1
|
Zhang J, Zhou H, Cai Y, Yoshida S, Li Y, Zhou Y. Melatonin: Unveiling the functions and implications in ocular health. Pharmacol Res 2024; 205:107253. [PMID: 38862072 DOI: 10.1016/j.phrs.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Melatonin, a versatile hormone produced by the pineal gland, has garnered considerable scientific interest due to its diverse functions. In the eye, melatonin regulates a variety of key processes like inhibiting angiogenesis by reducing vascular endothelial growth factor levels and protecting the blood-retinal barrier (BRB) integrity by enhancing tight junction proteins and pericyte coverage. Melatonin also maintains cell health by modulating autophagy via the Sirt1/mTOR pathways, reduces inflammation, promotes antioxidant enzyme activity, and regulates intraocular pressure fluctuations. Additionally, melatonin protects retinal ganglion cells by modulating aging and inflammatory pathways. Understanding melatonin's multifaceted functions in ocular health could expand the knowledge of ocular pathogenesis, and shed new light on therapeutic approaches in ocular diseases. In this review, we summarize the current evidence of ocular functions and therapeutic potential of melatonin and describe its roles in angiogenesis, BRB integrity maintenance, and modulation of various eye diseases, which leads to a conclusion that melatonin holds promising treatment potential for a wide range of ocular health conditions.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| |
Collapse
|
2
|
Felder-Schmittbuhl MP, Hicks D, Ribelayga CP, Tosini G. Melatonin in the mammalian retina: Synthesis, mechanisms of action and neuroprotection. J Pineal Res 2024; 76:e12951. [PMID: 38572848 DOI: 10.1111/jpi.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/09/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Melatonin is an important player in the regulation of many physiological functions within the body and in the retina. Melatonin synthesis in the retina primarily occurs during the night and its levels are low during the day. Retinal melatonin is primarily synthesized by the photoreceptors, but whether the synthesis occurs in the rods and/or cones is still unclear. Melatonin exerts its influence by binding to G protein-coupled receptors named melatonin receptor type 1 (MT1) and type 2 (MT2). MT1 and MT2 receptors activate a wide variety of signaling pathways and both receptors are present in the vertebrate photoreceptors where they may form MT1/MT2 heteromers (MT1/2h). Studies in rodents have shown that melatonin signaling plays an important role in the regulation of retinal dopamine levels, rod/cone coupling as well as the photopic and scotopic electroretinogram. In addition, melatonin may play an important role in protecting photoreceptors from oxidative stress and can protect photoreceptors from apoptosis. Critically, melatonin signaling is involved in the modulation of photoreceptor viability during aging and other studies have implicated melatonin in the pathogenesis of age-related macular degeneration. Hence melatonin may represent a useful tool in the fight to protect photoreceptors-and other retinal cells-against degeneration due to aging or diseases.
Collapse
Affiliation(s)
- Marie Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - David Hicks
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Christophe P Ribelayga
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, Texas, USA
| | - Gianluca Tosini
- Department of Pharmacology & Toxicology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Ma SJ, Li C, Yan C, Liu N, Jiang GY, Yang HR, Yan HC, Li JY, Liu HL, Gao C. Melatonin alleviates early brain injury by inhibiting the NRF2-mediated ferroptosis pathway after subarachnoid hemorrhage. Free Radic Biol Med 2023; 208:555-570. [PMID: 37717795 DOI: 10.1016/j.freeradbiomed.2023.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Ferroptosis is a novel form of cell death that plays a critical role in the pathological and physiological processes of early brain injury following subarachnoid hemorrhage. Melatonin, as the most potent endogenous antioxidant, has shown strong protective effects against pathological changes following subarachnoid hemorrhage, but its impact on ferroptosis induced by subarachnoid hemorrhage remains unexplored. In our study, we established a subarachnoid hemorrhage model in male SD rats. We found that subarachnoid hemorrhage induced changes in ferroptosis-related indicators such as lipid peroxidation and iron metabolism, while intraperitoneal injection of melatonin (40 mg/kg) effectively ameliorated these changes to a certain degree. Moreover, in a subset of rats with subarachnoid hemorrhage who received pre-treatment via intravenous injection of the melatonin receptor antagonist Luzindole (1 mg/kg) and 4P-PDOT (1 mg/kg), we found that the protective effect of melatonin against subarachnoid hemorrhage includes inhibition of lipid peroxidation and reduction of iron accumulation depended on melatonin receptor 1B (MT2). Furthermore, our study demonstrated that melatonin inhibited neuronal ferroptosis by activating the NRF2 signaling pathway, as evidenced by in vivo inhibition of NRF2. In summary, melatonin acts through MT2 and activates NRF2 and downstream genes such as HO-1/NQO1 to inhibit ferroptosis in subarachnoid hemorrhage-induced neuronal injury, thereby improving neurological function in rats. These results suggest that melatonin is a promising therapeutic target for subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Sheng-Ji Ma
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Chen Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Cong Yan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Nan Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Guang-You Jiang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Hong-Rui Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Hao-Chen Yan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Ji-Yi Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Huai-Lei Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Cheng Gao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
Suzen S, Saso L. Melatonin as mitochondria-targeted drug. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:249-276. [PMID: 37437980 DOI: 10.1016/bs.apcsb.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Oxidative damage is associated to numerous diseases as well as aging development. Mitochondria found in most eukaryotic organisms to create the energy of the cell, generate free radicals during its action and they are chief targets of the oxidants. Mitochondrial activities outspread outside the borders of the cell and effect human physiology by modulating interactions among cells and tissues. Therefore, it has been implicated in several human disorders and conditions. Melatonin (MLT) is an endogenously created indole derivative that modifies several tasks, involving mitochondria-associated activities. These possessions make MLT a powerful defender against a selection of free radical-linked disorders. MLT lessens mitochondrial anomalies causing from extreme oxidative stress and may improve mitochondrial physiology. It is a potent and inducible antioxidant for mitochondria. MLT is produced in mitochondria of conceivably of all cells and it also appears to be a mitochondria directed antioxidant which has related defensive properties as the synthesized antioxidant molecules. This chapter summarizes the suggestion that MLT is produced in mitochondria as well as disorders of mitochondrial MLT production that may associate to a number of mitochondria-linked diseases. MLT as a mitochondria-targeted drug is also discussed.
Collapse
Affiliation(s)
- Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Maity J, Dey T, Banerjee A, Chattopadhyay A, Das AR, Bandyopadhyay D. Melatonin ameliorates myocardial infarction in obese diabetic individuals: The possible involvement of macrophage apoptotic factors. J Pineal Res 2023; 74:e12847. [PMID: 36456538 DOI: 10.1111/jpi.12847] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
In recent days, the hike in obesity-mediated epidemics across the globe and the prevalence of obesity-induced cardiovascular disease has become one of the chief grounds for morbidity and mortality. This epidemic-driven detrimental events in the cardiac tissues start with the altered distribution and metabolism pattern of high-density lipoprotein and low-density lipoprotein (LDL) leading to cholesterol (oxidized LDL) deposition on the arterial wall and atherosclerotic plaque generation, followed by vascular spasms and infarction. Subsequently, obesity-triggered metabolic malfunctions induce free radical generation which may further trigger pro-inflammatory signaling and nuclear factor kappa-light-chain-enhancer of activated B cells transcriptional factor, thus inducing interferon-gamma, tumor necrosis factor-alpha, and inducible nitric oxide synthase. This terrifying cardiomyopathy can be further aggravated in type 2 diabetes mellitus, thereby making obese diabetic patients prone toward the development of myocardial infarction (MI) or stroke in comparison to their nondiabetic counterparts. The accelerated oxidative stress and pro-inflammatory response induced cardiomyocyte hypertrophy, followed by apoptosis in obese diabetic individuals, causing progression of athero-thrombotic vascular disease. Being an efficient antioxidative and anti-inflammatory indolamine, melatonin effectively inhibits lipid peroxidation, pro-inflammatory reactions, thereby resolving free radical-induced myocardial damages along with maintaining antioxidant reservoir to preserve cardiovascular integrity. Prolonged melatonin treatment maintains balanced body weight and serum total cholesterol concentration by inhibiting cholesterol synthesis and promoting cholesterol catabolism. Additionally, melatonin promotes macrophage polarization toward the anti-inflammatory state, providing a proper shield during the recovery period. Therefore, the protective role of melatonin in maintaining the lipid metabolism homeostasis and blocking the atherosclerotic plaque rupture could be targeted as the possible therapeutic strategy for the management of obesity-induced acute MI. This review aimed at orchestrating the efficacy of melatonin in ameliorating irrevocable oxidative cardiovascular damage induced by the obesity-diabetes correlation.
Collapse
Affiliation(s)
- Juin Maity
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | - Tiyasa Dey
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | - Adrita Banerjee
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | | | - Asish R Das
- Department of Chemistry, University of Calcutta, Kolkata, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| |
Collapse
|
6
|
Ye D, Xu Y, Shi Y, Fan M, Lu P, Bai X, Feng Y, Hu C, Cui K, Tang X, Liao J, Huang W, Xu F, Liang X, Huang J. Anti-PANoptosis is involved in neuroprotective effects of melatonin in acute ocular hypertension model. J Pineal Res 2022; 73:e12828. [PMID: 36031799 DOI: 10.1111/jpi.12828] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
Acute ocular hypertension (AOH) is the most important characteristic of acute glaucoma, which can lead to retinal ganglion cell (RGC) death and permanent vision loss. So far, approved effective therapy is still lacking in acute glaucoma. PANoptosis (pyroptosis, apoptosis, and necroptosis), which consists of three key modes of programmed cell death-apoptosis, necroptosis, and pyroptosis-may contribute to AOH-induced RGC death. Previous studies have demonstrated that melatonin (N-acetyl-5-methoxytryptamine) exerts a neuroprotective effect in many retinal degenerative diseases. However, whether melatonin is anti-PANoptotic and neuroprotective in the progression of acute glaucoma remains unclear. Thus, this study aimed to explore the role of melatonin in AOH retinas and its underlying mechanisms. The results showed that melatonin treatment attenuated the loss of ganglion cell complex thickness, retinal nerve fiber layer thickness, and RGC after AOH injury, and improved the amplitudes of a-wave, b-wave, and oscillatory potentials in the electroretinogram. Additionally, the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells was decreased, and the upregulation of cleaved caspase-8, cleaved caspase-3, Bax, and Bad and downregulation of Bcl-2 and p-Bad were inhibited after melatonin administration. Meanwhile, both the expression and activation of MLKL, RIP1, and RIP3, along with the number of PI-positive cells, were reduced in melatonin-treated mice, and p-RIP3 was in both RGC and microglia/macrophage after AOH injury. Furthermore, melatonin reduced the expression of NLRP3, ASC, cleaved caspase-1, gasdermin D (GSDMD), and cleaved GSDMD, and decreased the number of Iba1/interleukin-1β-positive cells. In conclusion, melatonin ameliorated retinal structure, prevented retinal dysfunction after AOH, and exerted a neuroprotective effect via inhibition of PANoptosis in AOH retinas.
Collapse
Affiliation(s)
- Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Peng Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanlin Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chenyang Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Liao
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Wei Huang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Fan Xu
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
7
|
Shin YY, Seo Y, Oh SJ, Ahn JS, Song MH, Kang MJ, Oh JM, Lee D, Kim YH, Sung ES, Kim HS. Melatonin and verteporfin synergistically suppress the growth and stemness of head and neck squamous cell carcinoma through the regulation of mitochondrial dynamics. J Pineal Res 2022; 72:e12779. [PMID: 34826168 DOI: 10.1111/jpi.12779] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/01/2022]
Abstract
The prevalence of head and neck squamous cell carcinoma (HNSCC) has continued to rise for decades. However, drug resistance to chemotherapeutics and relapse, mediated by cancer stem cells (CSCs), remains a significant impediment in clinical oncology to achieve successful treatment. Therefore, we focused on analyzing CSCs in HNSCC and demonstrated the effect of melatonin (Mel) and verteporfin (VP) on SCC-25 cells. HNSCC CSCs were enriched in the reactive oxygen species-low state and in sphere-forming cultures. Combination treatment with Mel and VP decreased HNSCC viability and increased apoptosis without causing significant damage to normal cells. Sphere-forming ability and stem cell population were reduced by co-treatment with Mel and VP, while mitochondrial ROS level was increased by the treatment. Furthermore, the expression of mitophagy markers, parkin and PINK1, was significantly decreased in the co-treated cells. Mel and VP induced mitochondrial depolarization and inhibited mitochondrial function. Parkin/TOM20 was localized near the nucleus and formed clusters of mitochondria in the cells after treatment. Moreover, Mel and VP downregulated the expression of markers involved in epithelial-mesenchymal transition and metastasis. The migration capacity of cells was significantly decreased by co-treatment with Mel and VP, accompanied by the down-regulation of MMP-2 and MMP-9 expression. Taken together, these results indicate that co-treatment with Mel and VP induces mitochondrial dysfunction, resulting in the apoptosis of CSCs. Mel and VP could thus be further investigated as potential therapies for HNSCC through their action on CSCs.
Collapse
Affiliation(s)
- Ye Young Shin
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, Korea
| | - Yoojin Seo
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Su-Jeong Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, Korea
| | - Ji-Su Ahn
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, Korea
| | - Min-Hye Song
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Min-Jung Kang
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Jung-Min Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Yun Hak Kim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea
- Department of Biomedical Informatics, Pusan National University School of Medicine, Yangsan, Korea
| | - Eui-Suk Sung
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, Korea
| |
Collapse
|
8
|
Alderdice R, Pernice M, Cárdenas A, Hughes DJ, Harrison PL, Boulotte N, Chartrand K, Kühl M, Suggett DJ, Voolstra CR. Hypoxia as a physiological cue and pathological stress for coral larvae. Mol Ecol 2021; 31:571-587. [PMID: 34716959 DOI: 10.1111/mec.16259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
Ocean deoxygenation events are intensifying worldwide and can rapidly drive adult corals into a state of metabolic crisis and bleaching-induced mortality, but whether coral larvae are subject to similar stress remains untested. We experimentally exposed apo-symbiotic coral larvae of Acropora selago to deoxygenation stress with subsequent reoxygenation aligned to their night-day light cycle, and followed their gene expression using RNA-Seq. After 12 h of deoxygenation stress (~2 mg O2 /L), coral planulae demonstrated a low expression of HIF-targeted hypoxia response genes concomitant with a significantly high expression of PHD2 (a promoter of HIFα proteasomal degradation), similar to corresponding adult corals. Despite exhibiting a consistent swimming phenotype compared to control samples, the differential gene expression observed in planulae exposed to deoxygenation-reoxygenation suggests a disruption of pathways involved in developmental regulation, mitochondrial activity, lipid metabolism, and O2 -sensitive epigenetic regulators. Importantly, we found that treated larvae exhibited a disruption in the expression of conserved HIF-targeted developmental regulators, for example, Homeobox (HOX) genes, corroborating how changes in external oxygen levels can affect animal development. We discuss how the observed deoxygenation responses may be indicative of a possible acclimation response or alternatively may imply negative latent impacts for coral larval fitness.
Collapse
Affiliation(s)
- Rachel Alderdice
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mathieu Pernice
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - David J Hughes
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Peter L Harrison
- Marine Ecology Research Centre, Southern Cross University, Lismore, NSW, Australia
| | - Nadine Boulotte
- Marine Ecology Research Centre, Southern Cross University, Lismore, NSW, Australia
| | - Katie Chartrand
- Centre of Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, Qld, Australia
| | - Michael Kühl
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia.,Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - David J Suggett
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | | |
Collapse
|
9
|
Yuan XQ, Zhang XM. Melatonin reduces inflammation in intestinal cells, organoids and intestinal explants. Inflammopharmacology 2021; 29:1555-1564. [PMID: 34431007 DOI: 10.1007/s10787-021-00869-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/14/2021] [Indexed: 01/08/2023]
Abstract
Inflammatory bowel diseases (IBDs) are chronic and recurrent diseases that often occur in young people and place a heavy burden on public health in both developed and developing countries. Melatonin has been confirmed to be useful in various diseases, including Alzheimer's disease, liver injuries and diseases, and cancers, while its role in IBDs remains unclear. To uncover the function of melatonin in IBDs, three intestinal models, including Caco-2 cells, 3D intestinal organoids and intestinal explants, were used. It was found that different concentrations of melatonin could significantly inhibit the expression levels of NFκB and its downstream cytokines, including IL6 and IL8 in Caco-2 cells (*P < 0.05, **P < 0.01), 3D intestinal organoids (*P < 0.05, **P < 0.01) and intestinal explants (*P < 0.05, **P < 0.01). Melatonin abolished the activation of LPS on the expression levels of NFκB, IL6, and IL8 in three intestinal models (*P < 0.05, **P < 0.01, ***P < 0.001). Importantly, the roles of melatonin in the regulation of inflammation was dependent on its receptor (i.e., MTNR1), since it was found that silencing of the melatonin receptor (MTNR1A) abolished the reduction in inflammation induced by melatonin in Caco-2 cells (***P < 0.001) and 3D intestinal organoids (***P < 0.01, ****P < 0.0001). Herein, the findings in this study might provide useful information for understanding the pathogenesis of IBDs and developing novel drugs to treat the diseases.
Collapse
Affiliation(s)
- Xiao-Qiang Yuan
- Department of Trauma, Tangshan Gongren Hospital, No. 27, Wenhua Road, Lubei District, Tangshan, 063000, Hebei, China
| | - Xu-Ming Zhang
- Anorectal Surgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China.
| |
Collapse
|
10
|
Melatonin Promotes In Vitro Maturation of Vitrified-Warmed Mouse Germinal Vesicle Oocytes, Potentially by Reducing Oxidative Stress through the Nrf2 Pathway. Animals (Basel) 2021; 11:ani11082324. [PMID: 34438783 PMCID: PMC8388487 DOI: 10.3390/ani11082324] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cryopreservation of oocytes can cause high oxidative stress, reduce the quality of vitrified-warmed oocytes, and seriously hinder the application of oocyte cryopreservation technology in production and medicine. In this work, we found for the first time that melatonin can exert antioxidant effects through receptors and regulate the Nrf2 antioxidant pathway to respond to oxidative stress of vitrified-warmed oocytes, thereby improving both oocyte quality and the potential for subsequent development. The results illustrated the molecular mechanism of melatonin’s antioxidant effect in vitrified-warmed oocytes and provided a theoretical basis for the application of melatonin in the cryopreservation of oocytes. These findings are of great significance for the further application of oocyte cryopreservation technology to production and assisted reproduction in the future. Abstract Previously it was reported that melatonin could mitigate oxidative stress caused by oocyte cryopreservation; however, the underlying molecular mechanisms which cause this remain unclear. The objective was to explore whether melatonin could reduce oxidative stress during in vitro maturation of vitrified-warmed mouse germinal vesicle (GV) oocytes through the Nrf2 signaling pathway or its receptors. During in vitro maturation of vitrified-warmed mouse GV oocytes, there were decreases (p < 0.05) in the development rates of metaphase I (MI) oocytes and metaphase II (MII) and spindle morphology grades; increases (p < 0.05) in the reactive oxygen species (ROS) levels; and decreases (p < 0.05) in expressions of Nrf2 signaling pathway-related genes (Nrf2, SOD1) and proteins (Nrf2, HO-1). However, adding 10−7 mol/L melatonin to both the warming solution and maturation solutions improved (p < 0.05) these indicators. When the Nrf2 protein was specifically inhibited by Brusatol, melatonin did not increase development rates, spindle morphology grades, genes, or protein expressions, nor did it reduce vitrification-induced intracellular oxidative stress in GV oocytes during in vitro maturation. In addition, when melatonin receptors were inhibited by luzindole, the ability of melatonin to scavenge intracellular ROS was decreased, and the expressions of genes (Nrf2, SOD1) and proteins (Nrf2, HO-1) were not restored to control levels. Therefore, we concluded that 10−7 mol/L melatonin acted on the Nrf2 signaling pathway through its receptors to regulate the expression of genes (Nrf2, SOD1) and proteins (Nrf2, HO-1), and mitigate intracellular oxidative stress, thereby enhancing in vitro development of vitrified-warmed mouse GV oocytes.
Collapse
|
11
|
Bilbao-Malavé V, González-Zamora J, de la Puente M, Recalde S, Fernandez-Robredo P, Hernandez M, Layana AG, Saenz de Viteri M. Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Age Related Macular Degeneration, Role in Pathophysiology, and Possible New Therapeutic Strategies. Antioxidants (Basel) 2021; 10:1170. [PMID: 34439418 PMCID: PMC8388889 DOI: 10.3390/antiox10081170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Age related macular degeneration (AMD) is the main cause of legal blindness in developed countries. It is a multifactorial disease in which a combination of genetic and environmental factors contributes to increased risk of developing this vision-incapacitating condition. Oxidative stress plays a central role in the pathophysiology of AMD and recent publications have highlighted the importance of mitochondrial dysfunction and endoplasmic reticulum stress in this disease. Although treatment with vascular endothelium growth factor inhibitors have decreased the risk of blindness in patients with the exudative form of AMD, the search for new therapeutic options continues to prevent the loss of photoreceptors and retinal pigment epithelium cells, characteristic of late stage AMD. In this review, we explain how mitochondrial dysfunction and endoplasmic reticulum stress participate in AMD pathogenesis. We also discuss a role of several antioxidants (bile acids, resveratrol, melatonin, humanin, and coenzyme Q10) in amelioration of AMD pathology.
Collapse
Affiliation(s)
- Valentina Bilbao-Malavé
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
| | - Jorge González-Zamora
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
| | - Miriam de la Puente
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
| | - Sergio Recalde
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Patricia Fernandez-Robredo
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Hernandez
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alfredo Garcia Layana
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Saenz de Viteri
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
12
|
Melhuish Beaupre LM, Brown GM, Gonçalves VF, Kennedy JL. Melatonin's neuroprotective role in mitochondria and its potential as a biomarker in aging, cognition and psychiatric disorders. Transl Psychiatry 2021; 11:339. [PMID: 34078880 PMCID: PMC8172874 DOI: 10.1038/s41398-021-01464-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 04/16/2021] [Accepted: 05/14/2021] [Indexed: 02/05/2023] Open
Abstract
Melatonin is an ancient molecule that is evident in high concentrations in various tissues throughout the body. It can be separated into two pools; one of which is synthesized by the pineal and can be found in blood, and the second by various tissues and is present in these tissues. Pineal melatonin levels display a circadian rhythm while tissue melatonin does not. For decades now, melatonin has been implicated in promoting and maintaining sleep. More recently, evidence indicates that it also plays an important role in neuroprotection. The beginning of our review will summarize this literature. As an amphiphilic, pleiotropic indoleamine, melatonin has both direct actions and receptor-mediated effects. For example, melatonin has established effects as an antioxidant and free radical scavenger both in vitro and in animal models. This is also evident in melatonin's prominent role in mitochondria, which is reviewed in the next section. Melatonin is synthesized in, taken up by, and concentrated in mitochondria, the powerhouse of the cell. Mitochondria are also the major source of reactive oxygen species as a byproduct of mitochondrial oxidative metabolism. The final section of our review summarizes melatonin's potential role in aging and psychiatric disorders. Pineal and tissue melatonin levels both decline with age. Pineal melatonin declines in individuals suffering from psychiatric disorders. Melatonin's ability to act as a neuroprotectant opens new avenues of exploration for the molecule as it may be a potential treatment for cases with neurodegenerative disease.
Collapse
Affiliation(s)
- Lindsay M Melhuish Beaupre
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Gregory M Brown
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Vanessa F Gonçalves
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - James L Kennedy
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Qu L, Ji L, Wang C, Luo H, Li S, Peng W, Yin F, Lu D, Liu X, Kong L, Wang X. Synthesis and evaluation of multi-target-directed ligands with BACE-1 inhibitory and Nrf2 agonist activities as potential agents against Alzheimer's disease. Eur J Med Chem 2021; 219:113441. [PMID: 33862517 DOI: 10.1016/j.ejmech.2021.113441] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Cumulative evidence suggests that β-amyloid and oxidative stress are closely related with each other and play key roles in the process of Alzheimer's disease (AD). Multitarget regulation of both pathways might represent a promising therapeutic strategy. Here, a series of selenium-containing compounds based on ebselen and verubecestat were designed and synthesized. Biological evaluation showed that 13f exhibited good BACE-1 inhibitory activity (IC50 = 1.06 μΜ) and potent GPx-like activity (ν0 = 183.0 μM min-1). Aβ production experiment indicated that 13f could reduce the secretion of Aβ1-40 in HEK APPswe 293T cells. Moreover, 13f exerted a cytoprotective effect against the H2O2 or 6-OHDA caused cell damage via alleviation of intracellular ROS, mitochondrial dysfunction, Ca2+ overload and cell apoptosis. The mechanism studies indicated that 13f exhibited cytoprotective effect by activating the Keap1-Nrf2-ARE pathway and stimulating downstream anti-oxidant protein including HO-1, NQO1, TrxR1, GCLC, and GCLM. In addition, 13f significantly reduced the production of NO and IL-6 induced by LPS in BV2 cells, which confirmed its anti-inflammatory activity as a Nrf2 activator. The BBB permeation assay predicted that 13f was able to cross the BBB. In summary, 13f might be a promising multi-target-directed ligand for the treatment of AD.
Collapse
Affiliation(s)
- Lailiang Qu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Limei Ji
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Cheng Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Heng Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wan Peng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Dehua Lu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xingchen Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
14
|
A Topical Formulation of Melatoninergic Compounds Exerts Strong Hypotensive and Neuroprotective Effects in a Rat Model of Hypertensive Glaucoma. Int J Mol Sci 2020; 21:ijms21239267. [PMID: 33291737 PMCID: PMC7730513 DOI: 10.3390/ijms21239267] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023] Open
Abstract
Melatonin is of great importance for regulating several eye processes, including pressure homeostasis. Melatonin in combination with agomelatine has been recently reported to reduce intraocular pressure (IOP) with higher efficacy than each compound alone. Here, we used the methylcellulose (MCE) rat model of hypertensive glaucoma, an optic neuropathy characterized by the apoptotic death of retinal ganglion cells (RGCs), to evaluate the hypotensive and neuroprotective efficacy of an eye drop nanomicellar formulation containing melatonin/agomelatine. Eye tissue distribution of melatonin/agomelatine in healthy rats was evaluated by HPLC/MS/MS. In the MCE model, we assessed by tonometry the hypotensive efficacy of melatonin/agomelatine. Neuroprotection was revealed by electroretinography; by levels of inflammatory and apoptotic markers; and by RGC density. The effects of melatonin/agomelatine were compared with those of timolol (a beta blocker with prevalent hypotensive activity) or brimonidine (an alpha 2 adrenergic agonist with potential neuroprotective efficacy), two drugs commonly used to treat glaucoma. Both melatonin and agomelatine penetrate the posterior segment of the eye. In the MCE model, IOP elevation was drastically reduced by melatonin/agomelatine with higher efficacy than that of timolol or brimonidine. Concomitantly, gliosis-related inflammation and the Bax-associated apoptosis were partially prevented, thus leading to RGC survival and recovered retinal dysfunction. We suggest that topical melatoninergic compounds might be beneficial for ocular health.
Collapse
|
15
|
Shih YH, Chiu KC, Wang TH, Lan WC, Tsai BH, Wu LJ, Hsia SM, Shieh TM. Effects of melatonin to arecoline-induced reactive oxygen species production and DNA damage in oral squamous cell carcinoma. J Formos Med Assoc 2020; 120:668-678. [PMID: 32800657 DOI: 10.1016/j.jfma.2020.07.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/PURPOSE Arecoline, the major alkaloid of areca nut, is known to induce reactive oxygen species (ROS) and DNA damage during oral cancer progression. This study aim to evaluate whether melatonin, an antioxidant, supported or repressed the arecoline-induced carcinogenesis phenotypes in oral squamous cell carcinoma (OSCC). METHODS The cytotoxicity of arecoline or melatonin treatment alone and their co-treatment in the OSCC cell line OEC-M1 were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cell cycle, cell death, and total ROS production were analyzed using flow cytometer. The protein expression was determined using western blot analysis. The genotoxicity and mutation rate were determined using micronucleus assay and hypoxanthine phosphoribosyl transferase (HPRT) forward mutation assay, respectively, in CHO-K1 cells. The ataxia telangiectasia mutated (ATM) promoter activity and DNA repair ability were determined through reporter assay. RESULTS The result showed that both the arecoline and melatonin induced ROS production and antioxidant enzymes expression. Melatonin treatment enhanced arecoline-induced ROS production, cytotoxicity, G2/M phase arrest, and cell apoptosis in OSCC cells. On the other hand, melatonin treatment activated DNA repair activity to reverse arecoline-induced DNA damage and mutation. CONCLUSION These results indicated that melatonin is a potential chemopreventive agent for betel quid chewers to prevent OSCC initiation and progression.
Collapse
Affiliation(s)
- Yin-Hwa Shih
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan; School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Kuo-Chou Chiu
- Division of Oral Diagnosis and Family Dentistry, School of Dentistry, National Defense Medical Center, Taipei, Taiwan; School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Linko, Taiwan
| | - Wan-Chen Lan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Bi-He Tsai
- Department of Oral Hygiene, Jen-The Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Li-Jia Wu
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; School of Food and Safety, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan; School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan.
| |
Collapse
|
16
|
Children's Health in the Digital Age. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093240. [PMID: 32384728 PMCID: PMC7246471 DOI: 10.3390/ijerph17093240] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022]
Abstract
Environmental studies, metabolic research, and state of the art research in neurobiology point towards the reduced amount of natural day and sunlight exposure of the developing child, as a consequence of increasingly long hours spent indoors online, as the single unifying source of a whole set of health risks identified worldwide, as is made clear in this review of currently available literature. Over exposure to digital environments, from abuse to addiction, now concerns even the youngest (ages 0 to 2) and triggers, as argued on the basis of clear examples herein, a chain of interdependent negative and potentially long-term metabolic changes. This leads to a deregulation of the serotonin and dopamine neurotransmitter pathways in the developing brain, currently associated with online activity abuse and/or internet addiction, and akin to that found in severe substance abuse syndromes. A general functional working model is proposed under the light of evidence brought to the forefront in this review.
Collapse
|
17
|
Diéguez HH, González Fleitas MF, Aranda ML, Calanni JS, Keller Sarmiento MI, Chianelli MS, Alaimo A, Sande PH, Romeo HE, Rosenstein RE, Dorfman D. Melatonin protects the retina from experimental nonexudative age-related macular degeneration in mice. J Pineal Res 2020; 68:e12643. [PMID: 32133696 DOI: 10.1111/jpi.12643] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/09/2020] [Accepted: 02/28/2020] [Indexed: 12/28/2022]
Abstract
Nonexudative age-related macular degeneration (NE-AMD) represents the leading cause of blindness in the elderly. Currently, there are no available treatments for NE-AMD. We have developed a NE-AMD model induced by superior cervical ganglionectomy (SCGx) in C57BL/6J mice, which reproduces the disease hallmarks. Several lines of evidence strongly support the involvement of oxidative stress in NE-AMD-induced retinal pigment epithelium (RPE) and outer retina damage. Melatonin is a proven and safe antioxidant. Our aim was analysing the effect of melatonin in the RPE/outer retina damage within experimental NE-AMD. The treatment with melatonin starting 48 h after SCGx, which had no effect on the ubiquitous choriocapillaris widening, protected visual functions and avoided Bruch´s membrane thickening, RPE melanin content, melanosome number loss, retinoid isomerohydrolase (RPE65)-immunoreactivity decrease, and RPE and hotoreceptor ultrastructural damage induced within experimental NE-AMD exclusively located at the central temporal (but not nasal) region. Melatonin also prevented the increase in outer retina/RPE oxidative stress markers and a decrease in mitochondrial mass at 6 weeks post-SCGx. Moreover, when the treatment with melatonin started at 4 weeks post-SCGx, it restored visual functions and reversed the decrease in RPE melanin content and RPE65-immunoreactivity. These findings suggest that melatonin could become a promising safe therapeutic strategy for NE-AMD.
Collapse
Affiliation(s)
- Hernán H Diéguez
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María F González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Marcos L Aranda
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Juan S Calanni
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María I Keller Sarmiento
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Mónica S Chianelli
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Agustina Alaimo
- Interdisciplinary Laboratory of Cellular Dynamics and Nanotools, Department of Biological Chemistry, School of Exact and Natural Sciences/IQUIBICEN, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Pablo H Sande
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Horacio E Romeo
- School of Engineering and Agrarian Sciences, Pontifical Catholic University of Argentina, BIOMED/UCA/CONICET, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| |
Collapse
|
18
|
Fu Z, Jiao Y, Wang J, Zhang Y, Shen M, Reiter RJ, Xi Q, Chen Y. Cardioprotective Role of Melatonin in Acute Myocardial Infarction. Front Physiol 2020; 11:366. [PMID: 32411013 PMCID: PMC7201093 DOI: 10.3389/fphys.2020.00366] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a pleiotropic, indole secreted, and synthesized by the human pineal gland. Melatonin has biological effects including anti-apoptosis, protecting mitochondria, anti-oxidation, anti-inflammation, and stimulating target cells to secrete cytokines. Its protective effect on cardiomyocytes in acute myocardial infarction (AMI) has caused widespread interest in the actions of this molecule. The effects of melatonin against oxidative stress, promoting autophagic repair of cells, regulating immune and inflammatory responses, enhancing mitochondrial function, and relieving endoplasmic reticulum stress, play crucial roles in protecting cardiomyocytes from infarction. Mitochondrial apoptosis and dysfunction are common occurrence in cardiomyocyte injury after myocardial infarction. This review focuses on the targets of melatonin in protecting cardiomyocytes in AMI, the main molecular signaling pathways that melatonin influences in its endogenous protective role in myocardial infarction, and the developmental prospect of melatonin in myocardial infarction treatment.
Collapse
Affiliation(s)
- Zhenhong Fu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Jiao
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jihang Wang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mingzhi Shen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, United States
- San Antonio Cellular Therapeutics Institute, Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, United States
| | - Qing Xi
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
19
|
Mehrzadi S, Hemati K, Reiter RJ, Hosseinzadeh A. Mitochondrial dysfunction in age-related macular degeneration: melatonin as a potential treatment. Expert Opin Ther Targets 2020; 24:359-378. [PMID: 32116056 DOI: 10.1080/14728222.2020.1737015] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Age-related Macular Degeneration (AMD), a retinal neurodegenerative disease is the most common cause of blindness among the elderly in developed countries. The impairment of mitochondrial biogenesis has been reported in human retinal pigment epithelium (RPE) cells affected by AMD. Oxidative/nitrosative stress plays an important role in AMD development. The mitochondrial respiratory system is considered a major site of reactive oxygen species (ROS) generation. During aging, insufficient free radical scavenger systems, impairment of DNA repair mechanisms and reduction of mitochondrial degradation and turnover contribute to the massive accumulation of ROS disrupting mitochondrial function. Impaired mitochondrial function leads to the decline in the autophagic capacity and induction of inflammation and apoptosis in human RPE cells affected by AMD.Areas covered: This article evaluates the ameliorative effect of melatonin on AMD and examines AMD pathogenesis with an emphasis on mitochondrial dysfunction. It also considers the potential effects of melatonin on mitochondrial function.Expert opinion: The effect of melatonin on mitochondrial function results in the reduction of oxidative stress, inflammation and apoptosis in the retina; these findings demonstrate that melatonin has the potential to prevent and treat AMD.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Swafford AJM, Oakley TH. Light-induced stress as a primary evolutionary driver of eye origins. Integr Comp Biol 2020; 59:739-750. [PMID: 31539028 DOI: 10.1093/icb/icz064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eyes are quintessential complex traits and our understanding of their evolution guides models of trait evolution in general. A long-standing account of eye evolution argues natural selection favors morphological variations that allow increased functionality for sensing light. While certainly true in part, this focus on visual performance does not entirely explain why diffuse photosensitivity persists even after eyes evolve, or why eyes evolved many times, each time using similar building blocks. Here, we briefly review a vast literature indicating most genetic components of eyes historically responded to stress caused directly by light, including ultraviolet damage of DNA, oxidative stress, and production of aldehydes. We propose light-induced stress had a direct and prominent role in the evolution of eyes by bringing together genes to repair and prevent damage from light-stress, both before and during the evolution of eyes themselves. Stress-repair and stress-prevention genes were perhaps originally deployed as plastic responses to light and/or as beneficial mutations genetically driving expression where light was prominent. These stress-response genes sense, shield, and refract light but only as reactions to ongoing light stress. Once under regulatory-genetic control, they could be expressed before light stress appeared, evolve as a module, and be influenced by natural selection to increase functionality for sensing light, ultimately leading to complex eyes and behaviors. Recognizing the potentially prominent role of stress in eye evolution invites discussions of plasticity and assimilation and provides a hypothesis for why similar genes are repeatedly used in convergent eyes. Broadening the drivers of eye evolution encourages consideration of multi-faceted mechanisms of plasticity/assimilation and mutation/selection for complex novelties and innovations in general.
Collapse
Affiliation(s)
- Andrew J M Swafford
- Ecology, Evolution, and Marine Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Todd H Oakley
- Ecology, Evolution, and Marine Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
21
|
Batnasan E, Xie S, Zhang Q, Li Y. Observation of Parthanatos Involvement in Diminished Ovarian Reserve Patients and Melatonin's Protective Function Through Inhibiting ADP-Ribose (PAR) Expression and Preventing AIF Translocation into the Nucleus. Reprod Sci 2020; 27:75-86. [PMID: 32046374 DOI: 10.1007/s43032-019-00005-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/25/2019] [Indexed: 01/09/2023]
Abstract
Diminished ovarian reserve (DOR) is characterized by the depletion of the ovarian pool, which leads to reductions in oocyte quality and quantity. Studies have suggested that ovarian reserve or ovarian aging is tightly related to apoptosis. However, the cell death mechanism is not comprehensively understood. Parthanatos, a type of poly [ADP-ribose] polymerase 1(PARP1)-dependent and apoptosis-inducing factor (AIF)-mediated cell death, plays a crucial role in various disorders. In the present study, we aimed to investigate whether parthanatos is involved in the pathogenesis of DOR. We recruited 40 patients (20 DOR patients and 20 normal ovarian reserve (NOR) patients) and examined PAR expression and AIF translocation in their isolated cumulus GCs (granulosa cells) by fluorescence microscopy. Our results demonstrated that PAR expression and AIF nuclear translocation were significantly higher in cumulus GCs of DOR patients, suggesting that PARP1-dependent cell death may be associated with DOR pathophysiology. Moreover, we tested the protective function of melatonin on hydrogen peroxide (H2O2)-induced parthanatos in human ovarian cancer (IGROV1) cells. Our results demonstrated that H2O2 treatment of IGROV1 cells led to excessive protein PARylation and AIF translocation into the nuclei. Melatonin effectively inhibits PARylation, blocks translocation of AIF into the nucleus, and consequently decreases the risk of parthanatos in cumulus GCs.
Collapse
Affiliation(s)
- Enkhzaya Batnasan
- Center for Reproductive Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province, People's Republic of China
| | - Shi Xie
- Center for Reproductive Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province, People's Republic of China
| | - Qiong Zhang
- Center for Reproductive Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province, People's Republic of China
| | - Yanping Li
- Center for Reproductive Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China. .,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province, People's Republic of China.
| |
Collapse
|
22
|
Yang SF, Chen YS, Chien HW, Wang K, Lin CL, Chiou HL, Lee CY, Chen PN, Hsieh YH. Melatonin attenuates epidermal growth factor-induced cathepsin S expression in ARPE-19 cells: Implications for proliferative vitreoretinopathy. J Pineal Res 2020; 68:e12615. [PMID: 31605630 DOI: 10.1111/jpi.12615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
Abnormal proliferation and motility of retinal pigment epithelial cells leads to proliferative vitreoretinopathy (PVR). Melatonin is a known effective antitumour and anti-invasive agent, but whether it affects the formation and underlying mechanisms of PVR remains unclear. In this study, the results of the MTT assay, colony formation and propidium iodide (PI) staining with flow cytometry revealed that melatonin dose dependently inhibited epidermal growth factor (EGF)-induced proliferation of human ARPE-19 cells. Furthermore, melatonin reduced EGF-induced motility by suppressing cathepsin S (CTSS) expression. Pretreatment with ZFL (a CTSS inhibitor) or overexpression of CTSS (pCMV-CTSS) significantly inhibited EGF-induced cell motility when combined with melatonin. Epidermal growth factor induced the phosphorylation of AKT(S473)/mTOR (S2448) and transcription factor (c-Jun/Sp1) signaling pathways. Pretreatment of LY294002 (a PI3K inhibitor) or rapamycin (an mTOR inhibitor) markedly reduced EGF-induced motility and p-AKT/p-mTOR/c-Jun/Sp1 expression when combined with melatonin. Taken together, these data indicate that melatonin inhibited EGF-induced proliferation and motility of human ARPE-19 cells by activating the AKT/mTOR pathway, which is dependent on CTSS modulation of c-Jun/Sp1 signalling. Melatonin may be a promising therapeutic drug against PVR.
Collapse
Affiliation(s)
- Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yong-Syuan Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiang-Wen Chien
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Departments of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
| | - Kai Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Departments of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
| | - Chia-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Ling Chiou
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Yi Lee
- Department of Ophthalmology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Clinical laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
23
|
Yan J, Pang Y, Zhuang J, Lin H, Zhang Q, Han L, Ke P, Zhuang J, Huang X. Selenepezil, a Selenium-Containing Compound, Exerts Neuroprotective Effect via Modulation of the Keap1-Nrf2-ARE Pathway and Attenuates Aβ-Induced Cognitive Impairment in Vivo. ACS Chem Neurosci 2019; 10:2903-2914. [PMID: 31035749 DOI: 10.1021/acschemneuro.9b00106] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is a major risk factor for neurodegenerative disease. The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2 related factor 2 (Nrf2)-antioxidant response element (ARE) pathway is one of the most potent defensive systems against oxidative stress. Selenepezil, a selenium-based compound, was previously found to exhibit excellent acetylcholinesterase (AChE) inhibition, to mimic endogenous glutathione peroxidase (GPx) activity, and to exhibit scavenging activity for hydrogen peroxide in vitro. However, none of these activities have been evaluated in a cellular model, and detailed molecular mechanisms are not elucidated. Moreover, whether selenepezil ameliorates memory deficits in vivo remains unknown. This study validated the cytoprotective effect of selenepezil against 6-hydroxydopamine (6-OHDA)- or H2O2-induced SH-SY5Y cell damage via alleviation or neutralization of intracellular microtubule disorder, reactive oxygen species (ROS) accumulation, mitochondrial dysfunction, and cell apoptosis. Our study clearly demonstrated that selenepezil pretreatment exhibited remarkable cytoprotective effect in a Nrf2-dependent manner via activating the Keap1-Nrf2-ARE pathway and stimulating the transcription of Nrf2-ARE-regulated cytoprotective genes. Moreover, selenepezil·HCl exerts neuroprotective effect via attenuating Aβ-induced cognitive impairment in Alzheimer's disease (AD) rat and was more active than the reference drug donepezil. In summary, selenepezil deserves further consideration for AD therapy.
Collapse
Affiliation(s)
- Jun Yan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yanqing Pang
- Department of Integrated Chinese medicine immunization, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Jialing Zhuang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Haibiao Lin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Qiaoxuan Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Liqiao Han
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Peifeng Ke
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Junhua Zhuang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xianzhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|