1
|
Zhong W, Wu L, Li Y, Li X, Wang J, Pan J, Zhu S, Fang S, Yao J, Zhang Y, Chen W. GhSBI1, a CUP-SHAPED COTYLEDON 2 homologue, modulates branch internode elongation in cotton. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3175-3193. [PMID: 39058556 DOI: 10.1111/pbi.14439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024]
Abstract
Branch length is an important plant architecture trait in cotton (Gossypium) breeding. Development of cultivars with short branch has been proposed as a main object to enhance cotton yield potential, because they are suitable for high planting density. Here, we report the molecular cloning and characterization of a semi-dominant quantitative trait locus, Short Branch Internode 1(GhSBI1), which encodes a NAC transcription factor homologous to CUP-SHAPED COTYLEDON 2 (CUC2) and is regulated by microRNA ghr-miR164. We demonstrate that a point mutation found in sbi1 mutants perturbs ghr-miR164-directed regulation of GhSBI1, resulting in an increased expression level of GhSBI1. The sbi1 mutant was sensitive to exogenous gibberellic acid (GA) treatments. Overexpression of GhSBI1 inhibited branch internode elongation and led to the decreased levels of bioactive GAs. In addition, gene knockout analysis showed that GhSBI1 is required for the maintenance of the boundaries of multiple tissues in cotton. Transcriptome analysis revealed that overexpression of GhSBI1 affects the expression of plant hormone signalling-, axillary meristems initiation-, and abiotic stress response-related genes. GhSBI1 interacted with GAIs, the DELLA repressors of GA signalling. GhSBI1 represses expression of GA signalling- and cell elongation-related genes by directly targeting their promoters. Our work thus provides new insights into the molecular mechanisms for branch length and paves the way for the development of elite cultivars with suitable plant architecture in cotton.
Collapse
Affiliation(s)
- Weiping Zhong
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lanxin Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yan Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Xiaxuan Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Junyi Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingwen Pan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Shentao Fang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Wang W, Li Y, Le M, Tian L, Sun X, Liu R, Guo X, Wu Y, Li Y, Zhao J, Liu D, Zhang Z. QTL Mapping of Fiber- and Seed-Related Traits in Chromosome Segment Substitution Lines Derived from Gossypium hirsutum × Gossypium darwinii. Int J Mol Sci 2024; 25:9639. [PMID: 39273586 PMCID: PMC11394887 DOI: 10.3390/ijms25179639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
A narrow genetic basis limits further the improvement of modern Gossypium hirsutum cultivar. The abundant genetic diversity of wild species provides available resources to solve this dilemma. In the present study, a chromosome segment substitution line (CSSL) population including 553 individuals was established using G. darwinii accession 5-7 as the donor parent and G. hirsutum cultivar CCRI35 as the recipient parent. After constructing a high-density genetic map with the BC1 population, the genotype and phenotype of the CSSL population were investigated. A total of 235 QTLs, including 104 QTLs for fiber-related traits and 132 QTLs for seed-related traits, were identified from four environments. Among these QTLs, twenty-seven QTLs were identified in two or more environments, and twenty-five QTL clusters consisted of 114 QTLs. Moreover, we identified three candidate genes for three stable QTLs, including GH_A01G1096 (ARF5) and GH_A10G0141 (PDF2) for lint percentage, and GH_D01G0047 (KCS4) for seed index or oil content. These results pave way for understanding the molecular regulatory mechanism of fiber and seed development and would provide valuable information for marker-assisted genetic improvement in cotton.
Collapse
Affiliation(s)
- Wenwen Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing 400715, China
| | - Yan Li
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing 400715, China
| | - Mingmei Le
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing 400715, China
| | - Lixia Tian
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing 400715, China
| | - Xujing Sun
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing 400715, China
| | - Rui Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing 400715, China
| | - Xin Guo
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing 400715, China
| | - Yan Wu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing 400715, China
| | - Yibing Li
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing 400715, China
| | - Jiaoyun Zhao
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing 400715, China
| | - Dajun Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing 400715, China
| | - Zhengsheng Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Shahzad K, Zhang M, Mubeen I, Zhang X, Guo L, Qi T, Feng J, Tang H, Qiao X, Wu J, Xing C. Integrative analyses of long and short-read RNA sequencing reveal the spliced isoform regulatory network of seedling growth dynamics in upland cotton. Funct Integr Genomics 2024; 24:156. [PMID: 39230785 DOI: 10.1007/s10142-024-01420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
The polyploid genome of cotton has significantly increased the transcript complexity. Recent advances in full-length transcript sequencing are now widely used to characterize the complete landscape of transcriptional events. Such studies in cotton can help us to explore the genetic mechanisms of the cotton seedling growth. Through long-read single-molecule RNA sequencing, this study compared the transcriptomes of three yield contrasting genotypes of upland cotton. Our analysis identified different numbers of spliced isoforms from 31,166, 28,716, and 28,713 genes in SJ48, Z98, and DT8 cotton genotypes, respectively, most of which were novel compared to previous cotton reference transcriptomes, and showed significant differences in the number of exon structures and coding sequence length due to intron retention. Quantification of isoform expression revealed significant differences in expression in the root and leaf of each genotype. An array of key isoform target genes showed protein kinase or phosphorylation functions, and their protein interaction network contained most of the circadian oscillator proteins. Spliced isoforms from the GIGANTEA (GI) protien were differentially regulated in each genotype and might be expected to regulate translational activities, including the sequence and function of target proteins. In addition, these spliced isoforms generate diurnal expression profiles in cotton leaves, which may alter the transcriptional regulatory network of seedling growth. Silencing of the novel spliced GI isoform Gh_A02G0645_N17 significantly affected biomass traits, contributed to variable growth, and increased transcription of the early flowering pathway gene ELF in cotton. Our high-throughput hybrid sequencing results will be useful to dissect functional differences among spliced isoforms in the polyploid cotton genome.
Collapse
Affiliation(s)
- Kashif Shahzad
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Meng Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Iqra Mubeen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liping Guo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Juanjuan Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Huini Tang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xiuqin Qiao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Jianyong Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| |
Collapse
|
4
|
Gowda SA, Fang H, Tyagi P, Bourland F, Dever J, Campbell BT, Zhang J, Abdelraheem A, Sood S, Jones DC, Kuraparthy V. Genome-wide association study of fiber quality traits in US upland cotton (Gossypium hirsutum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:214. [PMID: 39223330 DOI: 10.1007/s00122-024-04717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
KEY MESSAGE A GWAS in an elite diversity panel, evaluated across 10 environments, identified genomic regions regulating six fiber quality traits, facilitating genomics-assisted breeding and gene discovery in upland cotton. In this study, an elite diversity panel of 348 upland cotton accessions was evaluated in 10 environments across the US Cotton Belt and genotyped with the cottonSNP63K array, for a genome-wide association study of six fiber quality traits. All fiber quality traits, upper half mean length (UHML: mm), fiber strength (FS: g tex-1), fiber uniformity (FU: %), fiber elongation (FE: %), micronaire (MIC) and short fiber content (SFC: %), showed high broad-sense heritability (> 60%). All traits except FE showed high genomic heritability. UHML, FS and FU were all positively correlated with each other and negatively correlated with FE, MIC and SFC. GWAS of these six traits identified 380 significant marker-trait associations (MTAs) including 143 MTAs on 30 genomic regions. These 30 genomic regions included MTAs identified in at least three environments, and 23 of them were novel associations. Phenotypic variation explained for the MTAs in these 30 genomic regions ranged from 6.68 to 11.42%. Most of the fiber quality-associated genomic regions were mapped in the D-subgenome. Further, this study confirmed the pleiotropic region on chromosome D11 (UHML, FS and FU) and identified novel co-localized regions on D04 (FU, SFC), D05 (UHML, FU, and D06 UHML, FU). Marker haplotype analysis identified superior combinations of fiber quality-associated genomic regions with high trait values (UHML = 32.34 mm; FS = 32.73 g tex-1; FE = 6.75%). Genomic analyses of traits, haplotype combinations and candidate gene information described in the current study could help leverage genetic diversity for targeted genetic improvement and gene discovery for fiber quality traits in cotton.
Collapse
Affiliation(s)
- S Anjan Gowda
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Hui Fang
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Priyanka Tyagi
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fred Bourland
- NE Research and Extension Center, University of Arkansas, Keiser, AR, 72715, USA
| | - Jane Dever
- Department of Crop and Soil Sciences, Texas A&M AgriLife Research and Extension Center, Lubbock, TX, 79403, USA
| | - Benjamin Todd Campbell
- USDA-ARS Coastal Plains Soil, Water, and Plant Research Center, 2611 W. Lucas St., Florence, SC, 29501, USA
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Abdelraheem Abdelraheem
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Shilpa Sood
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Don C Jones
- Cotton Incorporated, 6399 Weston Parkway, Cary, NC, 27513, USA
| | - Vasu Kuraparthy
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
5
|
Huang G, Bao Z, Feng L, Zhai J, Wendel JF, Cao X, Zhu Y. A telomere-to-telomere cotton genome assembly reveals centromere evolution and a Mutator transposon-linked module regulating embryo development. Nat Genet 2024; 56:1953-1963. [PMID: 39147922 DOI: 10.1038/s41588-024-01877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Assembly of complete genomes can reveal functional genetic elements missing from draft sequences. Here we present the near-complete telomere-to-telomere and contiguous genome of the cotton species Gossypium raimondii. Our assembly identified gaps and misoriented or misassembled regions in previous assemblies and produced 13 centromeres, with 25 chromosomal ends having telomeres. In contrast to satellite-rich Arabidopsis and rice centromeres, cotton centromeres lack phased CENH3 nucleosome positioning patterns and probably evolved by invasion from long terminal repeat retrotransposons. In-depth expression profiling of transposable elements revealed a previously unannotated DNA transposon (MuTC01) that interacts with miR2947 to produce trans-acting small interfering RNAs (siRNAs), one of which targets the newly evolved LEC2 (LEC2b) to produce phased siRNAs. Systematic genome editing experiments revealed that this tripartite module, miR2947-MuTC01-LEC2b, controls the morphogenesis of complex folded embryos characteristic of Gossypium and its close relatives in the cotton tribe. Our study reveals a trans-acting siRNA-based tripartite regulatory pathway for embryo development in higher plants.
Collapse
Affiliation(s)
- Gai Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Institute for Advanced Studies, Wuhan University, Wuhan, China.
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Zhigui Bao
- Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Li Feng
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuxian Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Institute for Advanced Studies, Wuhan University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Fu G, Luo H, Jia J, Hou M, Hu G. Translational Regulation of Duplicated Gene Expression Evolution in Allopolyploid Cotton. Genes (Basel) 2024; 15:1130. [PMID: 39336721 PMCID: PMC11431062 DOI: 10.3390/genes15091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Polyploidy, a prevalent event in plant evolution, drives phenotypic diversification and speciation. While transcriptional changes and regulation in polyploids have been extensively studied, the translational level impact remains largely unexplored. To address this gap, we conducted a comparative transcriptomic and translatomic analysis of cotton leaves from allopolyploid species G. hirsutum (AD1) and G. barbadense (AD2) relative to their model A-genome and D-genome diploid progenitors. Our data revealed that while allopolyploidization significantly affects the transcriptional landscape, its impact on translation was relatively modest, evidenced by a narrower expression range and fewer expression changes in ribosome-protected fragments than in mRNA levels. Allopolyploid-specific changes commonly identified in both AD1 and AD2 were observed in 7393 genes at either transcriptional or translational levels. Interestingly, the majority of translational changes exhibited concordant down-regulation in both ribosome-protected fragments and mRNA, particularly associated with terpenoid synthesis and metabolism (352 genes). Regarding translational efficiency (TE), at least one-fifth of cotton genes exhibit translational level regulation, with a general trend of more down-regulation (13.9-15.1%) than up-regulation (7.3-11.2%) of TE. The magnitude of translational regulation was slightly reduced in allopolyploids compared with diploids, and allopolyploidy tends to have a more profound impact on genes and functional associations with ultra-low TE. Moreover, we demonstrated a reduced extent of homeolog expression biases during translation compared with transcription. Our study provides insights into the regulatory consequences of allopolyploidy post-transcription, contributing to a comprehensive understanding of regulatory mechanisms of duplicated gene expression evolution.
Collapse
Affiliation(s)
- Guiling Fu
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Haotian Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Juqing Jia
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Mingming Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guanjing Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
7
|
Conover JL, Grover CE, Sharbrough J, Sloan DB, Peterson DG, Wendel JF. Little evidence for homoeologous gene conversion and homoeologous exchange events in Gossypium allopolyploids. AMERICAN JOURNAL OF BOTANY 2024; 111:e16386. [PMID: 39107998 DOI: 10.1002/ajb2.16386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
PREMISE A complicating factor in analyzing allopolyploid genomes is the possibility of physical interactions between homoeologous chromosomes during meiosis, resulting in either crossover (homoeologous exchanges) or non-crossover products (homoeologous gene conversion). Homoeologous gene conversion was first described in cotton by comparing SNP patterns in sequences from two diploid progenitors with those from the allopolyploid subgenomes. These analyses, however, did not explicitly consider other evolutionary scenarios that may give rise to similar SNP patterns as homoeologous gene conversion, creating uncertainties about the reality of the inferred gene conversion events. METHODS Here, we use an expanded phylogenetic sampling of high-quality genome assemblies from seven allopolyploid Gossypium species (all derived from the same polyploidy event), four diploid species (two closely related to each subgenome), and a diploid outgroup to derive a robust method for identifying potential genomic regions of gene conversion and homoeologous exchange. RESULTS We found little evidence for homoeologous gene conversion in allopolyploid cottons, and that only two of the 40 best-supported events were shared by more than one species. We did, however, reveal a single, shared homoeologous exchange event at one end of chromosome 1, which occurred shortly after allopolyploidization but prior to divergence of the descendant species. CONCLUSIONS Overall, our analyses demonstrated that homoeologous gene conversion and homoeologous exchanges are uncommon in Gossypium, affecting between zero and 24 genes per subgenome (0.0-0.065%) across the seven species. More generally, we highlighted the potential problems of using simple four-taxon tests to investigate patterns of homoeologous gene conversion in established allopolyploids.
Collapse
Affiliation(s)
- Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50010, IA, USA
- Ecology and Evolutionary Biology Department, University of Arizona, Tucson, 85718, AZ, USA
- Molecular and Cellular Biology Department, University of Arizona, Tucson, 85718, AZ, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50010, IA, USA
| | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, 87801, NM, USA
| | - Daniel B Sloan
- Biology Department, Colorado State University, Fort Collins, 80521, CO, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, 39762, MS, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50010, IA, USA
| |
Collapse
|
8
|
Aufiero G, Fruggiero C, D’Angelo D, D’Agostino N. Homoeologs in Allopolyploids: Navigating Redundancy as Both an Evolutionary Opportunity and a Technical Challenge-A Transcriptomics Perspective. Genes (Basel) 2024; 15:977. [PMID: 39202338 PMCID: PMC11353593 DOI: 10.3390/genes15080977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Allopolyploidy in plants involves the merging of two or more distinct parental genomes into a single nucleus, a significant evolutionary process in the plant kingdom. Transcriptomic analysis provides invaluable insights into allopolyploid plants by elucidating the fate of duplicated genes, revealing evolutionary novelties and uncovering their environmental adaptations. By examining gene expression profiles, scientists can discern how duplicated genes have evolved to acquire new functions or regulatory roles. This process often leads to the development of novel traits and adaptive strategies that allopolyploid plants leverage to thrive in diverse ecological niches. Understanding these molecular mechanisms not only enhances our appreciation of the genetic complexity underlying allopolyploidy but also underscores their importance in agriculture and ecosystem resilience. However, transcriptome profiling is challenging due to genomic redundancy, which is further complicated by the presence of multiple chromosomes sets and the variations among homoeologs and allelic genes. Prior to transcriptome analysis, sub-genome phasing and homoeology inference are essential for obtaining a comprehensive view of gene expression. This review aims to clarify the terminology in this field, identify the most challenging aspects of transcriptome analysis, explain their inherent difficulties, and suggest reliable analytic strategies. Furthermore, bulk RNA-seq is highlighted as a primary method for studying allopolyploid gene expression, focusing on critical steps like read mapping and normalization in differential gene expression analysis. This approach effectively captures gene expression from both parental genomes, facilitating a comprehensive analysis of their combined profiles. Its sensitivity in detecting low-abundance transcripts allows for subtle differences between parental genomes to be identified, crucial for understanding regulatory dynamics and gene expression balance in allopolyploids.
Collapse
Affiliation(s)
| | | | | | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (G.A.); (C.F.); (D.D.)
| |
Collapse
|
9
|
Wang F, Han T, Jeffrey Chen Z. Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants. Commun Biol 2024; 7:579. [PMID: 38755402 PMCID: PMC11098820 DOI: 10.1038/s42003-024-06275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
As sessile organisms, plants must respond constantly to ever-changing environments to complete their life cycle; this includes the transition from vegetative growth to reproductive development. This process is mediated by photoperiodic response to sensing the length of night or day through circadian regulation of light-signaling molecules, such as phytochromes, to measure the length of night to initiate flowering. Flowering time is the most important trait to optimize crop performance in adaptive regions. In this review, we focus on interplays between circadian and light signaling pathways that allow plants to optimize timing for flowering and seed production in Arabidopsis, rice, soybean, and cotton. Many crops are polyploids and domesticated under natural selection and breeding. In response to adaptation and polyploidization, circadian and flowering pathway genes are epigenetically reprogrammed. Understanding the genetic and epigenetic bases for photoperiodic flowering will help improve crop yield and resilience in response to climate change.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tongwen Han
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
10
|
Hu G, Grover CE, Vera DL, Lung PY, Girimurugan SB, Miller ER, Conover JL, Ou S, Xiong X, Zhu D, Li D, Gallagher JP, Udall JA, Sui X, Zhang J, Bass HW, Wendel JF. Evolutionary Dynamics of Chromatin Structure and Duplicate Gene Expression in Diploid and Allopolyploid Cotton. Mol Biol Evol 2024; 41:msae095. [PMID: 38758089 PMCID: PMC11140268 DOI: 10.1093/molbev/msae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Polyploidy is a prominent mechanism of plant speciation and adaptation, yet the mechanistic understandings of duplicated gene regulation remain elusive. Chromatin structure dynamics are suggested to govern gene regulatory control. Here, we characterized genome-wide nucleosome organization and chromatin accessibility in allotetraploid cotton, Gossypium hirsutum (AADD, 2n = 4X = 52), relative to its two diploid parents (AA or DD genome) and their synthetic diploid hybrid (AD), using DNS-seq. The larger A-genome exhibited wider average nucleosome spacing in diploids, and this intergenomic difference diminished in the allopolyploid but not hybrid. Allopolyploidization also exhibited increased accessibility at promoters genome-wide and synchronized cis-regulatory motifs between subgenomes. A prominent cis-acting control was inferred for chromatin dynamics and demonstrated by transposable element removal from promoters. Linking accessibility to gene expression patterns, we found distinct regulatory effects for hybridization and later allopolyploid stages, including nuanced establishment of homoeolog expression bias and expression level dominance. Histone gene expression and nucleosome organization are coordinated through chromatin accessibility. Our study demonstrates the capability to track high-resolution chromatin structure dynamics and reveals their role in the evolution of cis-regulatory landscapes and duplicate gene expression in polyploids, illuminating regulatory ties to subgenomic asymmetry and dominance.
Collapse
Affiliation(s)
- Guanjing Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated, Chinese Academy of Agricultural Sciences, Institute of Cotton Research, Anyang 455000, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Daniel L Vera
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | | | - Emma R Miller
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Justin L Conover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Shujun Ou
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - De Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Dongming Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Joseph P Gallagher
- Forage Seed and Cereal Research Unit, USDA/Agricultural Research Service, Corvallis, OR 97331, USA
| | - Joshua A Udall
- Crop Germplasm Research Unit, USDA/Agricultural Research Service, College Station, TX 77845, USA
| | - Xin Sui
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Hank W Bass
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
11
|
Zhu H, Xu J, Yu K, Wu J, Xu H, Wang S, Wen T. Genome-wide identification of the key Kinesin genes during fiber and boll development in upland cotton (Gossypium hirsutum L). Mol Genet Genomics 2024; 299:2. [PMID: 38200363 DOI: 10.1007/s00438-023-02087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/11/2023] [Indexed: 01/12/2024]
Abstract
Kinesin is a kind of motor protein, which interacts with microtubule filaments and regulates cellulose synthesis. Cotton fiber is a natural model for studying the cellular development and cellulose synthesis. Therefore, a systematic research of Kinesin gene family in cotton (Gossypium spp.) will be beneficial for both understanding the function of Kinesin protein and assisting the fiber improvement. Here, we aimed to identify the key Kinesin genes present in cotton by combining genome-wide expression profile data, association mapping, and public quantitative trait loci (QTLs) in upland cotton (Gossypium hirsutum L.). Results showed that 159 Kinesin genes, including 15 genes of the Kinesin-13 gene subfamily, were identified in upland cotton; of which 157 Kinesin genes can be traced back to the diploid ancestors, G. raimondii and G. arboreum. Using a combined analysis of public QTLs and genome-wide expression profile information, there were 29 QTLs co-localized together with 28 Kinesin genes in upland cotton, including 10 Kinesin-13 subfamily genes. Genome-wide expression profile data indicated that, among the 28 co-localized genes, seven Kinesin genes were predominantly expressed in fibers or ovules. By association mapping analysis, 30 Kinesin genes were significantly associated with three fiber traits, among which a Kinesin-13 gene, Ghir_A11G028430, was found to be associated with both cotton boll length and lint weight, and one Kinesin-7 gene, Ghir_D04G017880 (Gh_Kinesin7), was significantly associated with fiber strength. In addition, two missense mutations were identified in the motor domain of the Gh_Kinesin7 protein. Overall, the Kinesin gene family seemingly plays an important role in cotton fiber and boll development. The exploited Kinesin genes will be beneficial for the genetic improvement of fiber quality and yield.
Collapse
Affiliation(s)
- Hong Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jianzhong Xu
- Agriculture and Rural Affairs Bureau of Gao'an, Yichun, 330800, Jiangxi, China
| | - Kanbing Yu
- Xishuangbanna Institute of Agricultural Science, Xishuangbanna Autonomous Prefecture, 666100, Yunnan, China
| | - Jianfei Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Huifang Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Shubin Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Tianwang Wen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
12
|
Wang M, Wang L, Yu X, Zhao J, Tian Z, Liu X, Wang G, Zhang L, Guo X. Enhancing cold and drought tolerance in cotton: a protective role of SikCOR413PM1. BMC PLANT BIOLOGY 2023; 23:577. [PMID: 37978345 PMCID: PMC10656917 DOI: 10.1186/s12870-023-04572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
The present study explored the potential role of cold-regulated plasma membrane protein COR413PM1 isolated from Saussurea involucrata (Matsum. & Koidz)(SikCOR413PM1), in enhancing cotton (Gossypium hirsutum) tolerance to cold and drought stresses through transgenic methods. Under cold and drought stresses, the survival rate and the fresh and dry weights of the SikCOR413PM1-overexpressing lines were higher than those of the wild-type plants, and the degree of leaf withering was much lower. Besides, overexpressing SikCOR413PM1 overexpression increased the relative water content, reduced malondialdehyde content and relative conductivity, and elevated proline and soluble sugar levels in cotton seedlings. These findings suggest that SikCOR413PM1 minimizes cell membrane damage and boosts plant stability under challenging conditions. Additionally, overexpression of this gene upregulated antioxidant enzyme-related genes in cotton seedlings, resulting in enhanced antioxidant enzyme activity, lowered peroxide content, and reduced oxidative stress. SikCOR413PM1 overexpression also modulated the expression of stress-related genes (GhDREB1A, GhDREB1B, GhDREB1C, GhERF2, GhNAC3, and GhRD22). In field trials, the transgenic cotton plants overexpressing SikCOR413PM1 displayed high yields and increased environmental tolerance. Our study thus demonstrates the role of SikCOR413PM1 in regulating stress-related genes, osmotic adjustment factors, and peroxide content while preserving cell membrane stability and improving cold and drought tolerance in cotton.
Collapse
Affiliation(s)
- Mei Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Lepeng Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Xiangxue Yu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Jingyi Zhao
- College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Zhijia Tian
- College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Xiaohong Liu
- Xinjiang Agricultural Development Group Crop Hospital Co. LTD, Tumushuke, Xinjiang, 844000, People's Republic of China
| | - Guoping Wang
- Agricultural Science Institute of the seventh division of Xinjiang Corps, Kuitun, Xinjiang, 833200, People's Republic of China
| | - Li Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Xinyong Guo
- College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China.
| |
Collapse
|
13
|
Gowda SA, Bourland FM, Kaur B, Jones DC, Kuraparthy V. Genetic diversity and population structure analyses and genome-wide association studies of photoperiod sensitivity in cotton (Gossypium hirsutum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:230. [PMID: 37875695 DOI: 10.1007/s00122-023-04477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
KEY MESSAGE Genetic diversity and population structure analyses showed progressively narrowed diversity in US Upland cotton compared to land races. GWAS identified genomic regions and candidate genes for photoperiod sensitivity in cotton. Six hundred fifty-seven accessions that included elite cotton germplasm (DIV panel), lines of a public cotton breeding program (FB panel), and tropical landrace accessions (TLA panel) of Gossypium hirsutum L. were genotyped with cottonSNP63K array and phenotyped for photoperiod sensitivity under long day-length conditions. The genetic diversity analysis using 26,952 polymorphic SNPs indicated a progressively narrowed diversity from the landraces (0.230) to the DIV panel accessions (0.195) and FB panel (0.116). Structure analysis in the US germplasm identified seven subpopulations representing all four major regions of the US cotton belt. Three subpopulations were identified within the landrace accessions. The highest fixation index (FST) of 0.65 was found between landrace accessions of Guatemala and the Plains-type cultivars from Southwest cotton region while the lowest FST values were between the germplasms of Mid-South and Southeastern regions. Genome wide association studies (GWAS) of photoperiod response using 600 phenotyped accessions identified 14 marker trait associations spread across eight Upland cotton chromosomes. Six of these marker trait associations, on four chromosomes (A10, D04, D05, and D06), showed significant epistatic interactions. Targeted genomic analysis identified regions with 19 candidate genes including Transcription factor Vascular Plant One-Zinc Finger 1 (VOZ1) and Protein Photoperiod-Independent Early Flowering 1 (PIE1) genes. Genetic diversity and genome wide analyses of photoperiod sensitivity in diverse cotton germplasms will enable the use of genomic tools to systematically utilize the tropical germplasm and its beneficial alleles for broadening the genetic base in Upland cotton.
Collapse
Affiliation(s)
- S Anjan Gowda
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fred M Bourland
- NE Research and Extension Center, Crop, Soil, and Environmental Sciences, University of Arkansas, Keiser, AR, 72351, USA
| | - Baljinder Kaur
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Don C Jones
- Cotton Incorporated, 6399 Weston Parkway, Cary, NC, 27513, USA
| | - Vasu Kuraparthy
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
14
|
Wen X, Chen Z, Yang Z, Wang M, Jin S, Wang G, Zhang L, Wang L, Li J, Saeed S, He S, Wang Z, Wang K, Kong Z, Li F, Zhang X, Chen X, Zhu Y. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2214-2256. [PMID: 36899210 DOI: 10.1007/s11427-022-2278-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/12/2023]
Abstract
Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis, which makes it of high research and application value. To date, numerous research on cotton has navigated various aspects, from multi-genome assembly, genome editing, mechanism of fiber development, metabolite biosynthesis, and analysis to genetic breeding. Genomic and 3D genomic studies reveal the origin of cotton species and the spatiotemporal asymmetric chromatin structure in fibers. Mature multiple genome editing systems, such as CRISPR/Cas9, Cas12 (Cpf1) and cytidine base editing (CBE), have been widely used in the study of candidate genes affecting fiber development. Based on this, the cotton fiber cell development network has been preliminarily drawn. Among them, the MYB-bHLH-WDR (MBW) transcription factor complex and IAA and BR signaling pathway regulate the initiation; various plant hormones, including ethylene, mediated regulatory network and membrane protein overlap fine-regulate elongation. Multistage transcription factors targeting CesA 4, 7, and 8 specifically dominate the whole process of secondary cell wall thickening. And fluorescently labeled cytoskeletal proteins can observe real-time dynamic changes in fiber development. Furthermore, research on the synthesis of cotton secondary metabolite gossypol, resistance to diseases and insect pests, plant architecture regulation, and seed oil utilization are all conducive to finding more high-quality breeding-related genes and subsequently facilitating the cultivation of better cotton varieties. This review summarizes the paramount research achievements in cotton molecular biology over the last few decades from the above aspects, thereby enabling us to conduct a status review on the current studies of cotton and provide strong theoretical support for the future direction.
Collapse
Affiliation(s)
- Xingpeng Wen
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiwen Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Maojun Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianying Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sumbul Saeed
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Yuxian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
15
|
Aboughanem-Sabanadzovic N, Allen TW, Frelichowski J, Scheffler J, Sabanadzovic S. Discovery and Analyses of Caulimovirid-like Sequences in Upland Cotton ( Gossypium hirsutum). Viruses 2023; 15:1643. [PMID: 37631986 PMCID: PMC10458927 DOI: 10.3390/v15081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Analyses of Illumina-based high-throughput sequencing data generated during characterization of the cotton leafroll dwarf virus population in Mississippi (2020-2022) consistently yielded contigs varying in size (most frequently from 4 to 7 kb) with identical nucleotide content and sharing similarities with reverse transcriptases (RTases) encoded by extant plant pararetroviruses (family Caulimoviridiae). Initial data prompted an in-depth study involving molecular and bioinformatic approaches to characterize the nature and origins of these caulimovirid-like sequences. As a result, here, we report on endogenous viral elements (EVEs) related to extant members of the family Caulimoviridae, integrated into a genome of upland cotton (Gossypium hirsutum), for which we propose the provisional name "endogenous cotton pararetroviral elements" (eCPRVE). Our investigations pinpointed a ~15 kbp-long locus on the A04 chromosome consisting of head-to-head orientated tandem copies located on positive- and negative-sense DNA strands (eCPRVE+ and eCPRVE-). Sequences of the eCPRVE+ comprised nearly complete and slightly decayed genome information, including ORFs coding for the viral movement protein (MP), coat protein (CP), RTase, and transactivator/viroplasm protein (TA). Phylogenetic analyses of major viral proteins suggest that the eCPRVE+ may have been initially derived from a genome of a cognate virus belonging to a putative new genus within the family. Unexpectedly, an identical 15 kb-long locus composed of two eCPRVE copies was also detected in a newly recognized species G. ekmanianum, shedding some light on the relatively recent evolution within the cotton family.
Collapse
Affiliation(s)
- Nina Aboughanem-Sabanadzovic
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, 2 Research Park, Mailstop 9627, Mississippi, MS 39762, USA;
| | - Thomas W. Allen
- Delta Research and Extension Center, Mississippi State University, 82 Stoneville Road, P.O. Box 197, Stoneville, MS 38776, USA;
| | | | - Jodi Scheffler
- USDA-ARS Mid-South Area, 141 Experiment Station Road, Stoneville, MS 38776, USA;
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 100 Twelve Lane, Mail Stop 9775, Mississippi, MS 39762, USA
| |
Collapse
|
16
|
Cui C, Feng L, Zhou C, Wan H, Zhou B. Transcriptome Revealed GhPP2C43-A Negatively Regulates Salinity Tolerance in an Introgression Line from a Semi-wild Upland Cotton. PLANT & CELL PHYSIOLOGY 2023:pcad036. [PMID: 37115634 DOI: 10.1093/pcp/pcad036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
Salt damage is one of the major threats to sustainable cotton production owing to the limited arable land in China mainly occupied by the production of staple food crops. Salt-stress tolerant cotton varieties are lacking in production and, the mechanisms underpinning salt-stress tolerance in cotton remain enigmatic. Here, DM37, an intraspecific introgression line from G. hirsutum race yucatanense acc TX-1046 into the G. hirsutum acc TM-1 background, was found to be highly tolerant to salt stress. Its seed germination rate and germination potential were significantly higher than the recipient TM-1 under salt stress. Physiological analysis showed DM37 had higher proline content and Peroxidase activity, as well as lower Na+/K+ ratios at the seedling stage, consistent with higher seedling survival rate after durable salt stress. Furthermore, comparative transcriptome analysis revealed that responsive patterns to salt stress in DM37 were different from TM-1. Weighted Correlation Network Analysis (WGCNA) demonstrated that co-expression modules associated with salt stress in DM37 also differed from TM-1. Out of them, GhPP2C43-A, a phosphatase gene, exhibited negative regulation of salt-stress tolerance verified by VIGS and transgenic Arabidopsis. Gene expression showed GhPP2C43-A in TM-1 was induced by durable salt stress but not in DM37 probably attributing to the variation of cis-element in its promoter, thereby being conferred different salt-stress tolerance. Our result would provide new genes/germplasms from semi-wild cotton in salt-stress tolerant cotton breeding. This study would give us new insights into the mechanisms underpinning the salt-stress tolerance in cotton.
Collapse
Affiliation(s)
- Changjiang Cui
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Liuchun Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Chenhui Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Lin JL, Fang X, Li JX, Chen ZW, Wu WK, Guo XX, Liu NJ, Huang JF, Chen FY, Wang LJ, Xu B, Martin C, Chen XY, Huang JQ. Dirigent gene editing of gossypol enantiomers for toxicity-depleted cotton seeds. NATURE PLANTS 2023; 9:605-615. [PMID: 36928775 DOI: 10.1038/s41477-023-01376-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Axial chirality of biaryls can generate varied bioactivities. Gossypol is a binaphthyl compound made by cotton plants. Of its two axially chiral isomers, (-)-gossypol is the bioactive form in mammals and has antispermatogenic activity, and its accumulation in cotton seeds poses health concerns. Here we identified two extracellular dirigent proteins (DIRs) from Gossypium hirsutum, GhDIR5 and GhDIR6, which impart the hemigossypol oxidative coupling into (-)- and (+)-gossypol, respectively. To reduce cotton seed toxicity, we disrupted GhDIR5 by genome editing, which eliminated (-)-gossypol but had no effects on other phytoalexins, including (+)-gossypol, that provide pest resistance. Reciprocal mutagenesis identified three residues responsible for enantioselectivity. The (-)-gossypol-forming DIRs emerged later than their enantiocomplementary counterparts, from tandem gene duplications that occurred shortly after the cotton genus diverged. Our study offers insight into how plants control enantiomeric ratios and how to selectively modify the chemical spectra of cotton plants and thereby improve crop quality.
Collapse
Affiliation(s)
- Jia-Ling Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jian-Xu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Wen-Kai Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Xiang Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ning-Jing Liu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Jia-Fa Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fang-Yan Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Baofu Xu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China.
| | - Jin-Quan Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
18
|
Ding W, Zhu Y, Han J, Zhang H, Xu Z, Khurshid H, Liu F, Hasterok R, Shen X, Wang K. Characterization of centromeric DNA of Gossypium anomalum reveals sequence-independent enrichment dynamics of centromeric repeats. Chromosome Res 2023; 31:12. [PMID: 36971835 DOI: 10.1007/s10577-023-09721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/29/2023]
Abstract
Centromeres in eukaryotes are composed of highly repetitive DNAs, which evolve rapidly and are thought to achieve a favorable structure in mature centromeres. However, how the centromeric repeat evolves into an adaptive structure is largely unknown. We characterized the centromeric sequences of Gossypium anomalum through chromatin immunoprecipitation against CENH3 antibodies. We revealed that the G. anomalum centromeres contained only retrotransposon-like repeats but were depleted in long arrays of satellites. These retrotransposon-like centromeric repeats were present in the African-Asian and Australian lineage species, suggesting that they might have arisen in the common ancestor of these diploid species. Intriguingly, we observed a substantial increase and decrease in copy numbers among African-Asian and Australian lineages, respectively, for the retrotransposon-derived centromeric repeats without apparent structure or sequence variation in cotton. This result indicates that the sequence content is not a decisive aspect of the adaptive evolution of centromeric repeats or at least retrotransposon-like centromeric repeats. In addition, two active genes with potential roles in gametogenesis or flowering were identified in CENH3 nucleosome-binding regions. Our results provide new insights into the constitution of centromeric repetitive DNA and the adaptive evolution of centromeric repeats in plants.
Collapse
Affiliation(s)
- Wenjie Ding
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Yuanbin Zhu
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haris Khurshid
- Oilseeds Research Program, National Agricultural Research Centre, Islamabad, 44500, Pakistan
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland.
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, 226019, China.
| |
Collapse
|
19
|
Li X, Wang J, Yu Y, Li G, Wang J, Li C, Zeng Z, Li N, Zhang Z, Dong Q, Yu Y, Wang X, Wang T, Grover CE, Wang B, Liu B, Wendel JF, Gong L. Genomic rearrangements and evolutionary changes in 3D chromatin topologies in the cotton tribe (Gossypieae). BMC Biol 2023; 21:56. [PMID: 36941615 PMCID: PMC10029228 DOI: 10.1186/s12915-023-01560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Analysis of the relationship between chromosomal structural variation (synteny breaks) and 3D-chromatin architectural changes among closely related species has the potential to reveal causes and correlates between chromosomal change and chromatin remodeling. Of note, contrary to extensive studies in animal species, the pace and pattern of chromatin architectural changes following the speciation of plants remain unexplored; moreover, there is little exploration of the occurrence of synteny breaks in the context of multiple genome topological hierarchies within the same model species. RESULTS Here we used Hi-C and epigenomic analyses to characterize and compare the profiles of hierarchical chromatin architectural features in representative species of the cotton tribe (Gossypieae), including Gossypium arboreum, Gossypium raimondii, and Gossypioides kirkii, which differ with respect to chromosome rearrangements. We found that (i) overall chromatin architectural territories were preserved in Gossypioides and Gossypium, which was reflected in their similar intra-chromosomal contact patterns and spatial chromosomal distributions; (ii) the non-random preferential occurrence of synteny breaks in A compartment significantly associate with the B-to-A compartment switch in syntenic blocks flanking synteny breaks; (iii) synteny changes co-localize with open-chromatin boundaries of topologically associating domains, while TAD stabilization has a greater influence on regulating orthologous expression divergence than do rearrangements; and (iv) rearranged chromosome segments largely maintain ancestral in-cis interactions. CONCLUSIONS Our findings provide insights into the non-random occurrence of epigenomic remodeling relative to the genomic landscape and its evolutionary and functional connections to alterations of hierarchical chromatin architecture, on a known evolutionary timescale.
Collapse
Affiliation(s)
- Xiaochong Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinbin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yanan Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinpeng Wang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Changping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zixian Zeng
- Department of Biological Science, College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yiyang Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaofei Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572025, Hainan, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
20
|
Jareczek JJ, Grover CE, Wendel JF. Cotton fiber as a model for understanding shifts in cell development under domestication. FRONTIERS IN PLANT SCIENCE 2023; 14:1146802. [PMID: 36938017 PMCID: PMC10017751 DOI: 10.3389/fpls.2023.1146802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/21/2023] [Indexed: 05/27/2023]
Abstract
Cotton fiber provides the predominant plant textile in the world, and it is also a model for plant cell wall biosynthesis. The development of the single-celled cotton fiber takes place across several overlapping but discrete stages, including fiber initiation, elongation, the transition from elongation to secondary cell wall formation, cell wall thickening, and maturation and cell death. During each stage, the developing fiber undergoes a complex restructuring of genome-wide gene expression change and physiological/biosynthetic processes, which ultimately generate a strikingly elongated and nearly pure cellulose product that forms the basis of the global cotton industry. Here, we provide an overview of this developmental process focusing both on its temporal as well as evolutionary dimensions. We suggest potential avenues for further improvement of cotton as a crop plant.
Collapse
Affiliation(s)
- Josef J. Jareczek
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
- Biology Department, Bellarmine University, Louisville, KY, United States
| | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
21
|
Sun C, Yu L, Zhang S, Gu Q, Wang M. Genome-wide characterization of the SHORT INTER-NODES/STYLISH and Shi-Related Sequence family in Gossypium hirsutum and functional identification of GhSRS21 under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 13:1078083. [PMID: 36684735 PMCID: PMC9846857 DOI: 10.3389/fpls.2022.1078083] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Saline stress is a significant factor that caused crop growth inhibition and yield decline. SHORT INTERNODES/STYLISH (SHI/STY) and SHI-RELATED SEQUENCE (SRS) transcription factors are specific to plants and share a conserved RING-like zinc-finger domain (CX2CX7CX4CX2C2X6C). However, the functions of SHI/STY and SRS genes in cotton responses to salt stress remain unclear. In this study, 26 GhSRSs were identified in Gossypium hirsutum, which further divided into three subgroups. Phylogenetic analysis of 88 SRSs from8 plant species revealed independent evolutionary pattern in some of SRSs derived from monocots. Conserved domain and subcellular location predication of GhSRSs suggested all of them only contained the conserved RING-like zinc-finger domain (DUF702) domain and belonged to nucleus-localized transcription factors except for the GhSRS22. Furthermore, synteny analysis showed structural variation on chromosomes during the process of cotton polyploidization. Subsequently, expression patterns of GhSRS family members in response to salt and drought stress were analyzed in G. hirsutum and identified a salt stress-inducible gene GhSRS21. The GhSRS21 was proved to localize in the nuclear and silencing it in G. hirsutum increased the cotton resistance to salt using the virus-induced gene silencing (VIGS) system. Finally, our transcriptomic data revealed that GhSRS21 negatively controlled cotton salt tolerance by regulating the balance between ROS production and scavenging. These results will increase our understanding of the SRS gene family in cotton and provide the candidate resistant gene for cotton breeding.
Collapse
Affiliation(s)
- Chendong Sun
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Li Yu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuojun Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qijuan Gu
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Mei Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
22
|
Luiza Atella A, Fatima Grossi-de-Sá M, Alves-Ferreira M. Cotton promoters for controlled gene expression. ELECTRON J BIOTECHN 2023. [DOI: 10.1016/j.ejbt.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
23
|
Wang B, Lv R, Zhang Z, Yang C, Xun H, Liu B, Gong L. Homoeologous exchange enables rapid evolution of tolerance to salinity and hyper-osmotic stresses in a synthetic allotetraploid wheat. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7488-7502. [PMID: 36055762 DOI: 10.1093/jxb/erac355] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The link between polyploidy and enhanced adaptation to environmental stresses could be a result of polyploidy itself harbouring higher tolerance to adverse conditions, or polyploidy possessing higher evolvability than diploids under stress conditions. Natural polyploids are inherently unsuitable to disentangle these two possibilities. Using selfed progenies of a synthetic allotetraploid wheat AT3 (AADD) along with its diploid parents, Triticum urartu TMU38 (AA) and Aegilops tauschii TQ27 (DD), we addressed the foregoing issue under abiotic salinity and hyper-osmotic (drought-like) stress. Under short duration of both stresses, euploid plants of AT3 showed intermediate tolerance of diploid parents; under life-long duration of both stresses, tolerant individuals to either stress emerged from selfed progenies of AT3, but not from comparable-sized diploid parent populations. Tolerance to both stresses were conditioned by the same two homoeologous exchanges (HEs; 2DS/2AS and 3DL/3AL), and at least one HE needed to be at the homozygous state. Transcriptomic analyses revealed that hyper-up-regulation of within-HE stress responsive genes of the A sub-genome origin is likely responsible for the dual-stress tolerant phenotypes. Our results suggest that HE-mediated inter-sub-genome rearrangements can be an important mechanism leading to adaptive evolution in allopolyploids as well as a promising target for genetic manipulation in crop improvement.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
24
|
Grover CE, Arick MA, Thrash A, Sharbrough J, Hu G, Yuan D, Snodgrass S, Miller ER, Ramaraj T, Peterson DG, Udall JA, Wendel JF. Dual Domestication, Diversity, and Differential Introgression in Old World Cotton Diploids. Genome Biol Evol 2022; 14:evac170. [PMID: 36510772 PMCID: PMC9792962 DOI: 10.1093/gbe/evac170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Domestication in the cotton genus is remarkable in that it has occurred independently four different times at two different ploidy levels. Relatively little is known about genome evolution and domestication in the cultivated diploid species Gossypium herbaceum and Gossypium arboreum, due to the absence of wild representatives for the latter species, their ancient domestication, and their joint history of human-mediated dispersal and interspecific gene flow. Using in-depth resequencing of a broad sampling from both species, we provide support for their independent domestication, as opposed to a progenitor-derivative relationship, showing that diversity (mean π = 6 × 10-3) within species is similar, and that divergence between species is modest (FST = 0.413). Individual accessions were homozygous for ancestral single-nucleotide polymorphisms at over half of variable sites, while fixed, derived sites were at modest frequencies. Notably, two chromosomes with a paucity of fixed, derived sites (i.e., chromosomes 7 and 10) were also strongly implicated as having experienced high levels of introgression. Collectively, these data demonstrate variable permeability to introgression among chromosomes, which we propose is due to divergent selection under domestication and/or the phenomenon of F2 breakdown in interspecific crosses. Our analyses provide insight into the evolutionary forces that shape diversity and divergence in the diploid cultivated species and establish a foundation for understanding the contribution of introgression and/or strong parallel selection to the extensive morphological similarities shared between species.
Collapse
Affiliation(s)
- Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, Iowa 5001, USA
| | - Mark A Arick
- Biocomputing & Biotechnology, Institute for Genomics, Mississippi State University, Mississippi, USA
| | - Adam Thrash
- Biocomputing & Biotechnology, Institute for Genomics, Mississippi State University, Mississippi, USA
| | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA
| | - Guanjing Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Daojun Yuan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan Hubei 430070, China
| | - Samantha Snodgrass
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, Iowa 5001, USA
| | - Emma R Miller
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, Iowa 5001, USA
| | - Thiruvarangan Ramaraj
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois 6060, USA
| | - Daniel G Peterson
- Biocomputing & Biotechnology, Institute for Genomics, Mississippi State University, Mississippi, USA
| | - Joshua A Udall
- Crop Germplasm Research Unit, USDA/Agricultural Research Service, 2881 F&B Road, College Station, Texas 77845, USA
| | - Jonathan F Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, Iowa 5001, USA
| |
Collapse
|
25
|
Ramaraj T, Grover CE, Mendoza AC, Arick MA, Jareczek JJ, Leach AG, Peterson DG, Wendel JF, Udall JA. The Gossypium herbaceum L. Wagad genome as a resource for understanding cotton domestication. G3 (BETHESDA, MD.) 2022; 13:6858943. [PMID: 36454094 PMCID: PMC9911056 DOI: 10.1093/g3journal/jkac308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 12/05/2022]
Abstract
Gossypium herbaceum is a species of cotton native to Africa and Asia that is one of the 2 domesticated diploids. Together with its sister-species G. arboreum, these A-genome taxa represent models of the extinct A-genome donor of modern polyploid cotton, which provide about 95% of cotton grown worldwide. As part of a larger effort to characterize variation and improve resources among diverse diploid and polyploid cotton genomes, we sequenced and assembled the genome of G. herbaceum cultivar (cv.) Wagad, representing the first domesticated accession for this species. This chromosome-level genome was generated using a combination of PacBio long-read technology, HiC, and Bionano optical mapping and compared to existing genome sequences in cotton. We compare the genome of this cultivar to the existing genome of wild G. herbaceum subspecies africanum to elucidate changes in the G. herbaceum genome concomitant with domestication and extend these analyses to gene expression using available RNA-seq. Our results demonstrate the utility of the G. herbaceum cv. Wagad genome in understanding domestication in the diploid species, which could inform modern breeding programs.
Collapse
Affiliation(s)
- Thiruvarangan Ramaraj
- School of Computing, Jarvis College of Computing and Digital Media, DePaul University, Chicago, IL 60605, USA
| | - Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50011, USA
| | - Azalea C Mendoza
- School of Computing, Jarvis College of Computing and Digital Media, DePaul University, Chicago, IL 60605, USA
| | - Mark A Arick
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Josef J Jareczek
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50011, USA
| | - Alexis G Leach
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50011, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jonathan F Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50011, USA
| | - Joshua A Udall
- *Corresponding author: Crop Germplasm Research Unit, USDA/Agricultural Research Service, 2881 F&B Rd., College Station, TX 77845, USA.
| |
Collapse
|
26
|
Gowda SA, Shrestha N, Harris TM, Phillips AZ, Fang H, Sood S, Zhang K, Bourland F, Bart R, Kuraparthy V. Identification and genomic characterization of major effect bacterial blight resistance locus (BB-13) in Upland cotton (Gossypium hirsutum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4421-4436. [PMID: 36208320 DOI: 10.1007/s00122-022-04229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Identification and genomic characterization of major resistance locus against cotton bacterial blight (CBB) using GWAS and linkage mapping to enable genomics-based development of durable CBB resistance and gene discovery in cotton. Cotton bacterial leaf blight (CBB), caused by Xanthomonas citri subsp. malvacearum (Xcm), has periodically been a damaging disease in the USA. Identification and deployment of genetic resistance in cotton cultivars is the most economical and efficient means of reducing crop losses due to CBB. In the current study, genome-wide association study (GWAS) of CBB resistance using an elite diversity panel of 380 accessions, genotyped with the cotton single nucleotide polymorphism (SNP) 63 K array, and phenotyped with race-18 of CBB, localized the CBB resistance to a 2.01-Mb region in the long arm of chromosome D02. Molecular genetic mapping using an F6 recombinant inbred line (RIL) population showed the CBB resistance in cultivar Arkot 8102 was controlled by a single locus (BB-13). The BB-13 locus was mapped within the 0.95-cM interval near the telomeric region in the long arm of chromosome D02. Flanking SNP markers, i04890Gh and i04907Gh of the BB-13 locus, identified from the combined linkage analysis and GWAS, targeted it to a 371-Kb genomic region. Candidate gene analysis identified thirty putative gene sequences in the targeted genomic region. Nine of these putative genes and two NBS-LRR genes adjacent to the targeted region were putatively involved in plant disease resistance and are possible candidate genes for BB-13 locus. Genetic mapping and genomic targeting of the BB13 locus in the current study will help in cloning the CBB-resistant gene and establishing the molecular genetic architecture of the BB-13 locus towards developing durable resistance to CBB in cotton.
Collapse
Affiliation(s)
- S Anjan Gowda
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Navin Shrestha
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Taylor M Harris
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
- Division of Biology & Biomedical Sciences, Washington University in St. Louis, St Louis, MO, 63110, USA
| | - Anne Z Phillips
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Hui Fang
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Shilpa Sood
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kuang Zhang
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fred Bourland
- NE Research & Extension Center, Crop, Soil, and Environmental Sciences, University of Arkansas, Keiser, AR, 72351, USA
| | - Rebecca Bart
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Vasu Kuraparthy
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
27
|
Wang M, Li J, Qi Z, Long Y, Pei L, Huang X, Grover CE, Du X, Xia C, Wang P, Liu Z, You J, Tian X, Ma Y, Wang R, Chen X, He X, Fang DD, Sun Y, Tu L, Jin S, Zhu L, Wendel JF, Zhang X. Genomic innovation and regulatory rewiring during evolution of the cotton genus Gossypium. Nat Genet 2022; 54:1959-1971. [PMID: 36474047 DOI: 10.1038/s41588-022-01237-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022]
Abstract
Phenotypic diversity and evolutionary innovation ultimately trace to variation in genomic sequence and rewiring of regulatory networks. Here, we constructed a pan-genome of the Gossypium genus using ten representative diploid genomes. We document the genomic evolutionary history and the impact of lineage-specific transposon amplification on differential genome composition. The pan-3D genome reveals evolutionary connections between transposon-driven genome size variation and both higher-order chromatin structure reorganization and the rewiring of chromatin interactome. We linked changes in chromatin structures to phenotypic differences in cotton fiber and identified regulatory variations that decode the genetic basis of fiber length, the latter enabled by sequencing 1,005 transcriptomes during fiber development. We showcase how pan-genomic, pan-3D genomic and genetic regulatory data serve as a resource for delineating the evolutionary basis of spinnable cotton fiber. Our work provides insights into the evolution of genome organization and regulation and will inform cotton improvement by enabling regulome-based approaches.
Collapse
Affiliation(s)
- Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuexuan Long
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Liuling Pei
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianhui Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Chunjiao Xia
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuehan Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xinyuan Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, USA
| | - Yuqiang Sun
- Zhejiang Sci-Tech University College of Life Sciences, Zhejiang, Hangzhou, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
28
|
Cao J, Huang C, Liu J, Li C, Liu X, Zheng Z, Hou L, Huang J, Wang L, Zhang Y, Shangguan X, Chen Z. Comparative Genomics and Functional Studies of Putative m 6A Methyltransferase (METTL) Genes in Cotton. Int J Mol Sci 2022; 23:14111. [PMID: 36430588 PMCID: PMC9694044 DOI: 10.3390/ijms232214111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) RNA modification plays important regulatory roles in plant development and adapting to the environment, which requires methyltransferases to achieve the methylation process. However, there has been no research regarding m6A RNA methyltransferases in cotton. Here, a systematic analysis of the m6A methyltransferase (METTL) gene family was performed on twelve cotton species, resulting in six METTLs identified in five allotetraploid cottons, respectively, and three to four METTLs in the seven diploid species. Phylogenetic analysis of protein-coding sequences revealed that METTL genes from cottons, Arabidopsis thaliana, and Homo sapiens could be classified into three clades (METTL3, METTL14, and METTL-like clades). Cis-element analysis predicated the possible functions of METTL genes in G. hirsutum. RNA-seq data revealed that GhMETTL14 (GH_A07G0817/GH_D07G0819) and GhMETTL3 (GH_A12G2586/GH_D12G2605) had high expressions in root, stem, leaf, torus, petal, stamen, pistil, and calycle tissues. GhMETTL14 also had the highest expression in 20 and 25 dpa fiber cells, implying a potential role at the cell wall thickening stage. Suppressing GhMETTL3 and GhMETTL14 by VIGS caused growth arrest and even death in G. hirsutum, along with decreased m6A abundance from the leaf tissues of VIGS plants. Overexpression of GhMETTL3 and GhMETTL14 produced distinct differentially expressed genes (DEGs) in A. thaliana, indicating their possible divergent functions after gene duplication. Overall, GhMETTLs play indispensable but divergent roles during the growth of cotton plants, which provides the basis for the systematic investigation of m6A in subsequent studies to improve the agronomic traits in cotton.
Collapse
Affiliation(s)
- Junfeng Cao
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaochen Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun’e Liu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Chenyi Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xia Liu
- Esquel Group, 25 Harbour Road, Wanchai, Hong Kong, China
| | - Zishou Zheng
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lipan Hou
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jinquan Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yugao Zhang
- Esquel Group, 25 Harbour Road, Wanchai, Hong Kong, China
| | - Xiaoxia Shangguan
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044099, China
| | - Zhiwen Chen
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
29
|
Kushanov FN, Komilov DJ, Turaev OS, Ernazarova DK, Amanboyeva RS, Gapparov BM, Yu JZ. Genetic Analysis of Mutagenesis That Induces the Photoperiod Insensitivity of Wild Cotton Gossypium hirsutum Subsp. purpurascens. PLANTS (BASEL, SWITZERLAND) 2022; 11:3012. [PMID: 36432741 PMCID: PMC9698681 DOI: 10.3390/plants11223012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Cotton genus Gossypium L., especially its wild species, is rich in genetic diversity. However, this valuable genetic resource is barely used in cotton breeding programs. In part, due to photoperiod sensitivities, the genetic diversity of Gossypium remains largely untapped. Herein, we present a genetic analysis of morphological, cytological, and genomic changes from radiation-mediated mutagenesis that induced plant photoperiod insensitivity in the wild cotton of Gossypium hirsutum. Several morphological and agronomical traits were found to be highly inheritable using the progeny between the wild-type G. hirsutum subsp. purpurascens (El-Salvador) and its mutant line (Kupaysin). An analysis of pollen mother cells (PMCs) revealed quadrivalents that had an open ring shape and an adjoining type of divergence of chromosomes from translocation complexes. Using 336 SSR markers and 157 F2 progenies that were grown with parental genotypes and F1 hybrids in long day and short night conditions, five quantitative trait loci (QTLs) associated with cotton flowering were located on chromosomes At-05, At-11, and Dt-07. Nineteen candidate genes related to the flowering traits were suggested through molecular and in silico analysis. The DNA markers associated with the candidate genes, upon future functional analysis, would provide useful tools in marker-assisted selection (MAS) in cotton breeding programs for early flowering and maturity.
Collapse
Affiliation(s)
- Fakhriddin N. Kushanov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Qibray QFY, Yuqori-Yuz, Qibray District, Tashkent 111226, Uzbekistan
- Department of Biology, National University of Uzbekistan, University Street-4, Olmazor District, Tashkent 100174, Uzbekistan
- Department of Biotechnology, Namangan State University, Uychi Street-316, Namangan 160100, Uzbekistan
| | - Doniyor J. Komilov
- Department of Biotechnology, Namangan State University, Uychi Street-316, Namangan 160100, Uzbekistan
- Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, University Street-2, Qibray District, Tashkent 111215, Uzbekistan
| | - Ozod S. Turaev
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Qibray QFY, Yuqori-Yuz, Qibray District, Tashkent 111226, Uzbekistan
- Department of Biology, National University of Uzbekistan, University Street-4, Olmazor District, Tashkent 100174, Uzbekistan
| | - Dilrabo K. Ernazarova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Qibray QFY, Yuqori-Yuz, Qibray District, Tashkent 111226, Uzbekistan
- Department of Biology, National University of Uzbekistan, University Street-4, Olmazor District, Tashkent 100174, Uzbekistan
| | - Roza S. Amanboyeva
- Department of Biology, National University of Uzbekistan, University Street-4, Olmazor District, Tashkent 100174, Uzbekistan
- Faculty of Natural Sciences, Gulistan State University, 4th Microregion, Gulistan 120100, Uzbekistan
| | - Bunyod M. Gapparov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Qibray QFY, Yuqori-Yuz, Qibray District, Tashkent 111226, Uzbekistan
| | - John Z. Yu
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845, USA
| |
Collapse
|
30
|
Lamont BB, Grey J. Extrafloral nectar as entrée and elaiosomes as main course for ant visitors to a fireprone, mediterranean-climate shrub. Ecol Evol 2022; 12:e9500. [PMID: 36381400 PMCID: PMC9643124 DOI: 10.1002/ece3.9500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Thousands of plants produce both extrafloral nectaries (EFNs) on their leaves and nutrient-rich appendages on their diaspores (elaiosomes). Although their individual ecology is well-known, any possible functional link between these structures has almost always been ignored. Here, we recognized their co-presence in the shrub, Adenanthos cygnorum (Proteaceae), and studied their function and interaction. We observed that the same ants frequently visit both structures, seeds are attractive to vertebrate granivores but are released into a leafy cup from where they are harvested by ants and taken to their nests, from which seeds, lacking elaiosomes, germinate after fire. We showed that juvenile plants do not produce EFNs and are not visited by ants. We conclude that EFNs are not just an indirect adaptation to minimize herbivory via aggressive ant visitors (the role of a minority) but specifically enhance reproductive success in two ways: First, by inducing ants to visit the plant as a reliable food source throughout the year. Second, by promoting discovery of the seasonally available, elaiosome-bearing seeds for transport to their nests (the majority of visitors), so avoiding the risk of granivory should seeds instead fall to the ground. Parasitoid wasps play a supporting role in controlling the main insect herbivore whose larvae devour the reproductive apices. Thus, the EFN-elaiosome relationship has three components that enhance species fitness: foliage protection, seed transport, and granivore escape. A similar system has been described only once before (in an unrelated biome) and, consistent with the objectives of ecology as an integrative science, deserves wider study.
Collapse
Affiliation(s)
- Byron B. Lamont
- Ecology Section, School of Life and Molecular SciencesCurtin UniversityPerthWestern AustraliaAustralia
| | - James Grey
- Ecology Section, School of Life and Molecular SciencesCurtin UniversityPerthWestern AustraliaAustralia
- Present address:
Assurance SystemsNorth SydneyNew South WalesAustralia
| |
Collapse
|
31
|
Dong Y, Hu G, Grover CE, Miller ER, Zhu S, Wendel JF. Parental legacy versus regulatory innovation in salt stress responsiveness of allopolyploid cotton (Gossypium) species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:872-887. [PMID: 35686631 PMCID: PMC9540634 DOI: 10.1111/tpj.15863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Polyploidy provides an opportunity for evolutionary innovation and species diversification, especially under stressful conditions. In allopolyploids, the conditional dynamics of homoeologous gene expression can be either inherited from ancestral states pre-existing in the parental diploids or novel upon polyploidization, the latter potentially permitting a wider range of phenotypic responses to stresses. To gain insight into regulatory mechanisms underlying the diversity of salt resistance in Gossypium species, we compared global transcriptomic responses to modest salinity stress in two allotetraploid (AD-genome) cotton species, Gossypium hirsutum and G. mustelinum, relative to their model diploid progenitors (A-genome and D-genome). Multivariate and pairwise analyses of salt-responsive changes revealed a profound alteration of gene expression for about one third of the transcriptome. Transcriptional responses and associated functional implications of salt acclimation varied across species, as did species-specific coexpression modules among species and ploidy levels. Salt responsiveness in both allopolyploids was strongly biased toward the D-genome progenitor. A much lower level of transgressive downregulation was observed in the more salt-tolerant G. mustelinum than in the less tolerant G. hirsutum. By disentangling inherited effects from evolved responses, we show that expression biases that are not conditional upon salt stress approximately equally reflect parental legacy and regulatory novelty upon allopolyploidization, whereas stress-responsive biases are predominantly novel, or evolved, in allopolyploids. Overall, our work suggests that allopolyploid cottons acquired a wide range of stress response flexibility relative to their diploid ancestors, most likely mediated by complex suites of duplicated genes and regulatory factors.
Collapse
Affiliation(s)
- Yating Dong
- Department of AgronomyZhejiang UniversityHangzhouZhejiang310 053China
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| | - Guanjing Hu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang455 000China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhen518 120China
| | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| | - Emma R. Miller
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| | - Shuijin Zhu
- Department of AgronomyZhejiang UniversityHangzhouZhejiang310 053China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| |
Collapse
|
32
|
Hussain A, Liu J, Mohan B, Burhan A, Nasim Z, Bano R, Ameen A, Zaynab M, Mukhtar MS, Pajerowska-Mukhtar KM. A genome-wide comparative evolutionary analysis of zinc finger-BED transcription factor genes in land plants. Sci Rep 2022; 12:12328. [PMID: 35853967 PMCID: PMC9296551 DOI: 10.1038/s41598-022-16602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
Zinc finger (Zf)-BED proteins are a novel superfamily of transcription factors that controls numerous activities in plants including growth, development, and cellular responses to biotic and abiotic stresses. Despite their important roles in gene regulation, little is known about the specific functions of Zf-BEDs in land plants. The current study identified a total of 750 Zf-BED-encoding genes in 35 land plant species including mosses, bryophytes, lycophytes, gymnosperms, and angiosperms. The gene family size was somewhat proportional to genome size. All identified genes were categorized into 22 classes based on their specific domain architectures. Of these, class I (Zf-BED_DUF-domain_Dimer_Tnp_hAT) was the most common in the majority of the land plants. However, some classes were family-specific, while the others were species-specific, demonstrating diversity at different classification levels. In addition, several novel functional domains were also predicated including WRKY and nucleotide-binding site (NBS). Comparative genomics, transcriptomics, and proteomics provided insights into the evolutionary history, duplication, divergence, gene gain and loss, species relationship, expression profiling, and structural diversity of Zf-BEDs in land plants. The comprehensive study of Zf-BEDs in Gossypium sp., (cotton) also demonstrated a clear footprint of polyploidization. Overall, this comprehensive evolutionary study of Zf-BEDs in land plants highlighted significant diversity among plant species.
Collapse
Affiliation(s)
- Athar Hussain
- Genomics Lab, School of Food and Agricultural Sciences (SFAS), University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Jinbao Liu
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Binoop Mohan
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Akif Burhan
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Zunaira Nasim
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Raveena Bano
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Ayesha Ameen
- Office of Research Innovation and Commercialization, University of Management and Technology, Lahore, 54770, Pakistan
| | - Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 51807, Guangdong, China
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA.
| | | |
Collapse
|
33
|
Mehari TG, Xu Y, Umer MJ, Hui F, Cai X, Zhou Z, Hou Y, Wang K, Wang B, Liu F. Genome-Wide Identification and Expression Analysis Elucidates the Potential Role of PFK Gene Family in Drought Stress Tolerance and Sugar Metabolism in Cotton. Front Genet 2022; 13:922024. [PMID: 35795210 PMCID: PMC9251378 DOI: 10.3389/fgene.2022.922024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Drought has been identified as a major threat for global crop production worldwide. Phosphofructokinase (PFK) is vital for sugar metabolism. During phosphorylation, plants have two enzymes: ATP-dependent phosphofructokinase (PFK) and pyrophosphate-dependent fructose-6-phosphate phosphotransferase (PFP). Genome-wide identification led to the identification of 80 PFK genes, 26 genes in G. hirsutum and G. barbadense, and 14 genes in G. arboreum and G. raimondii. Phylogenetic, gene structure, and motif analyses showed that PFK genes were grouped into two main categories, namely, PFK and PFP, with 18 and 8 genes in the allotetraploid species and 10 PFK and 4 PFP genes in the diploid species, respectively. Using the RNA-seq expressions of 26 genes from GhPFK, a co-expression network analysis was performed to identify the hub genes. GhPFK04, GhPFK05, GhPFK09, GhPFK11, GhPFK13, GhPFK14, and GhPFK17 in leaves and GhPFK02, GhPFK09, GhPFK11, GhPFK15, GhPFK16, and GhPFK17 in root tissues were found as hub genes. RT-qPCR analysis validated the expressions of identified hub genes. Interestingly, GhPFK11 and GhPFK17 were identified as common hub genes, and these might be the true candidate genes involved in the drought stress tolerance. In the KEGG enrichment analysis, amino acids such as L-valine, L-histidine, L-glutamine, L-serine, L-homoserine, L-methionine, L-cysteine, and gluconic acid were significantly upregulated, whereas sugars, mainly fructose-1-phosphate, D-mannitol, D-sorbitol, dulcitol, and lactose, were significantly downregulated during drought stress. Genome-wide analysis paves the way for a deeper understanding of the PFK genes and establishes the groundwork for future research into PFK’s role in enhancing drought stress tolerance and sugar metabolism in cotton.
Collapse
Affiliation(s)
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fang Hui
- School of Life Sciences, Nantong University, Nantong, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, China
- *Correspondence: Kai Wang, ; Baohua Wang, ; Fang Liu,
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
- *Correspondence: Kai Wang, ; Baohua Wang, ; Fang Liu,
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Kai Wang, ; Baohua Wang, ; Fang Liu,
| |
Collapse
|
34
|
Modeling the Distribution of Wild Cotton Gossypium aridum in Mexico Using Flowering Growing Degree Days and Annual Available Soil Water. SUSTAINABILITY 2022. [DOI: 10.3390/su14116383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Climate change is expected to alter species distribution and habitat composition, with wild species being particularly vulnerable. Gossypium aridum, a wild cotton species in Mexico, has shown a decrease in habitat extent and population; however, the data are not precise. The objectives of this study are: (1) to develop a distribution model of G. aridum in Mexico, (2) to identify areas with environmental conditions similar to where the species currently maintains populations, and (3) to determine which variable, flowering growing degree days (FGDD) or annual available soil water (AASW, mm year−1), has greater influence on the distribution of the species. Geographic information system (GIS) software was used with datasets from two databases in Mexico that were partitioned for site characterization, model construction, calibration, validation, and sensitivity analysis. The range of 330–860 FGDD and 4–110 mm year−1 AASW best described the species habitat, according to results of seven precision and accuracy statistical tests. The model identified geographic regions throughout the country with similar conditions as the locations where the species has been observed, including some where no collections have not yet been registered in Mexican databases. FGDD, rather than AASW, showed greater influence on the distribution of the species. The generated information can be used to guide collection expeditions for G. aridum and to study climatic impact on species distribution. The approach using FGDD and AASW can be used in the modeling of wild cotton species that are valuable natural resources for crop improvement.
Collapse
|
35
|
Zhou T, Wang N, Wang Y, Zhang XL, Li BG, Li W, Su JJ, Wang CX, Zhang A, Ma XF, Li ZH. Nucleotide Evolution, Domestication Selection, and Genetic Relationships of Chloroplast Genomes in the Economically Important Crop Genus Gossypium. FRONTIERS IN PLANT SCIENCE 2022; 13:873788. [PMID: 35498673 PMCID: PMC9051515 DOI: 10.3389/fpls.2022.873788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Gossypium hirsutum (upland cotton) is one of the most economically important crops worldwide, which has experienced the long terms of evolution and domestication process from wild species to cultivated accessions. However, nucleotide evolution, domestication selection, and the genetic relationship of cotton species remain largely to be studied. In this study, we used chloroplast genome sequences to determine the evolutionary rate, domestication selection, and genetic relationships of 72 cotton genotypes (36 cultivated cotton accessions, seven semi-wild races of G. hirsutum, and 29 wild species). Evolutionary analysis showed that the cultivated tetraploid cotton genotypes clustered into a single clade, which also formed a larger lineage with the semi-wild races. Substitution rate analysis demonstrated that the rates of nucleotide substitution and indel variation were higher for the wild species than the semi-wild and cultivated tetraploid lineages. Selection pressure analysis showed that the wild species might have experienced greater selection pressure, whereas the cultivated cotton genotypes underwent artificial and domestication selection. Population clustering analysis indicated that the cultivated cotton accessions and semi-wild races have existed the obviously genetic differentiation. The nucleotide diversity was higher in the semi-wild races compared with the cultivated genotypes. In addition, genetic introgression and gene flow occurred between the cultivated tetraploid cotton and semi-wild genotypes, but mainly via historical rather than contemporary gene flow. These results provide novel molecular mechanisms insights into the evolution and domestication of economically important crop cotton species.
Collapse
Affiliation(s)
- Tong Zhou
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Ning Wang
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Yuan Wang
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Xian-Liang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bao-Guo Li
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jun-Ji Su
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Cai-Xiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ai Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiong-Feng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhong-Hu Li
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
36
|
Ojeda-Rivera JO, Ulloa M, Roberts PA, Kottapalli P, Wang C, Nájera-González HR, Payton P, Lopez-Arredondo D, Herrera-Estrella L. Root-Knot Nematode Resistance in Gossypium hirsutum Determined by a Constitutive Defense-Response Transcriptional Program Avoiding a Fitness Penalty. FRONTIERS IN PLANT SCIENCE 2022; 13:858313. [PMID: 35498643 PMCID: PMC9044970 DOI: 10.3389/fpls.2022.858313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Cotton (Gossypium spp.) is the most important renewable source of natural textile fiber and one of the most cultivated crops around the world. Plant-parasitic nematode infestations, such as the southern Root-Knot Nematode (RKN) Meloidogyne incognita, represent a threat to cotton production worldwide. Host-plant resistance is a highly effective strategy to manage RKN; however, the underlying molecular mechanisms of RKN-resistance remain largely unknown. In this study, we harness the differences in RKN-resistance between a susceptible (Acala SJ-2, SJ2), a moderately resistant (Upland Wild Mexico Jack Jones, WMJJ), and a resistant (Acala NemX) cotton entries, to perform genome-wide comparative analysis of the root transcriptional response to M. incognita infection. RNA-seq data suggest that RKN-resistance is determined by a constitutive state of defense transcriptional behavior that prevails in the roots of the NemX cultivar. Gene ontology and protein homology analyses indicate that the root transcriptional landscape in response to RKN-infection is enriched for responses related to jasmonic and salicylic acid, two key phytohormones in plant defense responses. These responses are constitutively activated in NemX and correlate with elevated levels of these two hormones while avoiding a fitness penalty. We show that the expression of cotton genes coding for disease resistance and receptor proteins linked to RKN-resistance and perception in plants, is enhanced in the roots of RKN-resistant NemX. Members of the later gene families, located in the confidence interval of a previously identified QTL associated with RKN resistance, represent promising candidates that might facilitate introduction of RKN-resistance into valuable commercial varieties of cotton. Our study provides novel insights into the molecular mechanisms that underlie RKN resistance in cotton.
Collapse
Affiliation(s)
- Jonathan Odilón Ojeda-Rivera
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Mauricio Ulloa
- USDA-ARS, PA, CSRL, Plant Stress and Germplasm Development Research, Lubbock, TX, United States
| | - Philip A. Roberts
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| | - Pratibha Kottapalli
- USDA-ARS, PA, CSRL, Plant Stress and Germplasm Development Research, Lubbock, TX, United States
| | - Congli Wang
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| | - Héctor-Rogelio Nájera-González
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Paxton Payton
- USDA-ARS, PA, CSRL, Plant Stress and Germplasm Development Research, Lubbock, TX, United States
| | - Damar Lopez-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
- Unidad de Genomica Avanzada/Langebio, Centro de Investigacion y de Estudios Avanzados, Irapuato, Mexico
| |
Collapse
|
37
|
Sharbrough J, Conover JL, Fernandes Gyorfy M, Grover CE, Miller ER, Wendel JF, Sloan DB. Global Patterns of Subgenome Evolution in Organelle-Targeted Genes of Six Allotetraploid Angiosperms. Mol Biol Evol 2022; 39:msac074. [PMID: 35383845 PMCID: PMC9040051 DOI: 10.1093/molbev/msac074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Whole-genome duplications (WGDs) are a prominent process of diversification in eukaryotes. The genetic and evolutionary forces that WGD imposes on cytoplasmic genomes are not well understood, despite the central role that cytonuclear interactions play in eukaryotic function and fitness. Cellular respiration and photosynthesis depend on successful interaction between the 3,000+ nuclear-encoded proteins destined for the mitochondria or plastids and the gene products of cytoplasmic genomes in multi-subunit complexes such as OXPHOS, organellar ribosomes, Photosystems I and II, and Rubisco. Allopolyploids are thus faced with the critical task of coordinating interactions between the nuclear and cytoplasmic genes that were inherited from different species. Because the cytoplasmic genomes share a more recent history of common descent with the maternal nuclear subgenome than the paternal subgenome, evolutionary "mismatches" between the paternal subgenome and the cytoplasmic genomes in allopolyploids might lead to the accelerated rates of evolution in the paternal homoeologs of allopolyploids, either through relaxed purifying selection or strong directional selection to rectify these mismatches. We report evidence from six independently formed allotetraploids that the subgenomes exhibit unequal rates of protein-sequence evolution, but we found no evidence that cytonuclear incompatibilities result in altered evolutionary trajectories of the paternal homoeologs of organelle-targeted genes. The analyses of gene content revealed mixed evidence for whether the organelle-targeted genes are lost more rapidly than the non-organelle-targeted genes. Together, these global analyses provide insights into the complex evolutionary dynamics of allopolyploids, showing that the allopolyploid subgenomes have separate evolutionary trajectories despite sharing the same nucleus, generation time, and ecological context.
Collapse
Affiliation(s)
- Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Justin L. Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Emma R. Miller
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
38
|
Zhao N, Wang W, Grover CE, Jiang K, Pan Z, Guo B, Zhu J, Su Y, Wang M, Nie H, Xiao L, Guo A, Yang J, Cheng C, Ning X, Li B, Xu H, Adjibolosoo D, Aierxi A, Li P, Geng J, Wendel JF, Kong J, Hua J. Genomic and GWAS analyses demonstrate phylogenomic relationships of Gossypium barbadense in China and selection for fibre length, lint percentage and Fusarium wilt resistance. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:691-710. [PMID: 34800075 PMCID: PMC8989498 DOI: 10.1111/pbi.13747] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 05/04/2023]
Abstract
Sea Island cotton (Gossypium barbadense) is the source of the world's finest fibre quality cotton, yet relatively little is understood about genetic variations among diverse germplasms, genes underlying important traits and the effects of pedigree selection. Here, we resequenced 336 G. barbadense accessions and identified 16 million SNPs. Phylogenetic and population structure analyses revealed two major gene pools and a third admixed subgroup derived from geographical dissemination and interbreeding. We conducted a genome-wide association study (GWAS) of 15 traits including fibre quality, yield, disease resistance, maturity and plant architecture. The highest number of associated loci was for fibre quality, followed by disease resistance and yield. Using gene expression analyses and VIGS transgenic experiments, we confirmed the roles of five candidate genes regulating four key traits, that is disease resistance, fibre length, fibre strength and lint percentage. Geographical and temporal considerations demonstrated selection for the superior fibre quality (fibre length and fibre strength), and high lint percentage in improving G. barbadense in China. Pedigree selection breeding increased Fusarium wilt disease resistance and separately improved fibre quality and yield. Our work provides a foundation for understanding genomic variation and selective breeding of Sea Island cotton.
Collapse
Affiliation(s)
- Nan Zhao
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Weiran Wang
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesIAUSA
| | - Kaiyun Jiang
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zhuanxia Pan
- Institute of Cotton ResearchShanxi Agricultural UniversityShanxiChina
| | - Baosheng Guo
- Cotton Research InstituteHebei Academy of Agriculture and Forestry SciencesHebeiChina
| | - Jiahui Zhu
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Ying Su
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Meng Wang
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Hushuai Nie
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Li Xiao
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Anhui Guo
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jing Yang
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Cheng Cheng
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xinmin Ning
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Bin Li
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Haijiang Xu
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Daniel Adjibolosoo
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Alifu Aierxi
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Pengbo Li
- Institute of Cotton ResearchShanxi Agricultural UniversityShanxiChina
| | - Junyi Geng
- Cotton Research InstituteHebei Academy of Agriculture and Forestry SciencesHebeiChina
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesIAUSA
| | - Jie Kong
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Jinping Hua
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
39
|
Features of Chromosome Introgression from Gossypium barbadense L. into G. hirsutum L. during the Development of Alien Substitution Lines. PLANTS 2022; 11:plants11040542. [PMID: 35214875 PMCID: PMC8877206 DOI: 10.3390/plants11040542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 11/30/2022]
Abstract
The creation of G. barbadense L./G. hirsutum L. chromosome-substitution lines is an important method to transfer agronomically valuable traits from G. barbadense into G. hirsutum. In this study, 30 monosomic lines of G. hirsutum from the Cytogenetic Collection of Uzbekistan, created in the genotypic background of line L-458, were used in crosses with the G. barbadense line Pima 3-79 to create substitution lines. In the course of this work, new monosomic lines were identified for chromosome 12 and monotelodisome 6 of the Atsubgenome and for chromosomes 17, 21, and 22 of the Dtsubgenome using chromosome-specific SSR markers and a well-defined tester set of cotton translocation lines (USA). Compared to those in the F1 hybrids, a strong decrease in the crossing and setting rates was found in the BC1F1 backcross lines, with the substitution of chromosomes 2, 4, 6, 7, and 12 of the Atsubgenome and 17, 18, 21, and 22 of the Dtsubgenome. The F1 and BC1F1 offspring from interspecific crosses differed in their transmission of univalents. Despite the regular pairing of chromosomes and the high meiotic index, interspecific aneuploid hybrids were characterized by a decrease in pollen fertility, which may indicate hidden structural variability in these genomes that did not affect meiotic division. The identification of chromosomes using chromosome-specific SSR markers in the early stages of plant development has greatly accelerated the detection of monosomic plants. The analysis of morphobiological traits revealed that monosomic F1 hybrids were more similar to the donor line, while BC1F1 hybrids were more similar to the recurrent parent but also showed previously undetected traits.
Collapse
|
40
|
Genomic interrogation of a MAGIC population highlights genetic factors controlling fiber quality traits in cotton. Commun Biol 2022; 5:60. [PMID: 35039628 PMCID: PMC8764025 DOI: 10.1038/s42003-022-03022-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/21/2021] [Indexed: 02/05/2023] Open
Abstract
Cotton (Gossypium hirsutum L.) fiber is the most important resource of natural and renewable fiber for the textile industry. However, the understanding of genetic components and their genome-wide interactions controlling fiber quality remains fragmentary. Here, we sequenced a multiple-parent advanced-generation inter-cross (MAGIC) population, consisting of 550 individuals created by inter-crossing 11 founders, and established a mosaic genome map through tracing the origin of haplotypes that share identity-by-descent (IBD). We performed two complementary GWAS methods—SNP-based GWAS (sGWAS) and IBD-based haplotype GWAS (hGWAS). A total of 25 sQTLs and 14 hQTLs related to cotton fiber quality were identified, of which 26 were novel QTLs. Two major QTLs detected by both GWAS methods were responsible for fiber strength and length. The gene Ghir_D11G020400 (GhZF14) encoding the MATE efflux family protein was identified as a novel candidate gene for fiber length. Beyond the additive QTLs, we detected prevalent epistatic interactions that contributed to the genetics of fiber quality, pinpointing another layer for trait variance. This study provides new targets for future molecular design breeding of superior fiber quality. Wang and colleagues use a complementary GWAS approach to identify genetic loci associated with cotton fiber quality. Using a multiparent advanced-generation inter-cross population, 26 new QTLs related to cotton fiber quality were found.
Collapse
|
41
|
Development and evaluation of India’s first intraspecific Gossypium barbadense cotton recombinant inbred mapping population for extra-long staple fibre traits. J Genet 2022. [DOI: 10.1007/s12041-021-01338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Wang N, Dong WL, Zhang XJ, Zhou T, Huang XJ, Li BG, Liu JN, Ma XF, Li ZH. Evolutionary characteristics and phylogeny of cotton chloroplast tRNAs. PLANTA 2021; 254:116. [PMID: 34750674 DOI: 10.1007/s00425-021-03775-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
The novel structural variations were identified in cotton chloroplast tRNAs and gene loss events were more obvious than duplications in chloroplast tRNAs. Transfer RNAs (tRNA) have long been believed an evolutionary-conserved molecular family, which play the key roles in the process of protein biosynthesis in plant life activities. In this study, we detected the evolutionary characteristics and phylogeny of chloroplast tRNAs in cotton plants, an economic and fibered important taxon in the world. We firstly annotated the chloroplast tRNAs of 27 Gossypium species to analyze their genetic composition, structural characteristics and evolution. Compared with the traditional view of evolutionary conservation of tRNA, some novel tRNA structural variations were identified in cotton plants. I.g., tRNAVal-UAC and tRNAIle-GAU only contained one intron in the anti-condon loop region of tRNA secondary structure, respectively. In the variable region, some tRNAs contained a circle structure with a few nucleotides. Interestingly, the calculation result of free energy indicated that the variation of novel tRNAs contributed to the stability of tRNA structure. Phylogenetic analysis suggested that chloroplast tRNAs have evolved from multiple common ancestors, and the tRNAMet seemed to be an ancestral tRNA, which can be duplicated and diversified to produce other tRNAs. The chloroplast tRNAs contained a group I intron in cotton plants, and the evolutionary analysis of introns indicated that group I intron of chloroplast tRNA originated from cyanobacteria. Analysis of gene duplication and loss events showed that gene loss events were more obvious than duplications in Gossypium chloroplast tRNAs. Additionally, we found that the rate of transition was higher than the ones of transversion in cotton chloroplast tRNAs. This study provided new insights into the structural characteristics and evolution of chloroplast tRNAs in cotton plants.
Collapse
Affiliation(s)
- Ning Wang
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Wan-Lin Dong
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xiao-Jing Zhang
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Tong Zhou
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xiao-Juan Huang
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Bao-Guo Li
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jian-Ni Liu
- State Key Laboratory of Continental Dynamics, Department of Geology, Early Life Institute, Northwest University, Xi'an, 710069, China
| | - Xiong-Feng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhong-Hu Li
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
43
|
Lima LFD, Oliveira JOD, Carneiro JNP, Lima CNF, Coutinho HDM, Morais-Braga MFB. Ethnobotanical and antimicrobial activities of the Gossypium (Cotton) genus: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114363. [PMID: 34216726 DOI: 10.1016/j.jep.2021.114363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Malvaceae family, an important group of plants that have the Gossypium (cotton) genus has been used in folk medicine to treat microbial diseases and symptoms. AIMS OF THE STUDY This article aims to understand its ethnobotany expression in communities and scientific elucidation of antimicrobial activities of this genus through literature review. MATERIALS AND METHODS The bibliographic survey was carried out from 1999 to 2019 with keywords combinations such as "Gossypium + ethnobotanical", " Gossypium + medicinal ", "Gossypium + the biological activity" in scientific databases as Pubmed, Scopus, Web of Science, DOAJ, Scielo, Bireme. RESULTS After data analysis, we found that the Gossypium genus, specifically Gossypium hirsutum, G. barbadense, G. herbaceum, G. arboreum are the species most cited in the treatment of microbial diseases and symptoms in communities all over the world. In light of scientific elucidation of biological activities, the Gossypium genus has been used to treat protozoal, bacterial, fungal, and viral diseases. CONCLUSIONS The review demonstrated that the Gossypium genus is a promising source of biological activities against microbial diseases, especially in the treatment of protozoal diseases like malaria.
Collapse
|
44
|
Ma C, Zhang Q, Lv J, Qiao K, Fan S, Ma Q, Zhang C. Genome-Wide Analysis of the Phospholipase D Family in Five Cotton Species, and Potential Role of GhPLD2 in Fiber Development and Anther Dehiscence. FRONTIERS IN PLANT SCIENCE 2021; 12:728025. [PMID: 34659294 PMCID: PMC8517146 DOI: 10.3389/fpls.2021.728025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/08/2021] [Indexed: 05/27/2023]
Abstract
Phospholipase D (PLD) and its hydrolysis product phosphatidic acid play an important role in the regulation of several cellular processes, including root growth, pollen tube elongation, and microtubule reorganization. Here, we systematically identified and analyzed the membership, characterization, and evolutionary relationship of PLDs in five species of cotton. The results of the transcriptomic analysis suggested that the evaluated PLD genes showed high expression levels in anther tissue and during the fiber initiation and elongation periods. Quantitative real-time polymerase chain reaction showed differential expression of GhPLD genes in the anthers of photoperiod sensitive male sterility mutant 5 (psm5). Previous research on multiple stable quantitative trait loci also suggests the role of PLD genes in the fiber development. Further analyses showed that GhPLD2 protein is localized to the plasma membrane. The virus-induced gene silencing of GhPLD2 in cotton seedlings repressed its expression by 40-70%, which led to a reduction in reactive oxygen species (ROS) levels, 22% anther indehiscence, and disrupted fiber initiation and elongation. Thus, we inferred that GhPLD2 may promote ROS production, which, in turn, may regulate anther dehiscence and fiber development.
Collapse
Affiliation(s)
- Changkai Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Qian Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jiaoyan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Kaikai Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Chaojun Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| |
Collapse
|
45
|
Genome-Wide Identification and Functional Investigation of 1-Aminocyclopropane-1-carboxylic Acid Oxidase ( ACO) Genes in Cotton. PLANTS 2021; 10:plants10081699. [PMID: 34451744 PMCID: PMC8402218 DOI: 10.3390/plants10081699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 12/02/2022]
Abstract
ACO is one of the rate-limiting enzymes in the biosynthesis of ethylene, and it plays a critical role in the regulation of plant growth and development. However, the function of ACO genes in cotton is not well studied. In this study, a total of 332 GhACOs, 187 GaACOs, and 181 GrACOs were identified in G. hirsutum, G. arboretum, and G. raimondii, respectively. Gene duplication analysis showed that whole-genome duplication (WGD) and tandem duplication were the major forces driving the generation of cotton ACO genes. In the promoters of GhACOs, there were cis-acting elements responding to stress, phytohormones, light, and circadian factors, indicating the possible involvement of GhACOs in these processes. Expression and co-expression analyses illustrated that most GhACOs were not only widely expressed in various tissues but also coexpressed with other genes in response to salt and drought stress. GhACO106_At overexpression in Arabidopsis promoted flowering and increased salt tolerance. These results provide a comprehensive overview of the ACO genes of cotton and lay the foundation for subsequent functional studies of these genes.
Collapse
|
46
|
Tao X, Li M, Zhao T, Feng S, Zhang H, Wang L, Han J, Gao M, Lu K, Chen Q, Zhou B, Guan X. Neofunctionalization of a polyploidization-activated cotton long intergenic non-coding RNA DAN1 during drought stress regulation. PLANT PHYSIOLOGY 2021; 186:2152-2168. [PMID: 33871645 PMCID: PMC8331171 DOI: 10.1093/plphys/kiab179] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/31/2021] [Indexed: 05/26/2023]
Abstract
The genomic shock of whole-genome duplication (WGD) and hybridization introduces great variation into transcriptomes, for both coding and noncoding genes. An altered transcriptome provides a molecular basis for improving adaptation during the evolution of new species. The allotetraploid cotton, together with the putative diploid ancestor species compose a fine model for study the rapid gene neofunctionalization over the genome shock. Here we report on Drought-Associated Non-coding gene 1 (DAN1), a long intergenic noncoding RNA (lincRNA) that arose from the cotton progenitor A-diploid genome after hybridization and WGD events during cotton evolution. DAN1 in allotetraploid upland cotton (Gossypium hirsutum) is a drought-responsive lincRNA predominantly expressed in the nucleoplasm. Chromatin isolation by RNA purification profiling and electrophoretic mobility shift assay analysis demonstrated that GhDAN1 RNA can bind with DNA fragments containing AAAG motifs, similar to DNA binding with one zinc finger transcription factor binding sequences. The suppression of GhDAN1 mainly regulates genes with AAAG motifs in auxin-response pathways, which are associated with drought stress regulation. As a result, GhDAN1-silenced plants exhibit improved tolerance to drought stress. This phenotype resembles the drought-tolerant phenotype of the A-diploid cotton ancestor species, which has an undetectable expression of DAN1. The role of DAN1 in cotton evolution and drought tolerance regulation suggests that the genomic shock of interspecific hybridization and WGD stimulated neofunctionalization of non-coding genes during the natural evolutionary process.
Collapse
Affiliation(s)
- Xiaoyuan Tao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Menglin Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shouli Feng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hailin Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Luyao Wang
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Center of Ministry of Cotton Education, Urumqi 830052, China
| | - Jin Han
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengtao Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kening Lu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanjia Chen
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Center of Ministry of Cotton Education, Urumqi 830052, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueying Guan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
47
|
Wang M, Li J, Wang P, Liu F, Liu Z, Zhao G, Xu Z, Pei L, Grover CE, Wendel JF, Wang K, Zhang X. Comparative genome analyses highlight transposon-mediated genome expansion and the evolutionary architecture of 3D genomic folding in cotton. Mol Biol Evol 2021; 38:3621-3636. [PMID: 33973633 PMCID: PMC8382922 DOI: 10.1093/molbev/msab128] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Transposable element (TE) amplification has been recognized as a driving force mediating genome size expansion and evolution, but the consequences for shaping 3D genomic architecture remains largely unknown in plants. Here, we report reference-grade genome assemblies for three species of cotton ranging 3-fold in genome size, namely Gossypium rotundifolium (K2), G. arboreum (A2), and G. raimondii (D5), using Oxford Nanopore Technologies. Comparative genome analyses document the details of lineage-specific TE amplification contributing to the large genome size differences (K2, 2.44 Gb; A2, 1.62 Gb; D5, 750.19 Mb) and indicate relatively conserved gene content and synteny relationships among genomes. We found that approximately 17% of syntenic genes exhibit chromatin status change between active (“A”) and inactive (“B”) compartments, and TE amplification was associated with the increase of the proportion of A compartment in gene regions (∼7,000 genes) in K2 and A2 relative to D5. Only 42% of topologically associating domain (TAD) boundaries were conserved among the three genomes. Our data implicate recent amplification of TEs following the formation of lineage-specific TAD boundaries. This study sheds light on the role of transposon-mediated genome expansion in the evolution of higher-order chromatin structure in plants.
Collapse
Affiliation(s)
- Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Guannan Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Liuling Pei
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
48
|
Yuan D, Grover CE, Hu G, Pan M, Miller ER, Conover JL, Hunt SP, Udall JA, Wendel JF. Parallel and Intertwining Threads of Domestication in Allopolyploid Cotton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003634. [PMID: 34026441 PMCID: PMC8132148 DOI: 10.1002/advs.202003634] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/02/2021] [Indexed: 05/09/2023]
Abstract
The two cultivated allopolyploid cottons, Gossypium hirsutum and Gossypium barbadense, represent a remarkable example of parallel independent domestication, both involving dramatic morphological transformations under selection from wild perennial plants to annualized row crops. Deep resequencing of 643 newly sampled accessions spanning the wild-to-domesticated continuum of both species, and their allopolyploid relatives, are combined with existing data to resolve species relationships and elucidate multiple aspects of their parallel domestication. It is confirmed that wild G. hirsutum and G. barbadense were initially domesticated in the Yucatan Peninsula and NW South America, respectively, and subsequently spread under domestication over 4000-8000 years to encompass most of the American tropics. A robust phylogenomic analysis of infraspecific relationships in each species is presented, quantify genetic diversity in both, and describe genetic bottlenecks associated with domestication and subsequent diffusion. As these species became sympatric over the last several millennia, pervasive genome-wide bidirectional introgression occurred, often with striking asymmetries involving the two co-resident genomes of these allopolyploids. Diversity scans revealed genomic regions and genes unknowingly targeted during domestication and additional subgenomic asymmetries. These analyses provide a comprehensive depiction of the origin, divergence, and adaptation of cotton, and serve as a rich resource for cotton improvement.
Collapse
Affiliation(s)
- Daojun Yuan
- Department of EcologyEvolution, and Organismal Biology (EEOB)Bessey HallIowa State UniversityAmesIA50011USA
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070China
| | - Corrinne E. Grover
- Department of EcologyEvolution, and Organismal Biology (EEOB)Bessey HallIowa State UniversityAmesIA50011USA
| | - Guanjing Hu
- Department of EcologyEvolution, and Organismal Biology (EEOB)Bessey HallIowa State UniversityAmesIA50011USA
| | - Mengqiao Pan
- State Key Laboratory of Crop Genetics and Germplasm EnhancementCotton Hybrid R & D Engineering CenterNanjing Agricultural UniversityNanjing210095China
| | - Emma R. Miller
- Department of EcologyEvolution, and Organismal Biology (EEOB)Bessey HallIowa State UniversityAmesIA50011USA
| | - Justin L. Conover
- Department of EcologyEvolution, and Organismal Biology (EEOB)Bessey HallIowa State UniversityAmesIA50011USA
| | | | - Joshua A. Udall
- Crop Germplasm Research UnitUSDA‐ARSCollege StationTX77845USA
| | - Jonathan F. Wendel
- Department of EcologyEvolution, and Organismal Biology (EEOB)Bessey HallIowa State UniversityAmesIA50011USA
| |
Collapse
|
49
|
Conservation and Divergence in Duplicated Fiber Coexpression Networks Accompanying Domestication of the Polyploid Gossypium hirsutum L. G3-GENES GENOMES GENETICS 2020; 10:2879-2892. [PMID: 32586849 PMCID: PMC7407458 DOI: 10.1534/g3.120.401362] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gossypium hirsutum L. (Upland cotton) has an evolutionary history involving inter-genomic hybridization, polyploidization, and subsequent domestication. We analyzed the developmental dynamics of the cotton fiber transcriptome accompanying domestication using gene coexpression networks for both joint and homoeologous networks. Remarkably, most genes exhibited expression for at least one homoeolog, confirming previous reports of widespread gene usage in cotton fibers. Most coexpression modules comprising the joint network are preserved in each subgenomic network and are enriched for similar biological processes, showing a general preservation of network modular structure for the two co-resident genomes in the polyploid. Interestingly, only one fifth of homoeologs co-occur in the same module when separated, despite similar modular structures between the joint and homoeologous networks. These results suggest that the genome-wide divergence between homoeologous genes is sufficient to separate their co-expression profiles at the intermodular level, despite conservation of intramodular relationships within each subgenome. Most modules exhibit D-homoeolog expression bias, although specific modules do exhibit A-homoeolog bias. Comparisons between wild and domesticated coexpression networks revealed a much tighter and denser network structure in domesticated fiber, as evidenced by its fewer modules, 13-fold increase in the number of development-related module member genes, and the poor preservation of the wild network topology. These results demonstrate the amazing complexity that underlies the domestication of cotton fiber.
Collapse
|
50
|
Ding M, Cao Y, He S, Sun J, Dai H, Zhang H, Sun C, Jiang Y, Paterson AH, Rong J. GaHD1, a candidate gene for the Gossypium arboreum SMA-4 mutant, promotes trichome and fiber initiation by cellular H 2O 2 and Ca 2+ signals. PLANT MOLECULAR BIOLOGY 2020; 103:409-423. [PMID: 32189187 DOI: 10.1007/s11103-020-01000-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Cotton fibers are initiated from the epidermal cells of the ovule before or on the day of anthesis. Gossypium arboreum SMA-4 mutant contains recessive mutation (sma-4(ha)) and has the phenotypes of fibreless seeds and glabrous stems. In this study, fine mapping and alternative splicing analysis indicated a nucleotide substitution (AG → AC) at splicing site in a homeodomain-leucine zipper IV family gene (GaHD1) might cause gene A3S (Alternative 3' splicing) mistake, suggested that GaHD1 was the candidate gene of sma-4(ha). Many genes related to the fiber initiation are identified to be differentially expressed in the mutant which could result in the blocked fiber initiation signals such as H2O2, or Ca in the mutant. Further comparative physiological analysis of H2O2 production and Ca2+ flux in the SMA-4 and wide type cotton confirmed that H2O2 and Ca were important fiber initiation signals and regulated by GaHD1. The in vitro ovule culture of the mutant with hormones recovered the fibered phenotype coupled with the restoration of these signals. Overexpressing of GaHD1 in Arabidopsis increased trichome densities on the sepal, leaf, and stem tissues while transient silencing of the GaHD1 gene in G. arboreum reduced the trichome densities. These phenotypes indicated that GaHD1 is the candidate gene of SMA-4 with a crucial role in acting upstream molecular switch of signal transductions for cotton trichome and fiber initiations.
Collapse
Affiliation(s)
- Mingquan Ding
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Yuefen Cao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Shae He
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jian Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Huaqin Dai
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Hua Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Chendong Sun
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Yurong Jiang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Junkang Rong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|