1
|
Kobeissi H, Jilberto J, Karakan MÇ, Gao X, DePalma SJ, Das SL, Quach L, Urquia J, Baker BM, Chen CS, Nordsletten D, Lejeune E. MicroBundleCompute: Automated segmentation, tracking, and analysis of subdomain deformation in cardiac microbundles. PLoS One 2024; 19:e0298863. [PMID: 38530829 DOI: 10.1371/journal.pone.0298863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/01/2024] [Indexed: 03/28/2024] Open
Abstract
Advancing human induced pluripotent stem cell derived cardiomyocyte (hiPSC-CM) technology will lead to significant progress ranging from disease modeling, to drug discovery, to regenerative tissue engineering. Yet, alongside these potential opportunities comes a critical challenge: attaining mature hiPSC-CM tissues. At present, there are multiple techniques to promote maturity of hiPSC-CMs including physical platforms and cell culture protocols. However, when it comes to making quantitative comparisons of functional behavior, there are limited options for reliably and reproducibly computing functional metrics that are suitable for direct cross-system comparison. In addition, the current standard functional metrics obtained from time-lapse images of cardiac microbundle contraction reported in the field (i.e., post forces, average tissue stress) do not take full advantage of the available information present in these data (i.e., full-field tissue displacements and strains). Thus, we present "MicroBundleCompute," a computational framework for automatic quantification of morphology-based mechanical metrics from movies of cardiac microbundles. Briefly, this computational framework offers tools for automatic tissue segmentation, tracking, and analysis of brightfield and phase contrast movies of beating cardiac microbundles. It is straightforward to implement, runs without user intervention, requires minimal input parameter setting selection, and is computationally inexpensive. In this paper, we describe the methods underlying this computational framework, show the results of our extensive validation studies, and demonstrate the utility of exploring heterogeneous tissue deformations and strains as functional metrics. With this manuscript, we disseminate "MicroBundleCompute" as an open-source computational tool with the aim of making automated quantitative analysis of beating cardiac microbundles more accessible to the community.
Collapse
Affiliation(s)
- Hiba Kobeissi
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States of America
| | - Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - M Çağatay Karakan
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
- Photonics Center, Boston University, Boston, MA, United States of America
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Shoshana L Das
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Lani Quach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Jonathan Urquia
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, United States of America
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - David Nordsletten
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's Health Partners, King's College London, King's Health Partners, London, United Kingdom
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States of America
| |
Collapse
|
2
|
Coplanar embedding of multiple 3D cell models in hydrogel towards high-throughput micro-histology. Sci Rep 2022; 12:9991. [PMID: 35705590 PMCID: PMC9200833 DOI: 10.1038/s41598-022-13987-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Standardised and high-throughput methods have been developed for the production and experimental handling of some 3D in vitro models. However, adapted analytical tools are still missing for scientists and researchers to fully exploit the potential of complex cellular models in pre-clinical drug testing and precision medicine. Histology is the established, cost-effective and gold standard method for structural and functional tissue analysis. However, standard histological processes are challenging and costly to apply to 3D cell models, as their small size often leads to poor alignment of samples, which lowers analysis throughput. This body of work proposes a new approach: HistoBrick facilitates histological processing of spheroids and organoids by enabling gel embedding of 3D cell models with precise coplanar alignment, parallel to the sectioning plane, thus minimising the loss of sample material. HistoBrick’s features are compatible with automation standards, potentially allowing automated sample transfer from a multi-well plate to the gel device. Moreover, HistoBrick’s technology was validated by demonstrating the alignment of HepG2 cultured spheroids measuring 150–200 µm in diameter with a height precision of ± 80 µm. HistoBrick allows up to 96 samples to be studied across minimal sections, paving the way towards high-throughput micro-histology.
Collapse
|
3
|
Three-Dimensional Culture of Rhipicephalus ( Boophilus) microplus BmVIII-SCC Cells on Multiple Synthetic Scaffold Systems and in Rotating Bioreactors. INSECTS 2021; 12:insects12080747. [PMID: 34442313 PMCID: PMC8396921 DOI: 10.3390/insects12080747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022]
Abstract
Tick cell culture facilitates research on the biology of ticks and their role as vectors of pathogens that affect humans, domestic animals, and wildlife. Because two-dimensional cell culture doesn't promote the development of multicellular tissue-like composites, we hypothesized that culturing tick cells in a three-dimensional (3-D) configuration would form spheroids or tissue-like organoids. In this study, the cell line BmVIII-SCC obtained from the cattle fever tick, Rhipicephalus (Boophilus) microplus (Canestrini, 1888), was cultured in different synthetic scaffold systems. Growth of the tick cells on macrogelatinous beads in rotating continuous culture system bioreactors enabled cellular attachment, organization, and development into spheroid-like aggregates, with evidence of tight cellular junctions between adjacent cells and secretion of an extracellular matrix. At least three cell morphologies were identified within the aggregates: fibroblast-like cells, small endothelial-like cells, and larger cells exhibiting multiple cytoplasmic endosomes and granular vesicles. These observations suggest that BmVIII-SCC cells adapted to 3-D culture retain pluripotency. Additional studies involving genomic analyses are needed to determine if BmVIII-SCC cells in 3-D culture mimic tick organs. Applications of 3-D culture to cattle fever tick research are discussed.
Collapse
|
4
|
Akarapipad P, Kaarj K, Liang Y, Yoon JY. Environmental Toxicology Assays Using Organ-on-Chip. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:155-183. [PMID: 33974806 DOI: 10.1146/annurev-anchem-091620-091335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Adverse effects of environmental toxicants to human health have traditionally been assayed using in vitro assays. Organ-on-chip (OOC) is a new platform that can bridge the gaps between in vitro assays (or 3D cell culture) and animal tests. Microenvironments, physical and biochemical stimuli, and adequate sensing and biosensing systems can be integrated into OOC devices to better recapitulate the in vivo tissue and organ behavior and metabolism. While OOCs have extensively been studied for drug toxicity screening, their implementation in environmental toxicology assays is minimal and has limitations. In this review, recent attempts of environmental toxicology assays using OOCs, including multiple-organs-on-chip, are summarized and compared with OOC-based drug toxicity screening. Requirements for further improvements are identified and potential solutions are suggested.
Collapse
Affiliation(s)
- Patarajarin Akarapipad
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA;
| | - Kattika Kaarj
- Department of Biosystems Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - Yan Liang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA;
- Department of Biosystems Engineering, University of Arizona, Tucson, Arizona 85721, USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
5
|
Al-Hity G, Yang F, Campillo-Funollet E, Greenstein AE, Hunt H, Mampay M, Intabli H, Falcinelli M, Madzvamuse A, Venkataraman C, Flint MS. An integrated framework for quantifying immune-tumour interactions in a 3D co-culture model. Commun Biol 2021; 4:781. [PMID: 34168276 PMCID: PMC8225809 DOI: 10.1038/s42003-021-02296-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Investigational in vitro models that reflect the complexity of the interaction between the immune system and tumours are limited and difficult to establish. Herein, we present a platform to study the tumour-immune interaction using a co-culture between cancer spheroids and activated immune cells. An algorithm was developed for analysis of confocal images of the co-culture to evaluate the following quantitatively; immune cell infiltration, spheroid roundness and spheroid growth. As a proof of concept, the effect of the glucocorticoid stress hormone, cortisol was tested on 66CL4 co-culture model. Results were comparable to 66CL4 syngeneic in vivo mouse model undergoing psychological stress. Furthermore, administration of glucocorticoid receptor antagonists demonstrated the use of this model to determine the effect of treatments on the immune-tumour interplay. In conclusion, we provide a method of quantifying the interaction between the immune system and cancer, which can become a screening tool in immunotherapy design.
Collapse
Affiliation(s)
- Gheed Al-Hity
- School of Pharmacy and Biomolecular sciences, University of Brighton, Centre for Stress and Age-related Diseases, Moulsecoomb, Brighton, BN2, 4GJ, UK
| | - FengWei Yang
- Department of Chemical and Process Engineering, University of Surrey, Surrey, UK
| | | | - Andrew E Greenstein
- Corcept Therapeutics, 149 Commonwealth Drive, Menlo Park, California, 94025, United States
| | - Hazel Hunt
- Corcept Therapeutics, 149 Commonwealth Drive, Menlo Park, California, 94025, United States
| | - Myrthe Mampay
- School of Pharmacy and Biomolecular sciences, University of Brighton, Centre for Stress and Age-related Diseases, Moulsecoomb, Brighton, BN2, 4GJ, UK
| | - Haya Intabli
- School of Pharmacy and Biomolecular sciences, University of Brighton, Centre for Stress and Age-related Diseases, Moulsecoomb, Brighton, BN2, 4GJ, UK
| | - Marta Falcinelli
- School of Pharmacy and Biomolecular sciences, University of Brighton, Centre for Stress and Age-related Diseases, Moulsecoomb, Brighton, BN2, 4GJ, UK
| | - Anotida Madzvamuse
- School of Mathematical and Physical Sciences, University of Sussex, Department of Mathematics, Falmer, Brighton, BN1 9QH, UK.
| | - Chandrasekhar Venkataraman
- School of Mathematical and Physical Sciences, University of Sussex, Department of Mathematics, Falmer, Brighton, BN1 9QH, UK.
| | - Melanie S Flint
- School of Pharmacy and Biomolecular sciences, University of Brighton, Centre for Stress and Age-related Diseases, Moulsecoomb, Brighton, BN2, 4GJ, UK.
| |
Collapse
|
6
|
Susaki EA, Takasato M. Perspective: Extending the Utility of Three-Dimensional Organoids by Tissue Clearing Technologies. Front Cell Dev Biol 2021; 9:679226. [PMID: 34195197 PMCID: PMC8236633 DOI: 10.3389/fcell.2021.679226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 01/06/2023] Open
Abstract
An organoid, a self-organizing organ-like tissue developed from stem cells, can exhibit a miniaturized three-dimensional (3D) structure and part of the physiological functions of the original organ. Due to the reproducibility of tissue complexity and ease of handling, organoids have replaced real organs and animals for a variety of uses, such as investigations of the mechanisms of organogenesis and disease onset, and screening of drug effects and/or toxicity. The recent advent of tissue clearing and 3D imaging techniques have great potential contributions to organoid studies by allowing the collection and analysis of 3D images of whole organoids with a reasonable throughput and thus can expand the means of examining the 3D architecture, cellular components, and variability among organoids. Genetic and histological cell-labeling methods, together with organoid clearing, also allow visualization of critical structures and cellular components within organoids. The collected 3D data may enable image analysis to quantitatively assess structures within organoids and sensitively/effectively detect abnormalities caused by perturbations. These capabilities of tissue/organoid clearing and 3D imaging techniques not only extend the utility of organoids in basic biology but can also be applied for quality control of clinical organoid production and large-scale drug screening.
Collapse
Affiliation(s)
- Etsuo A. Susaki
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Minoru Takasato
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Hiramoto K, Ino K, Komatsu K, Nashimoto Y, Shiku H. Electrochemiluminescence imaging of respiratory activity of cellular spheroids using sequential potential steps. Biosens Bioelectron 2021; 181:113123. [PMID: 33714859 DOI: 10.1016/j.bios.2021.113123] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/29/2022]
Abstract
The respiratory activity of cultured cells can be electrochemically monitored using scanning electrochemical microscopy (SECM) with high spatial resolution. However, in SECM, the electrode takes a long time to scan, limiting simultaneous measurements with large biological samples such as cell spheroids. Therefore, for rapid electrochemical imaging, a novel strategy is needed. Herein, we report electrochemiluminescence (ECL) imaging of spheroid respiratory activity for the first time using sequential potential steps. L-012, a luminol analog, was used as an ECL luminophore, and H2O2, a sensitizer for ECL of L-012, was generated by the electrochemical reduction of dissolved O2. The ECL imaging visualized spheroid respiratory activity-evidenced by ECL suppression-corresponding to O2 distribution around the spheroids. This method enabled the time-lapse imaging of respiratory activity in multiple spheroids with good spatial resolution comparable to that of SECM. Our work provides a promising high-throughput imaging strategy for elucidating spheroid cellular dynamics.
Collapse
Affiliation(s)
- Kaoru Hiramoto
- Graduate School of Environmental Studies, Tohoku University, Japan
| | - Kosuke Ino
- Graduate School of Engineering, Tohoku University, Japan.
| | - Keika Komatsu
- Graduate School of Environmental Studies, Tohoku University, Japan
| | - Yuji Nashimoto
- Graduate School of Engineering, Tohoku University, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Japan.
| |
Collapse
|
8
|
Influence of ClearT and ClearT2 Agitation Conditions in the Fluorescence Imaging of 3D Spheroids. Int J Mol Sci 2020; 22:ijms22010266. [PMID: 33383886 PMCID: PMC7796078 DOI: 10.3390/ijms22010266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 11/16/2022] Open
Abstract
3D tumor spheroids have arisen in the last years as potent tools for the in vitro screening of novel anticancer therapeutics. Nevertheless, to increase the reproducibility and predictability of the data originated from the spheroids it is still necessary to develop or optimize the techniques used for spheroids’ physical and biomolecular characterization. Fluorescence microscopy, such as confocal laser scanning microscopy (CLSM), is a tool commonly used by researchers to characterize spheroids structure and the antitumoral effect of novel therapeutics. However, its application in spheroids’ analysis is hindered by the limited light penetration in thick samples. For this purpose, optical clearing solutions have been explored to increase the spheroids’ transparency by reducing the light scattering. In this study, the influence of agitation conditions (i.e., static, horizontal agitation, and rotatory agitation) on the ClearT and ClearT2 methods’ clearing efficacy and tumor spheroids’ imaging by CLSM was characterized. The obtained results demonstrate that the ClearT method results in the improved imaging of the spheroids interior, whereas the ClearT2 resulted in an increased propidium iodide mean fluorescence intensity as well as a higher signal depth in the Z-axis. Additionally, for both methods, the best clearing results were obtained for the spheroids treated under the rotatory agitation. In general, this work provides new insights on the ClearT and ClearT2 clearing methodologies and their utilization for improving the reproducibility of the data obtained through the CLSM, such as the analysis of the cell death in response to therapeutics administration.
Collapse
|
9
|
Oh MS, Khawar IA, Lee DW, Park JK, Kuh HJ. Three-Dimensional Imaging for Multiplex Phenotypic Analysis of Pancreatic Microtumors Grown on a Minipillar Array Chip. Cancers (Basel) 2020; 12:E3662. [PMID: 33297288 PMCID: PMC7762293 DOI: 10.3390/cancers12123662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) culture of tumor spheroids (TSs) within the extracellular matrix (ECM) represents a microtumor model that recapitulates human solid tumors in vivo, and is useful for 3D multiplex phenotypic analysis. However, the low efficiency of 3D culture and limited 3D visualization of microtumor specimens impose technical hurdles for the evaluation of TS-based phenotypic analysis. Here, we report a 3D microtumor culture-to-3D visualization system using a minipillar array chip combined with a tissue optical clearing (TOC) method for high-content phenotypic analysis of microtumors. To prove the utility of this method, phenotypic changes in TSs of human pancreatic cancer cells were determined by co-culture with cancer-associated fibroblasts and M2-type tumor-associated macrophages. Significant improvement was achieved in immunostaining and optical transmission in each TS as well as the entire microtumor specimen, enabling optimization in image-based analysis of the morphology, structural organization, and protein expression in cancer cells and the ECM. Changes in the invasive phenotype, including cellular morphology and expression of epithelial-mesenchymal transition-related proteins and drug-induced apoptosis under stromal cell co-culture were also successfully analyzed. Overall, our study demonstrates that a minipillar array chip combined with TOC offers a novel system for 3D culture-to-3D visualization of microtumors to facilitate high-content phenotypic analysis.
Collapse
Affiliation(s)
- Min-Suk Oh
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea;
| | - Iftikhar Ali Khawar
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Department of Urology, Samsung Advanced Institute of Health Science and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Korea
| | - Dong Woo Lee
- Departments of Biomedical Engineering, Konyang University, Daejeon 35365, Korea;
| | - Jong Kook Park
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - Hyo-Jeong Kuh
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea;
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
10
|
Ndyabawe K, Haidekker M, Asthana A, Kisaalita WS. Spheroid Trapping and Calcium Spike Estimation Techniques toward Automation of 3D Culture. SLAS Technol 2020; 26:265-273. [PMID: 32672140 DOI: 10.1177/2472630320938319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present a spheroid trapping device, compatible with traditional tissue culture plates, to confine microtissues in a small area and allow suspension cultures to be treated like adherent cultures with minimal loss of spheroids due to aspiration. We also illustrate an automated morphology-independent procedure for cell recognition, segmentation, and a calcium spike detection technique for high-throughput analysis in 3D cultured tissue. Our cell recognition technique uses a maximum intensity projection of spatial-temporal data to create a binary mask, which delineates individual cell boundaries and extracts mean fluorescent data for each cell through a series of intensity thresholding and cluster labeling operations. The temporal data are subject to sorting for imaging artifacts, baseline correction, smoothing, and spike detection algorithms. We validated this procedure through analysis of calcium data from 2D and 3D SHSY-5Y cell cultures. Using this approach, we rapidly created regions of interest (ROIs) and extracted fluorescent intensity data from hundreds of cells in the field of view with superior data fidelity over hand-drawn ROIs even in dense (3D tissue) cell populations. We sorted data from cells with imaging artifacts (such as photo bleaching and dye saturation), classified nonfiring and firing cells, estimated the number of spikes in each cell, and documented the results, facilitating large-scale calcium imaging analysis in both 2D and 3D cultures. Since our recognition and segmentation technique is independent of morphology, our protocol provides a versatile platform for the analysis of large confocal calcium imaging data from neuronal cells, glial cells, and other cell types.
Collapse
Affiliation(s)
- Kenneth Ndyabawe
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA, USA
| | - Mark Haidekker
- School of Electrical and Computer Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA, USA
| | - Amish Asthana
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA, USA
| | - William S Kisaalita
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
11
|
Johnson J, Sharick JT, Skala MC, Li L. Sample preparation strategies for high-throughput mass spectrometry imaging of primary tumor organoids. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4452. [PMID: 31661714 PMCID: PMC7254934 DOI: 10.1002/jms.4452] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 05/04/2023]
Abstract
Patient-derived 3D organoids show great promise for understanding patient heterogeneity and chemotherapy response in human-derived tissue. The combination of organoid culture techniques with mass spectrometry imaging provides a label-free methodology for characterizing drug penetration, patient-specific response, and drug biotransformation. However, current methods used to grow tumor organoids employ extracellular matrices that can produce small molecule background signal during mass spectrometry imaging analysis. Here, we develop a method to isolate 3D human tumor organoids out of a Matrigel extracellular matrix into gelatin mass spectrometry compatible microarrays for high-throughput mass spectrometry imaging analysis. The alignment of multiple organoids in the same z-axis is essential for sectioning organoids together and for maintaining reproducible sample preparation on a single glass slide for up to hundreds of organoids. This method successfully removes organoids from extracellular matrix interference and provides an organized array for high-throughput imaging analysis to easily identify organoids by eye for area selection and further analysis. With this method, mass spectrometry imaging can be readily applied to organoid systems for preclinical drug development and personalized medicine research initiatives.
Collapse
Affiliation(s)
- Jillian Johnson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Melissa C. Skala
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- To whom correspondence should be addressed: Lingjun Li (), Phone: 608-265-8491, Fax: 608-262-5345
| |
Collapse
|
12
|
Trigub ММ, Filatova NV, Areshidze DА, Sen' VD, Terentiev АА. Comparison of the Effect of Platinum (IV) Complexes on Spheroids and Monolayer Culture of HeLa Cells. Bull Exp Biol Med 2020; 168:583-588. [PMID: 32152850 DOI: 10.1007/s10517-020-04757-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Indexed: 11/29/2022]
Abstract
We performed a comparative study of the cytotoxicity of cisplatin, JM216 complex, and aminonitroxyl platinum(IV) complexes for HeLa cells grown in monolayer and 3D culture. The growth dynamics of spheroids was studied and optimal conditions for evaluation of cytotoxicity were determined. Spheroids were less sensitive to the test compounds than cells in a monolayer. The resistance index (RI) of spheroids was determined as the ratio of IC50 for spheroids to IC50 for monolayer culture. Resistance index was 5.0±1.5 for cisplatin and ranged from 1.8 to 2.3 for platinum(IV) complexes. The observed differences are related to different physicochemical properties of the complexes and different mechanisms of their penetration into cells.
Collapse
Affiliation(s)
- М М Trigub
- Institute of Problems of Chemical Physics, Russian Academy of Science, Chernogolovka, Moscow, Russia. .,Scientific and Educational Center of the Moscow State Regional University in Chernogolovka, Mytishchi, Moscow, Russia.
| | - N V Filatova
- Institute of Problems of Chemical Physics, Russian Academy of Science, Chernogolovka, Moscow, Russia.,Scientific and Educational Center of the Moscow State Regional University in Chernogolovka, Mytishchi, Moscow, Russia
| | - D А Areshidze
- Institute of Problems of Chemical Physics, Russian Academy of Science, Chernogolovka, Moscow, Russia.,Scientific and Educational Center of the Moscow State Regional University in Chernogolovka, Mytishchi, Moscow, Russia.,M. V. Lomonosov Moscow State University, Moscow, Russia
| | - V D Sen'
- Institute of Problems of Chemical Physics, Russian Academy of Science, Chernogolovka, Moscow, Russia
| | - А А Terentiev
- Institute of Problems of Chemical Physics, Russian Academy of Science, Chernogolovka, Moscow, Russia.,Scientific and Educational Center of the Moscow State Regional University in Chernogolovka, Mytishchi, Moscow, Russia.,M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
13
|
Nürnberg E, Vitacolonna M, Klicks J, von Molitor E, Cesetti T, Keller F, Bruch R, Ertongur-Fauth T, Riedel K, Scholz P, Lau T, Schneider R, Meier J, Hafner M, Rudolf R. Routine Optical Clearing of 3D-Cell Cultures: Simplicity Forward. Front Mol Biosci 2020; 7:20. [PMID: 32154265 PMCID: PMC7046628 DOI: 10.3389/fmolb.2020.00020] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Three-dimensional cell cultures, such as spheroids and organoids, serve as increasingly important models in fundamental and applied research and start to be used for drug screening purposes. Optical tissue clearing procedures are employed to enhance visualization of fluorescence-stained organs, tissues, and three-dimensional cell cultures. To get a more systematic overview about the effects and applicability of optical tissue clearing on three-dimensional cell cultures, we compared six different clearing/embedding protocols on seven types of spheroid- and chip-based three-dimensional cell cultures of approximately 300 μm in size that were stained with nuclear dyes, immunofluorescence, cell trackers, and cyan fluorescent protein. Subsequent whole mount confocal microscopy and semi-automated image analysis were performed to quantify the effects. Quantitative analysis included fluorescence signal intensity and signal-to-noise ratio as a function of z-depth as well as segmentation and counting of nuclei and immunopositive cells. In general, these analyses revealed five key points, which largely confirmed current knowledge and were quantified in this study. First, there was a massive variability of effects of different clearing protocols on sample transparency and shrinkage as well as on dye quenching. Second, all tested clearing protocols worked more efficiently on samples prepared with one cell type than on co-cultures. Third, z-compensation was imperative to minimize variations in signal-to-noise ratio. Fourth, a combination of sample-inherent cell density, sample shrinkage, uniformity of signal-to-noise ratio, and image resolution had a strong impact on data segmentation, cell counts, and relative numbers of immunofluorescence-positive cells. Finally, considering all mentioned aspects and including a wish for simplicity and speed of protocols - in particular, for screening purposes - clearing with 88% Glycerol appeared to be the most promising option amongst the ones tested.
Collapse
Affiliation(s)
- Elina Nürnberg
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
- Zentralinstitut für Seelische Gesundheit, Department of Translational Brain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mario Vitacolonna
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Julia Klicks
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Elena von Molitor
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Tiziana Cesetti
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Florian Keller
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Roman Bruch
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | | | | | | | - Thorsten Lau
- Zentralinstitut für Seelische Gesundheit, Department of Translational Brain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Julia Meier
- TIP Oncology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
14
|
Brancato V, Oliveira JM, Correlo VM, Reis RL, Kundu SC. Could 3D models of cancer enhance drug screening? Biomaterials 2019; 232:119744. [PMID: 31918229 DOI: 10.1016/j.biomaterials.2019.119744] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/29/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023]
Abstract
Cancer is a multifaceted pathology, where cellular and acellular players interact to drive cancer progression and, in the worst-case, metastasis. The current methods to investigate the heterogeneous nature of cancer are inadequate, since they rely on 2D cell cultures and animal models. The cell line-based drug efficacy and toxicity assays are not able to predict the tumor response to anti-cancer agents and it is already widely discussed how molecular pathway are not recapitulated in vitro so called flat biology. On the other side, animal models often fail to detect the side-effects of drugs, mimic the metastatic progression or the interaction between cancer and immune system, due to biologic difference in human and animals. Moreover, ethical and regulatory issues limit animal experimentation. Every year pharma/biotech companies lose resources in drug discovery and testing processes that are successful only in 5% of the cases. There is an urgent need to validate accurate and predictive platforms in order to enhance drug-testing process taking into account the physiopathology of the tumor microenvironment. Three dimensional in vitro tumor models could enhance drug manufactures in developing effective drugs for cancer diseases. The 3D in vitro cancer models can improve the predictability of toxicity and drug sensitivity in cancer. Despite the demonstrated advantages of 3D in vitro disease systems when compared to 2D culture and animal models, they still do not reach the standardization required for preclinical trials. This review highlights in vitro models that may be used as preclinical models, accelerating the drug development process towards more precise and personalized standard of care for cancer patients. We describe the state-of-the art of 3D in vitro culture systems, with a focus on how these different approaches could be coupled in order to achieve a compromise between standardization and reliability in recapitulating tumor microenvironment and drug response.
Collapse
Affiliation(s)
- Virginia Brancato
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Vitor Manuel Correlo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Rui Luis Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
15
|
Costa EC, Silva DN, Moreira AF, Correia IJ. Optical clearing methods: An overview of the techniques used for the imaging of 3D spheroids. Biotechnol Bioeng 2019; 116:2742-2763. [PMID: 31282993 DOI: 10.1002/bit.27105] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/17/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022]
Abstract
Spheroids have emerged as in vitro models that reproduce in a great extent the architectural microenvironment found in human tissues. However, the imaging of 3D cell cultures is highly challenging due to its high thickness, which results in a light-scattering phenomenon that limits light penetration. Therefore, several optical clearing methods, widely used in the imaging of animal tissues, have been recently explored to render spheroids with enhanced transparency. These methods are aimed to homogenize the microtissue refractive index (RI) and can be grouped into four different categories, namely (a) simple immersion in an aqueous solution with high RI; (b) delipidation and dehydration followed by RI matching; (c) delipidation and hyperhydration followed by RI matching; and (d) hydrogel embedding followed by delipidation and RI matching. In this review, the main optical clearing methods, their mechanism of action, advantages, and disadvantages are described. Furthermore, the practical examples of the optical clearing methods application for the imaging of 3D spheroids are highlighted.
Collapse
Affiliation(s)
- Elisabete C Costa
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
| | - Daniel N Silva
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
| | - André F Moreira
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
| | - Ilídio J Correia
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal.,CIEPQF, Departamento de Engenharia Química, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
16
|
Hosoyama K, Ahumada M, Goel K, Ruel M, Suuronen EJ, Alarcon EI. Electroconductive materials as biomimetic platforms for tissue regeneration. Biotechnol Adv 2019; 37:444-458. [DOI: 10.1016/j.biotechadv.2019.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/03/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
|
17
|
Kabadi PK, Rodd AL, Simmons AE, Messier NJ, Hurt RH, Kane AB. A novel human 3D lung microtissue model for nanoparticle-induced cell-matrix alterations. Part Fibre Toxicol 2019; 16:15. [PMID: 30943996 PMCID: PMC6448215 DOI: 10.1186/s12989-019-0298-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/15/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Multi-walled carbon nanotubes (MWCNT) have been shown to elicit the release of inflammatory and pro-fibrotic mediators, as well as histopathological changes in lungs of exposed animals. Current standards for testing MWCNTs and other nanoparticles (NPs) rely on low-throughput in vivo studies to assess acute and chronic toxicity and potential hazard to humans. Several alternative testing approaches utilizing two-dimensional (2D) in vitro assays to screen engineered NPs have reported conflicting results between in vitro and in vivo assays. Compared to conventional 2D in vitro or in vivo animal model systems, three-dimensional (3D) in vitro platforms have been shown to more closely recapitulate human physiology, providing a relevant, more efficient strategy for evaluating acute toxicity and chronic outcomes in a tiered nanomaterial toxicity testing paradigm. RESULTS As inhalation is an important route of nanomaterial exposure, human lung fibroblasts and epithelial cells were co-cultured with macrophages to form scaffold-free 3D lung microtissues. Microtissues were exposed to multi-walled carbon nanotubes, M120 carbon black nanoparticles or crocidolite asbestos fibers for 4 or 7 days, then collected for characterization of microtissue viability, tissue morphology, and expression of genes and selected proteins associated with inflammation and extracellular matrix remodeling. Our data demonstrate the utility of 3D microtissues in predicting chronic pulmonary endpoints following exposure to MWCNTs or asbestos fibers. These test nanomaterials were incorporated into 3D human lung microtissues as visualized using light microscopy. Differential expression of genes involved in acute inflammation and extracellular matrix remodeling was detected using PCR arrays and confirmed using qRT-PCR analysis and Luminex assays of selected genes and proteins. CONCLUSION 3D lung microtissues provide an alternative testing platform for assessing nanomaterial-induced cell-matrix alterations and delineation of toxicity pathways, moving towards a more predictive and physiologically relevant approach for in vitro NP toxicity testing.
Collapse
Affiliation(s)
- Pranita K Kabadi
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA.,AstraZeneca, Gaithersburg, MD, 20878, USA
| | - April L Rodd
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA.
| | - Alysha E Simmons
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Norma J Messier
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Robert H Hurt
- School of Engineering, Brown University, Providence, Rhode Island, 02912, USA
| | - Agnes B Kane
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA.
| |
Collapse
|
18
|
Bates AM, Fischer CL, Abhyankar VP, Johnson GK, Guthmiller JM, Progulske-Fox A, Brogden KA. Matrix Metalloproteinase Response of Dendritic Cell, Gingival Epithelial Keratinocyte, and T-Cell Transwell Co-Cultures Treated with Porphyromonas gingivalis Hemagglutinin-B. Int J Mol Sci 2018; 19:ijms19123923. [PMID: 30544510 PMCID: PMC6321455 DOI: 10.3390/ijms19123923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are enzymes involved in periodontal tissue destruction. Hemagglutinin B (HagB) from the periodontal pathogen Porphyromonas gingivalis induces an elevated MMP response in dendritic cells, but responses from cultures of single-cell types do not reflect the local tissue environment. The objective of this study was to measure HagB-induced MMP responses in a transwell co-culture system containing dendritic cells, gingival epithelial (GE) keratinocytes, and CD4+ T-cells. Transwell co-cultures were assembled and treated with or without HagB. Immunoassays were used to determine production of MMP1, MMP7, MMP9, and MMP12 in response to HagB up to 64 h. Control responses were subtracted from HagB-induced responses. A two-way fixed effect ANOVA was fit to log-transformed concentrations and pairwise group comparisons were conducted (p < 0.05). At 64 h, dendritic cells produced elevated MMP1 and MMP9 responses, which were attenuated in the 3-cell co-culture (p < 0.05). There were also significant differences in MMP7 and MMP12 production between single-cell cultures and co-cultures. These results support the need to use multiple cell types in culture models to evaluate a more representative response to proinflammatory agonists. This three-cell transwell co-culture model may help us better understand the inflammatory process in periodontal disease and test novel therapeutic approaches.
Collapse
Affiliation(s)
- Amber M Bates
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA.
| | - Carol L Fischer
- Department of Biology, Waldorf University, Forest City, IA 50436, USA.
| | - Vrushali P Abhyankar
- Department of Periodontology, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| | - Georgia K Johnson
- Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA.
| | - Janet M Guthmiller
- College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA.
| | - Ann Progulske-Fox
- Center for Molecular Microbiology and Department of Oral Biology, University of Florida, Gainesville, FL 32603, USA.
| | - Kim A Brogden
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA.
- Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
19
|
Rodd AL, Castilho CJ, Chaparro CEF, Rangel-Mendez JR, Hurt RH, Kane AB. Impact of emerging, high-production-volume graphene-based materials on the bioavailability of benzo(a)pyrene to brine shrimp and fish liver cells. ENVIRONMENTAL SCIENCE. NANO 2018; 5:2144-2161. [PMID: 31565225 PMCID: PMC6764784 DOI: 10.1039/c8en00352a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With increasing commercialization of high volume, two-dimensional carbon nanomaterials comes a greater likelihood of environmental release. In aquatic environments, black carbon binds contaminants like aromatic hydrocarbons, leading to changes in their uptake, bioavailability, and toxicity. Engineered carbon nanomaterials can also adsorb pollutants onto their carbon surfaces, and nanomaterial physicochemical properties can influence this contaminant interaction. We used 2D graphene nanoplatelets and isometric carbon black nanoparticles to evaluate the influence of particle morphology and surface properties on adsorption and bioavailability of benzo(a)pyrene, a model aromatic hydrocarbon, to brine shrimp (Artemia franciscana) and a fish liver cell line (PLHC-1). Acellular adsorption studies show that while high surface area carbon black (P90) was most effective at a given concentration, 2D graphene nanoplatelets (G550) adsorbed more benzo(a)pyrene than carbon black with comparable surface area (M120). In both biological models, co-exposure to nanomaterials lead to reduced bioavailability, with G550 graphene nanoplatelets cause a greater reduction in bioavailability or response than the M120 carbon black nanoparticles. However, on a mass basis the high surface area P90 carbon black was most effective. The trends in bioavailability and adsorption were consistent across all biological and acellular studies, demonstrating the biological relevance of these results in different models of aquatic organisms. While adsorption is limited by surface area, 2D graphene nanoplatelets adsorb more benzo(a)pyrene than carbon black nanoparticles of similar surface area and charge, demonstrating that both surface area and shape play important roles in the adsorption and bioavailability of benzo(a)pyrene to carbon nanomaterials.
Collapse
Affiliation(s)
- April L Rodd
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912
| | | | - Carlos EF Chaparro
- Division of Environmental Science, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, 78216, Mexico
| | - J Rene Rangel-Mendez
- Division of Environmental Science, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, 78216, Mexico
| | - Robert H Hurt
- School of Engineering, Brown University, Providence, RI, 02912
| | - Agnes B Kane
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912
| |
Collapse
|
20
|
Leary E, Rhee C, Wilks BT, Morgan JR. Quantitative Live-Cell Confocal Imaging of 3D Spheroids in a High-Throughput Format. SLAS Technol 2018; 23:231-242. [PMID: 29412762 DOI: 10.1177/2472630318756058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Accurately predicting the human response to new compounds is critical to a wide variety of industries. Standard screening pipelines (including both in vitro and in vivo models) often lack predictive power. Three-dimensional (3D) culture systems of human cells, a more physiologically relevant platform, could provide a high-throughput, automated means to test the efficacy and/or toxicity of novel substances. However, the challenge of obtaining high-magnification, confocal z stacks of 3D spheroids and understanding their respective quantitative limitations must be overcome first. To address this challenge, we developed a method to form spheroids of reproducible size at precise spatial locations across a 96-well plate. Spheroids of variable radii were labeled with four different fluorescent dyes and imaged with a high-throughput confocal microscope. 3D renderings of the spheroid had a complex bowl-like appearance. We systematically analyzed these confocal z stacks to determine the depth of imaging and the effect of spheroid size and dyes on quantitation. Furthermore, we have shown that this loss of fluorescence can be addressed through the use of ratio imaging. Overall, understanding both the limitations of confocal imaging and the tools to correct for these limits is critical for developing accurate quantitative assays using 3D spheroids.
Collapse
Affiliation(s)
- Elizabeth Leary
- 1 Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA.,2 Center for Biomedical Engineering, Brown University, Providence, RI, USA
| | - Claire Rhee
- 1 Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
| | - Benjamin T Wilks
- 1 Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA.,2 Center for Biomedical Engineering, Brown University, Providence, RI, USA
| | - Jeffrey R Morgan
- 1 Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA.,2 Center for Biomedical Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
21
|
Thomsen AR, Aldrian C, Bronsert P, Thomann Y, Nanko N, Melin N, Rücker G, Follo M, Grosu AL, Niedermann G, Layer PG, Heselich A, Lund PG. A deep conical agarose microwell array for adhesion independent three-dimensional cell culture and dynamic volume measurement. LAB ON A CHIP 2017; 18:179-189. [PMID: 29211089 DOI: 10.1039/c7lc00832e] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multicellular spheroids represent a well-established 3D model to study healthy and diseased cells in vitro. The use of conventional 3D cell culture platforms for the generation of multicellular spheroids is limited to cell types that easily self-assemble into spheroids because less adhesive cells fail to form stable aggregates. A high-precision micromoulding technique developed in our laboratory produces deep conical agarose microwell arrays that allow the cultivation of uniform multicellular aggregates, irrespective of the spheroid formation capacity of the cells. Such hydrogel arrays warrant a steady nutrient supply for several weeks, permit live volumetric measurements to monitor cell growth, enable immunohistochemical staining, fluorescence-based microscopy, and facilitate immediate harvesting of cell aggregates. This system also allows co-cultures of two distinct cell types either in direct cell-cell contact or at a distance as the hydrogel permits diffusion of soluble compounds. Notably, we show that co-culture of a breast cancer cell line with bone marrow stromal cells enhances 3D growth of the cancer cells in this system.
Collapse
Affiliation(s)
- Andreas R Thomsen
- Department of Radiation Oncology, Medical Center - University of Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rodd AL, Messier NJ, Vaslet CA, Kane AB. A 3D fish liver model for aquatic toxicology: Morphological changes and Cyp1a induction in PLHC-1 microtissues after repeated benzo(a)pyrene exposures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:134-144. [PMID: 28282620 PMCID: PMC5436724 DOI: 10.1016/j.aquatox.2017.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 05/12/2023]
Abstract
To identify the potential environmental impacts of aquatic pollutants, rapid and sensitive screening tools are needed to assess adaptive and toxic responses. This study characterizes a novel fish liver microtissue model, produced with the cell line PLHC-1, as an in vitro aquatic toxicity testing platform. These 3D microtissues remain viable and stable throughout the 8-day testing period and relative to 2D monolayers, show increased basal expression of the xenobiotic metabolizing enzyme cytochrome P450 1A (Cyp1a). To evaluate pulsed, low-dose exposures at environmentally relevant concentrations, microtissue responsiveness to the model toxicant benzo(a)pyrene was assessed after single and repeated exposures for determination of both immediate and persistent effects. Significant induction of Cyp1a gene and protein expression was detected after a single 24h exposure to as little as 1nM benzo(a)pyrene, and after a 24h recovery period, Cyp1a expression declined in a dose-dependent manner. However, cell death continued to increase during the recovery period and alterations in microtissue architecture occurred at higher concentrations. To evaluate a pulsed or repeated exposure scenario, microtissues were exposed to benzo(a)pyrene, allowed to recover, then exposed a second time for 24h. Following pre-exposure to benzo(a)pyrene, cyp1a expression remained equally inducible and the pattern and level of Cyp1a protein response to a second exposure were comparable. However, pre-exposure to 1μM or 5μM of benzo(a)pyrene resulted in increased cell death, greater disruption of microtissue architecture, and alterations in cell morphology. Together, this study demonstrates the capabilities of this PLHC-1 microtissue model for sensitive assessment of liver toxicants over time and following single and repeated exposures.
Collapse
Affiliation(s)
- April L Rodd
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI 02912, USA.
| | - Norma J Messier
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Charles A Vaslet
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Agnes B Kane
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
23
|
Kofron CM, Mende U. In vitro models of the cardiac microenvironment to study myocyte and non-myocyte crosstalk: bioinspired approaches beyond the polystyrene dish. J Physiol 2017; 595:3891-3905. [PMID: 28116799 DOI: 10.1113/jp273100] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/22/2016] [Indexed: 12/17/2022] Open
Abstract
The heart is a complex pluricellular organ composed of cardiomyocytes and non-myocytes including fibroblasts, endothelial cells and immune cells. Myocytes are responsible for electrical conduction and contractile force generation, while the other cell types are responsible for matrix deposition, vascularization, and injury response. Myocytes and non-myocytes are known to communicate and exert mutual regulatory effects. In concert, they determine the structural, electrical and mechanical characteristics in the healthy and remodelled myocardium. Dynamic crosstalk between myocytes and non-myocytes plays a crucial role in stress/injury-induced hypertrophy and fibrosis development that can ultimately lead to heart failure and arrhythmias. Investigations of heterocellular communication in the myocardium are hampered by the intricate interspersion of the different cell types and the complexity of the tissue architecture. In vitro models have facilitated investigations of cardiac cells in a direct and controllable manner and have provided important functional and mechanistic insights. However, these cultures often lack regulatory input from the other cell types as well as additional topographical, electrical, mechanical and biochemical cues from the cardiac microenvironment that all contribute to modulating cell differentiation, maturation, alignment, function and survival. Advancements in the development of more complex pluricellular physiological platforms that incorporate diverse cues from the myocardial microenvironment are expected to lead to more physiologically relevant cardiac tissue-like in vitro models for mechanistic biological research, disease modelling, therapeutic target identification, drug testing and regeneration.
Collapse
Affiliation(s)
- Celinda M Kofron
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
24
|
Vantangoli MM, Wilson S, Madnick SJ, Huse SM, Boekelheide K. Morphologic effects of estrogen stimulation on 3D MCF-7 microtissues. Toxicol Lett 2016; 248:1-8. [PMID: 26921789 DOI: 10.1016/j.toxlet.2016.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/29/2016] [Accepted: 02/22/2016] [Indexed: 12/16/2022]
Abstract
In the development of human cell-based assays, 3-dimensional (3D) cell culture models are intriguing as they are able to bridge the gap between animal models and traditional two-dimensional (2D) cell culture. Previous work has demonstrated that MCF-7 human breast carcinoma cells cultured in a 3D scaffold-free culture system self-assemble and develop into differentiated microtissues that possess a luminal space. Exposure to estradiol for 7 days decreased lumen formation in MCF-7 microtissues, altered microtissue morphology and altered expression of genes involved in estrogen signaling, cell adhesion and cell cycle regulation. Exposure to receptor-specific agonists for estrogen receptor alpha, estrogen receptor beta and g-protein coupled estrogen receptor resulted in unique, receptor-specific phenotypes and gene expression signatures. The use of a differentiated scaffold-free 3D culture system offers a unique opportunity to study the phenotypic and molecular changes associated with exposure to estrogenic compounds.
Collapse
Affiliation(s)
- Marguerite M Vantangoli
- Department of Pathology and Laboratory Medicine, 70 Ship Street, Brown University, Providence, RI 02903, USA
| | - Shelby Wilson
- Department of Pathology and Laboratory Medicine, 70 Ship Street, Brown University, Providence, RI 02903, USA
| | - Samantha J Madnick
- Department of Pathology and Laboratory Medicine, 70 Ship Street, Brown University, Providence, RI 02903, USA
| | - Susan M Huse
- Department of Pathology and Laboratory Medicine, 70 Ship Street, Brown University, Providence, RI 02903, USA
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, 70 Ship Street, Brown University, Providence, RI 02903, USA.
| |
Collapse
|
25
|
Joshi P, Lee MY. High Content Imaging (HCI) on Miniaturized Three-Dimensional (3D) Cell Cultures. BIOSENSORS 2015; 5:768-90. [PMID: 26694477 PMCID: PMC4697144 DOI: 10.3390/bios5040768] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/26/2022]
Abstract
High content imaging (HCI) is a multiplexed cell staining assay developed for better understanding of complex biological functions and mechanisms of drug action, and it has become an important tool for toxicity and efficacy screening of drug candidates. Conventional HCI assays have been carried out on two-dimensional (2D) cell monolayer cultures, which in turn limit predictability of drug toxicity/efficacy in vivo; thus, there has been an urgent need to perform HCI assays on three-dimensional (3D) cell cultures. Although 3D cell cultures better mimic in vivo microenvironments of human tissues and provide an in-depth understanding of the morphological and functional features of tissues, they are also limited by having relatively low throughput and thus are not amenable to high-throughput screening (HTS). One attempt of making 3D cell culture amenable for HTS is to utilize miniaturized cell culture platforms. This review aims to highlight miniaturized 3D cell culture platforms compatible with current HCI technology.
Collapse
Affiliation(s)
- Pranav Joshi
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street Cleveland, Ohio, OH 44115-2214, USA.
| | - Moo-Yeal Lee
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street Cleveland, Ohio, OH 44115-2214, USA.
| |
Collapse
|