1
|
D'Amato A, Altomare A, Gilardoni E, Baron G, Carini M, Melloni E, Padoani G, Vailati S, Caponetti G, Aldini G. A quantitative proteomic approach to evaluate the efficacy of carnosine in a murine model of chronic obstructive pulmonary disease (COPD). Redox Biol 2024; 77:103374. [PMID: 39393288 DOI: 10.1016/j.redox.2024.103374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
The aim of the work was to study a dose-dependent effect of inhaled carnosine (10, 50 or 100 mg/kg/day) in mice exposed to cigarette smoke as a model of chronic obstructive pulmonary disease (COPD). A dose-dependent loading of the dipeptide in lung tissue and bronchoalveolar lavage (BAL) was firstly demonstrated by LC-ESI-MS analysis. Cigarette smoke exposure induced a significant lung inflammation and oxidative stress in mice which was dose-dependently reduced by carnosine. Inflammation was firstly evaluated by measuring the cytokines content in the BAL. All the measured cytokines were found significantly higher in the smoke group in respect to control, although the data are affected by a significant variability. Carnosine was found effective only at the highest dose tested and significantly only for keratinocyte-derived cytokine (KC). Due to the high variability of cytokines, a quantitative proteomic approach to better understand the functional effect of carnosine and its molecular mechanisms was used. Proteomic data clearly indicate that smoke exposure had a great impact on lung tissue with 692 proteins differentially expressed above a threshold of 1.5-fold. Protein network analysis identified the activation of some pathways characteristic of COPD, including inflammatory response, fibrosis, induction of immune system by infiltration and migration of leukocyte pathways, altered pathway of calcium metabolism and oxidative stress. Carnosine at the tested dose of 100 mg/kg was found effective in reverting all the pathways evoked by smoke. Only a partial reverse of the dysregulated proteins was evident at low- and mid-tested doses, although, for some specific proteins, indicating an overall dose-dependent effect. Regarding the molecular mechanisms involved, we found that carnosine upregulated some key enzymes related to Nrf2 activation and in particular glutathione peroxidase, reductase, transferase, SOD, thioredoxins, and carbonyl reductase. Such mechanism would explain the antioxidant and anti-inflammatory effects of the dipeptide.
Collapse
Affiliation(s)
- Alfonsina D'Amato
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Elsa Melloni
- Zambon S.p.A., Via Lillo del Duca 11, 20091, Bresso, Italy
| | - Gloria Padoani
- Zambon S.p.A., Via Lillo del Duca 11, 20091, Bresso, Italy
| | - Silvia Vailati
- Zambon S.p.A., Via Lillo del Duca 11, 20091, Bresso, Italy
| | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
2
|
Andreozzi P, Gussoni G, Sesti G, Montano N, Pietrangelo A. Impact of electronic cigarettes (e-cigs) and heat-not-burn/heated tobacco products (HnB/HTP) on asthma and chronic obstructive pulmonary disease: a viewpoint of the Italian Society of Internal Medicine. Intern Emerg Med 2024; 19:1829-1837. [PMID: 38806787 PMCID: PMC11467123 DOI: 10.1007/s11739-024-03648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
The association of cigarette smoking with several severe and very severe diseases (oncological, cardiovascular, respiratory) which have dramatic epidemiological, medical, and financial impact, is a well-known public threat. Asthma and chronic obstructive pulmonary disease (COPD) are highly prevalent diseases in Italy, posing significant public health challenges. Tobacco smoking, a primary risk factor for COPD and a common asthma trigger, remains a critical preventable public health issue. While universally acknowledged that quitting smoking drastically reduces the risk of smoking-related health issues, a significant portion of smokers and patients find quitting challenging or undesirable, hence a need for new ways to deal with it. A worth considering alternative might be the switch to electronic cigarettes (e-cig), and heat-not-burn/heated tobacco products (HnB/HTP). Emerging evidence suggests potential benefits in asthma and COPD management when transitioning from traditional smoking to e-cigs or HnB devices. However, the effectiveness of these products in facilitating smoking cessation is still debated, alongside concerns about their role in promoting smoking initiation among non-smokers. Internists are among the physicians who most frequently assist patients with smoking-related diseases, and in this perspective they cannot avoid paying attention to the progressive diffusion of smoking products alternative to the traditional cigarette, and to the controversies with respect to their use. In this context, the Italian Society of Internal Medicine, also recognizing a growing need for clarity for healthcare providers, has undertaken a comprehensive analysis of existing literature to offer an informed perspective on the health impact of e-cigs and HnB/HTP on asthma and COPD.
Collapse
Affiliation(s)
- Paola Andreozzi
- Predictive Medicine Unit, Department of Internal Medicine, Endocrine-Metabolic Sciences and Infectious Diseases, Azienda Ospedaliero Universitaria Policlinico Umberto I, Rome, Italy
| | | | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, 00189, Rome, Italy
| | - Nicola Montano
- Department of Clinical Community Sciences, University of Milan, 20122, Milan, Italy
| | - Antonello Pietrangelo
- Internal Medicine Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, Modena, Italy.
| |
Collapse
|
3
|
Tao X, Xu Z, Tian H, He J, Wang G, Tao X. Differential proteins from EVs identification based on tandem mass tags analysis and effect of Treg-derived EVs on T-lymphocytes in COPD patients. Respir Res 2024; 25:349. [PMID: 39342213 PMCID: PMC11439212 DOI: 10.1186/s12931-024-02980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a widespread respiratory disease. This study examines extracellular vesicles (EVs) and proteins contained in EVs in COPD. METHODS Blood samples were collected from 40 COPD patients and 10 health controls. Cytokines including IFN-γ, TNF-α, IL-1β, IL-6, IL-8, and IL-17, were measured by ELISA. Small EVs samples were extracted from plasma and identified by transmission electron microscope (TEM), nanoparticle tracking analysis (NTA), and Western blot. Protein components contained in EVs were analyzed by Tandem Mass Tags (TMT) to identify differential proteins. Treg-derived EV was extracted and added to isolated CD8+, Treg, and Th17 subsets to assess its effect on T-lymphocytes. RESULTS ELISA revealed higher levels of all cytokines and flow cytometry suggested a higher proportion of Treg and Th17 cells in COPD patients. After identification, TMT analysis identified 207 unique protein components, including five potential COPD biomarkers: BTRC, TRIM28, CD209, NCOA3, and SSR3. Flow cytometry revealed that Treg-derived EVs inhibited differentiation into CD8+, CD4+, and Th17 cells. CONCLUSION The study shows that cytokines, T-lymphocyte subsets differences in COPD and Treg-derived EVs influence T-lymphocyte differentiation. Identified biomarkers may assist in understanding COPD pathogenesis, prognosis, and therapy. The study contributes to COPD biomarker research.
Collapse
Affiliation(s)
- Xuefang Tao
- Department of Respiratory Medicine, The Affiliated Hospital of ShaoXing University, No. 999 Zhongxing South Road, Yuecheng District, Shaoxing, Zhejiang, 312000, China
| | - Zhisong Xu
- Department of Respiratory Medicine, The Affiliated Hospital of ShaoXing University, No. 999 Zhongxing South Road, Yuecheng District, Shaoxing, Zhejiang, 312000, China
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, No. 900 Chengnan Avenue, Yuecheng District, Shaoxing, Zhejiang, 312000, China
| | - Jingfeng He
- Department of Respiratory Medicine, The Affiliated Hospital of ShaoXing University, No. 999 Zhongxing South Road, Yuecheng District, Shaoxing, Zhejiang, 312000, China
| | - Guowen Wang
- Department of Respiratory Medicine, The Affiliated Hospital of ShaoXing University, No. 999 Zhongxing South Road, Yuecheng District, Shaoxing, Zhejiang, 312000, China
| | - Xuexia Tao
- Phase I Clinical Research Center, Hangzhou First People's Hospital of West Lake University, No. 261 Huansha Road, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
4
|
Dutta J, Singh S, Greeshma MV, Mahesh PA, Mabalirajan U. Diagnostic Challenges and Pathogenetic Differences in Biomass-Smoke-Induced versus Tobacco-Smoke-Induced COPD: A Comparative Review. Diagnostics (Basel) 2024; 14:2154. [PMID: 39410558 PMCID: PMC11475549 DOI: 10.3390/diagnostics14192154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Chronic Obstructive Pulmonary Disease (COPD) is a major global health challenge, primarily driven by exposures to tobacco smoke and biomass smoke. While Tobacco-Smoke-Induced COPD (TSCOPD) has been extensively studied, the diagnostic challenges and distinct pathogenesis of Biomass-Smoke-Induced COPD (BSCOPD), particularly in low- and middle-income countries, remain underexplored. Objective: To explore the differences in clinical manifestations, pulmonary function, and inflammatory profiles between BSCOPD and TSCOPD and highlight the diagnostic complexities of BSCOPD. Methods: This review analyzes the current literature comparing BSCOPD with TSCOPD, focusing on distinctive pathophysiological mechanisms, inflammatory markers, and oxidative stress processes. Results: BSCOPD presents differences in clinical presentation, with less emphysema, smaller airway damage, and higher rates of pulmonary hypertension compared to TSCOPD. BSCOPD is also characterized by bronchial hyperresponsiveness and significant hypoxemia, unlike TSCOPD, which exhibits severe airflow obstruction and emphysema. Additionally, the inflammatory profile of BSCOPD includes distinct mucous hypersecretion and airway remodeling. Conclusions: The unique genetic, epigenetic, and oxidative stress mechanisms involved in BSCOPD complicate its diagnosis and management. Biomass smoke's underrecognized impact on accelerated lung aging and exacerbation mechanisms emphasizes the need for targeted research to refine diagnostic criteria and management strategies for BSCOPD. Future directions: Further research should focus on identifying specific biomarkers and molecular pathways to enhance early diagnosis and improve clinical outcomes in populations exposed to biomass smoke.
Collapse
Affiliation(s)
- Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, WB, India; (J.D.); (S.S.)
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, UP, India
| | - Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, WB, India; (J.D.); (S.S.)
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, UP, India
| | - Mandya V. Greeshma
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; (M.V.G.); (P.A.M.)
| | - Padukudru Anand Mahesh
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; (M.V.G.); (P.A.M.)
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, WB, India; (J.D.); (S.S.)
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, UP, India
| |
Collapse
|
5
|
Giuranno L, Piepers JAF, Korsten E, Borman R, van de Kamp G, De Ruysscher D, Essers J, Vooijs MA. Enhanced radiation sensitivity, decreased DNA damage repair, and differentiation defects in airway stem cells derived from patients with chronic obstructive pulmonary disease. Stem Cells Transl Med 2024; 13:927-939. [PMID: 38946043 PMCID: PMC11386216 DOI: 10.1093/stcltm/szae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Radiation therapy (RT) is a common treatment for lung cancer. Still, it can lead to irreversible loss of pulmonary function and a significant reduction in quality of life for one-third of patients. Preexisting comorbidities, such as chronic obstructive pulmonary disease (COPD), are frequent in patients with lung cancer and further increase the risk of complications. Because lung stem cells are crucial for the regeneration of lung tissue following injury, we hypothesized that airway stem cells from patients with COPD with lung cancer might contribute to increased radiation sensitivity. We used the air-liquid interface model, a three-dimensional (3D) culture system, to compare the radiation response of primary human airway stem cells from healthy and patients with COPD. We found that COPD-derived airway stem cells, compared to healthy airway stem cell cultures, exhibited disproportionate pathological mucociliary differentiation, aberrant cell cycle checkpoints, residual DNA damage, reduced survival of stem cells and self-renewal, and terminally differentiated cells post-irradiation, which could be reversed by blocking the Notch pathway using small-molecule γ-secretase inhibitors. Our findings shed light on the mechanisms underlying the increased radiation sensitivity of COPD and suggest that airway stem cells reflect part of the pathological remodeling seen in lung tissue from patients with lung cancer receiving thoracic RT.
Collapse
Affiliation(s)
- Lorena Giuranno
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, 6200 MD, The Netherlands
| | - Jolanda A F Piepers
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, 6200 MD, The Netherlands
| | - Evelien Korsten
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, 6200 MD, The Netherlands
| | - Reitske Borman
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, 6200 MD, The Netherlands
| | - Gerarda van de Kamp
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, 6200 MD, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
- Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Marc A Vooijs
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
6
|
Shigematsu M, Kawamura T, Deshpande DA, Kirino Y. Immunoactive signatures of circulating tRNA- and rRNA-derived RNAs in chronic obstructive pulmonary disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102285. [PMID: 39220268 PMCID: PMC11364045 DOI: 10.1016/j.omtn.2024.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent lung disease, and macrophages play a central role in the inflammatory response in COPD. We here report a comprehensive characterization of circulating short non-coding RNAs (sncRNAs) in plasma from patients with COPD. While circulating sncRNAs are increasingly recognized for their regulatory roles and biomarker potential in various diseases, the conventional RNA sequencing (RNA-seq) method cannot fully capture these circulating sncRNAs due to their heterogeneous terminal structures. By pre-treating the plasma RNAs with T4 polynucleotide kinase, which converts all RNAs to those with RNA-seq susceptible ends (5'-phosphate and 3'-hydroxyl), we comprehensively sequenced a wide variety of non-microRNA sncRNAs, such as 5'-tRNA halves containing a 2',3'-cyclic phosphate. We discovered a remarkable accumulation of the 5'-half derived from tRNAValCAC in plasma from COPD patients, whereas the 5'-tRNAGlyGCC half is predominant in healthy donors. Further, the 5'-tRNAValCAC half activates human macrophages via Toll-like receptor 7 and induces cytokine production. Additionally, we identified circulating rRNA-derived fragments that were upregulated in COPD patients and demonstrated their ability to induce cytokine production in macrophages. Our findings provide evidence of circulating, immune-active sncRNAs in patients with COPD, suggesting that they serve as inflammatory mediators in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Deepak A. Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
7
|
Zhu Z, Zeng Z, Song B, Chen H, Zeng H. Identification of diagnostic biomarkers and immune cell profiles associated with COPD integrated bioinformatics and machine learning. J Cell Mol Med 2024; 28:e70107. [PMID: 39344484 PMCID: PMC11440088 DOI: 10.1111/jcmm.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
This retrospective transcriptomic study leveraged bioinformatics and machine learning algorithms to identify novel gene biomarkers and explore immune cell infiltration profiles associated with chronic obstructive pulmonary disease (COPD). Utilizing an integrated analysis of metadata encompassing six gene expression omnibus (GEO) microarray datasets, 987 differentially expressed genes were identified. Further gene ontology and pathway enrichment analyses revealed the enrichment of these genes across various biological processes and pathways. Moreover, a systematic integration of two machine learning algorithms along with pathway-gene correlations identified six candidate biomarkers, which were validated in a separate cohort comprising six additional microarray datasets, ultimately identifying ADD3 and GNAS as diagnostic biomarkers for COPD. Subsequently, the diagnostic efficacy of ADD3 and GNAS was assessed, and the impact of their expression levels on overall survival was further evaluated and quantified in the validation cohort. Examination of immune cell subtype infiltration found increased proportions of cytotoxic CD8+ T cells, resting and activated NK cells, along with decreased M0 and M2 macrophages, in COPD versus control samples. Correlation analyses also uncovered significant associations between ADD3 and GNAS expression and infiltration of various immune cell types. In conclusion, this study elucidates crucial COPD diagnostic biomarkers and immune cell profiles which may illuminate the immunopathological drivers of COPD progression, representing personalized therapeutic targets warranting further investigation.
Collapse
Affiliation(s)
- Zirui Zhu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Zhuo Zeng
- Xiamen University Tan Kah Kee College, Zhangzhou, China
| | - Baichen Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huishan Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huiqing Zeng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Ashique S, Mishra N, Mantry S, Garg A, Kumar N, Gupta M, Kar SK, Islam A, Mohanto S, Subramaniyan V. Crosstalk between ROS-inflammatory gene expression axis in the progression of lung disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03392-1. [PMID: 39196392 DOI: 10.1007/s00210-024-03392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
A significant number of deaths and disabilities worldwide are brought on by inflammatory lung diseases. Many inflammatory lung disorders, including chronic respiratory emphysema, resistant asthma, resistance to steroids, and coronavirus-infected lung infections, have severe variants for which there are no viable treatments; as a result, new treatment alternatives are needed. Here, we emphasize how oxidative imbalance contributes to the emergence of provocative lung problems that are challenging to treat. Endogenic antioxidant systems are not enough to avert free radical-mediated damage due to the induced overproduction of ROS. Pro-inflammatory mediators are then produced due to intracellular signaling events, which can harm the tissue and worsen the inflammatory response. Overproduction of ROS causes oxidative stress, which causes lung damage and various disease conditions. Invasive microorganisms or hazardous substances that are inhaled repeatedly can cause an excessive amount of ROS to be produced. By starting signal transduction pathways, increased ROS generation during inflammation may cause recurrent DNA damage and apoptosis and activate proto-oncogenes. This review provides information about new targets for conducting research in related domains or target factors to prevent, control, or treat such inflammatory oxidative stress-induced inflammatory lung disorders.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, 713212, India.
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, MP, 474005, India
| | - Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, 483001, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Sanjeeb Kumar Kar
- Department of Pharmaceutical Chemistry, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
9
|
Sánchez Carretero L, Cardeñosa Pérez ÀC, Peces-Barba G, Pérez-Rial S. Differential lung gene expression identified Zscan2 and Bag6 as novel tissue repair players in an experimental COPD model. PLoS One 2024; 19:e0309166. [PMID: 39172905 PMCID: PMC11340952 DOI: 10.1371/journal.pone.0309166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Chronic obstructive pulmonary disease is a common chronic lung disease with an ever-increasing incidence. Despite years of drug research and approvals, we are still not able to halt progress or restore normal lung function. Our previous studies have demonstrated that liver growth factor-LGF has an effect on the repair of the affected tissue in a mouse model of cigarette smoke exposure, but by what pathways it achieves this is unknown. The present study aimed to identify differentially expressed genes between emphysematous mice treated with LGF to identify potential therapeutic targets for the treatment of pulmonary emphysema. The emphysema mouse model was induced by prolonged exposure to cigarette smoke. To determine the gene expression profile of the lung in smokers treated or not with LGF, lung messenger RNA gene expression was assessed with the Agilent Array platform. We carried out differentially expressed gene analysis, functional enrichment and validated in treated mouse lung samples. The treated group significantly improved lung function (~35%) and emphysema level (~20%), consistent with our previous published studies. Microarray analysis demonstrated 290 differentially expressed genes in total (2.0-fold over or lower expressed). Injury repair-associated genes and pathways were further enhanced in the lung of LGF treated mice. The expression trends of two genes (Zscan2 and Bag6) were different in emphysematous lungs treated with LGF compared to untreated lungs. Therefore, Zscan2 and Bag6 genes could play a role in regulating inflammation and the immune response in the lung that undergoes partial lung regeneration. However, further studies are necessary to demonstrate this causal relationship.
Collapse
Affiliation(s)
- Laura Sánchez Carretero
- Respiratory Research Unit, Health Research Institute–Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Àdele Chole Cardeñosa Pérez
- Respiratory Research Unit, Health Research Institute–Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Germán Peces-Barba
- Respiratory Research Unit, Health Research Institute–Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Sandra Pérez-Rial
- Molecular Genetics Department, Ramón y Cajal University Hospital–IRYCIS, Madrid, Spain
- Network Biomedical Research Center for Rare Diseases, Carlos III Health Institute (CIBERER, ISCIII), Madrid, Spain
| |
Collapse
|
10
|
Kastratovic N, Cekerevac I, Sekerus V, Markovic V, Arsenijevic A, Volarevic A, Harrell CR, Jakovljevic V, Djonov V, Volarevic V. Effects of combustible cigarettes and heated tobacco products on immune cell-driven inflammation in chronic obstructive respiratory diseases. Toxicol Sci 2024; 200:265-276. [PMID: 38788227 DOI: 10.1093/toxsci/kfae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024] Open
Abstract
Since long-term effects of heated tobacco products (HTP) on the progression of chronic obstructive pulmonary disease (COPD) are unknown, we used COPD mice model to compare immune cell-dependent pathological changes in the lungs of animals which were exposed to HTP or combustible cigarettes (CCs). We also performed intracellular staining and flow cytometry analysis of immune cells which were present in the blood of CCs and HTP users who suffered from immune cell-driven chronic obstructive respiratory diseases. CCs enhanced NLRP3 inflammasome-dependent production of inflammatory cytokines in lung-infiltrated neutrophils and macrophages and increased influx of cytotoxic Th1, Th2, and Th17 lymphocytes in the lungs of COPD mice. Similarly, CCs promoted generation of inflammatory phenotype in circulating leukocytes of COPD patients. Opposite to CCs, HTP favored expansion of immunosuppressive, IL-10-producing, FoxP3-expressing T, NK, and NKT cells in inflamed lungs of COPD mice. Compared with CCs, HTP had weaker capacity to promote synthesis of inflammatory cytokines in lung-infiltrated immune cells. Significantly lower number of inflammatory neutrophils, monocytes, Th1, Th2, and Th17 lymphocytes were observed in the blood of patients who consumed HTP than in the blood of CCs users, indicating different effects of CCs and HTP on immune cells' phenotype and function.
Collapse
Affiliation(s)
- Nikolina Kastratovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Ivan Cekerevac
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Pulmonology Clinic, University Clinical Center Kragujevac, Kragujevac 34000, Serbia
| | - Vanesa Sekerus
- Institute for Pulmonary Diseases of Vojvodina, Sremska Kamenica 21204, Serbia
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Vladimir Markovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Aleksandar Arsenijevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Ana Volarevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Psychology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | | | - Vladimir Jakovljevic
- Department of Physiology, Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Vladislav Volarevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Faculty of Pharmacy Novi Sad, Novi Sad 21000, Serbia
| |
Collapse
|
11
|
Xie Y, Li Z, Liang Y, Zhou T, Yuan X, Su X, Zhang Z, Zhang J, Wan Y, Su L, Lu T, Zhao X, Fu Y. Revealing the Mechanisms of Qilongtian Capsules in the Treatment of Chronic Obstructive Pulmonary Disease Based on Integrated Network Pharmacology, Molecular Docking, and In Vivo Experiments. ACS OMEGA 2024; 9:32455-32468. [PMID: 39100362 PMCID: PMC11292813 DOI: 10.1021/acsomega.3c10163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/30/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
The Qilongtian capsule (QLT) is a Chinese patent medicine that has been approved for the treatment of chronic obstructive pulmonary disease (COPD). However, the precise pharmacodynamic material basis and molecular mechanism have not been well illustrated. In this study, we identified the effect of QLT on COPD through a cigarette smoke extract (CSE)/lipopolysaccharide (LPS) induced COPD mice model. The absorption of blood components in QLT were identified using ultrahigh performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Network pharmacology was used to predict the potential targets and therapeutic mechanisms of QLT, which were further validated using in vivo experiments and molecular docking. Pharmacodynamic studies revealed that QLT could ameliorate pulmonary function and pulmonary pathology, reduce collagen fiber accumulation, and attenuate inflammatory responses in mice with CSE/LPS induced COPD. A total of 21 components of QLT absorbed in the blood were detected. Network pharmacology analysis indicated that TNF, IL-6, EGFR, and AKT1 may be the core targets, mainly involving the MAPK signaling pathway. Besides, Sachaloside II, Ginsenoside Rh1, Ginsenoside F1, Rosiridin, and Ginsenoside Rf were the key compounds. Molecular docking results showed that the key components could spontaneously bind to EGFR and MAPK to form a relatively stable conformation. In vivo experiments revealed that QLT could suppress the activation of the EGFR/MAPK signaling pathway, thereby improving lung injury in mice with COPD. Overall, these findings provide evidence for the treatment of COPD with QLT.
Collapse
Affiliation(s)
- Ying Xie
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Zhengyan Li
- Department
of Pharmacy, Kunming Municipal Hospital
of Traditional Chinese Medicine, Kunming 650011, China
| | - Yiyao Liang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Tong Zhou
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Xiaolin Yuan
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Xuerong Su
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Zhitong Zhang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Jiuba Zhang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Yi Wan
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Lianlin Su
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Tulin Lu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Xiaoli Zhao
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210046, China
| | - Yi Fu
- Department
of Pharmacy, Kunming Municipal Hospital
of Traditional Chinese Medicine, Kunming 650011, China
| |
Collapse
|
12
|
Dong Y, Dong Y, Zhu C, Yang L, Wang H, Li J, Zheng Z, Zhao H, Xie W, Chen M, Jie Z, Li J, Zang Y, Shi J. Targeting CCL2-CCR2 signaling pathway alleviates macrophage dysfunction in COPD via PI3K-AKT axis. Cell Commun Signal 2024; 22:364. [PMID: 39014433 PMCID: PMC11253350 DOI: 10.1186/s12964-024-01746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) remains a leading cause of morbidity and mortality worldwide, characterized by persistent respiratory symptoms and airflow limitation. The involvement of C-C motif chemokine ligand 2 (CCL2) in COPD pathogenesis, particularly in macrophage regulation and activation, is poorly understood despite its recognized role in chronic inflammation. Our study aims to elucidate the regulatory role and molecular mechanisms of CCL2 in the pathogenesis of COPD, providing new insights for therapeutic strategies. METHODS This study focused on the CCL2-CCR2 signaling pathway, exploring its role in COPD pathogenesis using both Ccl2 knockout (KO) mice and pharmacological inhibitors. To dissect the underlying mechanisms, we employed various in vitro and in vivo methods to analyze the secretion patterns and pathogenic effects of CCL2 and its downstream molecular signaling through the CCL2-CCR2 axis. RESULTS Elevated Ccl2 expression was confirmed in the lungs of COPD mice and was associated with enhanced recruitment and activation of macrophages. Deletion of Ccl2 in knockout mice, as well as treatment with a Ccr2 inhibitor, resulted in protection against CS- and LPS-induced alveolar injury and airway remodeling. Mechanistically, CCL2 was predominantly secreted by bronchial epithelial cells in a process dependent on STAT1 phosphorylation and acted through the CCR2 receptor on macrophages. This interaction activated the PI3K-AKT signaling pathway, which was pivotal for macrophage activation and the secretion of inflammatory cytokines, further influencing the progression of COPD. CONCLUSIONS The study highlighted the crucial role of CCL2 in mediating inflammatory responses and remodeling in COPD. It enhanced our understanding of COPD's molecular mechanisms, particularly how CCL2's interaction with the CCR2 activates critical signaling pathways. Targeting the CCL2-CCR2 axis emerged as a promising strategy to alleviate COPD pathology.
Collapse
Affiliation(s)
- Yue Dong
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
- Lingang Laboratory, 100-19 Banxia Road, Pudong New District, Shanghai, 200120, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Dong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chengyue Zhu
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
- Lingang Laboratory, 100-19 Banxia Road, Pudong New District, Shanghai, 200120, China
| | - Lan Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hanlin Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junqing Li
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Zixuan Zheng
- Department of General Medicine, Zhuanqiao Community Healthcare Service Center of Minhang District, Shanghai, China
| | - Hanwei Zhao
- Department of General Medicine, Zhuanqiao Community Healthcare Service Center of Minhang District, Shanghai, China
| | - Wanji Xie
- Department of General Medicine, Hongqiao Community Healthcare Service Center of Minhang District, Shanghai, China
| | - Meiting Chen
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zhijun Jie
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Jia Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Yi Zang
- Lingang Laboratory, 100-19 Banxia Road, Pudong New District, Shanghai, 200120, China.
| | - Jindong Shi
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
- Center of Community-Based Health Research, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Li CL, Liu SF. Cellular and Molecular Biology of Mitochondria in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2024; 25:7780. [PMID: 39063022 PMCID: PMC11276859 DOI: 10.3390/ijms25147780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder characterized by enduring airflow limitation and chronic inflammation. Growing evidence highlights mitochondrial dysfunction as a critical factor in COPD development and progression. This review explores the cellular and molecular biology of mitochondria in COPD, focusing on structural and functional changes, including alterations in mitochondrial shape, behavior, and respiratory chain complexes. We discuss the impact on cellular signaling pathways, apoptosis, and cellular aging. Therapeutic strategies targeting mitochondrial dysfunction, such as antioxidants and mitochondrial biogenesis inducers, are examined for their potential to manage COPD. Additionally, we consider the role of mitochondrial biomarkers in diagnosis, evaluating disease progression, and monitoring treatment efficacy. Understanding the interplay between mitochondrial biology and COPD is crucial for developing targeted therapies to slow disease progression and improve patient outcomes. Despite advances, further research is needed to fully elucidate mitochondrial dysfunction mechanisms, discover new biomarkers, and develop targeted therapies, aiming for comprehensive disease management that preserves lung function and enhances the quality of life for COPD patients.
Collapse
Affiliation(s)
- Chin-Ling Li
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, #123, Ta-Pei Road, Niaosong District, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
14
|
Kita K, Gawinowska M, Chełmińska M, Niedoszytko M. The Role of Exhaled Breath Condensate in Chronic Inflammatory and Neoplastic Diseases of the Respiratory Tract. Int J Mol Sci 2024; 25:7395. [PMID: 39000502 PMCID: PMC11242091 DOI: 10.3390/ijms25137395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are among the most common chronic respiratory diseases. Chronic inflammation of the airways leads to an increased production of inflammatory markers by the effector cells of the respiratory tract and lung tissue. These biomarkers allow the assessment of physiological and pathological processes and responses to therapeutic interventions. Lung cancer, which is characterized by high mortality, is one of the most frequently diagnosed cancers worldwide. Current screening methods and tissue biopsies have limitations that highlight the need for rapid diagnosis, patient differentiation, and effective management and monitoring. One promising non-invasive diagnostic method for respiratory diseases is the assessment of exhaled breath condensate (EBC). EBC contains a mixture of volatile and non-volatile biomarkers such as cytokines, leukotrienes, oxidative stress markers, and molecular biomarkers, providing significant information about inflammatory and neoplastic states in the lungs. This article summarizes the research on the application and development of EBC assessment in diagnosing and monitoring respiratory diseases, focusing on asthma, COPD, and lung cancer. The process of collecting condensate, potential issues, and selected groups of markers for detailed disease assessment in the future are discussed. Further research may contribute to the development of more precise and personalized diagnostic and treatment methods.
Collapse
Affiliation(s)
- Karolina Kita
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marika Gawinowska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marta Chełmińska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
15
|
Gerard SE, Dougherty TM, Nagpal P, Jin D, Han MK, Newell JD, Saha PK, Comellas AP, Cooper CB, Couper D, Fortis S, Guo J, Hansel NN, Kanner RE, Kazeroni EA, Martinez FJ, Motahari A, Paine R, Rennard S, Schroeder JD, Woodruff PG, Barr RG, Smith BM, Hoffman EA. Vessel and Airway Characteristics in One-Year Computed Tomography-defined Rapid Emphysema Progression: SPIROMICS. Ann Am Thorac Soc 2024; 21:1022-1033. [PMID: 38530051 PMCID: PMC11284327 DOI: 10.1513/annalsats.202304-383oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/22/2024] [Indexed: 03/27/2024] Open
Abstract
Rationale: Rates of emphysema progression vary in chronic obstructive pulmonary disease (COPD), and the relationships with vascular and airway pathophysiology remain unclear. Objectives: We sought to determine if indices of peripheral (segmental and beyond) pulmonary arterial dilation measured on computed tomography (CT) are associated with a 1-year index of emphysema (EI; percentage of voxels <-950 Hounsfield units) progression. Methods: Five hundred ninety-nine former and never-smokers (Global Initiative for Chronic Obstructive Lung Disease stages 0-3) were evaluated from the SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study) cohort: rapid emphysema progressors (RPs; n = 188, 1-year ΔEI > 1%), nonprogressors (n = 301, 1-year ΔEI ± 0.5%), and never-smokers (n = 110). Segmental pulmonary arterial cross-sectional areas were standardized to associated airway luminal areas (segmental pulmonary artery-to-airway ratio [PAARseg]). Full-inspiratory CT scan-derived total (arteries and veins) pulmonary vascular volume (TPVV) was compared with small vessel volume (radius smaller than 0.75 mm). Ratios of airway to lung volume (an index of dysanapsis and COPD risk) were compared with ratios of TPVV to lung volume. Results: Compared with nonprogressors, RPs exhibited significantly larger PAARseg (0.73 ± 0.29 vs. 0.67 ± 0.23; P = 0.001), lower ratios of TPVV to lung volume (3.21 ± 0.42% vs. 3.48 ± 0.38%; P = 5.0 × 10-12), lower ratios of airway to lung volume (0.031 ± 0.003 vs. 0.034 ± 0.004; P = 6.1 × 10-13), and larger ratios of small vessel volume to TPVV (37.91 ± 4.26% vs. 35.53 ± 4.89%; P = 1.9 × 10-7). In adjusted analyses, an increment of 1 standard deviation in PAARseg was associated with a 98.4% higher rate of severe exacerbations (95% confidence interval, 29-206%; P = 0.002) and 79.3% higher odds of being in the RP group (95% confidence interval, 24-157%; P = 0.001). At 2-year follow-up, the CT-defined RP group demonstrated a significant decline in postbronchodilator percentage predicted forced expiratory volume in 1 second. Conclusions: Rapid one-year progression of emphysema was associated with indices indicative of higher peripheral pulmonary vascular resistance and a possible role played by pulmonary vascular-airway dysanapsis.
Collapse
Affiliation(s)
| | | | - Prashant Nagpal
- Department of Radiology, University of Wisconsin–Madison, Madison, Wisconsin
| | - Dakai Jin
- Department of Electrical and Computer Engineering
| | | | - John D. Newell
- Roy J. Carver Department of Biomedical Engineering
- Department of Radiology, and
| | - Punam K. Saha
- Department of Electrical and Computer Engineering
- Department of Radiology, and
| | | | - Christopher B. Cooper
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - David Couper
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina
| | | | - Junfeng Guo
- Roy J. Carver Department of Biomedical Engineering
- Department of Radiology, and
| | - Nadia N. Hansel
- Department of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | | | - Ella A. Kazeroni
- Department of Radiology, Medical School, University of Michigan, Ann Arbor, Michigan
| | | | | | | | - Stephen Rennard
- Department of Internal Medicine, University of Nebraska, Omaha, Nebraska
| | | | - Prescott G. Woodruff
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - R. Graham Barr
- Department of Medicine and
- Department of Epidemiology, College of Medicine, Columbia University, New York, New York; and
| | - Benjamin M. Smith
- Department of Medicine and
- Department of Epidemiology, College of Medicine, Columbia University, New York, New York; and
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Eric A. Hoffman
- Roy J. Carver Department of Biomedical Engineering
- Department of Radiology, and
- Department of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
16
|
Tiwari A, Gautam AS, Pandey SK, Singh S, Singh RK. The role of RIPK1 in chronic obstructive pulmonary disease. Drug Discov Today 2024; 29:104020. [PMID: 38740363 DOI: 10.1016/j.drudis.2024.104020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Necroptosis has emerged as one of the crucial pathological processes involved in the regulation of cell death and inflammation in chronic obstructive pulmonary disease (COPD). Airway epithelial necroptosis is closely linked to COPD pathogenesis. Necroptotic lung cells can release damage-associated molecular patterns (DAMPs) that can initiate a robust inflammatory response. However, the underlying mechanism of necroptosis in COPD is still not clearly understood. Therefore, we aimed to explore the roles and mechanisms of receptor-interacting serine/threonine-protein kinase 1 (RIPK1)-mediated necroptosis in the regulation of inflammatory responses in COPD to provide insights into RIPK1-inhibitor drug discovery efforts and their therapeutic benefits in COPD.
Collapse
Affiliation(s)
- Aman Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-Raebareli), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-Raebareli), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Shivam Kumar Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-Raebareli), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Shreya Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-Raebareli), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-Raebareli), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India.
| |
Collapse
|
17
|
Yadav V, Pandey V, Gaglani P, Srivastava A, Soni, Subhashini. Inhibiting SIRT-2 by AK-7 restrains airway inflammation and oxidative damage promoting lung resurgence through NF-kB and MAP kinase signaling pathway. Front Immunol 2024; 15:1404122. [PMID: 38979411 PMCID: PMC11228164 DOI: 10.3389/fimmu.2024.1404122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/24/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is a major global cause of mortality with limited effective treatments. Sirtuins (SIRT) are histone deacetylases that are involved in the regulation of redox and inflammatory homeostasis. Hence, the present study aims to investigate the role of SIRT-2 in modulating inflammation in a murine model of COPD. Methods COPD in mice was established by cigarette smoke (CS) exposure for 60 days, and AK-7 was used as the specific SIRT-2 inhibitor. AK-7 (100 µg/kg and 200 µg/kg body weight) was administered intranasally 1 h before CS exposure. Molecular docking was performed to analyze the binding affinity of different inflammatory proteins with AK-7. Results Immune cell analysis showed a significantly increased number of macrophages (F4/80), neutrophils (Gr-1), and lymphocytes (CD4+, CD8+, and CD19+) in the COPD, group and their population was declined by AK-7 administration. Total reactive oxygen species, total inducible nitric oxide synthase, inflammatory mediators such as neutrophil elastase, C-reactive protein, histamine, and cytokines as IL4, IL-6, IL-17, and TNF-α were elevated in COPD and declined in the AK-7 group. However, IL-10 showed reverse results representing anti-inflammatory potency. AK-7 administration by inhibiting SIRT-2 decreased the expression of p-NF-κB, p-P38, p-Erk, and p-JNK and increased the expression of Nrf-2. Furthermore, AK-7 also declined the lung injury by inhibiting inflammation, parenchymal destruction, emphysema, collagen, club cells, and Kohn pores. AK-7 also showed good binding affinity with inflammatory proteins. Discussion The current study reveals that SIRT-2 inhibition mitigates COPD severity and enhances pulmonary therapeutic interventions, suggesting AK-7 as a potential therapeutic molecule for COPD medication development.
Collapse
Affiliation(s)
- Vandana Yadav
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | - Vinita Pandey
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | - Pratikkumar Gaglani
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | - Atul Srivastava
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Soni
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | - Subhashini
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| |
Collapse
|
18
|
Shigematsu M, Kawamura T, Deshpande DA, Kirino Y. Immunoactive signatures of circulating tRNA- and rRNA-derived RNAs in chronic obstructive pulmonary disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599707. [PMID: 38948719 PMCID: PMC11212963 DOI: 10.1101/2024.06.19.599707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent lung disease, and macrophages play a central role in the inflammatory response in COPD. We here report a comprehensive characterization of circulating short non-coding RNAs (sncRNAs) in plasma from patients with COPD. While circulating sncRNAs are increasingly recognized for their regulatory roles and biomarker potential in various diseases, the conventional RNA-seq method cannot fully capture these circulating sncRNAs due to their heterogeneous terminal structures. By pre-treating the plasma RNAs with T4 polynucleotide kinase, which converts all RNAs to those with RNA-seq susceptible ends (5'-phosphate and 3'-hydroxyl), we comprehensively sequenced a wide variety of non-microRNA sncRNAs, such as 5'-tRNA halves containing a 2',3'-cyclic phosphate. We discovered a remarkable accumulation of the 5'-half derived from tRNA ValCAC in plasma from COPD patients, whereas the 5'-tRNA GlyGCC half is predominant in healthy donors. Further, the 5'-tRNA ValCAC half activates human macrophages via Toll-like receptor 7 and induces cytokine production. Additionally, we identified circulating rRNA-derived fragments that were upregulated in COPD patients and demonstrated their ability to induce cytokine production in macrophages. Our findings provide evidence of circulating, immune-active sncRNAs in patients with COPD, suggesting that they serve as inflammatory mediators in the pathogenesis of COPD.
Collapse
|
19
|
Murano H, Inoue S, Hashidate-Yoshida T, Shindou H, Shimizu T, Otaki Y, Minegishi Y, Kitaoka T, Futakuchi M, Igarashi A, Nishiwaki M, Nemoto T, Sato M, Kobayashi M, Sato K, Hanawa T, Miyazaki O, Watanabe M. Lysophospholipid Acyltransferase 9 Promotes Emphysema Formation via Platelet-activating Factor. Am J Respir Cell Mol Biol 2024; 70:482-492. [PMID: 38377392 DOI: 10.1165/rcmb.2023-0253oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/20/2024] [Indexed: 02/22/2024] Open
Abstract
Cigarette smoking is known to be the leading cause of chronic obstructive pulmonary disease (COPD). However, the detailed mechanisms have not been elucidated. PAF (platelet-activating factor), a potent inflammatory mediator, is involved in the pathogenesis of various respiratory diseases such as bronchial asthma and COPD. We focused on LPLAT9 (lysophospholipid acyltransferase 9), a biosynthetic enzyme of PAF, in the pathogenesis of COPD. LPLAT9 gene expression was observed in excised COPD lungs and single-cell RNA sequencing data of alveolar macrophages (AMs). LPLAT9 was predominant and upregulated in AMs, particularly monocyte-derived AMs, in patients with COPD. To identify the function of LPLAT9/PAF in AMs in the pathogenesis of COPD, we exposed systemic LPLAT9-knockout (LPALT9-/-) mice to cigarette smoke (CS). CS increased the number of AMs, especially the monocyte-derived fraction, which secreted MMP12 (matrix metalloprotease 12). Also, CS augmented LPLAT9 phosphorylation/activation on macrophages and, subsequently, PAF synthesis in the lung. The LPLAT9-/- mouse lung showed reduced PAF production after CS exposure. Intratracheal PAF administration accumulated AMs by increasing MCP1 (monocyte chemoattractant protein-1). After CS exposure, AM accumulation and subsequent pulmonary emphysema, a primary pathologic change of COPD, were reduced in LPALT9-/- mice compared with LPLAT9+/+ mice. Notably, these phenotypes were again worsened by LPLAT9+/+ bone marrow transplantation in LPALT9-/- mice. Thus, CS-induced LPLAT9 activation in monocyte-derived AMs aggravated pulmonary emphysema via PAF-induced further accumulation of AMs. These results suggest that PAF synthesized by LPLAT9 has an important role in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Hiroaki Murano
- Department of Cardiology, Pulmonology, and Nephrology and
- Department of Lipid Life Science and
| | - Sumito Inoue
- Department of Cardiology, Pulmonology, and Nephrology and
| | | | - Hideo Shindou
- Department of Lipid Life Science and
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and
| | - Takao Shimizu
- Department of Lipid Signaling Project, National Center for Global Health and Medicine, Tokyo, Japan
- Institute of Microbial Chemistry, Tokyo, Japan
| | - Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology and
| | | | - Takumi Kitaoka
- Department of Pathology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Mitsuru Futakuchi
- Department of Pathology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Akira Igarashi
- Department of Cardiology, Pulmonology, and Nephrology and
| | | | - Takako Nemoto
- Department of Cardiology, Pulmonology, and Nephrology and
| | - Masamichi Sato
- Department of Cardiology, Pulmonology, and Nephrology and
| | - Maki Kobayashi
- Department of Cardiology, Pulmonology, and Nephrology and
| | - Kento Sato
- Department of Cardiology, Pulmonology, and Nephrology and
| | | | - Osamu Miyazaki
- Department of Cardiology, Pulmonology, and Nephrology and
| | | |
Collapse
|
20
|
Kaur M, Malik J, Naura AS. Guggulsterone protects against cigarette smoke-induced COPD linked lung inflammation. Cell Biochem Biophys 2024; 82:1145-1158. [PMID: 38609738 DOI: 10.1007/s12013-024-01265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Recently, we have shown that guggulsterone is the principal constituent responsible for protective effects of Commiphora wightii against elastase-induced chronic obstructive pulmonary disease (COPD)-linked inflammation/emphysema. Given that cigarette smoke (CS) exposure is a primary risk factor for COPD and beneficial effects of guggulsterone have not been investigated in CS-induced COPD-linked lung inflammation. The present work was designed to validate the potential of guggulsterone in amelioration of COPD-linked lung inflammation by using a CS-based mouse model of the condition. Male BALB/c mice were exposed to 9 cigarettes/day with 1 h interval for 4 days daily. Guggulsterone was administered daily at a dose of 10 mg/kg orally for 4 consecutive days, 1 h before initiation of CS exposure. Mice were subjected to measurement of lung function followed by procurement of bronchoalveolar lavage fluid (BALF)/lung tissue. BALF was analyzed for inflammatory cells and pro-inflammatory cytokines. Lung tissue was subjected to RT-PCR for gene expression analysis. Data showed that CS exposure resulted in a significant increase in total BALF cells, predominantly neutrophils, and macrophages. Interestingly, guggulsterone administration significantly blunted CS-induced inflammation as reflected by reduced neutrophil and macrophage count. Further, the compound inhibited CS-induced gene expression of pro-inflammatory mediators TNF-α/ IL-1β/ G-CSF/and KC in lungs along with the production of pro-inflammatory mediators TNF-α/ IL-1β/ IL-6/ G-CSF/ KC/and MCP-1 in BALF. Further, guggulsterone improved the lung function parameters upon CS exposure. Analysis of mRNA expression of matrix metalloproteinase (MMP)-9 and tissue inhibitor of matrix metalloproteinase (TIMP)-1 suggests that guggulsterone may restore the fine balance between matrix-degrading proteases and its inhibitor in lung tissue upon CS exposure, which may contribute in the development of emphysema at later stages. Overall, our data show that guggulsterone protects against CS-induced COPD-linked lung inflammation by modulating relevant molecular players. Based on the potential effects of guggulsterone in the amelioration of CS-induced lung inflammation, we speculate that guggulsterone might alter chronic CS-induced emphysema.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Jai Malik
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
21
|
Xu L, Wang Y, Chen Q, Zhu X, Hong J. Propofol modulates Nrf2/NLRP3 signaling to ameliorate cigarette smoke-induced damage in human bronchial epithelial cells. Tissue Cell 2024; 88:102341. [PMID: 38479189 DOI: 10.1016/j.tice.2024.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 06/17/2024]
Abstract
Cigarette smoke extract (CSE) is known as a significant contributor to chronic obstructive pulmonary disease (COPD). Propofol, an anesthetic agent, has been studied for its potential protective effects against lung damage. This study aimed to elucidate the protective mechanisms of propofol against CSE-induced damage in human bronchial epithelial 16HBE cells. In CSE-induced 16HBE cells treated by propofol with or without transfection of nuclear factor erythroid 2-related factor 2 (Nrf2) interference plasmids, CCK-8 assay and lactate dehydrogenase (LDH) assay evaluated cytotoxicity. TUNEL assay and Western blot appraised cell apoptosis. ELISA and relevant assay kits severally measured inflammatory and oxidative stress levels. DCFH-DA fluorescent probe detected intracellular reactive oxygen species (ROS) activity. Immunofluorescence staining and Western blot estimated pyroptosis. Also, Western blot analyzed the expression of Nrf2/NLR family pyrin domain containing 3 (NLRP3) signaling-related proteins. Propofol was found to enhance the viability, reduce LDH release, and alleviate the apoptosis, inflammatory response, oxidative stress and pyroptosis in CSE-induced 16HBE cells in a concentration-dependent manner. Meanwhile, propofol decreased NLRP3 expression while raised Nrf2 expression. Further, after Nrf2 was silenced, the impacts of propofol on Nrf2/NLRP3 signaling, LDH release, apoptosis, inflammatory response, oxidative stress and pyroptosis in CSE-exposed 16HBE cells were eliminated. Conclusively, propofol may exert protective effects against CSE-induced damage in 16HBE cells, partly through the modulation of the Nrf2/NLRP3 signaling pathway, suggesting a potential therapeutic role for propofol in CSE-induced bronchial epithelial cell damage.
Collapse
Affiliation(s)
- Linmei Xu
- Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, Fujian 361000, China; The School of Clinical Medicine, Fujian Medical University, Fujian 361000, China
| | - Yanbin Wang
- Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, Fujian 361000, China
| | - Qumin Chen
- Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, Fujian 361000, China
| | - Xiaolei Zhu
- Department of Thoracic Surgery, the First Affiliated Hospital of Xiamen University, Fujian 361000, China
| | - Jiageng Hong
- Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, Fujian 361000, China; The School of Clinical Medicine, Fujian Medical University, Fujian 361000, China.
| |
Collapse
|
22
|
Brinch Hyttel C, Ghazanfar MN, Zhang DG, Thomsen SF, Ali Z. The association between psoriasis and chronic obstructive pulmonary disease: a systematic review and meta-analysis. Ital J Dermatol Venerol 2024; 159:329-335. [PMID: 38502534 DOI: 10.23736/s2784-8671.24.07641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
INTRODUCTION Psoriasis is a chronic T-cell-mediated inflammatory and proliferative skin disease. Chronic obstructive pulmonary disease (COPD) is an inflammatory disease of the airways. COPD has been studied as a comorbidity of psoriasis, but the association needs further study, hence the objective of this study. EVIDENCE ACQUISITION A systematic review was performed using the database PubMed and 155 records were found including the ones found through references. Seven records were found eligible for this study including six observational studies and one experimental study with a total of 229,075 participants. The odds ratio of COPD in patients with psoriasis and healthy subjects was analysed using a random effects model. EVIDENCE SYNTHESIS The pooled data showed a significant association (OR=1.77, 95% CI [1.32; 2.39]) between psoriasis and COPD with high inter-study heterogeneity (I2=96%). Sub-analyses of the different types of studies (cohort study: OR=2.53 [2.43; 2.63], case-control study: OR=1.6 [0.03; 100.96] and cross-sectional study: OR=1.57 [0.58; 4.22]) and smoking status (OR=1.7 [0.69; 4.14]) were also performed to further examine the association. CONCLUSIONS There is a significant association between psoriasis and COPD, but the underlying mechanism and how smoking status affects the results remain unclear and need further study. Physicians should be aware of the risk and its seriousness to provide better and more targeted treatment.
Collapse
Affiliation(s)
- Camilla Brinch Hyttel
- Department of Dermato-Venereology and Wound Healing Center, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Misbah N Ghazanfar
- Department of Dermato-Venereology and Wound Healing Center, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark -
| | - Ditte G Zhang
- Department of Dermato-Venereology and Wound Healing Center, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Simon F Thomsen
- Department of Dermato-Venereology and Wound Healing Center, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zarqa Ali
- Department of Dermato-Venereology and Wound Healing Center, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
23
|
Banzato R, Pinheiro-Menegasso NM, Novelli FPRS, Olivo CR, Taguchi L, de Oliveira Santos S, Fukuzaki S, Teodoro WPR, Lopes FDTQS, Tibério IFLC, de Toledo-Arruda AC, Prado MAM, Prado VF, Prado CM. Alpha-7 Nicotinic Receptor Agonist Protects Mice Against Pulmonary Emphysema Induced by Elastase. Inflammation 2024; 47:958-974. [PMID: 38227123 DOI: 10.1007/s10753-023-01953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024]
Abstract
Pulmonary emphysema is a primary component of chronic obstructive pulmonary disease (COPD), a life-threatening disorder characterized by lung inflammation and restricted airflow, primarily resulting from the destruction of small airways and alveolar walls. Cumulative evidence suggests that nicotinic receptors, especially the α7 subtype (α7nAChR), is required for anti-inflammatory cholinergic responses. We postulated that the stimulation of α7nAChR could offer therapeutic benefits in the context of pulmonary emphysema. To investigate this, we assessed the potential protective effects of PNU-282987, a selective α7nAChR agonist, using an experimental emphysema model. Male mice (C57BL/6) were submitted to a nasal instillation of porcine pancreatic elastase (PPE) (50 µl, 0.667 IU) to induce emphysema. Treatment with PNU-282987 (2.0 mg/kg, ip) was performed pre and post-emphysema induction by measuring anti-inflammatory effects (inflammatory cells, cytokines) as well as anti-remodeling and anti-oxidant effects. Elastase-induced emphysema led to an increase in the number of α7nAChR-positive cells in the lungs. Notably, both groups treated with PNU-282987 (prior to and following emphysema induction) exhibited a significant decrease in the number of α7nAChR-positive cells. Furthermore, both groups treated with PNU-282987 demonstrated decreased levels of macrophages, IL-6, IL-1β, collagen, and elastic fiber deposition. Additionally, both groups exhibited reduced STAT3 phosphorylation and lower levels of SOCS3. Of particular note, in the post-treated group, PNU-282987 successfully attenuated alveolar enlargement, decreased IL-17 and TNF-α levels, and reduced the recruitment of polymorphonuclear cells to the lung parenchyma. Significantly, it is worth noting that MLA, an antagonist of α7nAChR, counteracted the protective effects of PNU-282987 in relation to certain crucial inflammatory parameters. In summary, these findings unequivocally demonstrate the protective abilities of α7nAChR against elastase-induced emphysema, strongly supporting α7nAChR as a pivotal therapeutic target for ameliorating pulmonary emphysema.
Collapse
Affiliation(s)
- Rosana Banzato
- Department of Internal Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Nathalia M Pinheiro-Menegasso
- Department of Biosciences, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Rua Silva Jardim 136 sala 312, Santos, SP, 11015-020, Brazil
| | | | - Clarice R Olivo
- Department of Internal Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Laura Taguchi
- Department of Biosciences, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Rua Silva Jardim 136 sala 312, Santos, SP, 11015-020, Brazil
| | - Stheffany de Oliveira Santos
- Department of Biosciences, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Rua Silva Jardim 136 sala 312, Santos, SP, 11015-020, Brazil
| | - Silvia Fukuzaki
- Department of Internal Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Walcy Paganelli Rosolia Teodoro
- Rheumatology Division of the Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, FMUSP, São Paulo, Brazil
| | - Fernanda D T Q S Lopes
- Department of Internal Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Iolanda F L C Tibério
- Department of Internal Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | | | - Marco Antônio M Prado
- Department of Physiology & Pharmacology, University of Western Ontario, London, Canada
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Vânia F Prado
- Department of Physiology & Pharmacology, University of Western Ontario, London, Canada
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Carla M Prado
- Department of Internal Medicine, School of Medicine, Universidade de São Paulo, São Paulo, Brazil.
- Department of Biosciences, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Rua Silva Jardim 136 sala 312, Santos, SP, 11015-020, Brazil.
| |
Collapse
|
24
|
Bani Saeid A, De Rubis G, Williams KA, Yeung S, Chellappan DK, Singh SK, Gupta G, Hansbro PM, Shahbazi MA, Gulati M, Kaur IP, Santos HA, Paudel KR, Dua K. Revolutionizing lung health: Exploring the latest breakthroughs and future prospects of synbiotic nanostructures in lung diseases. Chem Biol Interact 2024; 395:111009. [PMID: 38641145 DOI: 10.1016/j.cbi.2024.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
The escalating prevalence of lung diseases underscores the need for innovative therapies. Dysbiosis in human body microbiome has emerged as a significant factor in these diseases, indicating a potential role for synbiotics in restoring microbial equilibrium. However, effective delivery of synbiotics to the target site remains challenging. Here, we aim to explore suitable nanoparticles for encapsulating synbiotics tailored for applications in lung diseases. Nanoencapsulation has emerged as a prominent strategy to address the delivery challenges of synbiotics in this context. Through a comprehensive review, we assess the potential of nanoparticles in facilitating synbiotic delivery and their structural adaptability for this purpose. Our review reveals that nanoparticles such as nanocellulose, starch, and chitosan exhibit high potential for synbiotic encapsulation. These offer flexibility in structure design and synthesis, making them promising candidates for addressing delivery challenges in lung diseases. Furthermore, our analysis highlights that synbiotics, when compared to probiotics alone, demonstrate superior anti-inflammatory, antioxidant, antibacterial and anticancer activities. This review underscores the promising role of nanoparticle-encapsulated synbiotics as a targeted and effective therapeutic approach for lung diseases, contributing valuable insights into the potential of nanomedicine in revolutionizing treatment strategies for respiratory conditions, ultimately paving the way for future advancements in this field.
Collapse
Affiliation(s)
- Ayeh Bani Saeid
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kylie A Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, 144411, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands
| | - Monica Gulati
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Punjab University Chandigarh, India
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands; Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
25
|
Li H, Ma Y, Li T, Zeng Z, Luo L, Liu X, Li Y, Chen Y. CAPN5 attenuates cigarette smoke extract-induced apoptosis and inflammation in BEAS-2B cells. Tob Induc Dis 2024; 22:TID-22-65. [PMID: 38650847 PMCID: PMC11033979 DOI: 10.18332/tid/186183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 11/05/2023] [Accepted: 03/17/2024] [Indexed: 04/25/2024] Open
Abstract
INTRODUCTION Apoptosis and chronic inflammation are the main phenotypes in chronic obstructive pulmonary disease (COPD) pathogenesis. Cigarette smoke exposure is the leading risk factor for COPD, which causes aberrant airway epithelial structure and function. As a non-classical calpain, the molecular function of calpain5 (CAPN5) in COPD remains unclear. This study investigated the role of CAPN5 in mediating cigarette smoke extract (CSE)-induced apoptosis and inflammation. METHODS Immunohistochemistry (IHC) and Western blotting (WB) were performed to detect the location and expression of CAPN5. In vitro, BEAS-2B cells were transfected with CAPN5 siRNA or CAPN5 plasmid, followed by phosphate-buffered saline (PBS) or cigarette smoke extract (CSE) treatment. The protein expression levels of CAPN5, NF-κB p65, p-p65, IκBα, p-IκBα and apoptosis proteins (BCL-2, BAX) were measured by WB. Flow cytometry (FCM) was performed to analyze the cell apoptosis index. RESULTS CAPN5 was mainly expressed in the airway epithelium and significantly decreased in the COPD-smoker and emphysema-mouse groups. Silencing CAPN5 significantly decreased the protein expression of BCL-2, IκBα, and increased p-p65 and BAX protein expression. Additionally, an increased apoptosis index was detected after silencing CAPN5. Moreover, overexpression of CAPN5 partly inhibited IκBα degradation and p65 activation, and reduced CSE-induced inflammation and apoptosis. CONCLUSIONS These combined results indicate that CAPN5 could protect against CSE-induced apoptosis and inflammation, which may provide a potential therapeutic target for smoking-related COPD.
Collapse
Affiliation(s)
- Herui Li
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Diseases, Central South University, Changsha, China
- Clinical Medical Research Center for Respiratory and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yiming Ma
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Diseases, Central South University, Changsha, China
- Clinical Medical Research Center for Respiratory and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Tiao Li
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Diseases, Central South University, Changsha, China
- Clinical Medical Research Center for Respiratory and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Zihang Zeng
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Diseases, Central South University, Changsha, China
- Clinical Medical Research Center for Respiratory and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Lijuan Luo
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Diseases, Central South University, Changsha, China
- Clinical Medical Research Center for Respiratory and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Xiangming Liu
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Diseases, Central South University, Changsha, China
- Clinical Medical Research Center for Respiratory and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yi Li
- Department of Infectious Disease, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Diseases, Central South University, Changsha, China
- Clinical Medical Research Center for Respiratory and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
26
|
Zhu Z, Zhao S, Li J, Wang Y, Xu L, Jia Y, Li Z, Li W, Chen G, Wu X. Development and application of a deep learning-based comprehensive early diagnostic model for chronic obstructive pulmonary disease. Respir Res 2024; 25:167. [PMID: 38637823 PMCID: PMC11027407 DOI: 10.1186/s12931-024-02793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/28/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a frequently diagnosed yet treatable condition, provided it is identified early and managed effectively. This study aims to develop an advanced COPD diagnostic model by integrating deep learning and radiomics features. METHODS We utilized a dataset comprising CT images from 2,983 participants, of which 2,317 participants also provided epidemiological data through questionnaires. Deep learning features were extracted using a Variational Autoencoder, and radiomics features were obtained using the PyRadiomics package. Multi-Layer Perceptrons were used to construct models based on deep learning and radiomics features independently, as well as a fusion model integrating both. Subsequently, epidemiological questionnaire data were incorporated to establish a more comprehensive model. The diagnostic performance of standalone models, the fusion model and the comprehensive model was evaluated and compared using metrics including accuracy, precision, recall, F1-score, Brier score, receiver operating characteristic curves, and area under the curve (AUC). RESULTS The fusion model exhibited outstanding performance with an AUC of 0.952, surpassing the standalone models based solely on deep learning features (AUC = 0.844) or radiomics features (AUC = 0.944). Notably, the comprehensive model, incorporating deep learning features, radiomics features, and questionnaire variables demonstrated the highest diagnostic performance among all models, yielding an AUC of 0.971. CONCLUSION We developed and implemented a data fusion strategy to construct a state-of-the-art COPD diagnostic model integrating deep learning features, radiomics features, and questionnaire variables. Our data fusion strategy proved effective, and the model can be easily deployed in clinical settings. TRIAL REGISTRATION Not applicable. This study is NOT a clinical trial, it does not report the results of a health care intervention on human participants.
Collapse
Affiliation(s)
- Zecheng Zhu
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shunjin Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Lanxi Branch (Lanxi People's Hospital), Hangzhou, Zhejiang, China
| | - Jiahui Li
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuting Wang
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Luopiao Xu
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yubing Jia
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zihan Li
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenyuan Li
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gang Chen
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xifeng Wu
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
Li J, Fong DYT, Lok KYW, Wong JYH, Man Ho M, Choi EPH, Pandian V, Davidson PM, Duan W, Tarrant M, Lee JJ, Lin CC, Akingbade O, Alabdulwahhab KM, Ahmad MS, Alboraie M, Alzahrani MA, Bilimale AS, Boonpatcharanon S, Byiringiro S, Hasan MKC, Schettini LC, Corzo W, De Leon JM, De Leon AS, Deek H, Efficace F, El Nayal MA, El-Raey F, Ensaldo-Carrasco E, Escotorin P, Fadodun OA, Fawole IO, Goh YSS, Irawan D, Khan NE, Koirala B, Krishna A, Kwok C, Le TT, Leal DG, Lezana-Fernández MÁ, Manirambona E, Mantoani LC, Meneses-González F, Mohamed IE, Mukeshimana M, Nguyen CTM, Nguyen HTT, Nguyen KT, Nguyen ST, Nurumal MS, Nzabonimana A, Omer NAMA, Ogungbe O, Poon ACY, Reséndiz-Rodriguez A, Puang-Ngern B, Sagun CG, Shaik RA, Shankar NG, Sommer K, Toro E, Tran HTH, Urgel EL, Uwiringiyimana E, Vanichbuncha T, Youssef N. Key lifestyles and health outcomes across 16 prevalent chronic diseases: A network analysis of an international observational study. J Glob Health 2024; 14:04068. [PMID: 38606605 PMCID: PMC11010581 DOI: 10.7189/jogh-14-04068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Background Central and bridge nodes can drive significant overall improvements within their respective networks. We aimed to identify them in 16 prevalent chronic diseases during the coronavirus disease 2019 (COVID-19) pandemic to guide effective intervention strategies and appropriate resource allocation for most significant holistic lifestyle and health improvements. Methods We surveyed 16 512 adults from July 2020 to August 2021 in 30 territories. Participants self-reported their medical histories and the perceived impact of COVID-19 on 18 lifestyle factors and 13 health outcomes. For each disease subgroup, we generated lifestyle, health outcome, and bridge networks. Variables with the highest centrality indices in each were identified central or bridge. We validated these networks using nonparametric and case-dropping subset bootstrapping and confirmed central and bridge variables' significantly higher indices through a centrality difference test. Findings Among the 48 networks, 44 were validated (all correlation-stability coefficients >0.25). Six central lifestyle factors were identified: less consumption of snacks (for the chronic disease: anxiety), less sugary drinks (cancer, gastric ulcer, hypertension, insomnia, and pre-diabetes), less smoking tobacco (chronic obstructive pulmonary disease), frequency of exercise (depression and fatty liver disease), duration of exercise (irritable bowel syndrome), and overall amount of exercise (autoimmune disease, diabetes, eczema, heart attack, and high cholesterol). Two central health outcomes emerged: less emotional distress (chronic obstructive pulmonary disease, eczema, fatty liver disease, gastric ulcer, heart attack, high cholesterol, hypertension, insomnia, and pre-diabetes) and quality of life (anxiety, autoimmune disease, cancer, depression, diabetes, and irritable bowel syndrome). Four bridge lifestyles were identified: consumption of fruits and vegetables (diabetes, high cholesterol, hypertension, and insomnia), less duration of sitting (eczema, fatty liver disease, and heart attack), frequency of exercise (autoimmune disease, depression, and heart attack), and overall amount of exercise (anxiety, gastric ulcer, and insomnia). The centrality difference test showed the central and bridge variables had significantly higher centrality indices than others in their networks (P < 0.05). Conclusion To effectively manage chronic diseases during the COVID-19 pandemic, enhanced interventions and optimised resource allocation toward central lifestyle factors, health outcomes, and bridge lifestyles are paramount. The key variables shared across chronic diseases emphasise the importance of coordinated intervention strategies.
Collapse
Affiliation(s)
- Jiaying Li
- School of Nursing, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Daniel Yee Tak Fong
- School of Nursing, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Kris Yuet Wan Lok
- School of Nursing, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Janet Yuen Ha Wong
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Mandy Man Ho
- School of Nursing, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Edmond Pui Hang Choi
- School of Nursing, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Vinciya Pandian
- School of Nursing, Johns Hopkins University, Baltimore, Maryland, USA
| | - Patricia M Davidson
- Vice-Chancellor and Principal, University of Wollongong, Wollongong, Australia
| | - Wenjie Duan
- Department of Social Work, East China University of Science and Technology, Shanghai, China
| | - Marie Tarrant
- School of Nursing, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Jung Jae Lee
- School of Nursing, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Chia-Chin Lin
- School of Nursing, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Oluwadamilare Akingbade
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Nursing Research, Osogbo, Osun State, Nigeria
| | | | - Mohammad Shakil Ahmad
- Department of Family & Community Medicine, College of Medicine, Majmaah University, Al Majmaah, Saudi Arabia
| | - Mohamed Alboraie
- Department of Internal Medicine, Al-Azhar University, Cairo, Egypt
| | - Meshari A Alzahrani
- Department of Urology, College of Medicine, Majmaah University, Al Majmaah, Saudi Arabia
| | - Anil S Bilimale
- School of Public Health, JSS Medical College, JSS AHER, Mysuru, India
| | | | - Samuel Byiringiro
- School of Nursing, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | - Hiba Deek
- Nursing Department, Faculty of Health Science, Beirut Arab University, Beirut, Lebanon
| | - Fabio Efficace
- Italian Group for Adult Hematologic Diseases (GIMEMA), Data Center and Health Outcomes Research Unit, Rome, Italy
| | | | - Fathiya El-Raey
- Department of hepatogastroenterology and infectious diseases, Damietta faculty of medicine, Al-Azhar University, Cairo, Egypt
| | | | - Pilar Escotorin
- Laboratory of Applied Prosocial Research, Department of Basic, Developmental and Educational Psychology, Autonomous University of Barcelona, Barcelona, Spain
| | | | | | - Yong-Shian Shawn Goh
- Alice Lee Centre for Nursing Studies, National University of Singapore, Singapore
| | - Devi Irawan
- School of Nursing, Wijaya Husada Health Institute, Bogor, Indonesia
| | | | - Binu Koirala
- School of Nursing, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Cannas Kwok
- School of Nursing, Paramedicine and Health Care Science, Charles Sturt University, New South Wales, Australia
| | | | | | | | - Emery Manirambona
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Leandro Cruz Mantoani
- Department of Physiotherapy, Faculty of Science and Technology, São Paulo State University (UNESP), Presidente Prudente, Brazil
| | | | - Iman Elmahdi Mohamed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Benghazi University, Benghazi, Libya
| | - Madeleine Mukeshimana
- School of Nursing and Midwifery, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | | | | | | | | | - Mohd Said Nurumal
- Kulliyyah of Nursing, International Islamic University, Kuantan, Malaysia
| | - Aimable Nzabonimana
- Center for Language Enhancement, College of Arts and Social Sciences, University of Rwanda, Huye, Rwanda
| | | | | | | | | | | | - Ceryl G Sagun
- School of Nursing, Centro Escolar University, Manila, Philippines
| | - Riyaz Ahmed Shaik
- Department of Family & Community Medicine, College of Medicine, Majmaah University, Al Majmaah, Saudi Arabia
| | - Nikhil Gauri Shankar
- Mental Health and Learning division, Wrexham Maelor Hospital, Wrexham, Wales, UK
| | - Kathrin Sommer
- Italian Group for Adult Hematologic Diseases (GIMEMA), Data Center and Health Outcomes Research Unit, Rome, Italy
| | - Edgardo Toro
- Pontificia Universidad Católica de Valparaíso, School of Social Work, Valparaíso, Chile
| | | | - Elvira L Urgel
- School of Nursing, Centro Escolar University, Manila, Philippines
| | | | - Tita Vanichbuncha
- Department of Statistics, Chulalongkorn Business School, Bangkok, Thailand
| | - Naglaa Youssef
- Medical-surgical Nursing Department, Faculty of Nursing, Cairo University, Cairo, Egypt
| |
Collapse
|
28
|
Li CL, Liu JF, Liu SF. Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: Unraveling the Molecular Nexus. Biomedicines 2024; 12:814. [PMID: 38672169 PMCID: PMC11048013 DOI: 10.3390/biomedicines12040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent and debilitating respiratory disorder characterized by persistent airflow limitation and chronic inflammation. In recent years, the role of mitochondrial dysfunction in COPD pathogenesis has emerged as a focal point of investigation. This review endeavors to unravel the molecular nexus between mitochondrial dysfunction and COPD, delving into the intricate interplay of oxidative stress, bioenergetic impairment, mitochondrial genetics, and downstream cellular consequences. Oxidative stress, a consequence of mitochondrial dysfunction, is explored as a driving force behind inflammation, exacerbating the intricate cascade of events leading to COPD progression. Bioenergetic impairment sheds light on the systemic consequences of mitochondrial dysfunction, impacting cellular functions and contributing to the overall energy imbalance observed in COPD patients. This review navigates through the genetic landscape, elucidating the role of mitochondrial DNA mutations, variations, and haplogroups in COPD susceptibility and severity. Cellular consequences, including apoptosis, autophagy, and cellular senescence, are examined, providing insights into the intricate mechanisms by which mitochondrial dysfunction influences COPD pathology. Therapeutic implications, spanning antioxidant strategies, mitochondria-targeted compounds, and lifestyle modifications, are discussed in the context of translational research. Important future directions include identifying novel biomarkers, advancing mitochondria-targeted therapies, and embracing patient-centric approaches to redefine COPD management. This abstract provides a comprehensive overview of our review, offering a roadmap for understanding and addressing the molecular nexus between mitochondrial dysfunction and COPD, with potential implications for precision medicine and improved patient outcomes.
Collapse
Affiliation(s)
- Chin-Ling Li
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Jui-Fang Liu
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 600, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 600, Taiwan
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 600, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 600, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
29
|
Negasi ZH, Nommi N, Liu C, Tesfaigzi Y. Persistence of emphysema following cessation of cigarette smoke exposure requires a susceptibility factor. Am J Physiol Lung Cell Mol Physiol 2024; 326:L431-L439. [PMID: 38349118 PMCID: PMC11281787 DOI: 10.1152/ajplung.00342.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is caused by cigarette smoke (CS) exposure but can often be progressive even in former smokers. Exposure of mice to CS for 22 wk causes emphysema, but whether emphysema persists after cessation of CS exposure is not clear. The purpose of this study was to determine whether emphysema persists in mice following a recovery period of 22 wk and whether a susceptibility factor, such as deficiency in the Bcl-2-interacting killer (Bik), is required for this persistence. Therefore, bik+/+ and bik-/- mice at 6-10 wk of age were exposed to 250 mg/m3 total particulate matter of CS or filtered air (FA) for 3 or 22 wk and were kept in FA for an additional 22 wk. Lungs were lavaged to quantify inflammatory cells, and sections were stained with hematoxylin and eosin to assess severity of emphysema. Exposure to CS for 3 wk increased the number of inflammatory cells in bik-/- mice compared with bik+/+ mice but not at 22 wk of exposure. At 22 wk of CS exposure, extent of emphysema was similar in bik+/+ and bik-/- mice. However, when mice were exposed to CS over the first 22 wk and were kept in FA for an additional 22 wk, emphysema remained similar in bik+/+ mice but was enhanced in bik-/- mice. These findings link increased inflammation with persistent emphysematous changes even after smoking cessation and demonstrate that a preexisting susceptibility condition is required to sustain enhanced emphysema that was initiated by long-term CS exposure.NEW & NOTEWORTHY Exposure of mice to cigarette smoke (CS) for 22 wk causes emphysema, but whether emphysema persists after an additional period of 6 mo after cessation of CS exposure has not been reported. In addition, the role of preexisting susceptibility in enhancing the persistence of CS-induced emphysema after exposure to CS has stopped has not been shown. The present study shows that a preexisting susceptibility must be present to enhance CS-induced emphysema after cessation of CS exposure.
Collapse
Affiliation(s)
- Zerihun Hailemariam Negasi
- Pulmonary Critical Care Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts, United States
| | - Naomi Nommi
- Pulmonary Critical Care Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts, United States
| | - Congjian Liu
- Pulmonary Critical Care Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts, United States
| | - Yohannes Tesfaigzi
- Pulmonary Critical Care Medicine Division, Brigham and Women's Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts, United States
- Chronic Obstructive Pulmonary Disease Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States
| |
Collapse
|
30
|
Paudel KR, Clarence DD, Panth N, Manandhar B, De Rubis G, Devkota HP, Gupta G, Zacconi FC, Williams KA, Pont LG, Singh SK, Warkiani ME, Adams J, MacLoughlin R, Oliver BG, Chellappan DK, Hansbro PM, Dua K. Zerumbone liquid crystalline nanoparticles protect against oxidative stress, inflammation and senescence induced by cigarette smoke extract in vitro. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2465-2483. [PMID: 37851060 PMCID: PMC10933165 DOI: 10.1007/s00210-023-02760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
The purpose of this study was to evaluate the potential of zerumbone-loaded liquid crystalline nanoparticles (ZER-LCNs) in the protection of broncho-epithelial cells and alveolar macrophages against oxidative stress, inflammation and senescence induced by cigarette smoke extract in vitro. The effect of the treatment of ZER-LCNs on in vitro cell models of cigarette smoke extract (CSE)-treated mouse RAW264.7 and human BCi-NS1.1 basal epithelial cell lines was evaluated for their anti-inflammatory, antioxidant and anti-senescence activities using colorimetric and fluorescence-based assays, fluorescence imaging, RT-qPCR and proteome profiler kit. The ZER-LCNs successfully reduced the expression of pro-inflammatory markers including Il-6, Il-1β and Tnf-α, as well as the production of nitric oxide in RAW 264.7 cells. Additionally, ZER-LCNs successfully inhibited oxidative stress through reduction of reactive oxygen species (ROS) levels and regulation of genes, namely GPX2 and GCLC in BCi-NS1.1 cells. Anti-senescence activity of ZER-LCNs was also observed in BCi-NS1.1 cells, with significant reductions in the expression of SIRT1, CDKN1A and CDKN2A. This study demonstrates strong in vitro anti-inflammatory, antioxidative and anti-senescence activities of ZER-LCNs paving the path for this formulation to be translated into a promising therapeutic agent for chronic respiratory inflammatory conditions including COPD and asthma.
Collapse
Affiliation(s)
- Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Dvya Delilaa Clarence
- School of Postgraduate Studies, International Medical University (IMU), 57000, Kuala Lumpur, Malaysia
| | - Nisha Panth
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Gaurav Gupta
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | - Flavia C Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436, Santiago, Macul, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kylie A Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Lisa G Pont
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara, Punjab, 144411, India
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway, H91 HE94, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, D02 PN40, Ireland
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
31
|
Wang Q, He Z, Zhu J, Hu M, Yang L, Yang H. Polyphyllin B inhibited STAT3/NCOA4 pathway and restored gut microbiota to ameliorate lung tissue injury in cigarette smoke-induced mice. BMC Biotechnol 2024; 24:13. [PMID: 38459479 PMCID: PMC10921762 DOI: 10.1186/s12896-024-00837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE Smoking was a major risk factor for chronic obstructive pulmonary disease (COPD). This study plan to explore the mechanism of Polyphyllin B in lung injury induced by cigarette smoke (CSE) in COPD. METHODS Network pharmacology and molecular docking were applied to analyze the potential binding targets for Polyphyllin B and COPD. Commercial unfiltered CSE and LPS were used to construct BEAS-2B cell injury in vitro and COPD mouse models in vivo, respectively, which were treated with Polyphyllin B or fecal microbiota transplantation (FMT). CCK8, LDH and calcein-AM were used to detect the cell proliferation, LDH level and labile iron pool. Lung histopathology, Fe3+ deposition and mitochondrial morphology were observed by hematoxylin-eosin, Prussian blue staining and transmission electron microscope, respectively. ELISA was used to measure inflammation and oxidative stress levels in cells and lung tissues. Immunohistochemistry and immunofluorescence were applied to analyze the 4-HNE, LC3 and Ferritin expression. RT-qPCR was used to detect the expression of FcRn, pIgR, STAT3 and NCOA4. Western blot was used to detect the expression of Ferritin, p-STAT3/STAT3, NCOA4, GPX4, TLR2, TLR4 and P65 proteins. 16S rRNA gene sequencing was applied to detect the gut microbiota. RESULTS Polyphyllin B had a good binding affinity with STAT3 protein, which as a target gene in COPD. Polyphyllin B inhibited CS-induced oxidative stress, inflammation, mitochondrial damage, and ferritinophagy in COPD mice. 16S rRNA sequencing and FMT confirmed that Akkermansia and Escherichia_Shigella might be the potential microbiota for Polyphyllin B and FMT to improve CSE and LPS-induced COPD, which were exhausted by the antibiotics in C + L and C + L + P mice. CSE and LPS induced the decrease of cell viability and the ferritin and LC3 expression, and the increase of NCOA4 and p-STAT3 expression in BEAS-2B cells, which were inhibited by Polyphyllin B. Polyphyllin B promoted ferritin and LC3II/I expression, and inhibited p-STAT3 and NCOA4 expression in CSE + LPS-induced BEAS-2B cells. CONCLUSION Polyphyllin B improved gut microbiota disorder and inhibited STAT3/NCOA4 pathway to ameliorate lung tissue injury in CSE and LPS-induced mice.
Collapse
Affiliation(s)
- Qing Wang
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
| | - Zhiyi He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinqi Zhu
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
| | - Mengyun Hu
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
| | - Liu Yang
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
| | - Hongzhong Yang
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China.
| |
Collapse
|
32
|
Li J, Xu J, Yang L, Xu Y, Zhang X, Bai C, Kang J, Ran P, Shen H, Wen F, Huang K, Yao W, Sun T, Shan G, Yang T, Lin Y, Zhu J, Wang R, Shi Z, Zhao J, Ye X, Song Y, Wang Q, Hou G, Zhou Y, Li W, Ding L, Wang H, Chen Y, Guo Y, Xiao F, Lu Y, Peng X, Zhang B, Wang Z, Zhang H, Bu X, Zhang X, An L, Zhang S, Cao Z, Zhan Q, Yang Y, Liang L, Cao B, Dai H, Chung KF, Chen Z, He J, Wu S, Xiao D, Wang C. Mediating Effect of Tobacco Dependence on the Association Between Maternal Smoking During Pregnancy and Chronic Obstructive Pulmonary Disease: Case-Control Study. JMIR Public Health Surveill 2024; 10:e53170. [PMID: 38386387 PMCID: PMC10921321 DOI: 10.2196/53170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 01/07/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Maternal smoking during pregnancy (MSDP) is a known risk factor for offspring developing chronic obstructive pulmonary disease (COPD), but the underlying mechanism remains unclear. OBJECTIVE This study aimed to explore whether the increased COPD risk associated with MSDP could be attributed to tobacco dependence (TD). METHODS This case-control study used data from the nationwide cross-sectional China Pulmonary Health study, with controls matched for age, sex, and smoking status. TD was defined as smoking within 30 minutes of waking, and the severity of TD was assessed using the Fagerstrom Test for Nicotine Dependence. COPD was diagnosed when the ratio of forced expiratory volume in 1 second to forced vital capacity was <0.7 in a postbronchodilator pulmonary function test according to the 2017 Global Initiative for Chronic Obstructive Lung Disease criteria. Logistic regression was used to examine the correlation between MSDP and COPD, adjusting for age, sex, BMI, educational attainment, place of residence, ethnic background, occupation, childhood passive smoking, residential fine particulate matter, history of childhood pneumonia or bronchitis, average annual household income, and medical history (coronary heart disease, hypertension, and diabetes). Mediation analysis examined TD as a potential mediator in the link between MSDP and COPD risk. The significance of the indirect effect was assessed through 1000 iterations of the "bootstrap" method. RESULTS The study included 5943 participants (2991 with COPD and 2952 controls). Mothers of the COPD group had higher pregnancy smoking rates (COPD: n=305, 10.20%; controls: n=211, 7.10%; P<.001). TD was more prevalent in the COPD group (COPD: n=582, 40.40%; controls: n=478, 33.90%; P<.001). After adjusting for covariates, MSDP had a significant effect on COPD (β=.097; P<.001). There was an association between MSDP and TD (β=.074; P<.001) as well as between TD and COPD (β=.048; P=.007). Mediation analysis of TD in the MSDP-COPD association showed significant direct and indirect effects (direct: β=.094; P<.001 and indirect: β=.004; P=.03). The indirect effect remains present in the smoking population (direct: β=.120; P<.001 and indirect: β=.002; P=.03). CONCLUSIONS This study highlighted the potential association between MSDP and the risk of COPD in offspring, revealing the mediating role of TD in this association. These findings contribute to a deeper understanding of the impact of prenatal tobacco exposure on lung health, laying the groundwork for the development of relevant prevention and treatment strategies.
Collapse
Affiliation(s)
- Jinxuan Li
- China-Japan Friendship School of Clinical Medicine, Capital Medical University, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Tobacco Control and Prevention of Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
| | - Jianying Xu
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Lan Yang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyan Zhang
- Department of Pulmonary and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Chunxue Bai
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huahao Shen
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Fuqiang Wen
- State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Kewu Huang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wanzhen Yao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Tieying Sun
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, Beijing, China
- National Center of Gerontology, Beijing, China
| | - Guangliang Shan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ting Yang
- National Center for Respiratory Medicine, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yingxiang Lin
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhu
- National Center of Gerontology, Beijing, China
| | - Ruiying Wang
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Zhihong Shi
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianping Zhao
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Ye
- Department of Pulmonary and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiuyue Wang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- National Center for Respiratory Medicine, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wen Li
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Liren Ding
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wang
- State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yanfei Guo
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, Beijing, China
- National Center of Gerontology, Beijing, China
| | - Fei Xiao
- National Center of Gerontology, Beijing, China
| | - Yong Lu
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoxia Peng
- Center for Clinical Epidemiology and Evidence-Based Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China
- National Center for Children's Health, Beijing, China
| | - Biao Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zuomin Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hong Zhang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoning Bu
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaolei Zhang
- National Center for Respiratory Medicine, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Li An
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shu Zhang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhixin Cao
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qingyuan Zhan
- National Center for Respiratory Medicine, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuanhua Yang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lirong Liang
- Department of Epidemiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Respiratory Medicine, Beijing, China
| | - Bin Cao
- National Center for Respiratory Medicine, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Huaping Dai
- National Center for Respiratory Medicine, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London and Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Sinan Wu
- National Center for Respiratory Medicine, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Data and Project Management Unit, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Dan Xiao
- National Center for Respiratory Medicine, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Tobacco Control and Prevention of Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
| | - Chen Wang
- National Center for Respiratory Medicine, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
33
|
Chen T, Liu J, Li S, Wang P, Shang G. The role of protein arginine N-methyltransferases in inflammation. Semin Cell Dev Biol 2024; 154:208-214. [PMID: 36075843 DOI: 10.1016/j.semcdb.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Protein arginine methyltransferases (PRMTs) promote the methylation of numerous proteins at their arginine residues. An increasing number of publications have suggested that dysregulation of PRMTs participates in various human diseases, such as cardiovascular diseases, cancer, diabetes and neurodegenerative disorders. Inflammation is one normal response to infection or injury by immune system, which can keep body homeostasis. Emerging data reveal that inflammation is associated with the development of numerous diseases. Moreover, accumulated evidence proves that PRMTs have been characterized to regulate inflammation in various diseases. In this review article, we delineate the function and molecular mechanism of PRMTs in regulation of inflammation in current literature. Moreover, we discuss that targeting PRMTs by its inhibitors and compounds could have therapeutic potential.
Collapse
Affiliation(s)
- Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jinxin Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Shizhe Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Peter Wang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui 233030, China.
| | - Guanning Shang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
34
|
Li Z, Li X, Feng B, Xue J, Zhao J, Zhu Q, Liu K, Xie F, Xie J. Combining a lung microfluidic chip exposure model with transcriptomic analysis to evaluate the inflammation in BEAS-2B cells exposed to cigarette smoke. Anal Chim Acta 2024; 1287:342049. [PMID: 38182364 DOI: 10.1016/j.aca.2023.342049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Typically, in vitro studies on the exposure of complex gaseous substances are performed in multi-well plate experiments by trapping and redissolving them, which could introduce potential bias into the results due to the use of inadequate trapping methods. Therefore, a more effective method is to expose complex gaseous substances in gaseous form online, such as using microfluidic chips in experiments. To address these challenges, we introduce a methodology that integrates a self-designed bionic-lung chip with transcriptome analysis to assess the impact of cigarette smoke (CS) exposure on changes in BEAS-2B cells cultured on-chip. RESULTS After the microfluidic chip underwent online gas exposure, total RNA was extracted via in situ cell lysis, and RNA-Seq transcriptome analysis was conducted. And the RNA-Seq findings revealed the significant involvement of the MAPK signaling pathway associated with the inflammatory response in the cellular effects induced by CS exposure. Moreover, the validation of inflammatory response-related biomarkers through in situ fluorescence corroborated the outcomes of the transcriptome analysis. Besides, the experiment involving the inhibition of inflammation by DEX on the microfluidic chip provided additional confirmation of the previous experimental findings. SIGNIFICANT In this study, we present an analytical strategy that combines microfluidic-based CS in situ exposure method with RNA-Seq technology. This strategy offers an experimental scheme for in situ exposure to complex gases, transcriptome analysis, and in situ fluorescence detection. Through the integration of the comprehensiveness of transcriptome analysis with the chip's direct and intuitive in situ fluorescence detection with the stability and reliability of RT-PCR and Western blot experiments, we have successfully addressed the challenges associated with in vitro risk assessment for online exposure to complex gaseous substances.
Collapse
Affiliation(s)
- Zezhi Li
- Beijing Technology and Business University, Beijing 100048, PR China; Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China; Beijing Life Science Academy, Beijing 102209, PR China.
| | - Boyang Feng
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Jingxian Xue
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Junwei Zhao
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China; Beijing Life Science Academy, Beijing 102209, PR China
| | - Qingqing Zhu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Kejian Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Jianping Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China; Beijing Life Science Academy, Beijing 102209, PR China.
| |
Collapse
|
35
|
Yoshikawa H, Sato T, Horikoshi K, Komura M, Nitta NA, Mitsui A, Koike K, Kodama Y, Takahashi K. miR-146a regulates emphysema formation and abnormal inflammation in the lungs of two mouse models. Am J Physiol Lung Cell Mol Physiol 2024; 326:L98-L110. [PMID: 38050687 DOI: 10.1152/ajplung.00080.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/19/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
miR-146a, a microRNA (miRNA) that regulates inflammatory responses, plays an important role in many inflammatory diseases. Although an in vitro study had suggested that miR-146a is involved in abnormal inflammatory response, being a critical factor in the pathogenesis of chronic obstructive pulmonary disease (COPD), in vivo evidence of its pathogenic role in COPD remains limited. Eight-week-old male B6(FVB)-Mir146tm1.1Bal/J [miR-146a knockout (KO)] and C57BL/6J mice were intratracheally administered elastase and evaluated after 28 days or exposed to cigarette smoke (CS) and evaluated after 5 mo. miR-146a expression was significantly increased in C57BL/6J mouse lungs due to elastase administration (P = 0.027) or CS exposure (P = 0.019) compared with that in the control group. Compared with C57BL/6J mice, elastase-administered miR-146a-KO mice had lower average computed tomography (CT) values (P = 0.017) and increased lung volume-to-weight ratio (P = 0.016), mean linear intercept (P < 0.001), and destructive index (P < 0.001). Moreover, total cell (P = 0.006), macrophage (P = 0.001), neutrophil (P = 0.026), chemokine (C-X-C motif) ligand 2/macrophage inflammatory protein-2 [P = 0.045; in bronchoalveolar lavage fluid (BALF)], cyclooxygenase-2, and matrix metalloproteinase-2 levels were all increased (in the lungs). Following long-term CS exposure, miR-146a-KO mice showed a greater degree of emphysema formation in their lungs and inflammatory response in the BALF and lungs than C57BL/6J mice. Collectively, miR-146a protected against emphysema formation and the associated abnormal inflammatory response in two murine models.NEW & NOTEWORTHY This study demonstrates that miR-146a expression is upregulated in mouse lungs because of elastase- and CS-induced emphysema and that the inflammatory response by elastase or CS is enhanced in the lungs of miR-146a-KO mice than in those of control mice, resulting in the promotion of emphysema. This is the first study to evaluate the protective role of miR-146a in emphysema formation and the associated abnormal inflammatory response in different in vivo models.
Collapse
Affiliation(s)
- Hitomi Yoshikawa
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tadashi Sato
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kimiko Horikoshi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Moegi Komura
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naoko Arano Nitta
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Aki Mitsui
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kengo Koike
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuzo Kodama
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Afzal A, Khawar MB, Habiba U, Afzal H, Hamid SE, Rafiq M, Abbasi MH, Sheikh N, Abaidullah R, Asif Z, Saeed T. Diagnostic and therapeutic value of EVs in lungs diseases and inflammation. Mol Biol Rep 2023; 51:26. [PMID: 38127201 DOI: 10.1007/s11033-023-09045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023]
Abstract
Extracellular vesicles (EVs) are membrane-derived messengers which have been playing an important role in the inflammation and pathogenesis of lung diseases. EVs contain varieties of DNA, RNA, and membrane receptors through which they work as a delivery system for bioactive molecules as well as intracellular communicators. EV signaling mediates tumor progression and metastasis. EVs are linked with many diseases and perform a diagnostic role in lung injury and inflammation so are used to diagnose the severity of diseases. EVs containing a variety of biomolecules communicate with the recipient cells during pathophysiological mechanisms thereby acquiring the attention of clinicians toward the diagnostic and therapeutic potential of EVs in different lung diseases. In this review, we summarize the role of EVs in inflammation with an emphasis on their potential as a novel candidate in the diagnostics and therapeutics of chronic obstructive pulmonary disease, asthma, and sarcoidosis.
Collapse
Affiliation(s)
- Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| | - Ume Habiba
- Department of Zoology, University of Education, Lahore, Pakistan
| | - Hanan Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Syeda Eisha Hamid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mussarat Rafiq
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Rimsha Abaidullah
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Zoya Asif
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Tahaa Saeed
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
37
|
Villaseñor-Altamirano AB, Jain D, Jeong Y, Menon JA, Kamiya M, Haider H, Manandhar R, Sheikh MDA, Athar H, Merriam LT, Ryu MH, Sasaki T, Castaldi PJ, Rao DA, Sholl LM, Vivero M, Hersh CP, Zhou X, Veerkamp J, Yun JH, Kim EY. Activation of CD8 + T Cells in Chronic Obstructive Pulmonary Disease Lung. Am J Respir Crit Care Med 2023; 208:1177-1195. [PMID: 37756440 PMCID: PMC10868372 DOI: 10.1164/rccm.202305-0924oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023] Open
Abstract
Rationale: Despite the importance of inflammation in chronic obstructive pulmonary disease (COPD), the immune cell landscape in the lung tissue of patients with mild-moderate disease has not been well characterized at the single-cell and molecular level. Objectives: To define the immune cell landscape in lung tissue from patients with mild-moderate COPD at single-cell resolution. Methods: We performed single-cell transcriptomic, proteomic, and T-cell receptor repertoire analyses on lung tissue from patients with mild-moderate COPD (n = 5, Global Initiative for Chronic Obstructive Lung Disease I or II), emphysema without airflow obstruction (n = 5), end-stage COPD (n = 2), control (n = 6), or donors (n = 4). We validated in an independent patient cohort (N = 929) and integrated with the Hhip+/- murine model of COPD. Measurements and Main Results: Mild-moderate COPD lungs have increased abundance of two CD8+ T cell subpopulations: cytotoxic KLRG1+TIGIT+CX3CR1+ TEMRA (T effector memory CD45RA+) cells, and DNAM-1+CCR5+ T resident memory (TRM) cells. These CD8+ T cells interact with myeloid and alveolar type II cells via IFNG and have hyperexpanded T-cell receptor clonotypes. In an independent cohort, the CD8+KLRG1+ TEMRA cells are increased in mild-moderate COPD lung compared with control or end-stage COPD lung. Human CD8+KLRG1+ TEMRA cells are similar to CD8+ T cells driving inflammation in an aging-related murine model of COPD. Conclusions: CD8+ TEMRA cells are increased in mild-moderate COPD lung and may contribute to inflammation that precedes severe disease. Further study of these CD8+ T cells may have therapeutic implications for preventing severe COPD.
Collapse
Affiliation(s)
| | - Dhawal Jain
- Pulmonary Drug Discovery Laboratory, Pharmaceuticals Research and Development, Bayer US LLC, Boston, Massachusetts; and
| | - Yunju Jeong
- Division of Pulmonary and Critical Care Medicine
- Harvard Medical School, Boston, Massachusetts
| | | | - Mari Kamiya
- Division of Pulmonary and Critical Care Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Hibah Haider
- Division of Pulmonary and Critical Care Medicine
| | | | | | - Humra Athar
- Division of Pulmonary and Critical Care Medicine
- Pulmonary Drug Discovery Laboratory, Pharmaceuticals Research and Development, Bayer US LLC, Boston, Massachusetts; and
| | | | - Min Hyung Ryu
- Channing Division of Network Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Takanori Sasaki
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Peter J. Castaldi
- Channing Division of Network Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Deepak A. Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Lynette M. Sholl
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Marina Vivero
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Craig P. Hersh
- Channing Division of Network Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Xiaobo Zhou
- Channing Division of Network Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Justus Veerkamp
- Pharmaceuticals, Research & Early Development Precision Medicine RED (preMED), Pharmaceuticals Research and Development, Bayer AG, Wuppertal, Germany
| | - Jeong H. Yun
- Channing Division of Network Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Edy Y. Kim
- Division of Pulmonary and Critical Care Medicine
- Harvard Medical School, Boston, Massachusetts
| | - the MGB-Bayer Pulmonary Drug Discovery Lab
- Division of Pulmonary and Critical Care Medicine
- Channing Division of Network Medicine, and
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, and
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Pulmonary Drug Discovery Laboratory, Pharmaceuticals Research and Development, Bayer US LLC, Boston, Massachusetts; and
- Pharmaceuticals, Research & Early Development Precision Medicine RED (preMED), Pharmaceuticals Research and Development, Bayer AG, Wuppertal, Germany
| |
Collapse
|
38
|
Shen Y, Chen L, Chen J, Qin J, Wang T, Wen F. Mitochondrial damage-associated molecular patterns in chronic obstructive pulmonary disease: Pathogenetic mechanism and therapeutic target. J Transl Int Med 2023; 11:330-340. [PMID: 38130648 PMCID: PMC10732348 DOI: 10.2478/jtim-2022-0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common inflammatory airway disease characterized by enhanced inflammation. Recent studies suggest that mitochondrial damage-associated molecular patterns (DAMPs) may play an important role in the regulation of inflammation and are involved in a serial of inflammatory diseases, and they may also be involved in COPD. This review highlights the potential role of mitochondrial DAMPs during COPD pathogenesis and discusses the therapeutic potential of targeting mitochondrial DAMPs and their related signaling pathways and receptors for COPD. Research progress on mitochondrial DAMPs may enhance our understanding of COPD inflammation and provide novel therapeutic targets.
Collapse
Affiliation(s)
- Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Jun Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Jiangyue Qin
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| |
Collapse
|
39
|
Hamad RS, Al-Kuraishy HM, Alexiou A, Papadakis M, Ahmed EA, Saad HM, Batiha GES. SARS-CoV-2 infection and dysregulation of nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. Cell Stress Chaperones 2023; 28:657-673. [PMID: 37796433 PMCID: PMC10746631 DOI: 10.1007/s12192-023-01379-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/19/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a recent pandemic caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) leading to pulmonary and extra-pulmonary manifestations due to the development of oxidative stress (OS) and hyperinflammation. The underlying cause for OS and hyperinflammation in COVID-19 may be related to the inhibition of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of antioxidative responses and cellular homeostasis. The Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm and OS in COVID-19. Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Hence, this review aimed to reveal the potential role of the Nrf2 pathway and its activators in the management of COVID-19. As well, we tried to revise the mechanistic role of the Nrf2 pathway in COVID-19.
Collapse
Affiliation(s)
- Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, 31982, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
40
|
Zhao Z, Tong Y, Kang Y, Qiu Z, Li Q, Xu C, Wu G, Jia W, Wang P. Sodium butyrate (SB) ameliorated inflammation of COPD induced by cigarette smoke through activating the GPR43 to inhibit NF-κB/MAPKs signaling pathways. Mol Immunol 2023; 163:224-234. [PMID: 37864932 DOI: 10.1016/j.molimm.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Cigarette smoke is recognized as a major trigger for individuals with chronic obstructive pulmonary disease (COPD), leading to an amplified inflammatory response. The onset and progression of COPD are affected by multiple environmental and genetic risk factors, such as inflammatory mechanisms, oxidative stress, and an imbalance between proteinase and antiprotease. As a result, conventional drug therapies often have limited effectiveness. This study aimed to investigate the anti-inflammatory effect of sodium butyrate (SB) in COPD and explore its molecular mechanism, thereby deepening our understanding of the potential application of SB in the treatment of COPD. In our study, we observed an increase in the mRNA and protein expressions of inflammatory factors interleukin-1beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), Matrix metallopeptidase 9 (MMP9) and MMP12 in both NR8383 cell and rat models of COPD. However, these expressions were significantly reduced after SB treatment. Meanwhile, SB treatment effectively decreased the phosphorylation levels of nuclear transcription factor-kappa B (NF-κB) p65, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) and inhibited the nuclear translocation of these proteins in the COPD cells, leading to a reduction in the expression of various inflammatory cytokines. Additionally, SB also inhibited the expression level of the Nod-like receptor pyrin domain 3 (NLRP3) inflammasome, which consists of NLRP3, apoptosis-associated speck-like protein (ASC), and Caspase-1 in the cigeratte smoke extract (CSE)-stimulated cells. Our results showed that CSE down-regulated the mRNA levels of G-protein-coupled receptor 43 (GPR43) and GPR109A, while SB only up-regulated the expression of GPR43 and had no effect on GPR109A. Moreover, additional analysis demonstrated that the knockdown of GPR43 diminishes the anti-inflammatory effects of SB. It is evident that siRNA-mediated knockdown of GPR43 prevented the reduction in mRNA expression of IL-1β, IL-6, TNF-α, MMP9, and MMP12, as well as the expression of phosphorylated proteins NF-κB p65, JNK, and p38 MAPKs with SB treatment. These findings revealed a SB/GPR43 mediated pathway essential for attenuating pulmonary inflammatory responses in COPD, which may offer potential new treatments for COPD.
Collapse
Affiliation(s)
- Zhijun Zhao
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China; Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuting Kang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Zhuoran Qiu
- College of clinical medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Qiujie Li
- College of clinical medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Chao Xu
- College of clinical medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Geng Wu
- College of clinical medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Wei Jia
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China; Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Pengtao Wang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
41
|
Lin QI, Zhang CF, Chen JY, Guo ZK, Wu SY, Li HY. Targeting Mitochondrial Dysfunction With LncRNAs in a Wistar Rat Model of Chronic Obstructive Pulmonary Disease. In Vivo 2023; 37:2543-2554. [PMID: 37905633 PMCID: PMC10621436 DOI: 10.21873/invivo.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND/AIM Chronic obstructive pulmonary disease (COPD) has become a prominent healthcare issue in recent years. Cigarette smoking (CS) and fine particulate matter (PM2.5) are important causative factors for COPD. This study assessed the aberrant lncRNA profiles in the tissue of rats with COPD caused by CS or PM2.5 Materials and Methods: A COPD rat model was developed using CS (CSM) or PM2.5 (PMM), and lung tissue RNA was extracted. The Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) were used to investigate the correlations between the distinct lncRNAs and mRNA pathways. A coding-non-coding gene co-expression network (CNC) was constructed by establishing connections between differentially expressed long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) associated with mitochondrial dysfunction and the inflammatory response. RESULTS A quantitative real-time reverse transcription PCR (qRT-PCR) experiment was performed to verify the expression of the particular lncRNAs. Microarray analysis of lung tissue from the COPD model revealed that 123 and 444 lncRNAs were substantially raised and reduced in PMM vs. the control group (Ctrl), respectively, as were 621 and 1,178 mRNAs. Meanwhile, 81 and 340 lncRNAs were consistently raised and lowered in CSM vs. Ctrl, respectively, as were 408 and 931 mRNAs. GO enrichment and KEGG pathway analysis indicated that the COPD model was connected to inflammatory responses, mitochondrial dysfunction, and others. CONCLUSION XR_340674, ENSRNOT00000089642, XR_597045, and XR_340651 were decreased, and XR_592469 was elevated. These lncRNAs were shown to be related to mitochondrial dysfunction in the lung tissue of animals exposed to CS or PM2.5.
Collapse
Affiliation(s)
- Q I Lin
- Department of Pharmacy, the Affiliated Hospital of Putian University, Putian, P.R. China;
- The School of Public Health, Fujian Medical University, Fuzhou, P.R. China
| | - Chao-Feng Zhang
- Department of Haematology and Rheumatology, The Affiliated Hospital of Putian University, Putian, P.R. China
- School of Basic Medical Sciences, Putian University, Putian, P.R. China
| | - Jing-Yu Chen
- School of Basic Medical Sciences, Putian University, Putian, P.R. China
| | - Zhen-Kun Guo
- The School of Public Health, Fujian Medical University, Fuzhou, P.R. China
| | - Si-Ying Wu
- The School of Public Health, Fujian Medical University, Fuzhou, P.R. China
| | - Huang-Yuan Li
- The School of Public Health, Fujian Medical University, Fuzhou, P.R. China;
| |
Collapse
|
42
|
Auschwitz E, Almeda J, Andl CD. Mechanisms of E-Cigarette Vape-Induced Epithelial Cell Damage. Cells 2023; 12:2552. [PMID: 37947630 PMCID: PMC10650279 DOI: 10.3390/cells12212552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
E-cigarette use has been reported to affect cell viability, induce DNA damage, and modulate an inflammatory response resulting in negative health consequences. Most studies focus on oral and lung disease associated with e-cigarette use. However, tissue damage can be found in the cardio-vascular system and even the bladder. While the levels of carcinogenic compounds found in e-cigarette aerosols are lower than those in conventional cigarette smoke, the toxicants generated by the heat of the vaping device may include probable human carcinogens. Furthermore, nicotine, although not a carcinogen, can be metabolized to nitrosamines. Nitrosamines are known carcinogens and have been shown to be present in the saliva of e-cig users, demonstrating the health risk of e-cigarette vaping. E-cig vape can induce DNA adducts, promoting oxidative stress and DNA damage and NF-kB-driven inflammation. Together, these processes increase the transcription of pro-inflammatory cytokines. This creates a microenvironment thought to play a key role in tumorigenesis, although it is too early to know the long-term effects of vaping. This review considers different aspects of e-cigarette-induced cellular changes, including the generation of reactive oxygen species, DNA damage, DNA repair, inflammation, and the possible tumorigenic effects.
Collapse
Affiliation(s)
| | | | - Claudia D. Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
43
|
Park J, Ha MR, Song J, Kim OY. The Synergistic Effect of Dietary Acid Load Levels and Cigarette Smoking Status on the Risk of Chronic Obstructive Pulmonary Disease (COPD) in Healthy, Middle-Aged Korean Men. Nutrients 2023; 15:4063. [PMID: 37764846 PMCID: PMC10536353 DOI: 10.3390/nu15184063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
We investigated whether cigarette smoking and dietary acid load (DAL) are associated with a risk of chronic obstructive pulmonary disease (COPD) in healthy, middle-aged Korean men. Healthy men without diagnosed chronic disease (aged 40-64 years) from the KNHANES-VI (2013-2015) were included in the analysis (n = 774) and were subdivided by smoking status and DAL levels, as estimated using the quartile of net endogenous acid production (NEAP). The current smokers tended to have a higher risk of COPD than the never-smokers before and after adjustment. When divided by the DAL quartile, the Q4 group tended to have a higher risk of COPD than the Q1 group. Additionally, the current smokers with lower (Q2), modest (Q3), and the highest NEAP scores (Q4) showed risks of COPD that were more than fourfold higher than those of the never-smokers with the lowest NEAP scores (Q1). The ex-smokers with higher NEAP scores (Q3 and Q4) showed risks of COPD that were more than fourfold higher than those of the Q1 group. Interestingly, the risk of COPD was also more than sixfold higher in the never-smokers with the highest NEAP scores compared to that in the Q1 group. The NEAP scores and smoking status synergistically increased the risk of COPD in healthy, middle-aged Korean men. This suggests that DAL levels are an important factor in the prevention and management of COPD.
Collapse
Affiliation(s)
- Jihyun Park
- Clinical Nutrition, Department of Health Sciences, Graduate School of Dong-A University, Sahagu, Nakdongdaero 550 beon-gil, Busan 49315, Republic of Korea; (J.P.); (M.R.H.)
| | - Mi Ri Ha
- Clinical Nutrition, Department of Health Sciences, Graduate School of Dong-A University, Sahagu, Nakdongdaero 550 beon-gil, Busan 49315, Republic of Korea; (J.P.); (M.R.H.)
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea
| | - Oh Yoen Kim
- Clinical Nutrition, Department of Health Sciences, Graduate School of Dong-A University, Sahagu, Nakdongdaero 550 beon-gil, Busan 49315, Republic of Korea; (J.P.); (M.R.H.)
- Department of Food Science and Nutrition, Dong-A University, Sahagu, Nakdongdaero 550 beon-gil, Busan 49315, Republic of Korea
| |
Collapse
|
44
|
Chang HC, Liu SF, Kuo HC, Chen KD, Liu JF, Tseng CW, Weng CM, Chou TC. Smoking cessation and influenza vaccination can reduce the healthcare burden of COPD. Tob Induc Dis 2023; 21:108. [PMID: 37637228 PMCID: PMC10458000 DOI: 10.18332/tid/167962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 08/29/2023] Open
Abstract
INTRODUCTION Influenza vaccination (INV) and smoking cessation (SC) have individual positive effects on COPD, but their synergistic impact has yet to be extensively studied. This retrospective study aimed to assess the combined effect of SC and IV on the medical burden of COPD, including medical visits, hospitalization, medical expenses, and the occurrence of respiratory failure. METHODS Patients with COPD who visited our medical center between January and October 2018 were included in the study. The patients were categorized into four groups: Group I (no SC or INV), Group II (INV only), Group III (SC only), and Group IV (both SC and INV). The outcomes analyzed were emergency utilization, hospital utilization, and occurrence of respiratory failure. Airflow limitation was stratified according to GOLD guidelines, and successful smoking cessation was defined as not smoking for at least one year. RESULTS A total of 357 patients were included in the study. Group I (119 patients) neither smoking cessation nor influenza vaccination; Group II (66 patients) had only influenza vaccination; Group III (94 patients), had only smoking cessation, Group IV (78 patients), with both smoking cessation and influenza vaccination. Group IV had lower odds of emergency utilization (OR=0.13; 95% CI: 0.07-0.25), hospital utilization (OR=0.13; 95% CI: 0.05-0.30, p<0.001), and occurrence of respiratory failure (OR=0.13; 95% CI: 0.04-0.40, p<0.001). CONCLUSIONS Combined smoking cessation and influenza vaccination are more effective in reducing the medical burden of COPD compared to either intervention alone or neither. These findings highlight the importance of promoting both smoking cessation and influenza vaccination in the management of COPD.
Collapse
Affiliation(s)
- Hui-Chuan Chang
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ho-Chang Kuo
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Kuang-Den Chen
- Institute of Translation Research in Biomedicine, Liver Transplantation Center and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Jui-Fang Liu
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Ching-Wan Tseng
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ching-Mei Weng
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Teng-Ching Chou
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
45
|
Zhao Z, Xu Z, Chang J, He L, Zhang Z, Song X, Hou X, Fan F, Jiang Z. Sodium pyruvate exerts protective effects against cigarette smoke extract-induced ferroptosis in alveolar and bronchial epithelial cells through the GPX4/Nrf2 axis. J Inflamm (Lond) 2023; 20:28. [PMID: 37605161 PMCID: PMC10441695 DOI: 10.1186/s12950-023-00347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Ferroptosis in alveolar and bronchial epithelial cells is one of the main mechanisms underlying the development of chronic obstructive pulmonary disease (COPD). Sodium pyruvate (NaPyr) is a natural antioxidant in the body, exhibiting anti-inflammatory and antioxidant activities. NaPyr has been used in a Phase II clinical trial as a novel therapy for COPD; however, the mechanism underlying NaPyr-mediated therapeutic benefits in COPD is not well understood. OBJECTIVE We aimed to assess the protective effects of NaPyr and elucidate its potential mechanism in cigarette smoke extract (CSE)-induced ferroptosis.To minic the inflammatory response and ferroptosis triggered by cigarette smoke in COPD in an invitro cell based system, we expose a human bronchial epithelial cells to CSE. METHODS To minic the inflammatory response and ferroptosis triggered by cigarette smoke in COPD in an invitro cell based system, the A549 (human lung carcinoma epithelial cells) and BEAS-2B (bronchial epithelial cells) cell lines were cultured, followed by treatment with CSE. To measure cellular viability and iron levels, we determined the levels of malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS), mitochondrial superoxide (MitoSOX), membrane potential (MMP), and inflammatory factors (tumor necrosis factor [TNF] and interleukin [IL]-8), and examined CSE-induced pulmonary inflammation and ferroptosis. To clarify the molecular mechanisms of NaPyr in COPD therapy, we performed western blotting and real-time PCR (qPCR) to determine the expression of glutathione peroxidase 4 (GPX4), nuclear factor E2-related factor 2 (Nrf2), and cyclooxygenase 2 (COX2). RESULTS We found that NaPyr effectively mitigated CSE-induced apoptosis and improved apoptosis induced by erastin, a ferroptosis inducer. NaPyr significantly decreased iron and MDA levels and increased GSH levels in CSE-induced cells. Furthermore, NaPyr suppressed ferroptosis characteristics, such as decreased levels of ROS, MitoSOX, and MMP. NaPyr significantly increases the expression levels of GPX4 and Nrf2, indicating that activation of the GPX4/Nrf2 axis could inhibit ferroptosis in alveolar and bronchial epithelial cells. More importantly, NaPyr inhibited the secretion of downstream inflammatory factors, including TNF and IL-8, by decreasing COX2 expression levels to suppress CSE-induced inflammation. CONCLUSION Accordingly, NaPyr could mitigate CSE-induced ferroptosis in alveolar and bronchial epithelial cells by activating the GPX4/Nrf2 axis and decreasing COX2 expression levels. In addition, NaPyr reduced the secretion of inflammatory factors (TNF and IL-8), affording a novel therapeutic candidate for COPD.
Collapse
Affiliation(s)
- Ziwen Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 21, Taizhou, Jiangsu 0023 China
| | - Zhao Xu
- Jiangsu Changtai Pharmaceutical Co., Ltd, Taizhou, Jiangsu 225300 China
| | - Jingwen Chang
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, School of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui 233003 China
| | - Liwei He
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 21, Taizhou, Jiangsu 0023 China
| | - Zijin Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 21, Taizhou, Jiangsu 0023 China
| | - Xiaoyu Song
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Xianbang Hou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Fangtian Fan
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, School of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui 233003 China
| | - Zhijun Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 21, Taizhou, Jiangsu 0023 China
- Jiangsu Changtai Pharmaceutical Co., Ltd, Taizhou, Jiangsu 225300 China
| |
Collapse
|
46
|
Chan SMH, Brassington K, Almerdasi SA, Dobric A, De Luca SN, Coward‐Smith M, Wang H, Mou K, Akhtar A, Alateeq RA, Wang W, Seow HJ, Selemidis S, Bozinovski S, Vlahos R. Inhibition of oxidative stress by apocynin attenuated chronic obstructive pulmonary disease progression and vascular injury by cigarette smoke exposure. Br J Pharmacol 2023; 180:2018-2034. [PMID: 36908040 PMCID: PMC10953324 DOI: 10.1111/bph.16068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Cardiovascular disease affects up to half of the patients with chronic obstructive pulmonary disease (COPD), exerting deleterious impact on health outcomes and survivability. Vascular endothelial dysfunction marks the onset of cardiovascular disease. The present study examined the effect of a potent NADPH Oxidase (NOX) inhibitor and free-radical scavenger, apocynin, on COPD-related cardiovascular disease. EXPERIMENTAL APPROACH Male BALB/c mice were exposed to either room air (Sham) or cigarette smoke (CS) generated from 9 cigarettes·day-1 , 5 days a week for up to 24 weeks with or without apocynin treatment (5 mg·kg-1 ·day-1 , intraperitoneal injection). KEY RESULTS Eight-weeks of apocynin treatment reduced airway neutrophil infiltration (by 42%) and completely preserved endothelial function and endothelial nitric oxide synthase (eNOS) availability against the oxidative insults of cigarette smoke exposure. These preservative effects were maintained up until the 24-week time point. 24-week of apocynin treatment markedly reduced airway inflammation (reduced infiltration of macrophage, neutrophil and lymphocyte), lung function decline (hyperinflation) and prevented airway collagen deposition by cigarette smoke exposure. CONCLUSION AND IMPLICATIONS Limiting NOX activity may slow COPD progression and lower cardiovascular disease risk, particularly when signs of oxidative stress become evident.
Collapse
Affiliation(s)
- Stanley M. H. Chan
- Centre for Respiratory Science and Health, School of Health and Biomedical SciencesRMIT UniversityBundooraVictoria3083Australia
| | - Kurt Brassington
- Centre for Respiratory Science and Health, School of Health and Biomedical SciencesRMIT UniversityBundooraVictoria3083Australia
| | - Suleman Abdullah Almerdasi
- Centre for Respiratory Science and Health, School of Health and Biomedical SciencesRMIT UniversityBundooraVictoria3083Australia
| | - Aleksandar Dobric
- Centre for Respiratory Science and Health, School of Health and Biomedical SciencesRMIT UniversityBundooraVictoria3083Australia
| | - Simone N. De Luca
- Centre for Respiratory Science and Health, School of Health and Biomedical SciencesRMIT UniversityBundooraVictoria3083Australia
| | - Madison Coward‐Smith
- Centre for Respiratory Science and Health, School of Health and Biomedical SciencesRMIT UniversityBundooraVictoria3083Australia
| | - Hao Wang
- Centre for Respiratory Science and Health, School of Health and Biomedical SciencesRMIT UniversityBundooraVictoria3083Australia
| | - Kevin Mou
- Centre for Respiratory Science and Health, School of Health and Biomedical SciencesRMIT UniversityBundooraVictoria3083Australia
| | - Alina Akhtar
- Centre for Respiratory Science and Health, School of Health and Biomedical SciencesRMIT UniversityBundooraVictoria3083Australia
| | - Rana Abdullah Alateeq
- Centre for Respiratory Science and Health, School of Health and Biomedical SciencesRMIT UniversityBundooraVictoria3083Australia
| | - Wei Wang
- Centre for Respiratory Science and Health, School of Health and Biomedical SciencesRMIT UniversityBundooraVictoria3083Australia
| | - Huei Jiunn Seow
- Centre for Respiratory Science and Health, School of Health and Biomedical SciencesRMIT UniversityBundooraVictoria3083Australia
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical SciencesRMIT UniversityBundooraVictoria3083Australia
| | - Steven Bozinovski
- Centre for Respiratory Science and Health, School of Health and Biomedical SciencesRMIT UniversityBundooraVictoria3083Australia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health and Biomedical SciencesRMIT UniversityBundooraVictoria3083Australia
| |
Collapse
|
47
|
Nguyen-Nhu V, Nguyen LP, Duong-Quy S, Le An P, Bui-Minh T. Classification of chronic obstructive pulmonary disease as ABCD according to the GOLD 2011 and 2017 versions in patients at the University Medical Center in Ho Chi Minh City, Vietnam. Monaldi Arch Chest Dis 2023; 94. [PMID: 37522870 DOI: 10.4081/monaldi.2023.2619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
In 2017, the Global Initiative for Chronic Obstructive Lung Disease (GOLD) substantially changed its ABCD group categorization. Although several studies had been conducted to assess the impact of the new GOLD category, there was no research on the change in the GOLD classification in Vietnam. This retrospective analysis was conducted at the Asthma and Chronic Obstructive Pulmonary Disease (COPD) Clinic at the University Medical Center in Ho Chi Minh City, Vietnam. Our study population comprised patients visiting the medical center from January 2018 to January 2020. We categorized patients' demographics, clinical characteristics, and pharmacotherapy based on GOLD 2011 and 2017 guidelines. A comparison between the two versions was also determined. A total of 457 patients were included in this study. The percentage of groups A, B, C, and D according to GOLD 2011 was 5%, 20.8%, 13.1%, and 61.1%, respectively, and according to GOLD 2017, it was 6.1%, 34.1%, 12%, and 47.8%, respectively. In terms of gender, male patients constituted nearly 95% of the study's population (433/457 patients). Regarding pharmacotherapy, approximately 20% of the low-risk group (groups A and B) was overtreated with inhaled corticosteroid (ICS) components: long-acting β-agonists (LABA) + ICS (15.8%) and long-acting muscarinic antagonist + LABA + ICS (3.8%). There were 13.3% and 1.1% of patients transferred from D to B and from C to A, respectively. All of them had a lower predicted percentage of forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), and FEV1/FVC than the patients who remained in groups B or A (p<0.005). This is the first research in Vietnam to show the distribution of COPD patients using both the GOLD 2011 and GOLD 2017 criteria. 14% of patients were reclassified from high-risk to low-risk groups when changing from the 2011 version to the 2017 one, and there was discordance of medications between guidelines and real-life practice. Therefore, clinicians should use their clinical competence to consider patients' conditions before deciding on the appropriate therapeutic approach. Consequently, further studies were required to evaluate the effect of the change in the GOLD classification.
Collapse
Affiliation(s)
- Vinh Nguyen-Nhu
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City; Department of Respiratory Functional Exploration, University Medical Center, Ho Chi Minh City.
| | - Lam-Phuoc Nguyen
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City.
| | - Sy Duong-Quy
- Bio-Medical Research Center, Lam Dong Medical College, Da Lat.
| | - Pham Le An
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City; Grant Innovation Center, University of Medicine and Pharmacy at Ho Chi Minh City.
| | - Tri Bui-Minh
- Grant Innovation Center, University of Medicine and Pharmacy at Ho Chi Minh City.
| |
Collapse
|
48
|
Wang X, Wright Z, Wang J, Roy S, Fass R, Song G. Elucidating the Link: Chronic Obstructive Pulmonary Disease and the Complex Interplay of Gastroesophageal Reflux Disease and Reflux-Related Complications. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1270. [PMID: 37512081 PMCID: PMC10384576 DOI: 10.3390/medicina59071270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/17/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Background and Objective: Presenting chronic obstructive pulmonary disease (COPD) patients frequently report concurrent symptoms of gastroesophageal reflux disease (GERD). Few studies have shown a correlation between GERD and COPD. We aimed to examine the correlation between GERD and COPD as well as secondary related reflux complications, such as esophageal stricture, esophageal cancer, and Barrett's esophagus. Methods: This population-based analysis included 7,159,694 patients. Patients diagnosed with GERD with and without COPD were compared to those without GERD. The enrollment of COPD included centrilobular and panlobular emphysema and chronic bronchitis. Risk factors of COPD or GERD were used for adjustment. Bivariate analyses were performed using the chi-squared test or Fisher exact test (2-tailed) for categorical variables as appropriate to assess the differences in the groups. Results: Our results showed that COPD patients had a significantly higher incidence of GERD compared to those without COPD (27.8% vs. 14.1%, p < 0.01). After adjustment of demographics and risk factors, COPD patients had a 1.407 times higher risk of developing non-erosive esophagitis (p < 0.01), 1.165 higher risk of erosive esophagitis (p < 0.01), 1.399 times higher risk of esophageal stricture (p < 0.01), 1.354 times higher risk of Barrett's esophagus without dysplasia (p < 0.01), 1.327 times higher risk of Barrett's esophagus with dysplasia, as well as 1.235 times higher risk of esophageal cancer than those without COPD. Conclusions: Based on the evidence from this study, there are sufficient data to provide convincing evidence of an association between COPD and GERD and its secondary reflux-related complications.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Internal Medicine Residency Program, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Zachary Wright
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Jiayan Wang
- Internal Medicine Residency Program, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Stephen Roy
- Internal Medicine Residency Program, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Ronnie Fass
- Department of Gastroenterology and Hepatology, Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gengqing Song
- Department of Gastroenterology and Hepatology, Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
49
|
Upadhyay P, Wu CW, Pham A, Zeki AA, Royer CM, Kodavanti UP, Takeuchi M, Bayram H, Pinkerton KE. Animal models and mechanisms of tobacco smoke-induced chronic obstructive pulmonary disease (COPD). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:275-305. [PMID: 37183431 PMCID: PMC10718174 DOI: 10.1080/10937404.2023.2208886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, and its global health burden is increasing. COPD is characterized by emphysema, mucus hypersecretion, and persistent lung inflammation, and clinically by chronic airflow obstruction and symptoms of dyspnea, cough, and fatigue in patients. A cluster of pathologies including chronic bronchitis, emphysema, asthma, and cardiovascular disease in the form of hypertension and atherosclerosis variably coexist in COPD patients. Underlying causes for COPD include primarily tobacco use but may also be driven by exposure to air pollutants, biomass burning, and workplace related fumes and chemicals. While no single animal model might mimic all features of human COPD, a wide variety of published models have collectively helped to improve our understanding of disease processes involved in the genesis and persistence of COPD. In this review, the pathogenesis and associated risk factors of COPD are examined in different mammalian models of the disease. Each animal model included in this review is exclusively created by tobacco smoke (TS) exposure. As animal models continue to aid in defining the pathobiological mechanisms of and possible novel therapeutic interventions for COPD, the advantages and disadvantages of each animal model are discussed.
Collapse
Affiliation(s)
- Priya Upadhyay
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Alexa Pham
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Amir A. Zeki
- Department of Internal Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology and Medicine, School of Medicine; University of California, Davis, School of Medicine; U.C. Davis Lung Center; Davis, CA USA
| | - Christopher M. Royer
- California National Primate Research Center, University of California, Davis, Davis, CA 95616 USA
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Minoru Takeuchi
- Department of Animal Medical Science, Kyoto Sangyo University, Kyoto, Japan
| | - Hasan Bayram
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Istanbul, Turkey
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
50
|
Wei Y, Lu X, Liu C. Gut microbiota and chronic obstructive pulmonary disease: a Mendelian randomization study. Front Microbiol 2023; 14:1196751. [PMID: 37405157 PMCID: PMC10315658 DOI: 10.3389/fmicb.2023.1196751] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 07/06/2023] Open
Abstract
Background A growing number of studies implies a strong association between gut microbiota and chronic obstructive pulmonary disease (COPD). However, the causal impact between gut microbiota and COPD remains unclear. As a result, we used a two-sample Mendelian randomization (MR) method to investigate the connection between gut microbiota and COPD in this study. Methods The largest available genome-wide association study (GWAS) of gut microbiota was obtained from the MiBioGen consortium. Summary-level dataset for COPD were obtained from the FinnGen consortium. The main analysis method for determining the causal link between gut microbiota and COPD was inverse variance weighted (IVW). Subsequently, pleiotropy and heterogeneity tests were performed to determine the reliability of the results. Results IVW method identified 9 bacterial taxa nominally associated with the risk of COPD. Class Actinobacteria (p = 0.020), genus Allisonella (p = 0.024), genus Coprococcus2 (p = 0.002) and genus Oscillospira (p = 0.018) were protective against COPD. In addition, order Desulfovibrionales (p = 0.011), family Desulfovibrionaceae (p = 0.039), family Peptococcaceae (p = 0.020), family Victivallaceae (p = 0.012) and genus Marvinbryantia (p = 0.017) were associated with a higher risk of COPD. No pleiotropy or heterogeneity were found. Conclusion According to the findings of this MR analysis, a causal relationship exists between certain gut microbiota and COPD. New insights into the mechanisms of COPD mediated by gut microbiota are provided.
Collapse
Affiliation(s)
- Yi Wei
- Department of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuechao Lu
- Department of Respiratory and Critical Care Medicine, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, China
| | - Chao Liu
- Department of Medical Imaging, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, China
| |
Collapse
|