1
|
Jaeger M, Dietschmann A, Austermeier S, Dinçer S, Porschitz P, Vornholz L, Maas RJ, Sprenkeler EG, Ruland J, Wirtz S, Azam T, Joosten LA, Hube B, Netea MG, Dinarello CA, Gresnigt MS. Alpha1-antitrypsin impacts innate host-pathogen interactions with Candida albicans by stimulating fungal filamentation. Virulence 2024; 15:2333367. [PMID: 38515333 PMCID: PMC11008552 DOI: 10.1080/21505594.2024.2333367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Our immune system possesses sophisticated mechanisms to cope with invading microorganisms, while pathogens evolve strategies to deal with threats imposed by host immunity. Human plasma protein α1-antitrypsin (AAT) exhibits pleiotropic immune-modulating properties by both preventing immunopathology and improving antimicrobial host defence. Genetic associations suggested a role for AAT in candidemia, the most frequent fungal blood stream infection in intensive care units, yet little is known about how AAT influences interactions between Candida albicans and the immune system. Here, we show that AAT differentially impacts fungal killing by innate phagocytes. We observed that AAT induces fungal transcriptional reprogramming, associated with cell wall remodelling and downregulation of filamentation repressors. At low concentrations, the cell-wall remodelling induced by AAT increased immunogenic β-glucan exposure and consequently improved fungal clearance by monocytes. Contrastingly, higher AAT concentrations led to excessive C. albicans filamentation and thus promoted fungal immune escape from monocytes and macrophages. This underscores that fungal adaptations to the host protein AAT can differentially define the outcome of encounters with innate immune cells, either contributing to improved immune recognition or fungal immune escape.
Collapse
Affiliation(s)
- Martin Jaeger
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Sophie Austermeier
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Sude Dinçer
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Pauline Porschitz
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Larsen Vornholz
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Ralph J.A. Maas
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelien G.G. Sprenkeler
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tania Azam
- Department of Medicine, University of Colorado Denver, Aurora, USA
| | - Leo A.B. Joosten
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Mark S. Gresnigt
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| |
Collapse
|
2
|
Yuan H, Li A, Chen L, Wang Z, Zhu X, Wang J, Xiu W, Chen Y, Zhang G, Liu D, Xiao X, Sun C, Lu F, Hu L, He C. α-1 antitrypsin is promising for the identification of glaucoma severity and is associated with glaucomatous neural damage. Biomark Med 2024; 18:545-553. [PMID: 39136444 PMCID: PMC11364068 DOI: 10.1080/17520363.2024.2347190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/17/2024] [Indexed: 08/30/2024] Open
Abstract
Aim: To investigate the association between plasma AAT level and glaucoma.Methods: 163 glaucoma patients and 111 healthy controls were recruited. The plasma AAT levels were measured by ELISA.Results: Plasma AAT level was significantly higher in glaucoma patients than those in healthy controls (p < 0.001). Patients with higher plasma AAT level exhibited severer disease stage (early vs. severe: p < 0.05; H-P-A; early vs. severe: p < 0.05; early vs. end-stage: p < 0.01; AGIS). ROC curves yielded that AAT can distinguish patients with early glaucoma from those with advanced glaucoma (early vs. severe: AUC: 0.616; H-P-A; early vs. severe: AUC: 0.763; early vs. end-stage: AUC: 0.660; AGIS).Conclusion: Plasma AAT is a useful biomarker for the identification of glaucoma severity.
Collapse
Affiliation(s)
- Hang Yuan
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - An Li
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science & Technology of China, Chengdu, 611731, China
| | - Lingling Chen
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Zuo Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science & Technology of China, Chengdu, 611731, China
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science & Technology of China, Chengdu, 610041, China
| | - Xiong Zhu
- Department of Prenatal Diagnosis, Chengdu Women's & Children's Central Hospital, School of Medicine, University of Electronic Science & Technology of China, Chengdu, 610015, China
| | - Jinxia Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science & Technology of China, Chengdu, 611731, China
| | - Wenbo Xiu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science & Technology of China, Chengdu, 611731, China
| | - Yang Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science & Technology of China, Chengdu, 611731, China
| | - Gao Zhang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science & Technology of China, Chengdu, 611731, China
| | - Donghua Liu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science & Technology of China, Chengdu, 611731, China
| | - Xiao Xiao
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science & Technology of China, Chengdu, 611731, China
| | - Chaonan Sun
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science & Technology of China, Chengdu, 611731, China
| | - Fang Lu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science & Technology of China, Chengdu, 611731, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science & Technology of China, Chengdu, 610054, China
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science & Technology of China, Chengdu, 610072, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science & Technology of China, Quzhou, 611731,China
| | - Lijuan Hu
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chong He
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science & Technology of China, Chengdu, 611731, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science & Technology of China, Chengdu, 610054, China
| |
Collapse
|
3
|
El-Saied S, Kaminer BM, Kaplan DM, Shitrit R, Manilis I, Amar A, Lewis EC. Trauma-Induced Vestibular Dysfunction: Improved Repair Under Local Treatment With α1-Antitrypsin. Otol Neurotol 2024; 45:818-823. [PMID: 38896787 DOI: 10.1097/mao.0000000000004231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
AIM To characterize vestibular recovery in a mouse model of unilateral labyrinthotomy under local AAT and dexamethasone treatment. BACKGROUND Alpha1-antitrypsin (AAT) is a circulating tissue-protective molecule that rises during inflammatory conditions and promotes inflammatory resolution. Its local concentration in human perilymph inversely correlates with the severity of inner ear dysfunction; concomitantly, mice that overexpress AAT and undergo inner ear trauma rapidly restore vestibular function. Locally applied AAT has yet to be examined in this context, nor has it been directly compared with anti-inflammatory corticosteroid treatment. METHODS Wild-type mice C57BL/6 underwent a unilateral inner ear injury. Nine microliters of saline, clinical-grade AAT (180 μg/site), dexamethasone (4 mg/site), or both were applied locally on Days 0, 1, and 2 (n = 5/group). Vestibular function was assessed for 7 days. An in vitro human epithelial gap closure assay was performed using A549 cells in the presence of AAT and/or dexamethasone. RESULTS Upon labyrinthotomy, all groups displayed severe vestibular dysfunction. Saline-treated mice showed the longest impairment. That group and the dexamethasone group displayed partial to no recovery, while AAT-treated mice exhibited complete recovery within 7 days; at this time point, dexamethasone-treated mice exhibited 50% recovery. Objective vestibular testing showed similar outcomes. In vitro, cotreatment with AAT and dexamethasone resulted in a gap closure dynamic that was superior to AAT alone at 6 h and superior to DEX alone at 48 h. CONCLUSION Locally applied AAT treatment is superior to locally applied dexamethasone in promoting vestibular recovery in vivo. Ongoing studies are exploring the potential advantages of AAT combined with early low-dose dexamethasone therapy.
Collapse
Affiliation(s)
- Sabri El-Saied
- Department of Otolaryngology-Head & Neck Surgery, Soroka University Medical Center, Israel
| | - Benyamin M Kaminer
- Department of Otolaryngology-Head & Neck Surgery, Soroka University Medical Center, Israel
| | - Daniel M Kaplan
- Department of Otolaryngology-Head & Neck Surgery, Soroka University Medical Center, Israel
| | - Rivka Shitrit
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Idan Manilis
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amit Amar
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eli C Lewis
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
4
|
El-Saied S, Amar A, Kaplan DM, Shitrit R, Kaminer BM, Keshet A, Lewis EC. Local Alpha1-Antitrypsin Accelerates the Healing of Tympanic Membrane Perforation in Mice. Laryngoscope 2024; 134:3802-3806. [PMID: 38651563 DOI: 10.1002/lary.31454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/10/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Most tympanic membrane (TM) perforations heal spontaneously, but 10%-20% remain chronic and might lead to impaired hearing and recurrent middle ear infections. Alpha1-antitrypsin (AAT) is a circulating tissue-protective protein that is elevated under inflammatory conditions and is currently indicated for genetic AAT deficiency. Recently, AAT has been shown to promote tissue remodeling and inflammatory resolution. OBJECTIVE This study aimed to examine the effects of local clinical-grade AAT treatment on tissue repair in a mouse model of acute traumatic TM perforation. METHODS Wild-type mice underwent unilateral TM perforation and were either left untreated or treated locally with human AAT (9 × 10-3 mL at 20 mg/mL on days 0, 1, and 2; n = 15/group). The perforations were evaluated macroscopically on a serial basis. Mice were sacrificed on various days post-injury, and TMs were excised for gene analysis by RT-PCR. RESULTS There were no adverse reactions in hAAT-treated ears throughout the study period. Compared with untreated animals, TM closure occurred earlier in the treated group (days until full closure, median: 4 and 9, respectively). According to gene expression analysis, VEGF, TGFβ, and collagen-5A1 were induced earlier in AAT-treated mice (day 4-5 compared with day 9). Additionally, IL-10 expression levels were higher and IL-6 levels were lower in treated versus untreated mice. CONCLUSION A local tissue environment rich in AAT promotes early tissue repair in a perforated TM model both macroscopically and molecularly. Studies are underway to examine TM functionality and recombinant AAT formulations for micro-dosing in the format of a single local application. LEVEL OF EVIDENCE NA Laryngoscope, 134:3802-3806, 2024.
Collapse
Affiliation(s)
- Sabri El-Saied
- Department of Otolaryngology-Head and Neck Surgery, Soroka University Medical Center, Beer-Sheva, Israel
| | - Amit Amar
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel M Kaplan
- Department of Otolaryngology-Head and Neck Surgery, Soroka University Medical Center, Beer-Sheva, Israel
| | - Rivka Shitrit
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Benyamin M Kaminer
- Department of Otolaryngology-Head and Neck Surgery, Soroka University Medical Center, Beer-Sheva, Israel
| | - Aharon Keshet
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eli C Lewis
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
5
|
Bai X, Gao J, Guan X, Narum DE, Fornis LB, Griffith DE, Gao B, Sandhaus RA, Huang H, Chan ED. Analysis of alpha-1-antitrypsin (AAT)-regulated, glucocorticoid receptor-dependent genes in macrophages reveals a novel host defense function of AAT. Physiol Rep 2024; 12:e16124. [PMID: 39016119 PMCID: PMC11252833 DOI: 10.14814/phy2.16124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Alpha-1-antitrypsin (AAT) plays a homeostatic role in attenuating excessive inflammation and augmenting host defense against microbes. We demonstrated previously that AAT binds to the glucocorticoid receptor (GR) resulting in significant anti-inflammatory and antimycobacterial consequences in macrophages. Our current investigation aims to uncover AAT-regulated genes that rely on GR in macrophages. We incubated control THP-1 cells (THP-1control) and THP-1 cells knocked down for GR (THP-1GR-KD) with AAT, performed bulk RNA sequencing, and analyzed the findings. In THP-1control cells, AAT significantly upregulated 408 genes and downregulated 376 genes. Comparing THP-1control and THP-1GR-KD cells, 125 (30.6%) of the AAT-upregulated genes and 154 (41.0%) of the AAT-downregulated genes were significantly dependent on GR. Among the AAT-upregulated, GR-dependent genes, CSF-2 that encodes for granulocyte-monocyte colony-stimulating factor (GM-CSF), known to be host-protective against nontuberculous mycobacteria, was strongly upregulated by AAT and dependent on GR. We further quantified the mRNA and protein of several AAT-upregulated, GR-dependent genes in macrophages and the mRNA of several AAT-downregulated, GR-dependent genes. We also discussed the function(s) of selected AAT-regulated, GR-dependent gene products largely in the context of mycobacterial infections. In conclusion, AAT regulated several genes that are dependent on GR and play roles in host immunity against mycobacteria.
Collapse
Affiliation(s)
- Xiyuan Bai
- Department of MedicineRocky Mountain Regional Veterans Affairs Medical CenterAuroraColoradoUSA
- Department of Academic AffairsNational Jewish HealthDenverColoradoUSA
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Junfeng Gao
- Department of Immunology and Genomic MedicineNational Jewish HealthDenverColoradoUSA
| | - Xiaoyu Guan
- Department of Biostatistics and InformaticsUniversity of Colorado School of Public Health Anschutz Medical CampusAuroraColoradoUSA
| | - Drew E. Narum
- Department of Academic AffairsNational Jewish HealthDenverColoradoUSA
| | | | - David E. Griffith
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Department of MedicineNational Jewish HealthDenverColoradoUSA
| | - Bifeng Gao
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Robert A. Sandhaus
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Department of MedicineNational Jewish HealthDenverColoradoUSA
| | - Hua Huang
- Department of Immunology and Genomic MedicineNational Jewish HealthDenverColoradoUSA
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Edward D. Chan
- Department of MedicineRocky Mountain Regional Veterans Affairs Medical CenterAuroraColoradoUSA
- Department of Academic AffairsNational Jewish HealthDenverColoradoUSA
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
6
|
Rocamora F, Schoffelen S, Arnsdorf J, Toth EA, Abdul Y, Cleveland TE, Bjørn SP, Wu MYM, McElvaney NG, Voldborg BGR, Fuerst TR, Lewis NE. Glycoengineered recombinant alpha1-antitrypsin results in comparable in vitro and in vivo activities to human plasma-derived protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587088. [PMID: 38585818 PMCID: PMC10996670 DOI: 10.1101/2024.03.27.587088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Alpha-1-antitrypsin (A1AT) is a multifunctional, clinically important, high value therapeutic glycoprotein that can be used for the treatment of many diseases such as alpha-1-antitrypsin deficiency, diabetes, graft-versus-host-disease, cystic fibrosis and various viral infections. Currently, the only FDA-approved treatment for A1AT disorders is intravenous augmentation therapy with human plasma-derived A1AT. In addition to its limited supply, this approach poses a risk of infection transmission, since it uses therapeutic A1AT harvested from donors. To address these issues, we sought to generate recombinant human A1AT (rhA1AT) that is chemically and biologically indistinguishable from its plasma-derived counterpart using glycoengineered Chinese Hamster Ovary (geCHO-L) cells. By deleting nine key genes that are part of the CHO glycosylation machinery and expressing the human ST6GAL1 and A1AT genes, we obtained stable, high producing geCHO-L lines that produced rhA1AT having an identical glycoprofile to plasma-derived A1AT (pdA1AT). Additionally, the rhA1AT demonstrated in vitro activity and in vivo half-life comparable to commercial pdA1AT. Thus, we anticipate that this platform will help produce human-like recombinant plasma proteins, thereby providing a more sustainable and reliable source of therapeutics that are cost-effective and better-controlled with regard to purity, clinical safety and quality.
Collapse
Affiliation(s)
- Frances Rocamora
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| | - Sanne Schoffelen
- National Biologics Facility, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Johnny Arnsdorf
- National Biologics Facility, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Eric A Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, United States
| | - Yunus Abdul
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, United States
| | - Thomas E Cleveland
- National Institute of Standards and Technology, Rockville, MD, 20850, USA
| | - Sara Petersen Bjørn
- National Biologics Facility, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Mina Ying Min Wu
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| | - Noel G McElvaney
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Medicine, Irish Center for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Bjørn Gunnar Rude Voldborg
- National Biologics Facility, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, United States
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
- NeuImmune, Inc., Sykesville, MD, United States
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, United States
- NeuImmune, Inc., Sykesville, MD, United States
| |
Collapse
|
7
|
Pham-Danis C, Chia SB, Scarborough HA, Danis E, Nemkov T, Kleczko EK, Navarro A, Goodspeed A, Bonney EA, Dinarello CA, Marchetti C, Nemenoff RA, Hansen K, DeGregori J. Inflammation promotes aging-associated oncogenesis in the lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.583044. [PMID: 38496448 PMCID: PMC10942386 DOI: 10.1101/2024.03.01.583044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Lung cancer is the leading cause of cancer death in the world. While cigarette smoking is the major preventable factor for cancers in general and lung cancer in particular, old age is also a major risk factor. Aging-related chronic, low-level inflammation, termed inflammaging, has been widely documented; however, it remains unclear how inflammaging contributes to increased lung cancer incidence. Aim: To establish connections between aging-associated changes in the lungs and cancer risk. Methods We analyzed public databases of gene expression for normal and cancerous human lungs and used mouse models to understand which changes were dependent on inflammation, as well as to assess the impact on oncogenesis. Results Analyses of GTEx and TCGA databases comparing gene expression profiles from normal lungs, lung adenocarcinoma, lung squamous cell carcinoma of subjects across age groups revealed upregulated pathways such as inflammatory response, TNFA signaling via NFκB, and interferon-gamma response. Similar pathways were identified comparing the gene expression profiles of young and old mouse lungs. Transgenic expression of alpha 1 antitrypsin (AAT) partially reverses increases in markers of aging-associated inflammation and immune deregulation. Using an orthotopic model of lung cancer using cells derived from EML4-ALK fusion-induced adenomas, we demonstrated an increased tumor outgrowth in lungs of old mice while NLRP3 knockout in old mice decreased tumor volumes, suggesting that inflammation contributes to increased lung cancer development in aging organisms. Conclusions These studies reveal how expression of an anti-inflammatory mediator (AAT) can reduce some but not all aging-associated changes in mRNA and protein expression in the lungs. We further show that aging is associated with increased tumor outgrowth in the lungs, which may relate to an increased inflammatory microenvironment.
Collapse
Affiliation(s)
- Catherine Pham-Danis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shi B Chia
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hannah A Scarborough
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Etienne Danis
- Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Emily K Kleczko
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andre Navarro
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew Goodspeed
- Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Elizabeth A. Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Charles A. Dinarello
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Carlo Marchetti
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Raphael A. Nemenoff
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
8
|
Chan ED, King PT, Bai X, Schoffstall AM, Sandhaus RA, Buckle AM. The Inhibition of Serine Proteases by Serpins Is Augmented by Negatively Charged Heparin: A Concise Review of Some Clinically Relevant Interactions. Int J Mol Sci 2024; 25:1804. [PMID: 38339082 PMCID: PMC10855260 DOI: 10.3390/ijms25031804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Serine proteases are members of a large family of hydrolytic enzymes in which a particular serine residue in the active site performs an essential role as a nucleophile, which is required for their proteolytic cleavage function. The array of functions performed by serine proteases is vast and includes, among others, the following: (i) the ability to fight infections; (ii) the activation of blood coagulation or blood clot lysis systems; (iii) the activation of digestive enzymes; and (iv) reproduction. Serine protease activity is highly regulated by multiple families of protease inhibitors, known collectively as the SERine Protease INhibitor (SERPIN). The serpins use a conformational change mechanism to inhibit proteases in an irreversible way. The unusual conformational change required for serpin function provides an elegant opportunity for allosteric regulation by the binding of cofactors, of which the most well-studied is heparin. The goal of this review is to discuss some of the clinically relevant serine protease-serpin interactions that may be enhanced by heparin or other negatively charged polysaccharides. The paired serine protease-serpin in the framework of heparin that we review includes the following: thrombin-antithrombin III, plasmin-anti-plasmin, C1 esterase/kallikrein-C1 esterase inhibitor, and furin/TMPRSS2 (serine protease Transmembrane Protease 2)-alpha-1-antitrypsin, with the latter in the context of COVID-19 and prostate cancer.
Collapse
Affiliation(s)
- Edward D. Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
- Department of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Paul T. King
- Medicine Monash Health, Monash University, Clayton, VIC 3800, Australia
| | - Xiyuan Bai
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
- Department of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Allen M. Schoffstall
- Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, CO 80918, USA
| | | | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
- Replay, San Diego, CA 92121, USA
| |
Collapse
|
9
|
Kontoh-Twumasi R, Budkin S, Edupuganti N, Vashishtha A, Sharma S. Role of Serine Protease Inhibitors A1 and A3 in Ocular Pathologies. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 38324301 PMCID: PMC10854419 DOI: 10.1167/iovs.65.2.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Serine protease inhibitors A1 (SerpinA1) and A3 (SerpinA3) are important members of the serpin family, playing crucial roles in the regulation of serine proteases and influencing various physiological processes. SerpinA1, also known as α-1-antitrypsin, is a versatile glycoprotein predominantly synthesized in the liver, with additional production in inflammatory and epithelial cell types. It exhibits multifaceted functions, including immune modulation, complement activation regulation, and inhibition of endothelial cell apoptosis. SerpinA3, also known as α-1-antichymotrypsin, is expressed both extracellularly and intracellularly in various tissues, particularly in the retina, kidney, liver, and pancreas. It exerts anti-inflammatory, anti-angiogenic, antioxidant, and antifibrotic activities. Both SerpinA1 and SerpinA3 have been implicated in conditions such as keratitis, diabetic retinopathy, age-related macular degeneration, glaucoma, cataracts, dry eye disease, keratoconus, uveitis, and pterygium. Their role in influencing metalloproteinases and cytokines, as well as endothelial permeability, and their protective effects on Müller cells against oxidative stress further highlight their diverse and critical roles in ocular pathologies. This review provides a comprehensive overview of the etiology and functions of SerpinA1 and SerpinA3 in ocular diseases, emphasizing their multifaceted roles and the complexity of their interactions within the ocular microenvironment.
Collapse
Affiliation(s)
- Richard Kontoh-Twumasi
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Stepan Budkin
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Neel Edupuganti
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Ayushi Vashishtha
- Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
10
|
Sun Z, Yuan X, Wu J, Wang C, Zhang K, Zhang L, Hui L. Hepatocyte transplantation: The progress and the challenges. Hepatol Commun 2023; 7:e0266. [PMID: 37695736 PMCID: PMC10497249 DOI: 10.1097/hc9.0000000000000266] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/26/2023] [Indexed: 09/13/2023] Open
Abstract
Numerous studies have shown that hepatocyte transplantation is a promising approach for liver diseases, such as liver-based metabolic diseases and acute liver failure. However, it lacks strong evidence to support the long-term therapeutic effects of hepatocyte transplantation in clinical practice. Currently, major hurdles include availability of quality-assured hepatocytes, efficient engraftment and repopulation, and effective immunosuppressive regimens. Notably, cell sources have been advanced recently by expanding primary human hepatocytes by means of dedifferentiation in vitro. Moreover, the transplantation efficiency was remarkably improved by the established preparative hepatic irradiation in combination with hepatic mitogenic stimuli regimens. Finally, immunosuppression drugs, including glucocorticoid and inhibitors for co-stimulating signals of T cell activation, were proposed to prevent innate and adaptive immune rejection of allografted hepatocytes. Despite remarkable progress, further studies are required to improve in vitro cell expansion technology, develop clinically feasible preconditioning regimens, and further optimize immunosuppression regimens or establish ex vivo gene correction-based autologous hepatocyte transplantation.
Collapse
Affiliation(s)
- Zhen Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiang Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jingqi Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chenhua Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kun Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
11
|
Pejchinovski I, Turkkan S, Pejchinovski M. Recent Advances of Proteomics in Management of Acute Kidney Injury. Diagnostics (Basel) 2023; 13:2648. [PMID: 37627907 PMCID: PMC10453063 DOI: 10.3390/diagnostics13162648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Acute Kidney Injury (AKI) is currently recognized as a life-threatening disease, leading to an exponential increase in morbidity and mortality worldwide. At present, AKI is characterized by a significant increase in serum creatinine (SCr) levels, typically followed by a sudden drop in glomerulus filtration rate (GFR). Changes in urine output are usually associated with the renal inability to excrete urea and other nitrogenous waste products, causing extracellular volume and electrolyte imbalances. Several molecular mechanisms were proposed to be affiliated with AKI development and progression, ultimately involving renal epithelium tubular cell-cycle arrest, inflammation, mitochondrial dysfunction, the inability to recover and regenerate proximal tubules, and impaired endothelial function. Diagnosis and prognosis using state-of-the-art clinical markers are often late and provide poor outcomes at disease onset. Inappropriate clinical assessment is a strong disease contributor, actively driving progression towards end stage renal disease (ESRD). Proteins, as the main functional and structural unit of the cell, provide the opportunity to monitor the disease on a molecular level. Changes in the proteomic profiles are pivotal for the expression of molecular pathways and disease pathogenesis. Introduction of highly-sensitive and innovative technology enabled the discovery of novel biomarkers for improved risk stratification, better and more cost-effective medical care for the ill patients and advanced personalized medicine. In line with those strategies, this review provides and discusses the latest findings of proteomic-based biomarkers and their prospective clinical application for AKI management.
Collapse
Affiliation(s)
- Ilinka Pejchinovski
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Sibel Turkkan
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Martin Pejchinovski
- Department of Analytical Instruments Group, Thermo Fisher Scientific, 82110 Germering, Germany
| |
Collapse
|
12
|
Al-Omari M, Al-Omari T, Batainah N, Al-Qauod K, Olejnicka B, Janciauskiene S. Beneficial effects of alpha-1 antitrypsin therapy in a mouse model of colitis-associated colon cancer. BMC Cancer 2023; 23:722. [PMID: 37532996 PMCID: PMC10394932 DOI: 10.1186/s12885-023-11195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND It is widely accepted that chronic inflammatory bowel diseases significantly higher a risk for colorectal cancer development. Among different types of treatments for patients with colon cancer, novel protein-based therapeutic strategies are considered. AIM To explore the effect of human plasma alpha-1 antitrypsin (AAT) protein in the chemically induced mouse model of colorectal cancer. METHODS BALB/c mice with azoxymethane/dextran sodium sulfate (AOM/DSS)-induced colitis-associated colorectal cancer (CAC), we intraperitoneally treated with commercial preparation of human plasma AAT (4 mg per mouse). Effects of this therapy were evaluated histologically, and by immunohistochemical and gene expression assays. RESULTS When compared with non-treated controls, AOM/DSS mice receiving AAT therapy exhibited significantly longer colons, and less anal bleeding. Concurrently, AAT-treated mice had significantly fewer polyps, and lower numbers of large colon tumors. Immunohistochemical examinations of colon tissues showed significantly lower neutrophil counts, more granzyme B-positive but fewer MMP9 (gelatinase B)-positive cancer cells and lower numbers of apoptotic cells in mice receiving AAT therapy. The expression levels of IL4 were significantly higher while TNFA was slightly reduced in tumor tissues of AOM/DSS mice treated with AAT than in AOM/DSS mice. CONCLUSION Human AAT is an acute phase protein with a broad-protease inhibitory and immunomodulatory activities used as a therapeutic for emphysema patients with inherited AAT deficiency. Our results are consistent with previous findings and support an idea that AAT alone and/or in combination with available anti-cancer therapies may represent a new personalized approach for patients with colitis-induced colon cancer.
Collapse
Affiliation(s)
- Mariam Al-Omari
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, P.O Box 566, Irbid, 21163, Jordan.
| | - Tareq Al-Omari
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Nesreen Batainah
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, P.O Box 566, Irbid, 21163, Jordan
| | - Khaled Al-Qauod
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Beata Olejnicka
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
- Department of Internal Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| |
Collapse
|
13
|
Bai X, Schountz T, Buckle AM, Talbert JL, Sandhaus RA, Chan ED. Alpha-1-antitrypsin antagonizes COVID-19: a review of the epidemiology, molecular mechanisms, and clinical evidence. Biochem Soc Trans 2023; 51:1361-1375. [PMID: 37294003 PMCID: PMC10317171 DOI: 10.1042/bst20230078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Alpha-1-antitrypsin (AAT), a serine protease inhibitor (serpin), is increasingly recognized to inhibit SARS-CoV-2 infection and counter many of the pathogenic mechanisms of COVID-19. Herein, we reviewed the epidemiologic evidence, the molecular mechanisms, and the clinical evidence that support this paradigm. As background to our discussion, we first examined the basic mechanism of SARS-CoV-2 infection and contend that despite the availability of vaccines and anti-viral agents, COVID-19 remains problematic due to viral evolution. We next underscored that measures to prevent severe COVID-19 currently exists but teeters on a balance and that current treatment for severe COVID-19 remains grossly suboptimal. We then reviewed the epidemiologic and clinical evidence that AAT deficiency increases risk of COVID-19 infection and of more severe disease, and the experimental evidence that AAT inhibits cell surface transmembrane protease 2 (TMPRSS2) - a host serine protease required for SARS-CoV-2 entry into cells - and that this inhibition may be augmented by heparin. We also elaborated on the panoply of other activities of AAT (and heparin) that could mitigate severity of COVID-19. Finally, we evaluated the available clinical evidence for AAT treatment of COVID-19.
Collapse
Affiliation(s)
- Xiyuan Bai
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, U.S.A
- Department of Academic Affairs, National Jewish Health, Denver, CO, U.S.A
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, U.S.A
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- PTNG Bio, Melbourne, Australia
| | - Janet L. Talbert
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, U.S.A
| | | | - Edward D. Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, U.S.A
- Department of Academic Affairs, National Jewish Health, Denver, CO, U.S.A
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, U.S.A
| |
Collapse
|
14
|
Jager S, Cramer DAT, Heck AJR. Normal Alpha-1-Antitrypsin Variants Display in Serum Allele-Specific Protein Levels. J Proteome Res 2023; 22:1331-1338. [PMID: 36946534 PMCID: PMC10088046 DOI: 10.1021/acs.jproteome.2c00833] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Indexed: 03/23/2023]
Abstract
Alpha-1-antitrypsin (A1AT or SERPINA1) has been proposed as a putative biomarker distinguishing healthy from diseased donors throughout several proteomics studies. However, the SERPINA1 gene displays high variability of frequent occurring genotypes among the general population. These different genotypes may affect A1AT expression and serum protein concentrations, and this is often not known, ignored, and/or not reported in serum proteomics studies. Here, we address allele-specific protein serum levels of A1AT in donors carrying the normal M variants of A1AT by measuring the proteoform profiles of purified A1AT from 81 serum samples, originating from 52 donors. When focusing on heterozygous donors, our data clearly reveal a statistically relevant difference in allele-specific protein serum levels of A1AT. In donors with genotype PI*M1VM1A, the experimentally observed ratio was approximately 1:1 (M1V/M1A, 1.00:0.96 ± 0.07, n = 17). For individuals with genotype PI*M1VM2, this ratio was 1:1.28 (M1V/M2, 1.00:1.31, ±0.19, n = 7). For genotypes PI*M1VM3 and PI*M1AM3, a significant higher amount of M3 was observed compared to the M1-subtypes (M1V/M3, 1.00:1.84 ± 0.35, n = 8; M1A/M3, 1.00:1.61 ± 0.33, n = 5). We argue that these observations are important and should be considered when analyzing serum A1AT levels before proposing A1AT as a putative serum biomarker.
Collapse
Affiliation(s)
- Shelley Jager
- Biomolecular Mass Spectrometry
and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, Utrecht 3584 CH, The Netherlands
| | - Dario A. T. Cramer
- Biomolecular Mass Spectrometry
and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, Utrecht 3584 CH, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry
and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
15
|
Conde B, Costa F, Gomes J, Lopes AP, Mineiro MA, Rodrigues O, Santos C, Semedo L, Sucena M, Guimarães C. Expert Perspectives on the Management of Alpha 1-Antitrypsin Deficiency. ACTA MEDICA PORT 2023; 36:49-54. [PMID: 35848753 DOI: 10.20344/amp.18497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 01/05/2023]
Abstract
Alpha 1-antitrypsin deficiency is an inherited autosomal codominant disorder, which predisposes patients to lung and/or liver disease. Even though it is considered rare, it is one of the most frequent genetic disorders worldwide, albeit remaining underdiagnosed. Several organizations and societies, including the Portuguese Society of Pulmonology have been elaborating guidelines and recommendations for the diagnosis and management of alpha 1-antitrypsin deficiency. Nevertheless, some important matters are yet to be included in those, mainly due to lack of robust scientific evidence, and continue to represent a point of discussion. This article reviews some important scientific publications and expresses the perspectives of a group of Portuguese experts regarding the management of alpha 1-antitrypsin deficiency, namely in terms of the pre and neonatal diagnosis, the impact of the COVID-19 pandemic, the validity of replacement therapy in lung transplant-receiving, and finally, alternative strategies of alpha 1-antitrypsin deficiency treatment to improve the patients' quality of life.
Collapse
Affiliation(s)
- Bebiana Conde
- Centro Hospitalar Trás-os-Montes e Alto Douro. Vila Real; Universidade de Trás-os-Montes e Alto Douro. Vila Real. Portugal
| | - Filipa Costa
- Serviço de Pneumologia. Centro Hospitalar e Universitário de Coimbra. Coimbra. Portugal
| | - Joana Gomes
- Serviço de Pneumologia. Centro Hospitalar e Universitário do Porto. Porto. Portugal
| | - António Paulo Lopes
- Serviço de Pneumologia. Centro Hospitalar e Universitário de Coimbra. Coimbra. Portugal
| | | | - Orlando Rodrigues
- Serviço de Genética Médica. Hospital Pediátrico do Centro Hospitalar e Universitário de Coimbra. Coimbra. Portugal
| | - Cristina Santos
- Serviço de Pneumologia. Centro Hospitalar e Universitário Lisboa Norte. Lisboa. Portugal
| | - Luísa Semedo
- Serviço de Pneumologia. Centro Hospitalar Universitário Lisboa Central. Lisboa. Portugal
| | - Maria Sucena
- Serviço de Pneumologia. Centro Hospitalar e Universitário do Porto. Porto. Portugal
| | - Catarina Guimarães
- Serviço de Pneumologia. Hospital Senhora da Oliveira. Guimarães. Portugal
| |
Collapse
|
16
|
Zhang S, Li W, Xu Y, Li T, Ek J, Zhang X, Wang Y, Song J, Zhu C, Wang X. Alpha1-antitrypsin protects the immature mouse brain following hypoxic-ischemic injury. Front Cell Neurosci 2023; 17:1137497. [PMID: 36950515 PMCID: PMC10025360 DOI: 10.3389/fncel.2023.1137497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction: Preterm brain injury often leads to lifelong disabilities affecting both cognitive and motor functions, and effective therapies are limited. Alpha1-antitrypsin (AAT), an endogenous inhibitor of serine proteinases with anti-inflammatory, anti-apoptotic, and cytoprotective properties, might be beneficial in treating preterm brain injury. The aim of this study was to investigate whether AAT has neuroprotective effects in a mouse preterm brain injury model. Methods: Preterm brain injury was induced on postnatal day 5, and mouse pups' right common carotid arteries were cut between two ligations followed by hypoxia induction. Brain injury was evaluated through immunohistochemistry staining and magnetic resonance imaging. Fluoro-Jade B and immunohistochemistry staining were performed to investigate the neuronal cell death and blood-brain barrier (BBB) permeability. The motor function and anxiety-like behaviors were revealed by CatWalk gait analysis and the open field test. Results: After hypoxia-ischemia (HI) insult, brain injury was alleviated by AAT treatment, and this was accompanied by reduced BBB permeability, reduced neuronal cell death and caspase-3 activation, and inhibition of microglia activation. In addition, AAT administration significantly improved HI-induced motor function deficiencies in mice. The neuroprotective effect of AAT was more pronounced in male mice. Conclusion: AAT treatment is neuroprotective against preterm brain injury in neonatal mice, and the effect is more pronounced in males.
Collapse
Affiliation(s)
- Shan Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Wendong Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Li
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Henan Children’s Neurodevelopment Engineering Research Center, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Joakim Ek
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafeng Wang
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Henan Children’s Neurodevelopment Engineering Research Center, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Changlian Zhu Xiaoyang Wang
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Changlian Zhu Xiaoyang Wang
| |
Collapse
|
17
|
Frequency and function of circulating regulatory T-cells in biliary atresia. Pediatr Surg Int 2022; 39:23. [PMID: 36449184 DOI: 10.1007/s00383-022-05307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE Although the impairment of regulatory T-cells (Tregs) has been shown in the liver or portal area of biliary atresia (BA) the frequency and function of circulating Tregs in BA patients is poorly understood. We aimed to investigate the frequency and function of circulating Tregs in BA patients. METHODS Peripheral blood mononuclear cells were collected from 25 BA patients and 24 controls. Treg frequency was measured by flow cytometry; function was determined by T-cell proliferation assay. We also assessed the association between Treg frequency/function and clinical parameters in BA cases. RESULTS There was no significant difference between the two groups in both frequency (BA: 3.4%; control: 3.2%; p = 0.97) and function (BA: 22.0%; control: 7.5%; p = 0.23) of Tregs. We further focused on 13 preoperative BA patients and 14 age-matched controls. Neither Treg frequency nor function were significantly different (frequency: BA: 4.6%; control: 3.4%; p = 0.38, function: BA: 2.7%; control: 7.6%; p = 0.89). There was no association between Treg frequency/function and clinical parameters. CONCLUSION Neither the frequency nor function of circulating Tregs was affected in BA patients, suggesting the negative role of circulating Tregs in the pathogenesis of BA. Further investigation of local Treg profiles is warranted.
Collapse
|
18
|
Alpha-1 Antitrypsin Inhibits Tumorigenesis and Progression of Colitis-Associated Colon Cancer through Suppression of Inflammatory Neutrophil-Activated Serine Proteases and IGFBP-3 Proteolysis. Int J Mol Sci 2022; 23:ijms232213737. [PMID: 36430216 PMCID: PMC9698049 DOI: 10.3390/ijms232213737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Colitis-associated colon cancer (CAC) accompanies the massive infiltration of neutrophils during tumorigenesis and progression of CAC. Depletion of neutrophils in circulation results in significant inhibition of tumor incidence in CAC. However, the underlying mechanisms are largely unclear. In this study, we provide evidence for the crucial involvement of inflammatory neutrophil-activated serine proteases (NSPs) on the dysregulation of the anti-inflammatory and antitumor IGFBP-3/IGFBP-3R signaling axis in CAC using a chronic AOM/DSS mouse model. We also provide preclinical evidence for α1-antitrypsin (AAT) as a preventive and as a therapeutic for CAC. AAT administration not only prevented colitis-associated tumorigenesis but also inhibited established CAC. AOM/DSS treatment results in the significant activation of NSPs, leading to CAC through increased pro-inflammatory cytokines and decreased anti-inflammatory and antitumor IGFBP-3. Collectively, these data suggest that the NSPs proteolyze IGFBP-3, whereas AAT inhibits chronic colonic inflammation-induced NSP activity and subsequently suppresses IGFBP-3 proteolysis. Therefore, the anti-inflammatory and antitumor functions of the IGFBP-3/IGFBP-3R axis are restored. AAT mimicking small peptides also showed their inhibitory effects on NSP-induced IGFBP-3 proteolysis. These results suggest that targeting the NSP-IGFBP-3/IGFBP-3R axis using NSP inhibitors such as AAT and the AAT mimics and IGFBP-3R agonists could lead to novel approaches for the prevention and treatment of CAC.
Collapse
|
19
|
Campos MA, Geraghty P. Cytokine Regulation by Alpha-1 Antitrypsin Therapy: A Pathway Analysis of a Pilot Clinical Trial. Am J Respir Cell Mol Biol 2022; 66:697-700. [PMID: 35648091 DOI: 10.1165/rcmb.2021-0503le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Patrick Geraghty
- State University of New York Downstate Medical Center Brooklyn, New York
| |
Collapse
|
20
|
LMAN1-MCFD2 complex is a cargo receptor for the ER-Golgi transport of α1-antitrypsin. Biochem J 2022; 479:839-855. [PMID: 35322856 PMCID: PMC9022998 DOI: 10.1042/bcj20220055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022]
Abstract
α1-antitrypsin (AAT) is a serine protease inhibitor synthesized in hepatocytes and protects the lung from damage by neutrophil elastase. AAT gene mutations result in AAT deficiency (AATD), which leads to lung and liver diseases. The AAT Z variant forms polymer within the endoplasmic reticulum (ER) of hepatocytes and results in reduction of AAT secretion and severe disease. Previous studies demonstrated a secretion defect of AAT in LMAN1 deficient cells, and mild decreases in AAT levels in male LMAN1 and MCFD2 deficient mice. LMAN1 is a transmembrane lectin that forms a complex with a small soluble protein MCFD2. The LMAN1-MCFD2 protein complex cycles between the ER and the Golgi. Here we report that LMAN1 and MCFD2 knockout (KO) HepG2 and HEK293T cells display reduced AAT secretion and elevated intracellular AAT levels due to a delayed ER-to-Golgi transport of AAT. Secretion defects in KO cells were rescued by wild-type LMAN1 or MCFD2, but not by mutant proteins. Elimination of the second glycosylation site of AAT abolished LMAN1 dependent secretion. Co-immunoprecipitation experiment in MCFD2 KO cells suggested that AAT interaction with LMAN1 is independent of MCFD2. Furthermore, our results suggest that secretion of the Z variant, both monomers and polymers, is also LMAN1-dependent. Results provide direct evidence supporting that the LMAN1-MCFD2 complex is a cargo receptor for the ER-to-Golgi transport of AAT and that interactions of LMAN1 with an N-glycan of AAT is critical for this process. These results have implications in production of recombinant AAT and in developing treatments for AATD patients.
Collapse
|
21
|
A Review of Alpha-1 Antitrypsin Binding Partners for Immune Regulation and Potential Therapeutic Application. Int J Mol Sci 2022; 23:ijms23052441. [PMID: 35269582 PMCID: PMC8910375 DOI: 10.3390/ijms23052441] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Alpha-1 antitrypsin (AAT) is the canonical serine protease inhibitor of neutrophil-derived proteases and can modulate innate immune mechanisms through its anti-inflammatory activities mediated by a broad spectrum of protein, cytokine, and cell surface interactions. AAT contains a reactive methionine residue that is critical for its protease-specific binding capacity, whereby AAT entraps the protease on cleavage of its reactive centre loop, neutralises its activity by key changes in its tertiary structure, and permits removal of the AAT-protease complex from the circulation. Recently, however, the immunomodulatory role of AAT has come increasingly to the fore with several prominent studies focused on lipid or protein-protein interactions that are predominantly mediated through electrostatic, glycan, or hydrophobic potential binding sites. The aim of this review was to investigate the spectrum of AAT molecular interactions, with newer studies supporting a potential therapeutic paradigm for AAT augmentation therapy in disorders in which a chronic immune response is strongly linked.
Collapse
|
22
|
Khoshdel A, Ghoreishi A, Mahmoodi M. Comparison of alpha 1- antitrypsin activity and phenotype in type 1 diabetic patients to healthy individuals. J Family Med Prim Care 2022; 11:1377-1381. [PMID: 35516706 PMCID: PMC9067227 DOI: 10.4103/jfmpc.jfmpc_905_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/24/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Background and Aims: Alpha 1 antitrypsin (AAT) is an inhibitor of serine protease, which has shown anti-inflammatory reactions in a variety of diseases. It has been thought that that AAT plays a role in prolonging islet allograft survival, preventing the development of type 1 diabetes mellitus (T1DM), and hindering β-cell apoptosis of pancreas. In the current examination, the AAT activity in T1DM and healthy individuals was measured using enzymatic assay. Methods: The present study was conducted on 42 patients with T1DM who referred to the Diabetes Clinic of Rafsanjan, Kerman, Iran, and 42 healthy control individuals who were matched for age, sex and smoking habits. The serum trypsin inhibitory capacity (TIC) was assessed. Plasma samples were analyzed for phenotype, AAT concentration, blood glucose and lipid levels were measured. Results: The activity of plasma AAT and the serum TIC level of patients with T1DM (2.35 ± 0.34 μmol/min/ml) was significantly lower than healthy participants (3.36 ± 0.36 μmol/min/ml). The frequency of phenotype MM in healthy individual was 100%; and in T1DM patients, the prevalence of phenotype MM, MS and MZ was 61.9%, 23.8% and 14.3%, respectively (P < 0.001). Conclusions: It was concluded that that the lack of AAT may be related to the increased risk of T1DM developing.
Collapse
|
23
|
Koniari I, Artopoulou E, Velissaris D, Ainslie M, Mplani V, Karavasili G, Kounis N, Tsigkas G. Biomarkers in the clinical management of patients with atrial fibrillation and heart failure. J Geriatr Cardiol 2021; 18:908-951. [PMID: 34908928 PMCID: PMC8648548 DOI: 10.11909/j.issn.1671-5411.2021.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Atrial fibrillation (AF) and heart failure (HF) are two cardiovascular diseases with an increasing prevalence worldwide. These conditions share common pathophysiologiesand frequently co-exit. In fact, the occurrence of either condition can 'cause' the development of the other, creating a new patient group that demands different management strategies to that if they occur in isolation. Regardless of the temproral association of the two conditions, their presence is linked with adverse cardiovascular outcomes, increased rate of hospitalizations, and increased economic burden on healthcare systems. The use of low-cost, easily accessible and applicable biomarkers may hasten the correct diagnosis and the effective treatment of AF and HF. Both AF and HF effect multiple physiological pathways and thus a great number of biomarkers can be measured that potentially give the clinician important diagnostic and prognostic information. These will then guide patient centred therapeutic management. The current biomarkers that offer potential for guiding therapy, focus on the physiological pathways of miRNA, myocardial stretch and injury, oxidative stress, inflammation, fibrosis, coagulation and renal impairment. Each of these has different utility in current clinincal practice.
Collapse
Affiliation(s)
- Ioanna Koniari
- Manchester Heart Institute, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Eleni Artopoulou
- Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | | | - Mark Ainslie
- Manchester Heart Institute, Manchester University Foundation Trust, Manchester, United Kingdom
- Division of Cardiovascular Sciences, University of Manchester
| | - Virginia Mplani
- Department of Cardiology, University Hospital of Patras, Patras, Greece
| | - Georgia Karavasili
- Manchester Heart Institute, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Nicholas Kounis
- Department of Cardiology, University Hospital of Patras, Patras, Greece
| | - Grigorios Tsigkas
- Department of Cardiology, University Hospital of Patras, Patras, Greece
| |
Collapse
|
24
|
Lior Y, Shtriker E, Kahremany S, Lewis EC, Gruzman A. Development of anti-inflammatory peptidomimetics based on the structure of human alpha1-antitrypsin. Eur J Med Chem 2021; 228:113969. [PMID: 34763945 DOI: 10.1016/j.ejmech.2021.113969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/10/2023]
Abstract
Human α1-antitrypsin (hAAT) has two distinguishing functions: anti-protease activity and regulation of the immune system. In the present study we hypothesized that those two protein functions are mediated by different structural domains on the hAAT surface. Indeed, such biologically active immunoregulatory sites (not associated with canonical anti-protease activity) on the surface of hAAT were identified by in silico methods. Several peptides were derived from those immunoregulatory sites. Four peptides exhibited impressive biological effects in pharmacological concentration ranges. Peptidomimetic (14) was developed, based on the structure of the most druggable and active peptide. The compound exhibited a potent anti-inflammatory activity in vitro and in vivo. Such a compound could be used as a basis for developing novel anti-inflammatory drug candidates and as a research tool for better understanding hAAT functions.
Collapse
Affiliation(s)
- Yotam Lior
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Efrat Shtriker
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel; The Skin Research Institute, The Dead Sea and Arava Science Center, 86910, Masada, Israel
| | - Eli C Lewis
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| |
Collapse
|
25
|
Kaneva MK. Neutrophil elastase and its inhibitors-overlooked players in osteoarthritis. FEBS J 2021; 289:113-116. [PMID: 34580987 DOI: 10.1111/febs.16194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022]
Abstract
Cartilage homeostasis is maintained by a delicate balance between anabolism and catabolism. In osteoarthritis, pathological biomechanics or injury triggers cartilage breakdown, nonresolving synovial inflammation, and bone changes, causing reduced joint mobility and incapacitating pain. Undoubtedly, the most important cartilage degrading collagenase during osteoarthritis, matrix metalloproteinase (MMP)-13, is activated by an unlikely player: neutrophil elastase. Although primarily associated with inflammatory arthritis, neutrophil elastase is present in the osteoarthritic joint, and through activating MMP-13, spurs a cascade of events leading not just to the aberrant destruction of the cartilage itself, but to the proteolysis of its own inhibitor, alpha-1-antitrypsin, as described in the new study by Wilkinson et al. Endowed with potent chondrogenic and cartilage-protective properties, the loss of alpha-1-antitrypsin from cartilage will have major consequences for osteoarthritis progression, and strategies to prevent its loss, or replace it, might provide an innovative treatment opportunity that should not be ignored. Comment on: https://doi.org/10.1111/febs.16127.
Collapse
Affiliation(s)
- Magdalena K Kaneva
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, UK.,Centre for Inflammation and Therapeutic Innovation (CiTI), Queen Mary University of London, UK
| |
Collapse
|
26
|
Kaneva MK, Muley MM, Krustev E, Reid AR, Souza PR, Dell'Accio F, McDougall JJ, Perretti M. Alpha-1-antitrypsin reduces inflammation and exerts chondroprotection in arthritis. FASEB J 2021; 35:e21472. [PMID: 33788977 DOI: 10.1096/fj.202001801r] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
While new treatments have been developed to control joint disease in rheumatoid arthritis, they are partially effective and do not promote structural repair of cartilage. Following an initial identification of α-1-Antitrypsin (AAT) during the resolution phase of acute inflammation, we report here the properties of this protein in the context of cartilage protection, joint inflammation, and associated pain behavior. Intra-articular and systemic administration of AAT reversed joint inflammation, nociception, and cartilage degradation in the KBxN serum and neutrophil elastase models of arthritis. Ex vivo analyses of arthritic joints revealed that AAT promoted transcription of col2a1, acan, and sox9 and downregulated mmp13 and adamts5 gene expression. In vitro studies using human chondrocytes revealed that SERPINA1 transfection and rAAT protein promoted chondrogenic differentiation through activation of PKA-dependent CREB signaling and inhibition of Wnt/β-catenin pathways. Thus, AAT is endowed with anti-inflammatory, analgesic, and chondroprotective properties that are partially inter-related. We propose that AAT could be developed for new therapeutic strategies to reduce arthritic pain and repair damaged cartilage.
Collapse
Affiliation(s)
- Magdalena K Kaneva
- The William Harvey Research Institute, The London School of Medicine, Queen Mary University of London, London, UK
| | - Milind M Muley
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Eugene Krustev
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Allison R Reid
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Patricia R Souza
- The William Harvey Research Institute, The London School of Medicine, Queen Mary University of London, London, UK
| | - Francesco Dell'Accio
- The William Harvey Research Institute, The London School of Medicine, Queen Mary University of London, London, UK.,Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - Jason J McDougall
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Mauro Perretti
- The William Harvey Research Institute, The London School of Medicine, Queen Mary University of London, London, UK.,Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| |
Collapse
|
27
|
Takeda K, Kim SH, Joetham A, Petrache I, Gelfand EW. Therapeutic benefits of recombinant alpha1-antitrypsin IgG1 Fc-fusion protein in experimental emphysema. Respir Res 2021; 22:207. [PMID: 34271910 PMCID: PMC8283905 DOI: 10.1186/s12931-021-01784-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/24/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Alpha-1 antitrypsin (AAT) is a major serine protease inhibitor. AAT deficiency (AATD) is a genetic disorder characterized by early-onset severe emphysema. In well-selected AATD patients, therapy with plasma-derived AAT (pAAT), "augmentation therapy", provides modest clinical improvement but is perceived as cumbersome with weekly intravenous infusions. Using mouse models of emphysema, we compared the effects of a recombinant AAT-IgG1 Fc-fusion protein (AAT-Fc), which is expected to have a longer half-life following infusion, to those of pAAT. METHODS In an elastase model of emphysema, mice received a single intratracheal instillation of porcine pancreatic elastase (PPE) or human leucocyte elastase (hLE). AAT-Fc, pAAT, or vehicle was administered intraperitoneally 1 day prior to or 3 weeks following elastase instillation. Lung function and histology assessments were performed at 7 and 32 days after elastase instillation. In a cigarette smoke (CS) model of emphysema, mice were exposed to CS daily, 5 days a week, for 6 months and AAT-Fc, pAAT, or vehicle were administered every 10 days during the last 3 months of CS exposure. Assessments were performed 3 days after the last CS exposure. Immune responses to lung elastin peptide (EP) and the effects of AAT-Fc or pAAT treatment on dendritic cell (DC) function were determined ex vivo. RESULTS Both elastase instillation and CS exposure triggered emphysema-like alveolar enlargement, increased lung compliance, and increased markers of inflammation compared to controls. Administration of AAT-Fc either prior to or following elastase instillation or during CS exposure provided greater protection than pAAT against alveolar enlargement, lung dysfunction, and airway inflammation. When challenged ex vivo with EP, spleen mononuclear cells from elastase-exposed mice exhibited dose-dependent production of IFNγ and IL-17, suggesting immune reactivity. In co-culture experiments with splenic CD4+ T cells isolated from elastase-exposed mice, AAT-Fc treatment prior to EP-priming of bone marrow-derived dendritic cells inhibited the production of IFNγ and IL-17. CONCLUSIONS Compared to pAAT, AAT-Fc more effectively prevented or attenuated elastase- and CS-induced models of emphysema. These effects were associated with immunomodulatory effects on DC activity. AAT-Fc may provide a therapeutic option to individuals with AATD- and CS-induced emphysema.
Collapse
Affiliation(s)
- Katsuyuki Takeda
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA.
- Kyoritsu-Onsen Hospital, 1-39-1 Hirano, Kawanishi, 666-0121, Japan.
| | - Soo-Hyun Kim
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Anthony Joetham
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Irina Petrache
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| |
Collapse
|
28
|
Does Genetic Predisposition Contribute to the Exacerbation of COVID-19 Symptoms in Individuals with Comorbidities and Explain the Huge Mortality Disparity between the East and the West? Int J Mol Sci 2021; 22:ijms22095000. [PMID: 34066804 PMCID: PMC8125927 DOI: 10.3390/ijms22095000] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
The elderly and patients with several comorbidities experience more severe cases of coronavirus disease 2019 (COVID-19) than healthy patients without underlying medical conditions. However, it is unclear why these people are prone to developing alveolar pneumonia, rapid exacerbations, and death. Therefore, we hypothesized that people with comorbidities may have a genetic predisposition that makes them more vulnerable to various factors; for example, they are likely to become more severely ill when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To test this hypothesis, we searched the literature extensively. Polymorphisms of genes, such as those that encode angiotensin-converting enzyme 1 (ACE1), have been associated with numerous comorbidities, such as cardiovascular disease, hypertension, diabetes, chronic kidney disease, and obesity, and there are potential mechanisms to explain these associations (e.g., DD-type carriers have greater ACE1 activity, and patients with a genetic alpha-1 anti-trypsin (AAT) deficiency lack control over inflammatory mediators). Since comorbidities are associated with chronic inflammation and are closely related to the renin–angiotensin–aldosterone system (RAAS), these individuals may already have a mild ACE1/ACE2 imbalance before viral infection, which increases their risk for developing severe cases of COVID-19. However, there is still much debate about the association between ACE1 D/I polymorphism and comorbidities. The best explanation for this discrepancy could be that the D allele and DD subtypes are associated with comorbidities, but the DD genotype alone does not have an exceptionally large effect. This is also expected since the ACE1 D/I polymorphism is only an intron marker. We also discuss how polymorphisms of AAT and other genes are involved in comorbidities and the severity of SARS-CoV-2 infection. Presumably, a combination of multiple genes and non-genetic factors is involved in the establishment of comorbidities and aggravation of COVID-19.
Collapse
|
29
|
Barjaktarevic I, Miravitlles M. Alpha-1 antitrypsin (AAT) augmentation therapy in individuals with the PI*MZ genotype: a pro/con debate on a working hypothesis. BMC Pulm Med 2021; 21:99. [PMID: 33757485 PMCID: PMC7989144 DOI: 10.1186/s12890-021-01466-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a significantly under-diagnosed genetic condition caused by reduced levels and/or functionality of alpha-1 antitrypsin (AAT), predisposing individuals to lung, liver or other systemic diseases. The management of individuals with the PI*MZ genotype, characterized by mild or moderate AAT deficiency, is less clear than of those with the most common severe deficiency genotype (PI*ZZ). Recent genetic data suggest that the PI*MZ genotype may be significantly more prevalent than currently thought. The only specific treatment for lung disease associated with severe AATD is the intravenous infusion of AAT augmentation therapy, which has been shown to slow disease progression in PI*ZZ individuals. There is no specific evidence for the clinical benefit of AAT therapy in PI*MZ individuals, and the risk of emphysema development in this group remains controversial. As such, current guidelines do not support the use of AAT augmentation in PI*MZ individuals. Here, we discuss the limited data on the PI*MZ genotype and offer pro and con perspectives on pursuing an AAT-specific therapeutic strategy in PI*MZ individuals with lung disease. Ultimately, further research to demonstrate the safety, risk/benefit balance and efficacy of AAT therapy in PI*MZ individuals is needed.
Collapse
Affiliation(s)
- Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall D'Hebron, Vall D'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| |
Collapse
|
30
|
Janciauskiene S, Wrenger S, Günzel S, Gründing AR, Golpon H, Welte T. Potential Roles of Acute Phase Proteins in Cancer: Why Do Cancer Cells Produce or Take Up Exogenous Acute Phase Protein Alpha1-Antitrypsin? Front Oncol 2021; 11:622076. [PMID: 33680966 PMCID: PMC7933442 DOI: 10.3389/fonc.2021.622076] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 01/08/2023] Open
Abstract
An association between acute-phase proteins (APPs) and cancer has long been established and there are numerous reports correlating altered levels and/or molecular forms of APPs with different types of cancers. Many authors have shown a positive correlation between high levels of APPs, like alpha1-antitrypsin (AAT), and unfavorable clinical outcome in cancers. Conversely, others proposed that high levels of APPs are probably just a part of nonspecific inflammatory response to cancer development. However, this might not be always true, because many cancerous cells produce or take up exogenous APPs. What is the biological significance of this and what benefit do cancer cells have from these proteins remains largely unknown. Recent data revealed that some APPs, including AAT, are able to enhance cancer cell resistance against anticancer drug-induced apoptosis and autophagy. In this review, we specifically discuss our own findings and controversies in the literature regarding the role of AAT in cancer.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Sabine Wrenger
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Steffen Günzel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Anna Ricarda Gründing
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Heiko Golpon
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
31
|
Ostermann L, Maus R, Stolper J, Schütte L, Katsarou K, Tumpara S, Pich A, Mueller C, Janciauskiene S, Welte T, Maus UA. Alpha-1 antitrypsin deficiency impairs lung antibacterial immunity in mice. JCI Insight 2021; 6:140816. [PMID: 33554955 PMCID: PMC7934856 DOI: 10.1172/jci.insight.140816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/17/2020] [Indexed: 01/05/2023] Open
Abstract
Alpha-1 antitrypsin (AAT) is a major inhibitor of serine proteases in mammals. Therefore, its deficiency leads to protease–antiprotease imbalance and a risk for developing lung emphysema. Although therapy with human plasma-purified AAT attenuates AAT deficiency–related emphysema, its impact on lung antibacterial immunity is poorly defined. Here, we examined the effect of AAT therapy on lung protective immunity in AAT-deficient (KO) mice challenged with Streptococcus pneumoniae. AAT-KO mice were highly susceptible to S. pneumoniae, as determined by severe lobar pneumonia and early mortality. Mechanistically, we found that neutrophil-derived elastase (NE) degraded the opsonophagocytically important collectins, surfactant protein A (SP-A) and D (SP-D), which was accompanied by significantly impaired lung bacterial clearance in S. pneumoniae–infected AAT-KO mice. Treatment of S. pneumoniae–infected AAT-KO mice with human AAT protected SP-A and SP-D from NE-mediated degradation and corrected the pulmonary pathology observed in these mice. Likewise, treatment with Sivelestat, a specific inhibitor of NE, also protected collectins from degradation and significantly decreased bacterial loads in S. pneumoniae–infected AAT-KO mice. Our findings show that NE is responsible for the degradation of lung SP-A and SP-D in AAT-KO mice affecting lung protective immunity in AAT deficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andreas Pich
- Institute of Toxicology and Core Facility Proteomics, Hannover Medical School, Hannover, Germany
| | - Christian Mueller
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sabina Janciauskiene
- Clinic for Pneumology, and.,German Center for Lung Research, partner site BREATH, Hannover, Germany
| | - Tobias Welte
- Clinic for Pneumology, and.,German Center for Lung Research, partner site BREATH, Hannover, Germany
| | - Ulrich A Maus
- Division of Experimental Pneumology.,German Center for Lung Research, partner site BREATH, Hannover, Germany
| |
Collapse
|
32
|
McNulty MJ, Silberstein DZ, Kuhn BT, Padgett HS, Nandi S, McDonald KA, Cross CE. Alpha-1 antitrypsin deficiency and recombinant protein sources with focus on plant sources: Updates, challenges and perspectives. Free Radic Biol Med 2021; 163:10-30. [PMID: 33279618 DOI: 10.1016/j.freeradbiomed.2020.11.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Alpha-1 antitrypsin deficiency (A1ATD) is an autosomal recessive disease characterized by low plasma levels of A1AT, a serine protease inhibitor representing the most abundant circulating antiprotease normally present at plasma levels of 1-2 g/L. The dominant clinical manifestations include predispositions to early onset emphysema due to protease/antiprotease imbalance in distal lung parenchyma and liver disease largely due to unsecreted polymerized accumulations of misfolded mutant A1AT within the endoplasmic reticulum of hepatocytes. Since 1987, the only FDA licensed specific therapy for the emphysema component has been infusions of A1AT purified from pooled human plasma at the 2020 cost of up to US $200,000/year with the risk of intermittent shortages. In the past three decades various, potentially less expensive, recombinant forms of human A1AT have reached early stages of development, one of which is just reaching the stage of human clinical trials. The focus of this review is to update strategies for the treatment of the pulmonary component of A1ATD with some focus on perspectives for therapeutic production and regulatory approval of a recombinant product from plants. We review other competitive technologies for treating the lung disease manifestations of A1ATD, highlight strategies for the generation of data potentially helpful for securing FDA Investigational New Drug (IND) approval and present challenges in the selection of clinical trial strategies required for FDA licensing of a New Drug Approval (NDA) for this disease.
Collapse
Affiliation(s)
- Matthew J McNulty
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - David Z Silberstein
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Brooks T Kuhn
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA
| | | | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Carroll E Cross
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA; Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
33
|
Martini F, De Mattei M, Contini C, Tognon MG. Potential Use of Alpha-1 Anti-trypsin in the Covid-19 Treatment. Front Cell Dev Biol 2020; 8:577528. [PMID: 33195215 PMCID: PMC7644540 DOI: 10.3389/fcell.2020.577528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Fernanda Martini
- Laboraotories of Cell Biology and Molecular Genetics, University of Ferrara, Ferrara, Italy
| | - Monica De Mattei
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Carlo Contini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro G. Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
34
|
Distinct anti-inflammatory properties of alpha1-antitrypsin and corticosteroids reveal unique underlying mechanisms of action. Cell Immunol 2020; 356:104177. [DOI: 10.1016/j.cellimm.2020.104177] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/31/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
|
35
|
El-Saied S, Zaknoun M, Alatawna O, Joshua BZ, Kabahaa N, Kaplan DM, Lewis EC. Trauma-induced vestibular dysfunction: Possible functional repair under α1-antitrypsin-rich conditions. Cell Immunol 2020; 356:104150. [PMID: 32823037 DOI: 10.1016/j.cellimm.2020.104150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 11/18/2022]
Abstract
Transient vestibular organ deafferentation, such that is caused by traumatic tissue injury, is presently addressed by corticosteroid therapy. However, restoration of neurophysiological properties is rarely achieved. Here, it was hypothesized that the tissue-protective attributes of α1-antityrpsin (AAT) may promote restoration of neuronal function. Inner ear injury was inflicted by unilateral labyrinthotomy in wild-type mice and in mice overexpressing human AAT. A 2-week-long assessment of vestibular signs followed. All animals responded with peak vestibular dysfunction scores within 4 h after local trauma. While wild-type animals displayed partial or no recovery across 7 days post-injury, AAT-rich group exhibited early recovery: from behavioral score 9-out-of-9 at peak to 4.8 ± 0.44 (mean ± SD) within 8 h from injury, a time when wild-type mice scored 8.6 ± 0.54 (p < 0.0001), and from vestibular score 15-out-of-15 to 7.8 ± 2.2 within 24 h, when wild-type mice scored 13.0 ± 2.0 (p < 0.01). Thus, recovery and functional normalisation of an injured vestibular compartment is achievable without corticosteroid therapy; expedited tissue repair processes appear to result from elevated circulating AAT levels. This study lays the foundation for exploring the molecular and cellular mediators of AAT within the repair processes of the delicate microscopic structures of the vestibular end organ.
Collapse
Affiliation(s)
- Sabri El-Saied
- Department of Otolaryngology-Head & Neck Surgery, Soroka University Medical Center, Beer-Sheva, Israel; Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Melodie Zaknoun
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Osama Alatawna
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ben-Zion Joshua
- Department of Otolaryngology-Head & Neck Surgery, Soroka University Medical Center, Beer-Sheva, Israel
| | - Noor Kabahaa
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel M Kaplan
- Department of Otolaryngology-Head & Neck Surgery, Soroka University Medical Center, Beer-Sheva, Israel
| | - Eli C Lewis
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
36
|
Tumpara S, Martinez-Delgado B, Gomez-Mariano G, Liu B, DeLuca DS, Korenbaum E, Jonigk D, Jugert F, Wurm FM, Wurm MJ, Welte T, Janciauskiene S. The Delivery of α1-Antitrypsin Therapy Through Transepidermal Route: Worthwhile to Explore. Front Pharmacol 2020; 11:983. [PMID: 32719598 PMCID: PMC7348051 DOI: 10.3389/fphar.2020.00983] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Human α1-antitrypsin (AAT) is an abundant acute phase glycoprotein expressing anti-protease and immunomodulatory activities, and is used as a biopharmaceutical to treat patients with inherited AAT deficiency. The pleiotropic properties of AAT provide a rationale for using this therapy outside of inherited AAT deficiency. Therapy with AAT is administrated intravenously, yet the alternative routes are being considered. To examine the putative transepidermal application of AAT we used epiCS®, the 3D human epidermis equivalents reconstructed from human primary epidermal keratinocytes. We topically applied various concentrations of AAT protein with a constant volume of 50 µl, prepared in Hank's balance solution, HBSS, to epiCS cultured under bas\al condition or when culture medium supplemented with 100 µg/ml of a combined bacterial lipopolysaccharide (LPS) and peptidoglycan (PGN) mixture. AAT freely diffused across epidermis layers in a concentration and time-dependent manner. Within 18 h topically provided 0.2 mg AAT penetrated well the stratum corneum and localizes within the keratinocytes. The treatments with AAT did not induce obvious morphological changes and damages in keratinocyte layers. As expected, LPS/PGN triggered a strong pro-inflammatory activation of epiCS. AAT exhibited a limited capacity to neutralize the effect of LPS/PGN, but more importantly, it lowered expression of IL-18 and IL-8, and preserved levels of filaggrin, a key protein for maintaining the epidermal barrier integrity. Our findings suggest that the transepidermal route for delivering AAT is worthwhile to explore further. If successful, this approach may offer an easy-to-use therapy with AAT for skin inflammatory diseases.
Collapse
Affiliation(s)
- Srinu Tumpara
- Department of Internal Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Beatriz Martinez-Delgado
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Gema Gomez-Mariano
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Bin Liu
- Department of Internal Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - David S DeLuca
- Department of Internal Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Elena Korenbaum
- Research Core Unit for Structural Biochemistry, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Frank Jugert
- Department of Dermatology, University Clinic Aachen, Aachen, Germany
| | - Florian M Wurm
- ExcellGene SA, Monthey, Switzerland.,Faculty of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | | | - Tobias Welte
- Department of Internal Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Sabina Janciauskiene
- Department of Internal Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
37
|
Cortes-Lopez R, Barjaktarevic I. Alpha-1 Antitrypsin Deficiency: a Rare Disease? Curr Allergy Asthma Rep 2020; 20:51. [PMID: 32572624 DOI: 10.1007/s11882-020-00942-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Commonly categorized as a rare disease, alpha-1 antitrypsin deficiency (AATD) is neither rare, when compared to many other genetic disorders, nor an actual disease, but rather a predisposition toward a wide variety of diseases. It is one of the most common genetic disorders which can lead to a spectrum of clinical manifestations, ranging from no symptoms to progressively debilitating systemic disease, most commonly affecting the lung and liver. It is therefore imperative for clinicians to recognize and be familiar with the spectrum of presentations, methods of diagnosis, and clinical management of AATD. It is also imperative for scientists to recognize the potential for progress in the management of this disorder. RECENT FINDINGS This review focuses on the current state of knowledge of AATD, including the wide range of presentations, diagnosis, and clinical management. In addition to the clinical implications of severe AATD, we discuss the relevance of heterozygous state with mild or moderate AATD in the development of both lung and liver disease. While our understanding of the multiple roles of alpha-1 antitrypsin (AAT) is on the rise, with appreciation of its immunomodulatory, anti-infective, and anti-inflammatory properties, this knowledge has yet to impact our ability to predict outcomes. We discuss nuances of augmentation therapy and review novel therapeutic approaches currently under investigation. With the expanding knowledge about the complexities of AAT function and its clinical relevance, and with the increasing ability to diagnose early and intervene on AATD, it should be our goal to change the perception of AATD as a correctable inherited disorder rather than a fatal disease.
Collapse
Affiliation(s)
- Roxana Cortes-Lopez
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, CHS, Los Angeles, CA, 90095, USA
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, CHS, Los Angeles, CA, 90095, USA.
| |
Collapse
|
38
|
Lior Y, Jasevitch M, Ochayon DE, Zaretsky M, Lewis EC, Aharoni A. Application of directed evolution and back-to-consensus algorithms to human alpha1-antitrypsin leads to diminished anti-protease activity and augmented anti-inflammatory activities. Cell Immunol 2020; 355:104135. [PMID: 32703529 DOI: 10.1016/j.cellimm.2020.104135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022]
Abstract
Primarily known as an elastase inhibitor, human alpha1-antitrypsin also exerts anti-inflammatory and immunomodulatory effects, both in vitro and in vivo. While the anti-protease mechanism of alpha1-antitrypsin is attributed to a particular protein domain coined the reactive center loop, anti-inflammatory and immunomodulatory loci within the molecule remain to be identified. In the present study, directed evolution and back-to-consensus algorithms were applied to human alpha1-antitrypsin. Six unique functional candidate sites were identified on the surface of the molecule; in manipulating these sites by point mutations, a recombinant mutant form of alpha1-antitrypsin was produced, depicting a requirement for sites outside the reactive center loop as essential for protease inhibition, and displaying enhanced anti-inflammatory activities. Taken together, outcomes of the present study establish a potential use for directed evolution in advancing our understanding of site-specific protein functions, offering a platform for development of context- and disease-specific alpha1-antitrypsin-based therapeutics.
Collapse
Affiliation(s)
- Yotam Lior
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| | - Maria Jasevitch
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - David E Ochayon
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Mariana Zaretsky
- Department of Life Sciences, Ben-Gurion University of the Negev and National Institute for Biotechnology, Be'er Sheva, Israel
| | - Eli C Lewis
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Amir Aharoni
- Department of Life Sciences, Ben-Gurion University of the Negev and National Institute for Biotechnology, Be'er Sheva, Israel
| |
Collapse
|
39
|
Systemic modified messenger RNA for replacement therapy in alpha 1-antitrypsin deficiency. Sci Rep 2020; 10:7052. [PMID: 32341402 PMCID: PMC7184591 DOI: 10.1038/s41598-020-64017-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
Alpha 1-antitrypsin (AAT) deficiency arises from an inherited mutation in the SERPINA1 gene. The disease causes damage in the liver where the majority of the AAT protein is produced. Lack of functioning circulating AAT protein also causes uninhibited elastolytic activity in the lungs leading to AAT deficiency-related emphysema. The only therapy apart from liver transplantation is augmentation with human AAT protein pooled from sera, which is only reserved for patients with advanced lung disease caused by severe AAT deficiency. We tested modified mRNA encoding human AAT in primary human hepatocytes in culture, including hepatocytes from AAT deficient patients. Both expression and functional activity were investigated. Secreted AAT protein increased from 1,14 to 3,43 µg/ml in media from primary human hepatocytes following mRNA treatment as investigated by ELISA and western blot. The translated protein showed activity and protease inhibitory function as measured by elastase activity assay. Also, mRNA formulation in lipid nanoparticles was assessed for systemic delivery in both wild type mice and the NSG-PiZ transgenic mouse model of AAT deficiency. Systemic intravenous delivery of modified mRNA led to hepatic uptake and translation into a functioning protein in mice. These data support the use of systemic mRNA therapy as a potential treatment for AAT deficiency.
Collapse
|
40
|
Serum alpha-1 antitrypsin in acute ischemic stroke: A prospective pilot study. J Clin Neurosci 2020; 76:20-24. [PMID: 32327380 DOI: 10.1016/j.jocn.2020.04.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/14/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Alpha-1 antitrypsin (AAT) is a potent anti-protease enzyme which may play a role in arterial wall stability. A variant of its encoding gene has been recently linked to ischemic stroke due to large artery atherosclerosis (LAA). We sought to explore potential relationships between ischemic stroke mechanisms, atherosclerosis burden and serum AAT levels. METHODS We performed a prospective observational study of consecutive patients with acute ischemic stroke who were admitted to an academic comprehensive stroke center over a three-month period. Blood samples were collected within 24 h of hospital admission, and stroke subtype classification was determined based on modified TOAST criteria. Modified Woodcock scoring system was used to quantify calcification of major cervico-cranial arteries as a surrogate for atherosclerosis burden. Linear regression analysis was used to assess the association between serum AAT levels and calcification scores, both as continuous variables. RESULTS Among eighteen patients met our inclusion criteria and were enrolled in our study, 10 patients (56%) were men; mean age was 66 (SD 12.5); median NIH stroke scale was 4 (IQR 9.5); 8 patients (44%) had stroke due to LAA. The median serum level of AAT was 140 mg/dl (IQR 41.7) for patients with LAA-related stroke, and 148.5 mg/dl (IQR 37.7) for patients with other stroke mechanisms (p = 0.26). Higher serum AAT levels was associated with lower modified Woodcock calcification scores. (p-value = 0.038) CONCLUSIONS: Measurement of AAT levels in patients with acute stroke is feasible, and there may be associations between AAT levels and stroke mechanism that warrant further study in larger samples.
Collapse
|
41
|
Campos MA, Geraghty P, Holt G, Mendes E, Newby PR, Ma S, Luna-Diaz LV, Turino GM, Stockley RA. The Biological Effects of Double-Dose Alpha-1 Antitrypsin Augmentation Therapy. A Pilot Clinical Trial. Am J Respir Crit Care Med 2020; 200:318-326. [PMID: 30965011 PMCID: PMC6680306 DOI: 10.1164/rccm.201901-0010oc] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rationale: Augmentation therapy with intravenous AAT (alpha-1 antitrypsin) is the only specific therapy for individuals with pulmonary disease from AAT deficiency (AATD). The recommended standard dose (SD; 60 mg/kg/wk) elevates AAT trough serum levels to around 50% of normal; however, outside of slowing emphysema progression, its effects in other clinical outcomes have not been rigorously proven. Objectives: To evaluate the biological effects of normalizing AAT trough levels with double-dose (DD) therapy (120 mg/kg/wk) in subjects with AATD already receiving SD therapy. Methods: Clinically stable subjects were evaluated after 4 weeks of SD therapy, followed by 4 weeks of DD therapy, and 4 weeks after return to SD therapy. At the end of each phase, BAL fluid (BALF) and plasma samples were obtained. Measurements and Main Results: DD therapy increased trough AAT levels to normal and, compared with SD therapy, reduced serine protease activity in BALF (elastase and cathepsin G), plasma elastase footprint (Aα-Val360), and markers of elastin degradation (desmosine/isodesmosine) in BALF. DD therapy also further downregulated BALF ILs and cytokines including Jak-STAT (Janus kinases–signal transducer and activator of transcription proteins), TNFα (tumor necrosis factor-α), and T-cell receptor signaling pathways, cytokines involved in macrophage migration, eosinophil recruitment, humoral and adaptive immunity, neutrophil activation, and cachexia. On restarting SD after DD treatment, a possible carryover effect was seen for several biological markers. Conclusions: Subjects with AATD on SD augmentation therapy still exhibit inflammation, protease activity, and elastin degradation that can be further improved by normalizing AAT levels. Higher AAT dosing than currently recommended may lead to enhanced clinical benefits and should be explored further. Clinical trial registered with www.clinicaltrials.gov (NCT 01669421).
Collapse
Affiliation(s)
- Michael A Campos
- 1Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| | - Patrick Geraghty
- 2Department of Medicine and Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Gregory Holt
- 1Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| | - Eliana Mendes
- 1Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| | - Paul R Newby
- 3University of Birmingham, Birmingham, United Kingdom
| | - Shuren Ma
- 4Mount Sinai Icahn School of Medicine, New York, New York
| | | | | | - Robert A Stockley
- 6Lung Investigation Unit, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
42
|
Nguyen MP, Jain V, Iansante V, Mitry RR, Filippi C, Dhawan A. Clinical application of hepatocyte transplantation: current status, applicability, limitations, and future outlook. Expert Rev Gastroenterol Hepatol 2020; 14:185-196. [PMID: 32098516 DOI: 10.1080/17474124.2020.1733975] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Hepatocyte transplantation (HT) is a promising alternative to liver transplantation for the treatment of liver-based metabolic diseases and acute liver failure (ALF). However, shortage of good-quality liver tissues, early cell loss post-infusion, reduced cell engraftment and function restricts clinical application.Areas covered: A comprehensive literature search was performed to cover pre-clinical and clinical HT studies. The review discusses the latest developments to address HT limitations: cell sources from marginal/suboptimal donors to neonatal livers, differentiating pluripotent stem cells into hepatocyte-like cells, in vitro expansion, prevention of immune response to transplanted cells by encapsulation or using innate immunity-inhibiting agents, and enhancing engraftment through partial hepatectomy or irradiation.Expert opinion: To date, published data are highly encouraging specially the alginate-encapsulated hepatocyte treatment of children with ALF. Hepatocyte functions can be further improved through co-culturing with mesenchymal stromal cells. Moreover, ex-vivo genetic correction will enable the use of autologous cells in future personalized medicine.
Collapse
Affiliation(s)
- Minh Phuong Nguyen
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Vandana Jain
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Valeria Iansante
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Ragai R Mitry
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Celine Filippi
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Anil Dhawan
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| |
Collapse
|
43
|
Lim JH, Park SM, Yook JM, Ahn JS, Choi SY, Oh SH, Jung HY, Choi JY, Cho JH, Park SH, Kim YL, Kim CD. Alpha-1 antitrypsin inhibits formaldehyde-induced apoptosis of human peritoneal mesothelial cells. Perit Dial Int 2020; 40:124-131. [PMID: 32063193 DOI: 10.1177/0896860819887288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The alpha-1 antitrypsin (AAT) protein has an important role in the anti-inflammatory and apoptotic response. AAT inhibits not only serine proteases but also cysteine and aspartic proteases. Apoptosis results from the sequential activation of cysteine proteases of the caspase family. This study aimed to evaluate the effect of AAT on formaldehyde-induced apoptosis of human peritoneal mesothelial cells (HPMCs). METHODS HPMCs were cultured and treated with formaldehyde (250 µM) to induce apoptosis. In the AAT group, the cultured HPMCs were pretreated with AAT (2 mg/mL) for 1 h before formaldehyde treatment. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays to determine cell viability, and flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays to detect apoptosis. The MTT assays were used to find optimal concentrations of formaldehyde and AAT. We measured caspase-3 activity and used Western blotting to estimate Bcl-2 and Bad expression. RESULTS Flow cytometry and TUNEL assays revealed that formaldehyde exposure significantly increased apoptosis compared with the control treatment, but pretreatment with AAT significantly inhibited this effect. Compared with the control, caspase-3 activity was significantly increased and the ratio of Bcl-2 to Bad expression significantly decreased following treatment with formaldehyde. However, caspase-3 activity was significantly lower and the Bcl-2 to Bad expression ratio higher in the AAT group than in the formaldehyde-only group. CONCLUSION AAT inhibits formaldehyde-induced apoptosis of HPMCs via a caspase-mediated pathway. These data support a potential use for AAT as a therapeutic agent for the inhibition of peritoneal cell apoptosis during peritoneal dialysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Chan-Duck Kim
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
44
|
Role of oxidative stress-related biomarkers in heart failure: galectin 3, α1-antitrypsin and LOX-1: new therapeutic perspective? Mol Cell Biochem 2019; 464:143-152. [DOI: 10.1007/s11010-019-03656-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023]
|
45
|
Elevated serum alpha-1 antitrypsin is a major component of GlycA-associated risk for future morbidity and mortality. PLoS One 2019; 14:e0223692. [PMID: 31644575 PMCID: PMC6808431 DOI: 10.1371/journal.pone.0223692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
Background GlycA is a nuclear magnetic resonance (NMR) spectroscopy biomarker that predicts risk of disease from myriad causes. It is heterogeneous; arising from five circulating glycoproteins with dynamic concentrations: alpha-1 antitrypsin (AAT), alpha-1-acid glycoprotein (AGP), haptoglobin (HP), transferrin (TF), and alpha-1-antichymotrypsin (AACT). The contributions of each glycoprotein to the disease and mortality risks predicted by GlycA remain unknown. Methods We trained imputation models for AAT, AGP, HP, and TF from NMR metabolite measurements in 626 adults from a population cohort with matched NMR and immunoassay data. Levels of AAT, AGP, and HP were estimated in 11,861 adults from two population cohorts with eight years of follow-up, then each biomarker was tested for association with all common endpoints. Whole blood gene expression data was used to identify cellular processes associated with elevated AAT. Results Accurate imputation models were obtained for AAT, AGP, and HP but not for TF. While AGP had the strongest correlation with GlycA, our analysis revealed variation in imputed AAT levels was the most predictive of morbidity and mortality for the widest range of diseases over the eight year follow-up period, including heart failure (meta-analysis hazard ratio = 1.60 per standard deviation increase of AAT, P-value = 1×10−10), influenza and pneumonia (HR = 1.37, P = 6×10−10), and liver diseases (HR = 1.81, P = 1×10−6). Transcriptional analyses revealed association of elevated AAT with diverse inflammatory immune pathways. Conclusions This study clarifies the molecular underpinnings of the GlycA biomarker’s associated disease risk, and indicates a previously unrecognised association between elevated AAT and severe disease onset and mortality.
Collapse
|
46
|
Jeong KH, Lim JH, Lee KH, Kim MJ, Jung HY, Choi JY, Cho JH, Park SH, Kim YL, Kim CD. Protective Effect of Alpha 1-Antitrypsin on Renal Ischemia-Reperfusion Injury. Transplant Proc 2019; 51:2814-2822. [DOI: 10.1016/j.transproceed.2019.04.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/22/2019] [Accepted: 04/11/2019] [Indexed: 11/24/2022]
|
47
|
Novel potential biomarkers for the diagnosis and monitoring of patients with ulcerative colitis. Eur J Gastroenterol Hepatol 2019; 31:1173-1183. [PMID: 31498278 DOI: 10.1097/meg.0000000000001490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Unambiguously, great progress has been achieved in the unraveling of more pathological pathways implicated in the development and progression of ulcerative colitis during the last decades. Novel effective drugs that have augmented the management armamentarium have been developed alongside this growing comprehension of the disease, rendering mucosal healing not only a feasible but the optimal goal of every therapy. Clinical evaluation, colonoscopy and biomarkers are the tools used by practitioners for the diagnosis and assessment of the status of the disease in order to achieve clinical remission and mucosal healing for their patients. Among these tools, colonoscopy is the gold method for the cause but is still an invasive, high-cost procedure with possible adverse events such as perforation. While clinical evaluation entails much subjectivity, biomarkers are objective, easily reproducible, non-invasive, cheap and potent surrogate tools of mucosal inflammation. Unfortunately, the well-established, currently in use serum biomarkers, such as C-reactive protein, erythrocyte sedimentation rate and others, do not display sufficiently acceptable sensitivity and specificity rates for the diagnosis of ulcerative colitis and, most importantly, do not represent precisely the mucosal inflammation status of the disease. Therefore, the discovery of new serum biomarkers has been the cause of several studies attempting to discover an "optimal" serum biomarker during the recent years. After thorough research, collection and examination of current data, this review focuses on and selectively presents promising, potential, novel serum biomarkers of ulcerative colitis as they are indicated by studies on the patient over the last years.
Collapse
|
48
|
Azouz NP, Ynga-Durand MA, Caldwell JM, Jain A, Rochman M, Fischesser DM, Ray LM, Bedard MC, Mingler MK, Forney C, Eilerman M, Kuhl JT, He H, Biagini Myers JM, Mukkada VA, Putnam PE, Khurana Hershey GK, Kottyan LC, Wen T, Martin LJ, Rothenberg ME. The antiprotease SPINK7 serves as an inhibitory checkpoint for esophageal epithelial inflammatory responses. Sci Transl Med 2019; 10:10/444/eaap9736. [PMID: 29875205 DOI: 10.1126/scitranslmed.aap9736] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/12/2018] [Accepted: 04/27/2018] [Indexed: 12/12/2022]
Abstract
Loss of barrier integrity has an important role in eliciting type 2 immune responses, yet the molecular events that initiate and connect this with allergic inflammation remain unclear. We reveal an endogenous, homeostatic mechanism that controls barrier function and inflammatory responses in esophageal allergic inflammation. We show that a serine protease inhibitor, SPINK7 (serine peptidase inhibitor, kazal type 7), is part of the differentiation program of human esophageal epithelium and that SPINK7 depletion occurs in a human allergic, esophageal condition termed eosinophilic esophagitis. Experimental manipulation strategies reducing SPINK7 in an esophageal epithelial progenitor cell line and primary esophageal epithelial cells were sufficient to induce barrier dysfunction and transcriptional changes characterized by loss of cellular differentiation and altered gene expression known to stimulate allergic responses (for example, FLG and SPINK5). Epithelial silencing of SPINK7 promoted production of proinflammatory cytokines including thymic stromal lymphopoietin (TSLP). Loss of SPINK7 increased the activity of urokinase plasminogen-type activator (uPA), which in turn had the capacity to promote uPA receptor-dependent eosinophil activation. Treatment of epithelial cells with the broad-spectrum antiserine protease, α1 antitrypsin, reversed the pathologic features associated with SPINK7 silencing. The relevance of this pathway in vivo was supported by finding genetic epistasis between variants in TSLP and the uPA-encoding gene, PLAU We propose that the endogenous balance between SPINK7 and its target proteases is a key checkpoint in regulating mucosal differentiation, barrier function, and inflammatory responses and that protein replacement with antiproteases may be therapeutic for select allergic diseases.
Collapse
Affiliation(s)
- Nurit P Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Mario A Ynga-Durand
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA.,Laboratorio de Inmunidad de Mucosas, Sección de Investigación y Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Ayushi Jain
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Demetria M Fischesser
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Leanne M Ray
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Mary C Bedard
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Melissa K Mingler
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Matthew Eilerman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Jonathan T Kuhl
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Hua He
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Jocelyn M Biagini Myers
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Vincent A Mukkada
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Philip E Putnam
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA.
| |
Collapse
|
49
|
Zamora M. Surgery for patients with Alpha 1 Antitrypsin Deficiency: A review. Am J Surg 2019; 218:639-647. [DOI: 10.1016/j.amjsurg.2018.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/12/2018] [Indexed: 12/01/2022]
|
50
|
Li Z, Solomonidis EG, Meloni M, Taylor RS, Duffin R, Dobie R, Magalhaes MS, Henderson BEP, Louwe PA, D’Amico G, Hodivala-Dilke KM, Shah AM, Mills NL, Simons BD, Gray GA, Henderson NC, Baker AH, Brittan M. Single-cell transcriptome analyses reveal novel targets modulating cardiac neovascularization by resident endothelial cells following myocardial infarction. Eur Heart J 2019; 40:2507-2520. [PMID: 31162546 PMCID: PMC6685329 DOI: 10.1093/eurheartj/ehz305] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/12/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS A better understanding of the pathways that regulate regeneration of the coronary vasculature is of fundamental importance for the advancement of strategies to treat patients with heart disease. Here, we aimed to investigate the origin and clonal dynamics of endothelial cells (ECs) associated with neovascularization in the adult mouse heart following myocardial infarction (MI). Furthermore, we sought to define murine cardiac endothelial heterogeneity and to characterize the transcriptional profiles of pro-angiogenic resident ECs in the adult mouse heart, at single-cell resolution. METHODS AND RESULTS An EC-specific multispectral lineage-tracing mouse (Pdgfb-iCreERT2-R26R-Brainbow2.1) was used to demonstrate that structural integrity of adult cardiac endothelium following MI was maintained through clonal proliferation by resident ECs in the infarct border region, without significant contributions from bone marrow cells or endothelial-to-mesenchymal transition. Ten transcriptionally discrete heterogeneous EC states, as well as the pathways through which each endothelial state is likely to enhance neovasculogenesis and tissue regeneration following ischaemic injury were defined. Plasmalemma vesicle-associated protein (Plvap) was selected for further study, which showed an endothelial-specific and increased expression in both the ischaemic mouse and human heart, and played a direct role in regulating human endothelial proliferation in vitro. CONCLUSION We present a single-cell gene expression atlas of cardiac specific resident ECs, and the transcriptional hierarchy underpinning endogenous vascular repair following MI. These data provide a rich resource that could assist in the development of new therapeutic interventions to augment endogenous myocardial perfusion and enhance regeneration in the injured heart.
Collapse
Affiliation(s)
- Ziwen Li
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Emmanouil G Solomonidis
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Marco Meloni
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Richard S Taylor
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Rodger Duffin
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ross Dobie
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Marlene S Magalhaes
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Beth E P Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Pieter A Louwe
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Gabriela D’Amico
- Centre for Tumour Biology, Barts Cancer Institute, CRUK-Barts Centre, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | - Kairbaan M Hodivala-Dilke
- Centre for Tumour Biology, Barts Cancer Institute, CRUK-Barts Centre, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | - Ajay M Shah
- Department for Cardiovascular Sciences, King’s College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Nicholas L Mills
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Gillian A Gray
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|