesis process is regulated to provide adequate levels of oxygen and nutrients in hypoxic conditions when the dental pulp tissue is reduced at the stage of root resorption is not fully understood. In this study, we designed hypoxic preconditioning (2%) to mimic the physiological conditions. We isolated exosomes from hypoxic-preconditioned SHED (Hypo-exos) cells and from normally cultured SHED cells (Norm-exos). We found that treatment with Hypo-exos significantly enhanced the growth, migration and tube formation of endothelial cells in vitro compared with Norm-exos. We also performed matrigel plug assays in vivo and higher expression of VEGF and higher number of lumenal structures that stained positive for CD31 were found in the Hypo-exos treated group. To understand the potential molecular mechanism responsible for the positive effects of Hypo-exos, we performed exosomal miRNA sequencing and validated that Hypo-exos transferred both let-7f-5p and miR-210-3p to promote the tube formation of endothelial cells. Further study revealed that those two miRNAs regulate angiogenesis via the let-7f-5p/AGO1/VEGF and/or miR-210-3p/ephrinA3 signal pathways. Finally, we found that the increased release of exosomes regulated by hypoxia treatment may be related to Rab27a. Taking these data together, the present study demonstrates that exosomes derived from hypoxic-preconditioned SHED cells promote angiogenesis by transferring let-7f-5p and miR-210-3p, which suggests that they can potentially be developed as a novel therapeutic approach for pro-angiogenic therapy in tissue regeneration engineering.
Collapse
Affiliation(s)
- Panpan Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Department of Pediatrics Dentistry, Department of Preventive Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Lihong Qin
- Department of Stomatology, Weihai Hospital of Traditional Chinese Medicine, Weihai, China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qun Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shuangshuang Wang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dexuan Zhuang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qiuping Xu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Wenqian Chen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jing Guo
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Ningbo, China
- Savaid Stomatology School, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xunwei Wu, ; Jing Guo,
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Ningbo, China
- Savaid Stomatology School, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xunwei Wu, ; Jing Guo,
| |
Collapse
|
37
|
Binlateh T, Thammanichanon P, Rittipakorn P, Thinsathid N, Jitprasertwong P. Collagen-Based Biomaterials in Periodontal Regeneration: Current Applications and Future Perspectives of Plant-Based Collagen. Biomimetics (Basel) 2022; 7:34. [PMID: 35466251 PMCID: PMC9036199 DOI: 10.3390/biomimetics7020034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Collagen is the most widely distributed protein in human body. Within the field of tissue engineering and regenerative medical applications, collagen-based biomaterials have been extensively growing over the past decades. The focus of this review is mainly on periodontal regeneration. Currently, multiple innovations of collagen-based biomaterials have evolved, from hemostatic collagen sponges to bone/tissue regenerative scaffolds and injectable collagen matrices for gene or cell regenerative therapy. Collagen sources also differ from animal to marine and plant-extracted recombinant human type I collagen (rhCOL1). Animal-derived collagen has a number of substantiated concerns such as pathogenic contamination and transmission and immunogenicity, and rhCOL1 is a potential solution to those aforementioned issues. This review presents a brief overview of periodontal regeneration. Also, current applications of collagen-based biomaterials and their mechanisms for periodontal regeneration are provided. Finally, special attention is paid to mechanical, chemical, and biological properties of rhCOL1 in pre-clinical and clinical studies, and its future perspectives in periodontal regeneration are discussed.
Collapse
Affiliation(s)
- Thunwa Binlateh
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Peungchaleoy Thammanichanon
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.T.); (P.R.); (N.T.)
| | - Pawornwan Rittipakorn
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.T.); (P.R.); (N.T.)
| | - Natthapol Thinsathid
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.T.); (P.R.); (N.T.)
| | - Paiboon Jitprasertwong
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.T.); (P.R.); (N.T.)
| |
Collapse
|
38
|
Giri J, Moll G. MSCs in Space: Mesenchymal Stromal Cell Therapeutics as Enabling Technology for Long-Distance Manned Space Travel. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00207-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abstract
Purpose of Review
Advancements in space travel, such as space tourism into Earth’s orbit, but also the prospect of long-distance manned space travel to other celestial bodies such as Mars, has generated a clinical need for new enabling technologies to support the long-term well-being of humans during their passage. Here, we will give an outline on the clinical need and practical considerations to MSC therapy as enabling technology for long-distance manned space travel.
Recent Findings
Long-distance space travel entails a threat to the health of astronaut crews due to the low gravity environment and exposure to toxic radiation in space. Multi-organ-system degenerative changes, such as decline in musculoskeletal, hematopoietic, immune system function, and in particular risk of genetic mutations and cancer, are major health concerns. Physical training, pharmacological agents, and protective shielding are among the currently available methods to counteract harmful effects. However, a potential lack of adequate shielding, side effects of pharmacological compounds, and limitations to physical training suggest a need for new countermeasures, to protect space travellers to the best extent. Here, the prospect of cell-based therapy, e.g. mesenchymal stromal/stem cells (MSCs), has been subject to intense research, due to their potent regenerative and immunomodulatory properties. Off-the-shelf MSC therapeutics can be easily maintained in space due to the ambient extremely low-temperature environment, and cryorecovery and even culturing of MSCs under microgravity were shown to be feasible.
Summary
Designing new therapy against harmful radiation is urgent need in space travel. Here we will discuss aspects related to clinical MSC administration to optimize their therapeutic benefit. MSC-based therapy may aid in evolving protective countermeasures for space travellers.
Collapse
|
39
|
Chouw A, Facicilia G, Sartika CR, Faried A, Milanda T. Factors Influencing the Therapeutic Potential of the MSC-derived Secretome. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-021-00242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Aguiar Koga BA, Fernandes LA, Fratini P, Sogayar MC, Carreira ACO. Role of MSC-derived small extracellular vesicles in tissue repair and regeneration. Front Cell Dev Biol 2022; 10:1047094. [PMID: 36935901 PMCID: PMC10014555 DOI: 10.3389/fcell.2022.1047094] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/07/2022] [Indexed: 03/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are crucial for tissue homeostasis and repair, secreting vesicles to the extracellular environment. Isolated exosomes were shown to affect angiogenesis, immunomodulation and tissue regeneration. Numerous efforts have been dedicated to describe the mechanism of action of these extracellular vesicles (EVs) and guarantee their safety, since the final aim is their therapeutic application in the clinic. The major advantage of applying MSC-derived EVs is their low or inexistent immunogenicity, prompting their use as drug delivery or therapeutic agents, as well as wound healing, different cancer types, and inflammatory processes in the neurological and cardiovascular systems. MSC-derived EVs display no vascular obstruction effects or apparent adverse effects. Their nano-size ensures their passage through the blood-brain barrier, demonstrating no cytotoxic or immunogenic effects. Several in vitro tests have been conducted with EVs obtained from different sources to understand their biology, molecular content, signaling pathways, and mechanisms of action. Application of EVs to human therapies has recently become a reality, with clinical trials being conducted to treat Alzheimer's disease, retina degeneration, and COVID-19 patients. Herein, we describe and compare the different extracellular vesicles isolation methods and therapeutic applications regarding the tissue repair and regeneration process, presenting the latest clinical trial reports.
Collapse
Affiliation(s)
- Bruna Andrade Aguiar Koga
- Cell and Molecular Therapy Group (NUCEL), School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Letícia Alves Fernandes
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Group (NUCEL), School of Medicine, University of São Paulo, São Paulo, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Cell and Molecular Therapy Group (NUCEL), School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil
- *Correspondence: Ana Claudia Oliveira Carreira, ,
| |
Collapse
|
41
|
Conditioned Medium from Bone Marrow Mesenchymal Stem Cells Restored Oxidative Stress-Related Impaired Osteogenic Differentiation. Int J Mol Sci 2021; 22:ijms222413458. [PMID: 34948255 PMCID: PMC8706339 DOI: 10.3390/ijms222413458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress from high levels of intracellular reactive oxygen species (ROS) has been linked to various bone diseases. Previous studies indicate that mesenchymal stem cells (MSC) secrete bioactive factors (conditioned medium (MSC-CM)) that have antioxidant effects. However, the antioxidant role of MSC-CM on osteogenesis has not been fully studied. We aimed to identify antioxidant proteins in MSC-CM using mass spectrometry-based proteomics and to explore their effects on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSC) exposed to oxidative stress induced by hydrogen peroxide (H2O2). Our analysis revealed that MSC-CM is comprised of antioxidant proteins that are involved in several biological processes, including negative regulation of apoptosis and positive regulation of cell proliferation. Then, hBMSC exposed to H2O2 were treated with MSC-CM, and the effects on their osteogenic differentiation were evaluated. MSC-CM restored H2O2-induced damage to hBMSC by increasing the antioxidant enzyme-SOD production and the mRNA expression level of the anti-apoptotic BCL-2. A decrease in ROS production and cellular apoptosis was also shown. MSC-CM also modulated mRNA expression levels of osteogenesis-related genes, runt-related transcription factor 2, collagen type I, bone morphogenic protein 2, and osteopontin. Furthermore, collagen type I protein secretion, alkaline phosphatase activity, and in vitro mineralization were increased. These results indicate that MSC-CM contains several proteins with antioxidant and anti-apoptotic properties that restored the impaired hBMSC osteogenic differentiation associated with oxidative stress.
Collapse
|
42
|
Wang Y, Ma D, Wu Z, Yang B, Li R, Zhao X, Yang H, Zhang L. Clinical application of mesenchymal stem cells in rheumatic diseases. Stem Cell Res Ther 2021; 12:567. [PMID: 34753496 PMCID: PMC8579678 DOI: 10.1186/s13287-021-02635-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells derived from mesoderm during early development that are characterized by high self-renewal ability and multidirectional differentiation potential. These cells are present various tissues in the human body and can be cultured in vitro. Under specific conditions, MSCs can differentiate into osteoblasts, neuron-like cells, adipocytes and muscle cells and so on, therefore, have a great application value in cell replacement therapy and tissue repair. In recent years, the application of MSCs in rheumatic diseases has received increasing attention. On the one hand, MSCs have the ability to differentiate into bone and cartilage cells; on the other hand, these stem cells are also involved in immune regulation, resulting in the alleviation of inflammation and anti-fibrotic properties and the promotion of vascular repair, thus bringing new hope for the treatment of rheumatic diseases. This article reviews the clinical progress in MSC application for the treatment of rheumatic diseases.
Collapse
Affiliation(s)
- Yajing Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zewen Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Baoqi Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Rong Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xingxing Zhao
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Helin Yang
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
43
|
Feng ZY, Yang SD, Wang T, Guo S. Effect of Melatonin for Regulating Mesenchymal Stromal Cells and Derived Extracellular Vesicles. Front Cell Dev Biol 2021; 9:717913. [PMID: 34540834 PMCID: PMC8440901 DOI: 10.3389/fcell.2021.717913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Melatonin is a hormone, synthesized in the pineal gland, which primarily controls the circadian rhythm of the body. In recent years, melatonin has also been shown to regulate metabolism, provide neuroprotection, and act as an anti-inflammatory, free radical scavenger. There has also been a recent research interest in the role of melatonin in regulating mesenchymal stromal cells (MSCs). MSCs are pivotal for their ability to differentiate into a variety of different tissues. There is also increasing evidence for the therapeutic prospects of MSCs via paracrine signaling. In addition to secreting cytokines and chemokines, MSCs can secrete extracellular vesicles (EVs), allowing them to respond to injury and promote tissue regeneration. While there has been a major research interest in the use of MSCs for regenerative medicine, the clinical application is limited by many risks, including tumorigenicity, senescence, and sensitivity to toxic environments. The use of MSC-derived EVs for cell-free therapy can potentially avoid the disadvantages of MSCs, which makes this an exciting prospect for regenerative medicine. Prior research has shown that MSCs, via paracrine mechanisms, can identify receptor-independent responses to melatonin and then activate a series of downstream pathways, which exert a variety of effects, including anti-tumor and anti-inflammatory effects. Here we review the synthesis of melatonin, its mechanisms of action, and the effect of melatonin on MSCs via paracrine signaling. Furthermore, we summarize the current clinical applications of melatonin and discuss future prospects.
Collapse
Affiliation(s)
- Zi-Yi Feng
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shu-De Yang
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ting Wang
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
44
|
Wang J, Wu H, Peng Y, Zhao Y, Qin Y, Zhang Y, Xiao Z. Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of PI3K/Akt pathways. J Nanobiotechnology 2021; 19:202. [PMID: 34233694 PMCID: PMC8261989 DOI: 10.1186/s12951-021-00942-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
Refractory diabetic wounds can cause persistent inflammation and delayed healing due to hypoxia. Currently, no optimal solution is available. Exosomes of adipose stem cells (ADSCs-exo) may promote skin wound healing, however, molecular mechanisms remains mysterious. We found significantly enhanced survival and proliferation of adipose stem cells after hypoxia induction compared to normoxia. Here, we aimed to investigate if hypoxic adipose stem cells exosomes (HypADSCs-exo) participate in hypoxia adaptability and accelerate diabetic wound healing. Based on high-throughput sequencing, 215 microRNAs (miRNAs) were upregulated and 369 miRNAs downregulated in HypADSCs-exo compared to ADSCs-exo. Up-regulated miR-21-3p, miR-126-5p, miR-31-5p whereas down-regulated gene miR-99b and miR-146-a correlated with wound healing. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), miRNAs might regulate cell metabolism, differentiation and Transforming growth factor-β (TGF-β) function. Consistently, HpyADSCs-exo could promote diabetic wounds healing and inhibit inflammation through PI3K/AKT signaling pathway. Collectively, HpyADSCs-exo can promote diabetic wound healing as an alternative strategy to improve wound healing.
Collapse
Affiliation(s)
- Jie Wang
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hao Wu
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yixuan Peng
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yue Zhao
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Youyou Qin
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yingbo Zhang
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Zhibo Xiao
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
45
|
Manjua AC, Cabral JMS, Ferreira FC, Portugal CAM. Magnetic Field Dynamic Strategies for the Improved Control of the Angiogenic Effect of Mesenchymal Stromal Cells. Polymers (Basel) 2021; 13:1883. [PMID: 34204049 PMCID: PMC8201388 DOI: 10.3390/polym13111883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023] Open
Abstract
This work shows the ability to remotely control the paracrine performance of mesenchymal stromal cells (MSCs) in producing an angiogenesis key molecule, vascular endothelial growth factor (VEGF-A), by modulation of an external magnetic field. This work compares for the first time the application of static and dynamic magnetic fields in angiogenesis in vitro model, exploring the effect of magnetic field intensity and dynamic regimes on the VEGF-A secretion potential of MSCs. Tissue scaffolds of gelatin doped with iron oxide nanoparticles (MNPs) were used as a platform for MSC proliferation. Dynamic magnetic field regimes were imposed by cyclic variation of the magnetic field intensity in different frequencies. The effect of the magnetic field intensity on cell behavior showed that higher intensity of 0.45 T was associated with increased cell death and a poor angiogenic effect. It was observed that static and dynamic magnetic stimulation with higher frequencies led to improved angiogenic performance on endothelial cells in comparison with a lower frequency regime. This work showed the possibility to control VEGF-A secretion by MSCs through modulation of the magnetic field, offering attractive perspectives of a non-invasive therapeutic option for several diseases by revascularizing damaged tissues or inhibiting metastasis formation during cancer progression.
Collapse
Affiliation(s)
- Ana C. Manjua
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal;
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Carla A. M. Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal;
| |
Collapse
|
46
|
Xie J, Li X, Zhang Y, Tang T, Chen G, Mao H, Gu Z, Yang J. VE-cadherin-based matrix promoting the self-reconstruction of pro-vascularization microenvironments and endothelial differentiation of human mesenchymal stem cells. J Mater Chem B 2021; 9:3357-3370. [PMID: 33881442 DOI: 10.1039/d1tb00017a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Regulating the secretion and endothelial differentiation of human mesenchymal stem cells (hMSCs) plays an important role in the vascularization in tissue engineering and regenerative medicine. In this study, a recombinant cadherin fusion protein consisting of a human vascular endothelial-cadherin extracellular domain and immunoglobulin IgG Fc region (hVE-cad-Fc) was developed as a bioartificial matrix for modulating hMSCs. The hVE-cad-Fc matrix significantly enhanced the secretion of angiogenic factors, activated the VE-cadherin-VEGFR2/FAK-AKT/PI3K signaling pathway in hMSCs, and promoted the endothelial differentiation of hMSCs even without extra VEGF. Furthermore, the hVE-cad-Fc matrix was applied for the surface modification of a poly (lactic-co-glycolic acid) (PLGA) porous scaffold, which significantly improved the hemocompatibility and vascularization of the PLGA scaffold in vivo. These results revealed that the hVE-cad-Fc matrix should be a superior bioartificial ECM for remodeling the pro-vascularization extracellular microenvironment by regulating the secretion of hMSCs, and showed great potential for the vascularization in tissue engineering.
Collapse
Affiliation(s)
- Jinghui Xie
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Hanga MP, Nienow AW, Murasiewicz H, Pacek AW, Hewitt CJ, Coopman K. Expansion of human mesenchymal stem/stromal cells on temporary liquid microcarriers. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2021; 96:930-940. [PMID: 33776183 PMCID: PMC7984227 DOI: 10.1002/jctb.6601] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Traditional large-scale culture systems for human mesenchymal stem/stromal cells (hMSCs) use solid microcarriers as attachment substrates. Although the use of such substrates is advantageous because of the high surface-to-volume ratio, cell harvest from the same substrates is a challenge as it requires enzymatic treatment, often combined with agitation. Here, we investigated a two-phase system for expansion and non-enzymatic recovery of hMSCs. Perfluorocarbon droplets were dispersed in a protein-rich growth medium and were used as temporary liquid microcarriers for hMSC culture. RESULTS hMSCs successfully attached to these liquid microcarriers, exhibiting similar morphologies to those cultured on solid ones. Fold increases of 3.03 ± 0.98 (hMSC1) and 3.81 ± 0.29 (hMSC2) were achieved on day 9. However, the maximum expansion folds were recorded on day 4 (4.79 ± 0.47 (hMSC1) and 4.856 ± 0.7 (hMSC2)). This decrease was caused by cell aggregation upon reaching confluency due to the contraction of the interface between the two phases. Cell quality, as assessed by differentiation, cell surface marker expression and clonogenic ability, was retained post expansion on the liquid microcarriers. Cell harvesting was achieved non-enzymatically in two steps: first by inducing droplet coalescence and then aspirating the interface. Quality characteristics of hMSCs continued to be retained even after inducing droplet coalescence. CONCLUSION The prospect of a temporary microcarrier that can be used to expand cells and then 'disappear' for cell release without using proteolytic enzymes is a very exciting one. Here, we have demonstrated that hMSCs can attach and proliferate on these perfluorocarbon liquid microcarriers while, very importantly, retaining their quality.
Collapse
Affiliation(s)
- Mariana P Hanga
- Department of Biosciences, School of Life and Health SciencesAston UniversityBirminghamUK
- Centre for Biological Engineering, School of AACME, Chemical Engineering DepartmentLoughborough UniversityLoughboroughUK
| | - Alvin W Nienow
- Department of Biosciences, School of Life and Health SciencesAston UniversityBirminghamUK
- Centre for Biological Engineering, School of AACME, Chemical Engineering DepartmentLoughborough UniversityLoughboroughUK
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Halina Murasiewicz
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
- Faculty of Chemical Technology and EngineeringWest Pomeranian University of TechnologySzczecinPoland
| | - Andrzej W Pacek
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Christopher J Hewitt
- Department of Biosciences, School of Life and Health SciencesAston UniversityBirminghamUK
- Centre for Biological Engineering, School of AACME, Chemical Engineering DepartmentLoughborough UniversityLoughboroughUK
| | - Karen Coopman
- Centre for Biological Engineering, School of AACME, Chemical Engineering DepartmentLoughborough UniversityLoughboroughUK
| |
Collapse
|
48
|
Xu L, Willumeit-Römer R, Luthringer-Feyerabend BJC. Mesenchymal Stem Cell and Oxygen Modulate the Cocultured Endothelial Cells in the Presence of Magnesium Degradation Products. ACS APPLIED BIO MATERIALS 2021; 4:2398-2407. [DOI: 10.1021/acsabm.0c01289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lei Xu
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht 21502, Germany
| | - Regine Willumeit-Römer
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht 21502, Germany
| | | |
Collapse
|
49
|
Zhu D, Cheng K. Cardiac Cell Therapy for Heart Repair: Should the Cells Be Left Out? Cells 2021; 10:641. [PMID: 33805763 PMCID: PMC7999733 DOI: 10.3390/cells10030641] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is still the leading cause of death worldwide. Coronary artery occlusion, or myocardial infarction (MI) causes massive loss of cardiomyocytes. The ischemia area is eventually replaced by a fibrotic scar. From the mechanical dysfunctions of the scar in electronic transduction, contraction and compliance, pathological cardiac dilation and heart failure develops. Once end-stage heart failure occurs, the only option is to perform heart transplantation. The sequential changes are termed cardiac remodeling, and are due to the lack of endogenous regenerative actions in the adult human heart. Regenerative medicine and biomedical engineering strategies have been pursued to repair the damaged heart and to restore normal cardiac function. Such strategies include both cellular and acellular products, in combination with biomaterials. In addition, substantial progress has been made to elucidate the molecular and cellular mechanisms underlying heart repair and regeneration. In this review, we summarize and discuss current therapeutic approaches for cardiac repair and provide a perspective on novel strategies that holding potential opportunities for future research and clinical translation.
Collapse
Affiliation(s)
- Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
50
|
Liu Y, Holmes C. Tissue Regeneration Capacity of Extracellular Vesicles Isolated From Bone Marrow-Derived and Adipose-Derived Mesenchymal Stromal/Stem Cells. Front Cell Dev Biol 2021; 9:648098. [PMID: 33718390 PMCID: PMC7952527 DOI: 10.3389/fcell.2021.648098] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapies have demonstrated tissue repair and regeneration capacity in various preclinical models. These therapeutic effects have recently been largely attributed to the paracrine effects of the MSC secretome, including proteins and extracellular vesicles (EVs). EVs are cell-secreted nano-sized vesicles with lipid bilayer membranes that facilitate cell–cell signaling. Treatments based on MSC-derived EVs are beginning to be explored as an alternative to MSC transplantation-based therapies. However, it remains to be determined which MSC source produces EVs with the greatest therapeutic potential. This review compares the tissue regeneration capacity of EVs isolated from the two most common clinical sources of adult MSCs, bone marrow and adipose tissue, with a particular focus on their angiogenic, osteogenic, and immunomodulatory potentials. Other important issues in the development of MSC-derived EV based therapies are also discussed.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, Tallhassee, FL, United States
| | - Christina Holmes
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, Tallhassee, FL, United States
| |
Collapse
|