1
|
Nicholls LA, Zeile KA, Scotto LD, Ryznar RJ. Timing of dietary effects on the epigenome and their potential protective effects against toxins. Epigenetics 2025; 20:2451495. [PMID: 39825851 DOI: 10.1080/15592294.2025.2451495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/20/2025] Open
Abstract
Exposure to toxins causes lasting damaging effects on the body. Numerous studies in humans and animals suggest that diet has the potential to modify the epigenome and these modifications can be inherited transgenerationally, but few studies investigate how diet can protect against negative effects of toxins. Potential evidence in the primary literature supports that caloric restriction, high-fat diets, high protein-to-carbohydrate ratios, and dietary supplementation protect against environmental toxins and strengthen these effects on their offspring's epigenome. Most notably, the timing when dietary interventions are given - during a parent's early development, pregnancy, and/or lifetime - result in similar transgenerational epigenetic durations. This implies the existence of multiple opportunities to strategically fortify the epigenome. This narrative review explores how to best utilize dietary modifications to modify the epigenome to protect future generations against negative health effects of persistent environmental toxins. Furthermore, by suggesting an ideal diet with specific micronutrients, macronutrients, and food groups, epigenetics can play a key role in the field of preventive medicine. Based on these findings, longitudinal research should be conducted to determine if a high protein, high-fat, and low-carbohydrate diet during a mother's puberty or pregnancy can epigenetically protect against alcohol, tobacco smoke, and air pollution across multiple generations.
Collapse
Affiliation(s)
- Lynnea A Nicholls
- Rocky Vista University College of Osteopathic Medicine, Parker, CO, USA
| | - Kendall A Zeile
- Rocky Vista University College of Osteopathic Medicine, Parker, CO, USA
| | - London D Scotto
- Rocky Vista University College of Osteopathic Medicine, Parker, CO, USA
| | - Rebecca J Ryznar
- Rocky Vista University College of Osteopathic Medicine, Parker, CO, USA
- Department of Biomedical Sciences, Rocky Vista University College of Osteopathic Medicine, Parker, CO, USA
| |
Collapse
|
2
|
Lee J, Choi JY, Lee SK. Heavy smoking increases early mortality risk in patients with hepatocellular carcinoma after curative treatment. JOURNAL OF LIVER CANCER 2024; 24:253-262. [PMID: 38852989 PMCID: PMC11449571 DOI: 10.17998/jlc.2024.06.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUNDS/AIMS Although cigarette smoking has been associated with an increased risk of hepatocellular carcinoma (HCC), its association with HCC mortality remains underexplored. We aimed to evaluate the effect of smoking on early mortality in HCC patients following curative treatment. METHODS Data from the Korean Primary Liver Cancer Registry were examined for HCC patients who underwent liver resection or radiofrequency ablation between 2015 and 2018. Smoking cumulative dose was assessed in pack-years. The primary outcome was the 3-year overall survival (OS). RESULTS Among 1,924 patients, 161 were classified as heavy smokers (≥40 pack-years). Heavy smokers exhibited a lower 3-year survival rate (77.1%) than nonsmokers (83.3%), with a significant difference observed in the 3-year OS (P=0.016). The assessment of smoking pack-years in relation to 3-year OS revealed a dose-dependent pattern, with the hazard ratio exceeding 1.0 at 20 pack-years and continuing to rise until 40 pack-years, reaching peak at 1.21 (95% confidence interval, 1.01-1.45). Multivariate Cox-regression analysis revealed heavy smoking, age ≥60 years, underlying cirrhosis, tumor size >3 cm, vascular invasion, and Child-Pugh class B/C as risk factors for 3-year OS. Subgroup analyses of patients with a tumor size <3 cm, absence of vascular invasion, and meeting the Milan criteria also showed inferior outcomes for heavy smokers in all three subgroups. CONCLUSIONS Heavy smoking, defined as a history of >40 pack-years, was linked to poorer 3-year survival outcomes in HCC patients undergoing curative treatments, underscoring the importance of smoking cessation in this population.
Collapse
Affiliation(s)
- Jaejun Lee
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Soon Kyu Lee
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
3
|
Ramachandran R, Manan A, Kim J, Choi S. NLRP3 inflammasome: a key player in the pathogenesis of life-style disorders. Exp Mol Med 2024; 56:1488-1500. [PMID: 38945951 PMCID: PMC11297159 DOI: 10.1038/s12276-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 07/02/2024] Open
Abstract
Proinflammatory cytokines and chemokines play a crucial role in regulating the inflammatory response, which is essential for the proper functioning of our immune system. When infections or threats to the body's defense mechanisms are detected, the innate immune system takes the lead. However, an excessive inflammatory response can lead to the production of high concentrations of cytotoxic molecules, resulting in tissue damage. Inflammasomes are significant contributors to innate immunity, and one of the most extensively studied inflammasome complexes is NOD-like receptor 3 (NLRP3). NLRP3 has a wide range of recognition mechanisms that streamline immune activation and eliminate pathogens. These cytosolic multiprotein complexes are composed of effector, adaptor, and sensor proteins, which are crucial for identifying intracellular bacterial breakdown products and initiating an innate immune cascade. To understand the diverse behavior of NLRP3 activation and its significance in the development of lifestyle-related diseases, one must delve into the study of the immune response and apoptosis mediated by the release of proinflammatory cytokines. In this review, we briefly explore the immune response in the context of lifestyle associated disorders such as obesity, hyperlipidemia, diabetes, chronic respiratory disease, oral disease, and cardiovascular disease.
Collapse
Affiliation(s)
- Rajath Ramachandran
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
| | - Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Jei Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea.
| |
Collapse
|
4
|
Hathaway CA, Townsend MK, Wang T, Vinci C, Jake-Schoffman DE, Hecht JL, Saeed-Vafa D, Segura CM, Nguyen JV, Conejo-Garcia JR, Fridley BL, Tworoger SS. Lifetime Exposure to Cigarette Smoke, B-Cell Tumor Immune Infiltration, and Immunoglobulin Abundance in Ovarian Tumors. Cancer Epidemiol Biomarkers Prev 2024; 33:796-803. [PMID: 38517322 PMCID: PMC11147730 DOI: 10.1158/1055-9965.epi-23-1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/08/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Cigarette smoke exposure has been linked to systemic immune dysfunction, including for B-cell and immunoglobulin (Ig) production, and poor outcomes in patients with ovarian cancer. No study has evaluated the impact of smoke exposure across the life-course on B-cell infiltration and Ig abundance in ovarian tumors. METHODS We measured markers of B and plasma cells and Ig isotypes using multiplex immunofluorescence on 395 ovarian cancer tumors in the Nurses' Health Study (NHS)/NHSII. We conducted beta-binomial analyses evaluating odds ratios (OR) and 95% confidence intervals (CI) for positivity of immune markers by cigarette exposure among cases and Cox proportional hazards models to evaluate hazard ratios (HR) and 95% CI for developing tumors with low ( RESULTS There were no associations between smoke exposure and B-cell or IgM infiltration in ovarian tumors. Among cases, we observed higher odds of IgA+ among ever smokers (OR, 1.54; 95% CI, 1.14-2.07) and ever smokers with no parental smoke exposure (OR, 2.03; 95% CI, 1.18-3.49) versus never smokers. Women with parental cigarette smoke exposure versus not had higher risk of developing ovarian cancer with low IgG+ (HR, 1.51; 95% CI, 1.10-2.09), whereas ever versus never smokers had a lower risk (HR, 0.74; 95% CI, 0.56-0.99). CONCLUSIONS Ever smoking was associated with increased odds of IgA in ovarian tumors. IMPACT IgA has been associated with improved ovarian cancer outcomes, suggesting that although smoking is associated with poor outcomes in patients with ovarian cancer, it may lead to improved tumor immunogenicity.
Collapse
Affiliation(s)
| | - Mary K. Townsend
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Tianyi Wang
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Christine Vinci
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Jonathan L. Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Daryoush Saeed-Vafa
- Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, Florida, USA
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, Florida, USA
| | - Carlos Moran Segura
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, Florida, USA
| | - Jonathan V. Nguyen
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, Florida, USA
| | - Jose R. Conejo-Garcia
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Brooke L. Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, USA
| | - Shelley S. Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
- Knight Cancer Institute and Division of Oncological Sciences, Oregon Health & Science University, Portland, OR
| |
Collapse
|
5
|
Laudanski K, Mahmoud MA, Ahmed AS, Susztak K, Mathew A, Chen J. Immunological Signatures in Blood and Urine in 80 Individuals Hospitalized during the Initial Phase of COVID-19 Pandemic with Quantified Nicotine Exposure. Int J Mol Sci 2024; 25:3714. [PMID: 38612525 PMCID: PMC11011256 DOI: 10.3390/ijms25073714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 04/14/2024] Open
Abstract
This research analyzes immunological response patterns to SARS-CoV-2 infection in blood and urine in individuals with serum cotinine-confirmed exposure to nicotine. Samples of blood and urine were obtained from a total of 80 patients admitted to hospital within 24 h of admission (tadm), 48 h later (t48h), and 7 days later (t7d) if patients remained hospitalized or at discharge. Serum cotinine above 3.75 ng/mL was deemed as biologically significant exposure to nicotine. Viral load was measured with serum SARS-CoV-2 S-spike protein. Titer of IgG, IgA, and IgM against S- and N-protein assessed specific antiviral responses. Cellular destruction was measured by high mobility group box protein-1 (HMGB-1) serum levels and heat shock protein 60 (Hsp-60). Serum interleukin 6 (IL-6), and ferritin gauged non-specific inflammation. The immunological profile was assessed with O-link. Serum titers of IgA were lower at tadm in smokers vs. nonsmokers (p = 0.0397). IgM at t48h was lower in cotinine-positive individuals (p = 0.0188). IgG did not differ between cotinine-positive and negative individuals. HMGB-1 at admission was elevated in cotinine positive individuals. Patients with positive cotinine did not exhibit increased markers of non-specific inflammation and tissue destruction. The blood immunological profile had distinctive differences at admission (MIC A/B↓), 48 h (CCL19↓, MCP-3↓, CD28↑, CD8↓, IFNγ↓, IL-12↓, GZNB↓, MIC A/B↓) or 7 days (CD28↓) in the cotinine-positive group. The urine immunological profile showed a profile with minimal overlap with blood as the following markers being affected at tadm (CCL20↑, CXCL5↑, CD8↑, IL-12↑, MIC A/B↑, GZNH↑, TNFRS14↑), t48h (CCL20↓, TRAIL↓) and t7d (EGF↑, ADA↑) in patients with a cotinine-positive test. Here, we showed a distinctive immunological profile in hospitalized COVID-19 patients with confirmed exposure to nicotine.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55902, USA;
| | - Mohamed A. Mahmoud
- Department of Pulmonary and Critical Care, Mayo Clinic, Rochester, MN 55902, USA; (M.A.M.); (A.S.A.)
| | - Ahmed Sayed Ahmed
- Department of Pulmonary and Critical Care, Mayo Clinic, Rochester, MN 55902, USA; (M.A.M.); (A.S.A.)
| | - Kaitlin Susztak
- Department of Nephrology, University of Pennsylvania, Philadelphia, PA 19146, USA;
| | - Amal Mathew
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA;
| | - James Chen
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55902, USA;
| |
Collapse
|
6
|
Akram Z, Mahjabeen I, Batool M, Kanwal S, Nawaz F, Kayani MA, Rizwan M. Expression deregulation of genes related to DNA repair and lead toxicity in occupationally exposed industrial workers. Int Arch Occup Environ Health 2023; 96:1333-1347. [PMID: 37804366 DOI: 10.1007/s00420-023-02012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVE Globally millions of people working in various industries and are exposed to different toxins which may affect their genetic stability and DNA integrity. Present study was designed to estimate the expression variation of genes related to DNA repair (XRCC1, PARP1) and lead toxicity (ALAD) in exposed industrial workers. METHODS About 200 blood samples were collected from workers of brick kiln, welding, furniture and paint industry (50/industry) along with age and gender matched controls. mRNA expression of genes was measured using RT-PCR. Serum levels of total ROS, POD, TBAR activity was calculated. Blood lead levels were estimated by atomic absorption spectrometer. RESULTS Relative expression of XRCC1 and PARP1 gene was significantly (P < 0.001) upregulated, while ALAD gene expression was downregulated in exposed group compared to control. Expression of XRCC1 and PARP1 was increased (P < 0.001) in exposed workers with > 30 year age compared to control with > 30 year age. Same was observed when < 30 year age group of control and exposed was compared. Likewise, XRCC1 and PARP1 expression was increased (P < 0.001) in exposed workers with > 30 year age compared to workers with < 30 year age. Whereas, ALAD gene showed significant (P < 0.01) decrease in > 30 year age workers compared to control of same age and exposed with < 30 year of age. Relative expression of XRCC1 and PARP1 was increased (P < 0.001) in exposed smokers compared to exposed non-smokers and control smokers. Whereas, ALAD gene expression reduced (P < 0.001) significantly in both groups. Blood lead content was higher (P < 0.001) in exposed group compared to control. Strong correlation was observed between XRCC1, PARP1 and ALAD gene versus age, total exposure duration, exposure per day and lead deposition. ROS, TBARS and POD activity was higher (P < 0.01) in exposed group compared to control group. CONCLUSION Present study suggested deregulation of genes related to DNA repair and lead intoxication in exposed group compared to controls. Strong correlation was observed between selected genes and demographic parameters. Present results revealed altered activity of oxidative stress markers which would induce oxidative damage to DNA integrity and limit the function of repair enzymes.
Collapse
Affiliation(s)
- Zertashia Akram
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan.
| | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Mariam Batool
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sana Kanwal
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Fatima Nawaz
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Rizwan
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
7
|
Rahman MA, Amin MA, Yeasmin MN, Islam MZ. Molecular Biomarker Identification Using a Network-Based Bioinformatics Approach That Links COVID-19 With Smoking. Bioinform Biol Insights 2023; 17:11779322231186481. [PMID: 37461741 PMCID: PMC10350588 DOI: 10.1177/11779322231186481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
The COVID-19 coronavirus, which primarily affects the lungs, is the source of the disease known as SARS-CoV-2. According to "Smoking and COVID-19: a scoping review," about 32% of smokers had a severe case of COVID-19 pneumonia at their admission time and 15% of non-smokers had this case of COVID-19 pneumonia. We were able to determine which genes were expressed differently in each group by comparing the expression of gene transcriptomic datasets of COVID-19 patients, smokers, and healthy controls. In all, 37 dysregulated genes are common in COVID-19 patients and smokers, according to our analysis. We have applied all important methods namely protein-protein interaction, hub-protein interaction, drug-protein interaction, tf-gene interaction, and gene-MiRNA interaction of bioinformatics to analyze to understand deeply the connection between both smoking and COVID-19 severity. We have also analyzed Pathways and Gene Ontology where 5 significant signaling pathways were validated with previous literature. Also, we verified 7 hub-proteins, and finally, we validated a total of 7 drugs with the previous study.
Collapse
Affiliation(s)
| | - Md Al Amin
- Department of Computer Science & Engineering, Prime University, Dhaka, Bangladesh
| | - Most Nilufa Yeasmin
- Department of Information & Communication Technology, Islamic University, Kushtia, Bangladesh
| | - Md Zahidul Islam
- Department of Information & Communication Technology, Islamic University, Kushtia, Bangladesh
| |
Collapse
|
8
|
Keivanlou MH, Amini-Salehi E, Hassanipour S, Mahapatro A, Raghuma N, Joukar F, Letafatkar N, Habibi A, Norouzi N, Aleali MS, Javid M, Mirdamadi A, Mansour-Ghanaei F. Association between smoking and colorectal cancer in Eastern Mediterranean Regional Office (EMRO): A systematic review and meta-analysis. Saudi J Gastroenterol 2023; 29:204-211. [PMID: 37470665 PMCID: PMC10445494 DOI: 10.4103/sjg.sjg_163_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 06/03/2023] [Indexed: 07/08/2023] Open
Abstract
Background Smoking poses a significant risk for colorectal cancer (CRC), considered the third leading reason for cancer-related deaths worldwide. However, there has been limited research on the relationship between smoking and CRC in the Eastern Mediterranean Regional Office (EMRO). Therefore, a meta-analysis was conducted to combine available data and gain a comprehensive understanding of the relationship between smoking and CRC in EMRO. Methods Two independent researchers searched PubMed, Scopus, and Web of Science until December 2022. The included studies were checked for risk of bias administering the Newcastle-Ottawa scale. Heterogeneity was evaluated using I2 statistics and the Cochrane test. Publication bias was determined through funnel plot analysis and Egger's regression test. Additionally, a meta-regression analysis explored the impact of a country's Human Development Index (HDI) on the relationship between smoking and CRC. Results The final analysis included 26 studies, revealing a significant association between smoking and CRC (OR = 1.40; 95% CI: 1.11 - 1.78; P = 0.004). Moreover, smoking had a more pronounced adverse effect on CRC in countries with higher HDIs compared to those with lower HDIs (OR = 1.30; 95% CI: 0.99 - 1.71; P = 0.054). Conclusions Our findings underscore the importance of implementing smoking cessation programs and policies in EMRO countries, as they demonstrate a positive relationship between smoking and the risk of CRC. Furthermore, the results suggest that a country's level of human development may influence the association between smoking and CRC. Further research is needed to investigate this potential connection and develop targeted public health interventions.
Collapse
Affiliation(s)
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University, Rasht, Iran
| | - Abinash Mahapatro
- School of Medicine, Hi-Tech Medical College and Hospital, Rourkela, Odisha, India
| | - Nakka Raghuma
- School of Medicine, GSL Medical College and General Hospital, Rajamahendravaram, Andhra Pradesh, India
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University, Rasht, Iran
| | - Negin Letafatkar
- Gastrointestinal and Liver Diseases Research Center, Guilan University, Rasht, Iran
| | - Arman Habibi
- Gastrointestinal and Liver Diseases Research Center, Guilan University, Rasht, Iran
| | - Naeim Norouzi
- Gastrointestinal and Liver Diseases Research Center, Guilan University, Rasht, Iran
| | - Maryam Sadat Aleali
- Gastrointestinal and Liver Diseases Research Center, Guilan University, Rasht, Iran
| | - Mona Javid
- Gastrointestinal and Liver Diseases Research Center, Guilan University, Rasht, Iran
| | - Arian Mirdamadi
- Gastrointestinal and Liver Diseases Research Center, Guilan University, Rasht, Iran
| | | |
Collapse
|
9
|
Camila B, Carlos C, Maria-Jose P, Sergio R, Alejandra C, Adriana R. Genotoxicity and hypomethylation of LINE-1 induced by electronic cigarettes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114900. [PMID: 37054467 DOI: 10.1016/j.ecoenv.2023.114900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/08/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Currently, the marketing of electronic cigarettes as a safe alternative to smoking has increased, which is associated with greater use of these devices, especially among young people and smokers interested in quitting tobacco cigarettes. Given the growing use of this type of product, there is a need to determine the consequences of electronic cigarettes on human health, especially since many of the compounds contained in the aerosol and liquid of these devices have a high potential to be carcinogenic and genotoxic. Additionally, many of these compounds' aerosol concentrations exceed the safe limits. We have evaluated the levels of genotoxicity and changes in DNA methylation patterns associated with vaping. We analyzed a total of 90 peripheral blood samples from a population of vapers (n = 32), smokers (n = 18), and controls (n = 32), in which the frequencies of genotoxicity were determined by the cytokinesis-blocking micronuclei (CBMN) assay and the patterns of methylation of the repetitive elements of LINE-1 through the Quantitative Methylation Specific PCR (qMSP) assay. Here we show an increase in genotoxicity levels associated with vaping habits. Additionally, the group of vapers showed changes at the epigenetic level specifically associated with the loss of methylation of the LINE-1 elements. These changes in LINE-1 methylation patterns were reflected in its representative RNA expression detected in vapers.
Collapse
Affiliation(s)
- Bernal Camila
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Camero Carlos
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Pinzón Maria-Jose
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Rodríguez Sergio
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Cañas Alejandra
- Internal Medicine Department, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia; Internal Medicine Department, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Rojas Adriana
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
10
|
Vidaki A, Planterose Jiménez B, Poggiali B, Kalamara V, van der Gaag KJ, Maas SCE, Ghanbari M, Sijen T, Kayser M. Targeted DNA methylation analysis and prediction of smoking habits in blood based on massively parallel sequencing. Forensic Sci Int Genet 2023; 65:102878. [PMID: 37116245 DOI: 10.1016/j.fsigen.2023.102878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Tobacco smoking is a frequent habit sustained by > 1.3 billion people in 2020 and the leading preventable factor for health risk and premature mortality worldwide. In the forensic context, predicting smoking habits from biological samples may allow broadening DNA phenotyping. In this study, we aimed to implement previously published smoking habit classification models based on blood DNA methylation at 13 CpGs. First, we developed a matching lab tool based on bisulfite conversion and multiplex PCR followed by amplification-free library preparation and targeted paired-end massively parallel sequencing (MPS). Analysis of six technical duplicates revealed high reproducibility of methylation measurements (Pearson correlation of 0.983). Artificially methylated standards uncovered marker-specific amplification bias, which we corrected via bi-exponential models. We then applied our MPS tool to 232 blood samples from Europeans of a wide age range, of which 90 were current, 71 former and 71 never smokers. On average, we obtained 189,000 reads/sample and 15,000 reads/CpG, without marker drop-out. Methylation distributions per smoking category roughly corresponded to previous microarray analysis, showcasing large inter-individual variation but with technology-driven bias. Methylation at 11 out of 13 smoking-CpGs correlated with daily cigarettes in current smokers, while solely one was weakly correlated with time since cessation in former smokers. Interestingly, eight smoking-CpGs correlated with age, and one displayed weak but significant sex-associated methylation differences. Using bias-uncorrected MPS data, smoking habits were relatively accurately predicted using both two- (current/non-current) and three- (never/former/current) category model, but bias correction resulted in worse prediction performance for both models. Finally, to account for technology-driven variation, we built new, joint models with inter-technology corrections, which resulted in improved prediction results for both models, with or without PCR bias correction (e.g. MPS cross-validation F1-score > 0.8; 2-categories). Overall, our novel assay takes us one step closer towards the forensic application of viable smoking habit prediction from blood traces. However, future research is needed towards forensically validating the assay, especially in terms of sensitivity. We also need to further shed light on the employed biomarkers, particularly on the mechanistics, tissue specificity and putative confounders of smoking epigenetic signatures.
Collapse
Affiliation(s)
- Athina Vidaki
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Benjamin Planterose Jiménez
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Brando Poggiali
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vivian Kalamara
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Silvana C E Maas
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Titia Sijen
- Division of Biological Traces, Netherlands Forensic Institute, The Hague, the Netherlands; Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
11
|
Hathaway CA, Wang T, Townsend MK, Vinci C, Jake-Schoffman DE, Saeed-Vafa D, Segura CM, Nguyen JV, Conejo-Garcia JR, Fridley BL, Tworoger SS. Lifetime Exposure to Cigarette Smoke and Risk of Ovarian Cancer by T-cell Tumor Immune Infiltration. Cancer Epidemiol Biomarkers Prev 2023; 32:66-73. [PMID: 36318652 PMCID: PMC9839509 DOI: 10.1158/1055-9965.epi-22-0877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/21/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Exposure to cigarette smoke, particularly in early life, is modestly associated with ovarian cancer risk and may impact systemic immunity and the tumor immune response. However, no studies have evaluated whether cigarette smoke exposure impacts the ovarian tumor immune microenvironment. METHODS Participants in the Nurses' Health Study (NHS) and NHSII reported on early life exposure to cigarette smoke and personal smoking history on questionnaires (n = 165,760). Multiplex immunofluorescence assays were used to measure markers of T cells and immune checkpoints in tumor tissue from 385 incident ovarian cancer cases. We used Cox proportional hazards models to evaluate HRs and 95% confidence intervals (CI) for developing ovarian tumors with a low (<median) or high (≥median) immune cell percentage by cigarette exposure categories. RESULTS Women exposed versus not to cigarette smoke early in life had a higher risk of developing ovarian cancer with low levels of T cells overall (CD3+: HR: 1.54, 95% CI: 1.08-2.20) and recently activated cytotoxic T cells (CD3+CD8+CD69+: HR: 1.45, 95% CI: 1.05-2.00). These findings were not statistically significant at the Bonferroni-corrected P value of 0.0083. Adult smoking was not significantly associated with tumor immune markers after Bonferroni correction. CONCLUSIONS These results suggest early life cigarette smoke exposure may modestly increase risk of developing ovarian tumors with low abundance of total T cells and recently activated cytotoxic T cells. IMPACT Future research should focus on understanding the impact of exposures throughout the life course on the ovarian tumor immune microenvironment.
Collapse
Affiliation(s)
| | - Tianyi Wang
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Mary K. Townsend
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Christine Vinci
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Daryoush Saeed-Vafa
- Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, Florida, USA.,Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, Florida, USA
| | - Carlos Moran Segura
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, Florida, USA
| | - Jonathan V. Nguyen
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Brooke L. Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, USA
| | - Shelley S. Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
12
|
Chen X, Cao Y, Chen M, Wang H, Du P, Li H, Zhong H, Li Q, Zhao S, Yao Z, Chen W, Cai W, Tang X, Li L. HIV-infected patients rarely develop invasive fungal diseases under good immune reconstitution after ART regardless high prevalence of pathogenic filamentous fungi carriage in nasopharynx/oropharynx. Front Microbiol 2022; 13:968532. [PMID: 36406455 PMCID: PMC9666755 DOI: 10.3389/fmicb.2022.968532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE We aimed to investigate the prevalence and risk factors of filamentous fungi (FF) carriage in human immunodeficiency virus (HIV)-infected patients in Guangdong province, along with its subsequent incidence of invasive fungal disease (IFD). METHODS Seven hundred and sixteen HIV-infected individuals from the outpatient clinic and 293 sex-matched healthy controls were recruited prospectively from May 1 to August 31, 2017. Fungi were isolated from oropharyngeal and nasopharyngeal swabs, then identified by morphological and molecular biological techniques. Logistic regression analysis was used to identify risk factors of pathogenic FF carriage. Pathogenic FF carriers were followed up through the end of 2019. RESULTS Of the 716 included HIV-infected patients, 602 (84.1%) were male, the median age was 34 (27-42) years, and the median CD4+ count was 385 (254-542) cells/μl. Pathogenic FF were isolated in 119 (16.6%) cases with HIV infection and 40 (13.7%) healthy controls. Mucorales were found in 3 HIV-infected individuals and Talaromyces marneffei in 2 HIV-infected individuals, but not in healthy controls. History of cured opportunistic infections (OIs; OR, 1.97; 95% CI, 1.23-3.13, p = 0.004), and smoking (OR, 1.55; 95%CI, 1.03-2.32, p = 0.035) were independent risk factors of pathogenic FF carriage in HIV-infected individuals. A total of 119 pathogenic FF carriers with HIV infection were followed. During follow-up, 119 (100%) cases received antiretroviral therapy (ART) for at least 28 months, 107 (90%) cases had CD4+ counts>200 cells/μl, and none developed IFD. DISCUSSION Pathogenic FF carriage is common in HIV-infected individuals but may not develop IFD in those who achieved immune reconstitution. Smoking and cured OIs history increase the risk of pathogenic FF carriage. Smoking abstinence and ART adherence are especially important for these patients.
Collapse
Affiliation(s)
- Xiaoman Chen
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Cao
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Meijun Chen
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haodi Wang
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peishan Du
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hong Li
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huolin Zhong
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Quanmin Li
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Santao Zhao
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhenjiang Yao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wanshan Chen
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiping Cai
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Tang
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China,*Correspondence: Xiaoping Tang,
| | - Linghua Li
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China,Linghua Li,
| |
Collapse
|
13
|
Bauer-Kemény C, Herth FJF. [Smoking-toxic substances and immunological consequences]. RADIOLOGIE (HEIDELBERG, GERMANY) 2022; 62:731-737. [PMID: 35925095 DOI: 10.1007/s00117-022-01006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/06/2022] [Indexed: 11/28/2024]
Abstract
BACKGROUND Tobacco smoke is the leading cause of morbidity and mortality in modern times. The combustion products in tobacco smoke contain a variety of toxic substances. FINDINGS These substances have far-reaching effects on the immune system, altering both cell-mediated and humoral responses of the immune system. Hence, they affect the development, cytokine production, and effector function of both innate immune cells, including dendritic cells (DCs), macrophages, and natural killer (NK) cells, and adaptive immune cells, such as cytotoxic CD8+ T cells, CD4+ Th cells, regulatory T cells, and B cells, resulting in proinflammatory responses and/or immune cell dysfunction. CONCLUSION However, although tobacco products have been shown to impair humoral and cell-mediated immunity, neither the extent of this impairment nor its mechanisms are clearly understood.
Collapse
Affiliation(s)
- C Bauer-Kemény
- Thoraxklinik, Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland.
| | - F J F Herth
- Thoraxklinik, Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg, Heidelberg, Deutschland
| |
Collapse
|
14
|
Chromosomal Aberrations and Oxidative Stress in Psoriatic Patients with and without Metabolic Syndrome. Metabolites 2022; 12:metabo12080688. [PMID: 35893255 PMCID: PMC9331653 DOI: 10.3390/metabo12080688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Psoriasis and metabolic syndrome (MetS), a common comorbidity of psoriasis, are associated with mild chronic systemic inflammation that increases oxidative stress and causes cell and tissue damage. At the cellular level, chromosomal and DNA damage has been documented, thus confirming their genotoxic effect. The main objective of our study was to show the genotoxic potential of chronic inflammation and determine whether the presence of both pathologies increases chromosomal damage compared to psoriasis alone and to evaluate whether there are correlations between selected parameters and chromosomal aberrations in patients with psoriasis and MetS psoriasis. Clinical examination (PASI score and MetS diagnostics according to National Cholesterol Education Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults; NCE/ATPIII criteria), biochemical analysis of blood samples (fasting glucose, total cholesterol, low density and high density lipoproteins; LDL, HDL, non-HDL, and triglycerides;TAG), DNA/RNA oxidative damage, and chromosomal aberration test were performed in 41 participants (20 patients with psoriasis without MetS and 21 with MetS and psoriasis). Our results showed that patients with psoriasis without metabolic syndrome (nonMetS) and psoriasis and MetS had a higher rate of chromosomal aberrations than the healthy population for which the limit of spontaneous, natural aberration was <2%. No significant differences in the aberration rate were found between the groups. However, a higher aberration rate (higher than 10%) and four numerical aberrations were documented only in the MetS group. We found no correlations between the number of chromosomal aberrations and the parameters tested except for the correlation between aberrations and HDL levels in nonMetS patients (rho 0.44; p < 0.02). Interestingly, in the MetS group, a higher number of chromosomal aberrations was documented in non-smokers compared to smokers. Data from our current study revealed an increased number of chromosomal aberrations in patients with psoriasis and MetS compared to the healthy population, especially in psoriasis with MetS, which could increase the genotoxic effect of inflammation and the risk of genomic instability, thus increasing the risk of carcinogenesis.
Collapse
|
15
|
Muresanu C, Khalchitsky S. Updated Understanding of the Causes of Cancer, and a New Theoretical Perspective of Combinational Cancer Therapies, a Hypothesis. DNA Cell Biol 2022; 41:342-355. [PMID: 35262416 DOI: 10.1089/dna.2021.1118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We present an integrative understanding of cancer as a metabolic multifactorial, multistage disease. We focus on underlying genetics-environmental interactions, evidenced by telomere changes. A range of genetic and epigenetic factors, including physical agents and predisposing factors such as diet and lifestyle are included. We present a structured model of the causes of cancer, methods of investigations, approaches to cancer prevention, and polypharmaceutical multidisciplinary complex treatment within a framework of personalized medicine. We searched PubMed, National Cancer Institute online, and other databases for publications regarding causes of cancer, reports of novel mitochondrial reprogramming, epigenetic, and telomerase therapies and state-of-the-art investigations. We focused on multistep treatment protocols to enhance early detection of cancer, and elimination or neutralization of the causes and factors associated with cancer formation and progression.Our aim is to suggest a model therapeutic protocol that incorporates the patient's genome, metabolism, and immune system status; stage of tumor development; and comorbidity(ies), if any. Investigation and treatment of cancer is a challenge that requires further holistic studies that improve the quality of life and survival rates, but are most likely to aid prevention.
Collapse
Affiliation(s)
- Cristian Muresanu
- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapies, Cluj-Napoca, Romania.,Department of Ecology, Taxonomy and Nature Conservation, Institute of Biology, Romanian Academy, Bucharest, Romania
| | - Sergei Khalchitsky
- H. Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russia
| |
Collapse
|
16
|
Metzger M, Navel V, Bouvet M, Pereira B, Hébraud J, Coutu A, Chiambaretta F, Dutheil F. Complications of Adenoviral Keratoconjunctivitis in Ophthalmologists and Orthoptists: Epidemiology and Risk Factor, A Retrospective Questionnaire Analysis. Cornea 2022; 41:339-346. [PMID: 34743092 DOI: 10.1097/ico.0000000000002909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/10/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The purpose of this study was to assess the medical history of adenoviral keratoconjunctivitis (AK) and subepithelial infiltrates (SEIs) among French ophthalmologists and orthoptists and the frequency of unreported occupational diseases. We also described short-term and long-term consequences of AK and evaluated associated factors. METHODS The REDCap questionnaire was diffused online several times over 7 consecutive months, from October 2019 to May 2020, through mailing lists (French Society of Ophthalmology, residents, and hospital departments), social networks, and by word of mouth. RESULTS Seven hundred ten participants were included with a response rate of 6.2% for ophthalmologists, 3.8% for orthoptists, and 28.3% for ophthalmology residents. The medical history of AK was found in 24.1% (95% confidence interval 21%-27.2%) of respondents and SEI in 43.9% (36.5%-51.3%) of the AK population. In total, 87.1% (82.1%-92.1%) of AK occupational diseases were not declared. In total, 57.7% of respondents took 9.4 ± 6.2 days of sick leave, mostly unofficial, and 95.7% stopped surgeries for 13.0 ± 6.6 days. Among the AK population, 39.8% had current sequelae, with 17.5% having persistent SEIs, 19.9% using current therapy, and 16.4% experiencing continuing discomfort. SEIs were associated with wearing contact lenses (odds ratio 3.31, 95% confidence interval 1.19-9.21) and smoking (4.07, 1.30-12.8). Corticosteroid therapy was associated with a greater number of sequelae (3.84, 1.51-9.75). CONCLUSIONS AK and SEI affect a large proportion of ophthalmologists and orthoptists, possibly for years, with high morbidity leading to occupational discomfort. Few practitioners asked for either to be recognized as an occupational disease. Associated factors would require a dedicated study.
Collapse
Affiliation(s)
- Margaux Metzger
- University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Ophthalmology, Clermont-Ferrand, France
| | - Valentin Navel
- University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Ophthalmology, Clermont-Ferrand, France
- Université Clermont Auvergne, CNRS UMR 6293, INSERM U1103, Genetic Reproduction and Development Laboratory (GReD), Translational Approach to Epithelial Injury and Repair Team, Clermont-Ferrand, France
| | - Magalie Bouvet
- University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Ophthalmology, Clermont-Ferrand, France
| | - Bruno Pereira
- University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Biostatistics, Clermont-Ferrand, France
| | - Jérémy Hébraud
- CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Intensive Care Unit, Clermont-Ferrand, France; and
| | - Adrien Coutu
- University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Ophthalmology, Clermont-Ferrand, France
| | - Frédéric Chiambaretta
- University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Ophthalmology, Clermont-Ferrand, France
- Université Clermont Auvergne, CNRS UMR 6293, INSERM U1103, Genetic Reproduction and Development Laboratory (GReD), Translational Approach to Epithelial Injury and Repair Team, Clermont-Ferrand, France
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Preventive and Occupational Medicine, WittyFit, Clermont-Ferrand, France
| |
Collapse
|
17
|
Mamdani H, Matosevic S, Khalid AB, Durm G, Jalal SI. Immunotherapy in Lung Cancer: Current Landscape and Future Directions. Front Immunol 2022; 13:823618. [PMID: 35222404 PMCID: PMC8864096 DOI: 10.3389/fimmu.2022.823618] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
Over the past decade, lung cancer treatment has undergone a major paradigm shift. A greater understanding of lung cancer biology has led to the development of many effective targeted therapies as well as of immunotherapy. Immune checkpoint inhibitors (ICIs) have shown tremendous benefit in the treatment of non-small cell lung cancer (NSCLC) and are now being used as first-line therapies in metastatic disease, consolidation therapy following chemoradiation in unresectable locally advanced disease, and adjuvant therapy following surgical resection and chemotherapy in resectable disease. Despite these benefits, predicting who will respond to ICIs has proven to be difficult and there remains a need to discover new predictive immunotherapy biomarkers. Furthermore, resistance to ICIs in lung cancer is frequent either because of a lack of response or disease progression after an initial response. The utility of ICIs in the treatment of small cell lung cancer (SCLC) remains limited to first-line treatment of extensive stage disease in combination with chemotherapy with modest impact on overall survival. It is thus important to explore and exploit additional targets to reap the full benefits of immunotherapy in the treatment of lung cancer. Here, we will summarize the current state of immunotherapy in lung cancer, discuss novel targets, and explore the intersection between DNA repair defects and immunotherapy.
Collapse
Affiliation(s)
- Hirva Mamdani
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Ahmed Bilal Khalid
- Department of Internal Medicine, Indiana University, Indianapolis, IN, United States
| | - Gregory Durm
- Department of Internal Medicine, Division of Hematology/Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shadia I. Jalal
- Department of Internal Medicine, Division of Hematology/Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
18
|
Ugai T, Väyrynen JP, Haruki K, Akimoto N, Lau MC, Zhong R, Kishikawa J, Väyrynen SA, Zhao M, Fujiyoshi K, Dias Costa A, Borowsky J, Arima K, Guerriero JL, Fuchs CS, Zhang X, Song M, Wang M, Giannakis M, Meyerhardt JA, Nowak JA, Ogino S. Smoking and Incidence of Colorectal Cancer Subclassified by Tumor-Associated Macrophage Infiltrates. J Natl Cancer Inst 2022; 114:68-77. [PMID: 34264325 PMCID: PMC8755510 DOI: 10.1093/jnci/djab142] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Biological evidence indicates that smoking can influence macrophage functions and polarization, thereby promoting tumor evolution. We hypothesized that the association of smoking with colorectal cancer incidence might differ by macrophage infiltrates. METHODS Using the Nurses' Health Study and the Health Professionals Follow-up Study, we examined the association of smoking with incidence of colorectal cancer subclassified by macrophage counts. Multiplexed immunofluorescence (for CD68, CD86, IRF5, MAF, and MRC1 [CD206]) combined with digital image analysis and machine learning was used to identify overall, M1-polarized, and M2-polarized macrophages in tumor. We used inverse-probability-weighted multivariable Cox proportional hazards regression models to control for potential confounders and selection bias because of tissue data availability. All statistical tests were 2-sided. RESULTS During follow-up of 131 144 participants (3 648 370 person-years), we documented 3092 incident colorectal cancer cases, including 871 cases with available macrophage data. The association of pack-years smoked with colorectal cancer incidence differed by stromal macrophage densities (Pheterogeneity = .003). Compared with never smoking, multivariable-adjusted hazard ratios (95% confidence interval) for tumors with low macrophage densities were 1.32 (0.97 to 1.79) for 1-19 pack-years, 1.31 (0.92 to 1.85) for 20-39 pack-years, and 1.74 (1.26 to 2.41) for 40 or more pack-years (Ptrend = .004). In contrast, pack-years smoked was not statistically significantly associated with the incidence of tumors having intermediate or high macrophage densities (Ptrend > .009, with an α level of .005). No statistically significant differential association was found for colorectal cancer subclassified by M1-like or M2-like macrophages. CONCLUSIONS The association of smoking with colorectal cancer incidence is stronger for tumors with lower stromal macrophage counts. Our findings suggest an interplay of smoking and macrophages in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Juha P Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Rong Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Junko Kishikawa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Sara A Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Andressa Dias Costa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Jennifer Borowsky
- Conjoint Gastroenterology Department, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Jennifer L Guerriero
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT, USA
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Smilow Cancer Hospital, New Haven, CT, USA
- Genentech, South San Francisco, CA, USA
| | - Xuehong Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Correspondence to: Shuji Ogino, MD, PhD, MS, Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, 221 Longwood Ave, EBRC Rm 404A, Boston, MA 02115, USA (e-mail: )
| |
Collapse
|
19
|
Raymond WD, Hamdorf M, Furfaro M, Eilertsen GO, Nossent JC. Smoking associates with increased BAFF and decreased interferon-γ levels in patients with systemic lupus erythematosus. Lupus Sci Med 2021; 8:8/1/e000537. [PMID: 34725185 PMCID: PMC8562512 DOI: 10.1136/lupus-2021-000537] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022]
Abstract
Objective In SLE, smoking increases the burden of cutaneous disease and organ damage, and leads to premature mortality. However, the effect of smoking on disease manifestations and cytokine levels of patients with SLE is unclear. This study compared characteristics of patients with SLE across smoking status, and determined the association of smoking with serum cytokine levels. Method A cross-sectional study of patients with SLE (n=99) during a research visit in which smoking status was ascertained. Smoking status was compared across classification criteria (American College of Rheumatology Classification Criteria for SLE (ACR97)), disease activity (SLE Disease Activity Index), autoantibody levels, accrued damage (Systemic Lupus International Collaborating Clinics/ACR Damage Index), and circulating concentrations of serum interferon-gamma (IFN-γ), interleukin (IL)-1β, IL-4, IL-6, IL-10, IL-12, IL-17, B cell-activating factor (BAFF), tumour necrosis factor-alpha, transforming growth factor beta 1 (TGF-β1), macrophage inflammatory protein 1 alpha (MIP-1α), MIP-1β and monocyte chemoattractant protein 1. Linear regression models determined the association between smoking and cytokine levels, adjusting for age and sex, clinical characteristics (model 1), and anti-inflammatory (IL-4, IL-10 and TGF- β1) and regulatory (IL-1β) cytokines (model 2). Results Among patients with SLE (97.9% ANA+; mean 48.48 years old; 86.9% female; mean 10 years of disease duration), 35.4% (n=35 of 99) were smoking (an average of 7 cigarettes/day for 24 years). Smokers had increased odds of prevalent ACR97 malar rash (OR 3.40, 95% CI 1.23 to 9.34) and mucosal ulcers (OR 3.31, 95% CI 1.36 to 8.05). Smokers had more arthritis (OR 3.19, 95% CI 1.19 to 8.60), migraine (OR 2.82, 95% CI 1.07 to 7.44), Raynaud’s phenomenon (OR 5.15, 95% CI 1.95 to 13.56) and increased non-steroidal anti-inflammatory drug use (OR 6.88, 95% CI 1.99 to 23.72). Smoking associated with 27% increased BAFF levels (95% CI 6% to 48%) and 42% decreased IFN-γ levels (95% CI −79% to −5%) in model 2. Conclusion In patients with SLE, smoking independently associated with increased BAFF and decreased IFN-γ levels, and an increased frequency of arthritis, migraine and Raynaud’s phenomenon. Smoking cessation is advisable to reduce systemic inflammation, reduce disease activity and improve host defence.
Collapse
Affiliation(s)
- Warren David Raymond
- Rheumatology Section, Medical School, University of Western Australia Faculty of Medicine, Dentistry and Health Sciences, Crawley, Western Australia, Australia
| | - Matthew Hamdorf
- Rheumatology Section, Medical School, University of Western Australia Faculty of Medicine, Dentistry and Health Sciences, Crawley, Western Australia, Australia
| | - Michael Furfaro
- Rheumatology Section, Medical School, University of Western Australia Faculty of Medicine, Dentistry and Health Sciences, Crawley, Western Australia, Australia
| | | | - Johannes Cornelis Nossent
- Rheumatology Section, Medical School, University of Western Australia Faculty of Medicine, Dentistry and Health Sciences, Crawley, Western Australia, Australia.,Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
| |
Collapse
|
20
|
Souza MRD, Hilário Garcia AL, Dalberto D, Martins G, Picinini J, Souza GMSD, Chytry P, Dias JF, Bobermin LD, Quincozes-Santos A, da Silva J. Environmental exposure to mineral coal and by-products: Influence on human health and genomic instability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117346. [PMID: 34020260 DOI: 10.1016/j.envpol.2021.117346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Environmental exposure to pollution generated by mining and burning coal is inevitable for people living nearby. Therefore, the aim of this study was to evaluate the influence of coal dust on health conditions and genomic instability of individuals who live near coal mines and thermoelectric power plants, and to relate the results to inorganic elements and inflammatory responses. Thus, we evaluated 284 individuals from four cities in the south of Brazil around a region with coal mines and a thermoelectric power plant (one city was considered a negative control). The results of the Comet assay and Micronucleus (MN) test did not show a genotoxic or mutagenic effect related to environmental exposure to coal, but the inflammatory cytokine tumor necrosis factor-α (TNF-α) was increased in all cities around the power plant when compared to the control conditions. Higher levels of MN were associated with body mass index and cardiovascular risk, and higher levels of Damage Index (DI), TNF-α and interleukin1β (IL-1β) with number of cigarettes/day. Principal component analysis (PCA) was used to integrate DNA damage and inflammatory results with inorganic elements. This study also demonstrated the relationship between zinc and MN, copper, and interleukin10 (IL-10), and among silicon and sulfur with DI and nucleoplasmic bridge. A relationship was also observed between the reduction of inorganic elements and both aging and quality of health. The use of different methodologies and the relationship between the results obtained in these studies, including different lifestyles, can increase the understanding of the interaction between this mineral and the health status of residents of regions affected by coal pollution.
Collapse
Affiliation(s)
- Melissa Rosa de Souza
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001 Bairro São José, CEP 92425-900, Canoas, RS, Brazil.
| | - Ana Letícia Hilário Garcia
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001 Bairro São José, CEP 92425-900, Canoas, RS, Brazil
| | - Daiana Dalberto
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001 Bairro São José, CEP 92425-900, Canoas, RS, Brazil
| | - Gabriela Martins
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001 Bairro São José, CEP 92425-900, Canoas, RS, Brazil
| | - Juliana Picinini
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001 Bairro São José, CEP 92425-900, Canoas, RS, Brazil
| | | | - Paola Chytry
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - André Quincozes-Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001 Bairro São José, CEP 92425-900, Canoas, RS, Brazil
| |
Collapse
|
21
|
Kalita-de Croft P, Sharma S, Sobrevia L, Salomon C. Extracellular vesicle interactions with the external and internal exposome in mediating carcinogenesis. Mol Aspects Med 2021; 87:101039. [PMID: 34629184 DOI: 10.1016/j.mam.2021.101039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022]
Abstract
The influence of environmental factors on an individual, from conception onwards, is defined as the exposome. It can be categorized into the external exposome, which includes external factors such as air pollution, chemical contaminants, and diet, and the internal exposome, which is unique to an individual, and involves age, physiology, and their genetic profile. The effect of external exposures on the internal exposome, or genetic profile, can be determined through omics analyses. However, this is often compromised due to low sample quantity and cost. Therefore, identification of other factors that can provide an insight into the cellular profile of an individual, provides an exciting avenue, and an emerging field is that of extracellular vesicles (EVs). Recently, our understanding of how cells can communicate with each other has shifted to recognise the role of EVs. EVs are secreted by all living cells, and have been identified in all biological fluids studied so far. They transport bioactive molecules (e.g., proteins, miRNAs, and DNA), and their release can be regulated by the cellular microenvironment. Analysis of EVs in respond to environmental factors might provide novel insights into the role of tumour EVs in carcinogenesis. Not only will EVs give some insight into the tumour cells themselves but they will also provide a better understanding of how cells communicate with one another, contributing to cancer progression. Moreover, characterising the content and functions of tumour-derived EVs has the potential to overcome the current challenges to improve cancer patient outcomes. For example, the identification of EVs targets for therapeutic interventions and tumour EVs biomarkers could facilitate the development of early screening for several cancers. The aim of this review, thus, is to discuss the overall role of EVs in response to the various external and internal signals in cancer. We will specifically highlight the biogenesis, secretion, and content of EVs in response to oncogenic transformation and metabolic regulators in cancer.
Collapse
Affiliation(s)
- Priyakshi Kalita-de Croft
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Shayna Sharma
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, 4029, Queensland, Australia; Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen (UMCG), 9713GZ, Groningen, the Netherlands
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia; Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
22
|
Osman M, Papon N. Smoking-aggravated oral candidiasis: Nrf2 pathway dampens NLRP3 inflammasome. J Cell Mol Med 2021; 25:9473-9475. [PMID: 34486221 PMCID: PMC8500950 DOI: 10.1111/jcmm.16901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
While cigarette smoke compounds are known to have immunosuppressive effects on the oral mucosa, the relationship between in vivo immune dysfunction caused by smoking and the development of oral Candida infections remains largely unexplored. In a recent issue of The Journal of Cellular and Molecular Medicine, Ye and colleagues provide evidence that smoking increases oral mucosa susceptibility to Candida albicans infection via the activation of the Nrf2 pathway, which in turn negatively regulates the NLRP3 inflammasome. This opens new perspective in considering Nrf2 as a relevant target for smoking‐induced C. albicans‐related oral diseases.
Collapse
Affiliation(s)
- Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Nicolas Papon
- GEIHP, SFR ICAT, University of Brest, University of Angers, Angers, France
| |
Collapse
|
23
|
Downes L, St Hill H, Mays T. A-SMART Lifestyle Behaviors Model for health, wellbeing, and immune system enhancement. Nurse Pract 2021; 46:31-39. [PMID: 34424885 DOI: 10.1097/01.npr.0000769748.45938.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Healthy lifestyle behaviors and an optimally functioning immune system are essential for good health. We present evidence-based lifestyle behavior interventions that enhance immunity and wellbeing, with practical applications using the A-SMART Lifestyle Behaviors Model: Adopting healthy eating, stress management, moving more, alcohol avoidance, rest, and tobacco cessation.
Collapse
|
24
|
Abdelhafez AT, Gomaa AMS, Ahmed AM, Sayed MM, Ahmed MA. Pioglitazone and/or irbesartan ameliorate COPD-induced endothelial dysfunction in side stream cigarette smoke-exposed mice model. Life Sci 2021; 280:119706. [PMID: 34102190 DOI: 10.1016/j.lfs.2021.119706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 01/18/2023]
Abstract
AIMS Cigarette smoking (CS) is the main cause of chronic obstructive pulmonary disease (COPD). Endothelial dysfunction is related to the severity of pulmonary disease in COPD. This study aimed to evaluate the effectiveness of single and combined administration of pioglitazone (Pio) and irbesartan (Irb) against COPD-induced endothelial dysfunction in mice and the involvement of NO and H2S in their effects. MATERIALS AND METHODS Adult male Swiss mice (n = 40, weighing 25-30 g) were assigned into 5 groups. The normal control group received 1% carboxy methyl cellulose (CMC). The CS group was exposed to CS and administered 1% CMC for 3 months. The CS + Pio, CS + Irb, and CS + Pio/Irb groups were subjected to CS and received Pio (60 mg/kg), Irb (50 mg/kg), and their combination respectively, daily orally for 3 months. Body weight gain, mean blood pressure, urinary albumin, serum NO and ET-1 levels with TNF-α and IL-2 levels in lung tissue and bronchoalveolar lavage were measured. Lung H2S and ET-1 levels, protein expression of PPARγ in lung and VEGF in lung and aortic tissues with histological changes were assessed. KEY FINDINGS Our results illustrated that CS induced a model of COPD with endothelial dysfunction in mice. Pio/Irb singly and in combination elicited protective effects against the pathophysiology of the disease with more improvement in the combined group. There is a strong correlation between NO and H2S as well as the other measured parameters. SIGNIFICANCE Collectively, both drugs performed these effects via their anti-inflammatory potential and increasing H2S and NO levels.
Collapse
Affiliation(s)
- Alaa T Abdelhafez
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M S Gomaa
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M Ahmed
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Manal M Sayed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
25
|
Raspe M, Bals R, Hering T, Pankow W, Rupp A, Rustler C, Urlbauer M, Andreas S. [COVID-19 and Smoking - A Position Paper by the DGP Taskforce for Smoking Cessation]. Pneumologie 2021; 75:846-855. [PMID: 34041722 DOI: 10.1055/a-1503-1744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tobacco smoking is associated with severe health risks. In 2020, the WHO estimated that 8 million people have died due to smoking. Furthermore, smoking tobacco is a well-known risk factor for various infectious pulmonary diseases. The question raised, whether smoking is facilitating SARS-CoV-2-infections and increases adverse outcomes of COVID-19. To answer these questions a narrative review was conducted, finally including 7 systematic reviews with meta-analyses published in January and February 2021. Tobacco smoking was associated with an increased COVID-19 disease severity (odds ratio range of active vs. never smokers 1.55-2.19 and former vs. never smokers 1.20-2.48) and an increased COVID-19 in-hospital mortality (odds ratio range of active vs. never smokers 1.35-1.51 and former vs. never smokers 1.26-2.58). Beside immediate pulmonary toxic effects through active smoking, the cumulative livelong tobacco exposition and subsequent tobacco-associated diseases seem to predominantly predict adverse outcomes in patients with COVID-19. Data regarding an increased risk of infection among smokers is conflicting. However, a large observational study from England with 2.4 million persons reported an association between tobacco smoking and typical symptoms of COVID-19. For e-cigarettes and vaping less data exist, but experimental and first clinical investigations also suggest an increased risk for adverse outcomes for their use and SARS-CoV-2 infections. Especially during the current SARS-CoV-2 pandemic with limited therapeutic options it is particularly important to advise smokers of their increased risks for unfavourable COVID-19 outcomes. Evidence based support for smoking cessation should be offered. In Germany, the existing and well-established methods to support tobacco cessation need to be reimbursed by statutory health insurances.
Collapse
Affiliation(s)
- Matthias Raspe
- Charité - Universitätsmedizin Berlin, Mitglied der Freien Universität Berlin, Humboldt-Universität zu Berlin, und des Berlin Institute of Health, Medizinische Klinik m. S. Infektiologie und Pneumologie, Berlin
| | - Robert Bals
- Klinik für Innere Medizin V - Pneumologie, Allergologie, Beatmungsmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar
| | | | - Wulf Pankow
- Vertreter der DGP im Aktionsbündnis Nichtrauchen (ABNR; Büro Berlin), Berlin
| | | | - Christa Rustler
- Deutsches Netz Rauchfreier Krankenhäuser & Gesundheitseinrichtungen DNRfK e. V., Berlin
| | - Matthias Urlbauer
- Medizinische Klinik 3 (Schwerpunkt Pneumologie) am Klinikum Nürnberg, Universitätsklinik der Paracelsus Medizinischen Privatuniversität, Nürnberg
| | - Stefan Andreas
- Lungenfachklinik Immenhausen, Immenhausen, außerdem Abteilung Kardiologie und Pneumologie der Universitätsmedizin Göttingen und Deutsches Zentrum für Lungenforschung
| |
Collapse
|
26
|
Izumi M, Sawa K, Oyanagi J, Noura I, Fukui M, Ogawa K, Matsumoto Y, Tani Y, Suzumura T, Watanabe T, Kaneda H, Mitsuoka S, Asai K, Nishiyama N, Ohsawa M, Yamamoto N, Koh Y, Kawaguchi T. Tumor microenvironment disparity in multiple primary lung cancers: Impact of non-intrinsic factors, histological subtypes, and genetic aberrations. Transl Oncol 2021; 14:101102. [PMID: 33930847 PMCID: PMC8102176 DOI: 10.1016/j.tranon.2021.101102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor microenvironment (TME) was compared among multiple primary lung cancers (MPLCs). Sex and smoking status concomitantly impacted PD-L1 expression in paired tumors. EGFR mutations were independently associated with PD-L1 expression. KRAS mutations altered the TMEs according to the types of co-mutations. The number of FOXP3-positive t cells reflected histological subtypes.
Introduction Multiple primary lung cancers (MPLCs) occur in common carcinogenetic risks such as lifestyle, biological aging, immune responses, hormones, and metabolism. Although MPLCs harbor various genetic profiles within the same individuals, differences in the tumor microenvironment (TME) are unclear. We investigated the impact of genetic aberrations, non-intrinsic factors, and pathological subtypes on tumor immunity. Materials and Methods In total, 73 surgically resected specimens from 32 patients with MPLC were analyzed. PD-L1 expression in tumor cells (TCs) and immune cells (ICs), CD3-positive tumor-infiltrating lymphocytes (TILs), CD8/CD3 ratios, and FOXP3-positive TILs that compose TMEs were evaluated by immunohistochemistry and classified on a score of 0–2. 38 tumors were sequenced for somatic mutations in 409 cancer-associated genes. Results Females and never or light smokers had a higher incidence of PD-L1-negative tumors and a higher concordance rate. PD-L1 positivity in TCs and ICs was significantly less frequent in EGFR-mutated than in wild-type tumors. Differences in the score of TMEs were observed between the KRAS-mutated-only tumor and the KRAS and TP53-co-mutated tumors, and between the KRAS-mutated-only tumor and the KRAS and STK11-co-mutated tumors. Significantly more FOXP3-high TILs were observed in invasive pathological subtypes than in non-invasive ones. Conclusion Comparing TMEs among MPLCs revealed that non-smokers or light smokers and females were unlikely to express PD-L1 regardless of tumor site and confirmed that the EGFR mutations and co-occurring KRAS and STK11 or TP53 mutations were associated with TME. Pathological subtypes may impact the efficacy of immune therapy due to their potential correlations with regulatory T cells.
Collapse
Affiliation(s)
- Motohiro Izumi
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan; Internal Medicine III, Wakayama Medical University, 811-1 Kimiidera, Wakayama-shi, Wakayama 641-8509, Japan
| | - Kenji Sawa
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Jun Oyanagi
- Internal Medicine III, Wakayama Medical University, 811-1 Kimiidera, Wakayama-shi, Wakayama 641-8509, Japan
| | - Ikue Noura
- Department of Pathology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Mitsuru Fukui
- Laboratory of Statistics, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Koichi Ogawa
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yoshiya Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yoko Tani
- Department of Clinical Oncology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Tomohiro Suzumura
- Department of Clinical Oncology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Tetsuya Watanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiroyasu Kaneda
- Department of Clinical Oncology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Shigeki Mitsuoka
- Department of Clinical Oncology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Noritoshi Nishiyama
- Department of Thoracic Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Masahiko Ohsawa
- Department of Pathology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Nobuyuki Yamamoto
- Internal Medicine III, Wakayama Medical University, 811-1 Kimiidera, Wakayama-shi, Wakayama 641-8509, Japan
| | - Yasuhiro Koh
- Internal Medicine III, Wakayama Medical University, 811-1 Kimiidera, Wakayama-shi, Wakayama 641-8509, Japan.
| | - Tomoya Kawaguchi
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan; Department of Clinical Oncology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
27
|
Toprani SM, Kelkar Mane V. A short review on DNA damage and repair effects in lip cancer. Hematol Oncol Stem Cell Ther 2021; 14:267-274. [PMID: 33626329 DOI: 10.1016/j.hemonc.2021.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 11/28/2022] Open
Abstract
Increasing trend in oral cancer (0.6% per year) and its related mortality has been reported worldwide since 2010. The United States alone reports an increase of 57% within the past 10 years. This emphasizes the need not only for designing strategies of prevention and planning but also for an effective treatment regime for the various oral cancers. Cancers of the lips, tongue, cheeks, floor of the mouth, and hard palate have been primarily classified under the category of oral cancers. If left undiagnosed, these cancers can be life threatening. Amongst these, the most undesignated and understudied cancer type is the lip carcinoma, which is either categorized under oral cancer or/as well as skin cancer or head and neck cancer. However, lip cancer corresponds to 25-30% of all diagnosed oral cancers. Though the etiology of lip cancer is not yet fully understood, numerous risk factors involved in its development are now being studied. The cells in the lip region are continuously exposed to various DNA damaging agents from endogenous as well as exogenous sources. Flaws in DNA repair mechanisms involved in eliminating these damages may be linked to the origin of carcinogenesis. Accumulation of DNA damage and defect in repair mechanisms may play a role in lip carcinogenesis and progression. This literature review is an exhaustive compilation of the research work performed on the role of DNA damage and repair responses in lip carcinoma which will pave a path for researchers to identify predictive DNA repair biomarker/s for lip cancer, and its diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Sneh M Toprani
- Department of Biotechnology, University of Mumbai, Mumbai, India; John B Little Center of Radiation Sciences, Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA 02115, USA.
| | - Varsha Kelkar Mane
- John B Little Center of Radiation Sciences, Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
28
|
Kim K, Kim BJ, Huh J, Yang SK, Yang MH, Han MK, Jung C, Choi BS, Kim JH, Bae HJ. Delayed Lesions on Diffusion-Weighted Imaging in Initially Lesion-Negative Stroke Patients. J Stroke 2021; 23:69-81. [PMID: 33600704 PMCID: PMC7900394 DOI: 10.5853/jos.2020.02110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/21/2020] [Indexed: 11/11/2022] Open
Abstract
Background and Purpose Lesions on diffusion-weighted imaging (DWI) occasionally appear on follow-up magnetic resonance imaging (MRI) among initially DWI-negative but clinically suspicious stroke patients. We established the prevalence of positive conversion in DWI-negative stroke and determined the clinical factors associated with it.
Methods This retrospective, observational, single-center study included 5,271 patients hospitalized due to stroke/transient ischemic attack (TIA) in a single university hospital during 2010 to 2017. Patients without initial DWI lesions underwent follow-up DWI imaging as a routine practice. Adjusted hazard ratios (aHRs) for recurrent stroke risk according to positive conversion were determined using Cox proportional hazard regression. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) for positive conversion among initially DWI-negative patients were estimated.
Results In total, 694 (13.2%) patients (mean±standard deviation age, 62.9±13.7 years; male, 404 [58.2%]) were initially DWI-negative. Among them, 22.5% had positive-conversion on follow-up DWI. Positive conversion was associated with a higher risk of recurrent stroke (aHR, 3.12; 95% CI, 1.56 to 6.26). Early neurologic deterioration (aOR, 15.1; 95% CI, 5.71 to 47.66), atrial fibrillation (aOR, 6.17; 95% CI, 3.23 to 12.01), smoking (aOR, 3.76; 95% CI, 2.19 to 6.63), pre-stroke dependency (aOR, 1.62; 95% CI, 1.15 to 2.27), objective hemiparesis (aOR, 4.39; 95% CI, 1.90 to 10.32), longer symptom duration (aOR, 2.17; 95% CI, 1.57 to 3.08), high cholesterol (aOR, 4.70; 95% CI, 1.78 to 12.77), National Institutes of Health Stroke Scale score (aOR, 1.44; 95% CI, 1.08 to 1.91), and high systolic blood pressure (aOR, 1.01; 95% CI, 1.00 to 1.02) were associated with a higher incidence of lesions with delayed appearance. Regarding the location of lesions on follow-up DWI, 34.6% and 21.2% were in the cortex and brainstem, respectively.
Conclusions In DWI-negative stroke/TIA, positive conversion is associated with a higher risk of recurrent stroke. DWI-negative stroke with factors related to positive conversion may require follow-up MRI for a definitive diagnosis.
Collapse
Affiliation(s)
- Kitae Kim
- Department of Neurology and Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Beom Joon Kim
- Department of Neurology and Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jaewon Huh
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Seong Kyu Yang
- Department of Neurology and Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Mi Hwa Yang
- Department of Neurology and Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Moon-Ku Han
- Department of Neurology and Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Cheolkyu Jung
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Byung Se Choi
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae Hyoung Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hee-Joon Bae
- Department of Neurology and Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
29
|
Traboulsi H, Cherian M, Abou Rjeili M, Preteroti M, Bourbeau J, Smith BM, Eidelman DH, Baglole CJ. Inhalation Toxicology of Vaping Products and Implications for Pulmonary Health. Int J Mol Sci 2020; 21:E3495. [PMID: 32429092 PMCID: PMC7278963 DOI: 10.3390/ijms21103495] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
E-cigarettes have a liquid that may contain flavors, solvents, and nicotine. Heating this liquid generates an aerosol that is inhaled into the lungs in a process commonly referred to as vaping. E-cigarette devices can also contain cannabis-based products including tetrahydrocannabinol (THC), the psychoactive component of cannabis (marijuana). E-cigarette use has rapidly increased among current and former smokers as well as youth who have never smoked. The long-term health effects are unknown, and emerging preclinical and clinical studies suggest that e-cigarettes may not be harmless and can cause cellular alterations analogous to traditional tobacco smoke. Here, we review the historical context and the components of e-cigarettes and discuss toxicological similarities and differences between cigarette smoke and e-cigarette aerosol, with specific reference to adverse respiratory outcomes. Finally, we outline possible clinical disorders associated with vaping on pulmonary health and the recent escalation of acute lung injuries, which led to the declaration of the vaping product use-associated lung injury (EVALI) outbreak. It is clear there is much about vaping that is not understood. Consequently, until more is known about the health effects of vaping, individual factors that need to be taken into consideration include age, current and prior use of combustible tobacco products, and whether the user has preexisting lung conditions such as asthma and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (H.T.); (M.A.R.); (M.P.); (J.B.); (B.M.S.)
| | - Mathew Cherian
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (M.C.); (D.H.E.)
| | - Mira Abou Rjeili
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (H.T.); (M.A.R.); (M.P.); (J.B.); (B.M.S.)
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Matthew Preteroti
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (H.T.); (M.A.R.); (M.P.); (J.B.); (B.M.S.)
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jean Bourbeau
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (H.T.); (M.A.R.); (M.P.); (J.B.); (B.M.S.)
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Benjamin M. Smith
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (H.T.); (M.A.R.); (M.P.); (J.B.); (B.M.S.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (M.C.); (D.H.E.)
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - David H. Eidelman
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (M.C.); (D.H.E.)
| | - Carolyn J. Baglole
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (H.T.); (M.A.R.); (M.P.); (J.B.); (B.M.S.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (M.C.); (D.H.E.)
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
30
|
Yorulmaz A, Tamer E, Kulcu Cakmak S. Smoking: Is it a Risk Factor for Common Warts? CURRENT HEALTH SCIENCES JOURNAL 2020; 46:5-10. [PMID: 32637159 PMCID: PMC7323726 DOI: 10.12865/chsj.46.01.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/02/2020] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Common warts are one of the most prevalent infections affecting the skin. Common warts are caused by human papillomaviruses (HPV), which are ubiquitous in our environment. Most HPV infections are directly controlled and cleared by host immune system, although each case has the potential to persist and transform into a recalcitrant form. It is not exactly clear why certain populations are more susceptible to common warts. AIM To investigate factors affecting the occurence and outcome of common warts. MATERIAL AND METHODS A total of 188 consecutive patients with common warts (106 men, 82 women) and 188 controls were prospectively enrolled. Demographic and clinical characteristics were recorded. The Chi-square, Mann-Whitney U and Kruskal-Wallis tests were used for statistical analysis, with a significance threshold of p<0.05. RESULTS There were not any significant associations between cigarette smoking, alcohol consumption, accompanying diseases, medications, family history of warts and the duration of warts (p=0.102, p=0.317, p=0.535, p=0.535, p=0.535, respectively). There were not any significant associations between cigarette smoking, alcohol consumption, accompanying diseases, medications, family history of warts and the number of warts (p=0.232, p=0.762, p=0.389, p=0.389, p=0.824, respectively). CONCLUSIONS Our study has revealed that smoking is not a risk factor for common warts. However, we suspect the lack of statistical differences are likely due to small sample size of the study. Further studies with larger sample sizes are needed.
Collapse
|