1
|
Uzer F, Karaboğa B, Çalış A, Kaplan N, Gedik RB, Durmuş AA, Inanc UB, Akgün M. Microbial variations in sputum cultures among hospitalized patients with community-acquired pneumonia: differences in sputum microbiota between asthma and COPD patients. J Bras Pneumol 2024; 50:e20230329. [PMID: 38808825 PMCID: PMC11185154 DOI: 10.36416/1806-3756/e20230329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/13/2024] [Indexed: 05/30/2024] Open
Abstract
OBJECTIVE To assess differences in the sputum microbiota of community-acquired pneumonia (CAP) patients with either COPD or asthma, specifically focusing on a patient population in Turkey. METHODS This retrospective study included hospitalized patients > 18 years of age with a diagnosis of pneumonia between January of 2021 and January of 2023. Participants were recruited from two hospitals, and three patient groups were considered: CAP patients with asthma, CAP patients with COPD, and CAP patients without COPD or asthma. RESULTS A total of 246 patients with CAP were included in the study, 184 (74.8%) and 62 (25.2%) being males and females, with a mean age of 66 ± 14 years. Among the participants, 52.9% had COPD, 14.2% had asthma, and 32.9% had CAP but no COPD or asthma. Upon analysis of sputum cultures, positive sputum culture growth was observed in 52.9% of patients. The most commonly isolated microorganisms were Pseudomonas aeruginosa (n = 40), Acinetobacter baumannii (n = 20), Klebsiella pneumoniae (n = 16), and Moraxella catarrhalis (n = 8). CAP patients with COPD were more likely to have a positive sputum culture (p = 0.038), a history of antibiotic use within the past three months (p = 0.03), utilization of long-term home oxygen therapy (p < 0.001), and use of noninvasive ventilation (p = 0.001) when compared with the other patient groups. Additionally, CAP patients with COPD had a higher CURB-65 score when compared with CAP patients with asthma (p = 0.004). CONCLUSIONS This study demonstrates that CAP patients with COPD tend to have more severe presentations, while CAP patients with asthma show varied microbial profiles, underscoring the need for patient-specific management strategies in CAP.
Collapse
Affiliation(s)
- Fatih Uzer
- . Department of Chest Disease, Akdeniz University School of Medicine, Antalya, Turkey
| | - Burcu Karaboğa
- . Chest Disease Clinic, Ataturk State Hospital, Antalya, Turkey
| | - A.Gamze Çalış
- . Chest Disease Clinic, Antalya Training and Research Hospital, Antalya, Turkey
| | - Nermin Kaplan
- . Chest Disease Clinic, Ataturk State Hospital, Antalya, Turkey
| | - Rojan Barış Gedik
- . Department of Chest Disease, Akdeniz University School of Medicine, Antalya, Turkey
| | - Ahmet Alper Durmuş
- . Department of Chest Disease, Akdeniz University School of Medicine, Antalya, Turkey
| | - Umut Barış Inanc
- . Department of Chest Disease, Akdeniz University School of Medicine, Antalya, Turkey
| | - Metin Akgün
- . Department of Chest Disease, Agrı Ibrahim Cecen University, Agrı, Turkey
| |
Collapse
|
2
|
Nascimento M, Huot-Marchand S, Fanny M, Straube M, Le Bert M, Savigny F, Apetoh L, Van Snick J, Trovero F, Chamaillard M, Quesniaux VFJ, Ryffel B, Gosset P, Gombault A, Riteau N, Sokol H, Couillin I. NLRP6 controls pulmonary inflammation from cigarette smoke in a gut microbiota-dependent manner. Front Immunol 2023; 14:1224383. [PMID: 38146368 PMCID: PMC10749332 DOI: 10.3389/fimmu.2023.1224383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major health issue primarily caused by cigarette smoke (CS) and characterized by breathlessness and repeated airway inflammation. NLRP6 is a cytosolic innate receptor controlling intestinal inflammation and orchestrating the colonic host-microbial interface. However, its roles in the lungs remain largely unexplored. Using CS exposure models, our data show that airway inflammation is strongly impaired in Nlrp6-deficient mice with drastically fewer recruited neutrophils, a key cell subset in inflammation and COPD. We found that NLRP6 expression in lung epithelial cells is important to control airway and lung tissue inflammation in an inflammasome-dependent manner. Since gut-derived metabolites regulate NLRP6 inflammasome activation in intestinal epithelial cells, we investigated the link between NLRP6, CS-driven lung inflammation, and gut microbiota composition. We report that acute CS exposure alters gut microbiota in both wild-type (WT) and Nlrp6-deficient mice and that antibiotic treatment decreases CS-induced lung inflammation. In addition, gut microbiota transfer from dysbiotic Nlrp6-deficient mice to WT mice decreased airway lung inflammation in WT mice, highlighting an NLRP6-dependent gut-to-lung axis controlling pulmonary inflammation.
Collapse
Affiliation(s)
- Mégane Nascimento
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Sarah Huot-Marchand
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Manoussa Fanny
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Marjolène Straube
- Sorbonne Université, Institut National de la Recherche Médicale (INSERM), Centre de Recherche Saint-Antoine (CRSA), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint Antoine, Service de Gastroenterologie, Paris, France
| | - Marc Le Bert
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Florence Savigny
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | | | | | | | - Mathias Chamaillard
- Univ. Lille, Institut National de la Recherche Médicale (INSERM), U1003 - Laboratoire de physiologie cellulaire (PHYCEL) - Physiologie Cellulaire, Lille, France
| | - Valérie F. J. Quesniaux
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Bernhard Ryffel
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Philippe Gosset
- Institut PASTEUR INSERM U1019, Centre National de Recherche (CNRS) Unité Mixte de Recherche (UMR) 8204, Lille, France
| | - Aurélie Gombault
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Nicolas Riteau
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Harry Sokol
- Sorbonne Université, Institut National de la Recherche Médicale (INSERM), Centre de Recherche Saint-Antoine (CRSA), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint Antoine, Service de Gastroenterologie, Paris, France
- Institut national de la recherche agronomique (INRA), UMR1319 Micalis, AgroParisTech, Jouy-en-Josas, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Isabelle Couillin
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| |
Collapse
|
3
|
Brettoni C, Muzzi A, Rondini S, Weynants V, Rossi Paccani S. Ex-vivo RNA expression analysis of vaccine candidate genes in COPD sputum samples. Respir Res 2023; 24:243. [PMID: 37798723 PMCID: PMC10552247 DOI: 10.1186/s12931-023-02525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a lung disease characterised by airflow-limiting inflammation and mucus production. Acute exacerbations are a major cause of COPD-related morbidity and mortality and are mostly associated with bacterial or viral infections. A vaccine targeting non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat), the main bacteria associated with exacerbations, was tested in a Phase 2 trial. We assessed "ex-vivo" expression of vaccine candidate and housekeeping genes pd, pe, pilA, gapA, ompP6 of NTHi, and uspA2, parE, polA of Mcat in sputum samples of COPD patients and determined whether expression of the vaccine candidate genes pd, pe, pilA (NTHi) and uspA2 (Mcat) differed between stable and exacerbation samples. METHODS A single-centre, prospective, observational cohort study was conducted where 123 COPD patients were seen on enrolment, followed monthly for 2 years, and reviewed after onset of acute exacerbations. We selected 69 patients with sputum samples positive for NTHi or Mcat by PCR during at least one stable and one exacerbation visit. mRNA was isolated from the sputum, and expression of NTHi and Mcat genes was analysed with RT-PCR. Statistical analyses compared mRNA concentrations between stable and exacerbation samples and in relationship to COPD severity and exacerbation frequency. RESULTS The vaccine candidate genes were variably expressed in sputum samples, suggesting they are expressed in the lung. Absolute and relative expression of all NTHi vaccine candidate genes and Mcat uspA2 were similar between exacerbation and stable samples. Expression of pd and pilA was slightly associated with the number of exacerbations in the year before enrolment, and uspA2 with the disease severity status at enrolment. CONCLUSIONS The NTHi-Mcat vaccine candidate genes were expressed in sputum samples, and each gene had a specific level of expression. No statistically significant differences in gene expression were detectable between stable and exacerbation samples. However, the history of COPD exacerbations was slightly associated with the expression of pd, pilA and uspA2. Trial registration NCT01360398 ( https://www. CLINICALTRIALS gov ).
Collapse
|
4
|
Tao L, Lu X, Fu Z, Tian Y, Liu X, Li J, Zhao P. Tong Sai granules improves AECOPD via regulation of MAPK-SIRT1-NF-κB pathway and cellular senescence alleviation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116622. [PMID: 37210015 DOI: 10.1016/j.jep.2023.116622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/22/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tong Sai granules (TSG) a traditional Chinese medicine, are used to treat acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Cellular senescence is considered the mechanism underlying AECOPD progression. AIM OF THE STUDY This study aimed to investigate the therapeutic mechanisms of TSG in an AECOPD rat model (established using cigarette smoke exposure and bacterial infection) and focused on the inhibition of cellular senescence in vivo and in vitro. MATERIALS AND METHODS Histological changes and levels of inflammatory cytokines, matrix metalloproteinases (MMPs), p53, and p21 were determined. A cellular senescence model was established by challenging airway epithelial cells with cigarette smoke extract (CSE) and lipopolysaccharide (LPS). Quantitative PCR, western blotting, and immunofluorescence were used to measure mRNA and protein levels. Additionally, UPLC-Q-Extractive-Orbitrap MS analysis, network analysis, and transcriptomics were used to analyze the potential compounds and molecular mechanisms of TSG. RESULTS The results showed that oral administration of TSG significantly reduced the severity of AECOPD in rats by ameliorating lung function decline and pathological injuries and increasing the levels of C-reactive protein and serum amyloid A, two well-known proinflammatory mediators of the acute phase response. Oral TSG administration also decreased the expression levels of proinflammatory cytokines (e.g., IL-6, IL-1β, and TNF-α), MMPs (e.g., MMP-2 and MMP-9), critical regulators of senescence such as p21 and p53, and the apoptotic marker γH2AX, all of which are factors in cellular senescence in lung tissue. TSG4 was isolated from TSGs using macroporous resin and found to significantly suppress cellular senescence in CSE/LPS-induced bronchial epithelial cells. Furthermore, 26 of 56 compounds identified in TSG4 were used to predict 882 potential targets. Additionally, 317 differentially expressed genes (DEGs) were detected in CSE/LPS-treated bronchial epithelial cells. Network analysis of the 882 targets and 317 DEGs revealed that TSG4 regulated multiple pathways, among which the mitogen-activated protein kinase-sirtuin 1-nuclear factor kappa B (MAPK-SIRT1-NF-κB) pathway is important in terms of antisenescent mechanisms. Moreover, in CSE/LPS-induced bronchial epithelial cells, p-p38, p-ERK1/2, p-JNK, and p-p65 levels were increased and SIRT1 levels were decreased after TSG4 treatment. Additionally, oral TSG administration decreased p-p38 and p-p65 levels and increased SIRT1 levels in the lung tissues of AECOPD model rats. CONCLUSION Collectively, these results indicate that TSGs ameliorate AECOPD by regulating the MAPK-SIRT1-NF-κB signaling pathway and subsequently suppressing cellular senescence.
Collapse
Affiliation(s)
- Liuying Tao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, China.
| | - Xiaofan Lu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, China
| | - Zijian Fu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, China
| | - Yange Tian
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Xinguang Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, China; Department of Respiratory Diseases, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
5
|
Cao Y, Chen X, Shu L, Shi L, Wu M, Wang X, Deng K, Wei J, Yan J, Feng G. Analysis of the correlation between BMI and respiratory tract microbiota in acute exacerbation of COPD. Front Cell Infect Microbiol 2023; 13:1161203. [PMID: 37180432 PMCID: PMC10166817 DOI: 10.3389/fcimb.2023.1161203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Objective To investigate the distribution differences in the respiratory tract microbiota of AECOPD patients in different BMI groups and explore its guiding value for treatment. Methods Sputum samples of thirty-eight AECOPD patients were collected. The patients were divided into low, normal and high BMI group. The sputum microbiota was sequenced by 16S rRNA detection technology, and the distribution of sputum microbiota was compared. Rarefaction curve, α-diversity, principal coordinate analysis (PCoA) and measurement of sputum microbiota abundance in each group were performed and analyzed by bioinformatics methods. Results 1. The rarefaction curve in each BMI group reached a plateau. No significant differences were observed in the OTU total number or α-diversity index of microbiota in each group. PCoA showed significant differences in the distance matrix of sputum microbiota between the three groups, which was calculated by the Binary Jaccard and the Bray Curtis algorithm. 2. At the phylum level, most of the microbiota were Proteobacteria, Bacteroidetes Firmicutes, Actinobacteria, and Fusobacteria. At the genus level, most were Streptococcus, Prevotella, Haemophilus, Neisseria and Bacteroides. 3. At the phylum level, the abundance of Proteobacteria in the low group was significantly higher than that in normal and high BMI groups, the abundances of Firmicutes in the low and normal groups were significantly lower than that in high BMI groups. At the genus level, the abundance of Haemophilus in the low group was significantly higher than that in high BMI group, and the abundances of Streptococcus in the low and normal BMI groups were significantly lower than that in the high BMI group. Conclusions 1. The sputum microbiota of AECOPD patients in different BMI groups covered almost all microbiota, and BMI had no significant association with total number of respiratory tract microbiota or α-diversity in AECOPD patients. However, there was a significant difference in the PCoA between different BMI groups. 2. The microbiota structure of AECOPD patients differed in different BMI groups. Gram-negative bacteria (G-) in the respiratory tract of patients predominated in the low BMI group, while gram-positive bacteria (G+) predominated in the high BMI group.
Collapse
Affiliation(s)
- Yang Cao
- Department of Respiratory Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaolin Chen
- Department of Respiratory Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Shu
- Department of Respiratory Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Shi
- Department of Respiratory Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingjing Wu
- Department of Respiratory Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xueli Wang
- Department of Respiratory Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kaili Deng
- Department of Respiratory Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Wei
- Department of Respiratory Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaxin Yan
- Department of Respiratory Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ganzhu Feng
- Department of Respiratory Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Kaleem Ullah M, Parthasarathi A, Biligere Siddaiah J, Vishwanath P, Upadhyay S, Ganguly K, Anand Mahesh P. Impact of Acute Exacerbation and Its Phenotypes on the Clinical Outcomes of Chronic Obstructive Pulmonary Disease in Hospitalized Patients: A Cross-Sectional Study. TOXICS 2022; 10:toxics10110667. [PMID: 36355958 PMCID: PMC9695923 DOI: 10.3390/toxics10110667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 06/07/2023]
Abstract
Acute exacerbations of COPD (AECOPD) are clinically significant events having therapeutic and prognostic consequences. However, there is a lot of variation in its clinical manifestations described by phenotypes. The phenotypes of AECOPD were categorized in this study based on pathology and exposure. In our cross-sectional study, conducted between 1 January 2016 to 31 December 2020, the patients were categorized into six groups based on pathology: non-bacterial and non-eosinophilic; bacterial; eosinophilic; bacterial infection with eosinophilia; pneumonia; and bronchiectasis. Further, four groups were classified based on exposure to tobacco smoke (TS), biomass smoke (BMS), both, or no exposure. Cox proportional-hazards regression analyses were performed to assess hazard ratios, and Kaplan-Meier analysis was performed to assess survival, which was then compared using the log-rank test. The odds ratio (OR) and independent predictors of ward admission type and length of hospital stay were assessed using binomial logistic regression analyses. Of the 2236 subjects, 2194 were selected. The median age of the cohort was 67.0 (60.0 to 74.0) and 75.2% were males. Mortality rates were higher in females than in males (6.2% vs. 2.3%). AECOPD-B (bacterial infection) subjects [HR 95% CI 6.42 (3.06-13.46)], followed by AECOPD-P (pneumonia) subjects [HR (95% CI: 4.33 (2.01-9.30)], were at higher mortality risk and had a more extended hospital stay (6.0 (4.0 to 9.5) days; 6.0 (4.0 to 10.0). Subjects with TS and BMS-AECOPD [HR 95% CI 7.24 (1.53-34.29)], followed by BMS-AECOPD [HR 95% CI 5.28 (2.46-11.35)], had higher mortality risk. Different phenotypes have different impacts on AECOPD clinical outcomes. A better understanding of AECOPD phenotypes could contribute to developing an algorithm for the precise management of different phenotypes.
Collapse
Affiliation(s)
- Mohammed Kaleem Ullah
- Centre for Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSSAHER, Mysore 570015, Karnataka, India
- Global Infectious Diseases Fellow, Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Ashwaghosha Parthasarathi
- Allergy, Asthma, and Chest Centre, Krishnamurthypuram, Mysore 570004, Karnataka, India
- RUTGERS Centre for Pharmacoepidemiology and Treatment Science, New Brunswick, NJ 08901-1293, USA
| | | | - Prashant Vishwanath
- Centre for Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSSAHER, Mysore 570015, Karnataka, India
| | - Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Padukudru Anand Mahesh
- Department of Respiratory Medicine, JSS Medical College, JSSAHER, Mysore 570015, Karnataka, India
| |
Collapse
|
7
|
PCR-free electrochemical genosensor for Mycobacterium tuberculosis complex detection based on two-dimensional Ti3C2 Mxene-polypyrrole signal amplification. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Shu L, Chen S, Lin S, Lin H, Shao Y, Yao J, Qu L, Zhang Y, Liu X, Du X, Deng K, Chen X, Feng G. The Pseudomonas aeruginosa Secreted Protein PA3611 Promotes Bronchial Epithelial Cell Epithelial-Mesenchymal Transition via Integrin αvβ6-Mediated TGF-β1-Induced p38/NF-κB Pathway Activation. Front Microbiol 2022; 12:763749. [PMID: 35197937 PMCID: PMC8860233 DOI: 10.3389/fmicb.2021.763749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/20/2021] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is an important pathogen that has been proven to colonize and cause infection in the respiratory tract of patients with structural lung diseases and to lead to bronchial fibrosis. The development of pulmonary fibrosis is a complication of PA colonization of the airway, resulting from repeated infection, damage and repair of the epithelium. Bronchial epithelial cell epithelial-mesenchymal transition (EMT) plays a vital role in bronchial fibrosis. To date, research on bronchial epithelial cell EMT caused by PA-secreted virulence factors has not been reported. Here, we found that PA3611 protein stimulation induced bronchial epithelial cell EMT with mesenchymal cell marker upregulation and epithelial cell marker downregulation. Moreover, integrin αvβ6 expression and TGF-β1 secretion were markedly increased, and p38 MAPK phosphorylation and NF-κB p65 subunit phosphorylation were markedly enhanced. Further research revealed that PA3611 promoted EMT via integrin αvβ6-mediated TGF-β1-induced p38/NF-κB pathway activation. The function of PA3611 was also verified in PA-infected rats, and the results showed that ΔPA3611 reduced lung inflammation and EMT. Overall, our results revealed that PA3611 promoted EMT via integrin αvβ6-mediated TGF-β1-induced p38/NF-κB pathway activation, suggesting that PA3611 acts as a crucial virulence factor in bronchial epithelial cell EMT and is a potential target for the clinical treatment of bronchial EMT and fibrosis caused by chronic PA infection.
Collapse
Affiliation(s)
- Lei Shu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China,Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, China
| | - Sixia Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China,Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Shaoqing Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huan Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Shao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jing Yao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lili Qu
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yunshi Zhang
- Department of Tuberculosis, Xuzhou Infectious Disease Hospital, Xuzhou, China
| | - Xing Liu
- Department of Respiratory Medicine, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Xingran Du
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kaili Deng
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaolin Chen
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, China
| | - Ganzhu Feng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Ganzhu Feng,
| |
Collapse
|
9
|
Liu M, Wu K, Lin J, Xie Q, Liu Y, Huang Y, Zeng J, Yang Z, Wang Y, Dong S, Deng W, Yang M, Wu S, Jiang W, Li X. Emerging Biological Functions of IL-17A: A New Target in Chronic Obstructive Pulmonary Disease? Front Pharmacol 2021; 12:695957. [PMID: 34305606 PMCID: PMC8294190 DOI: 10.3389/fphar.2021.695957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/23/2021] [Indexed: 01/10/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease that causes high rates of disability and mortality worldwide because of severe progressive and irreversible symptoms. During the period of COPD initiation and progression, the immune system triggers the activation of various immune cells, including Regulatory T cells (Tregs), dendritic cells (DCs) and Th17 cells, and also the release of many different cytokines and chemokines, such as IL-17A and TGF-β. In recent years, studies have focused on the role of IL-17A in chronic inflammation process, which was found to play a highly critical role in facilitating COPD. Specially, IL-17A and its downstream regulators are potential therapeutic targets for COPD. We mainly focused on the possibility of IL-17A signaling pathways that involved in the progression of COPD; for instance, how IL-17A promotes airway remodeling in COPD? How IL-17A facilitates neutrophil inflammation in COPD? How IL-17A induces the expression of TSLP to promote the progression of COPD? Whether the mature DCs and Tregs participate in this process and how they cooperate with IL-17A to accelerate the development of COPD? And above associated studies could benefit clinical application of therapeutic targets of the disease. Moreover, four novel efficient therapies targeting IL-17A and other molecules for COPD are also concluded, such as Bufei Yishen formula (BYF), a Traditional Chinese Medicine (TCM), and curcumin, a natural polyphenol extracted from the root of Curcuma longa.
Collapse
Affiliation(s)
- Meiling Liu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Kang Wu
- Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China.,South China Hospital, Shenzhen University, Shenzhen, China
| | - Jinduan Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qingqiang Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuan Liu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yin Huang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jun Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhaogang Yang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Weiye Deng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mingming Yang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Song Wu
- Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China.,South China Hospital, Shenzhen University, Shenzhen, China
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
10
|
Chang KY, Wu PC, Lee CH, Lee YC, Chen HC, Huang WC, Wu MF. Clinical Features and Antimicrobial Susceptibility of Pseudomonas aeruginosa and Acinetobacter baumannii Complex Isolates in Intensive Care Patients with Chronic Obstructive Pulmonary Disease and Community-Acquired Pneumonia in Taiwan. Int J Chron Obstruct Pulmon Dis 2021; 16:1801-1811. [PMID: 34168441 PMCID: PMC8216665 DOI: 10.2147/copd.s311714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/01/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose Little is known about the features and implications of Pseudomonas aeruginosa (PA) and Acinetobacter baumannii complex (ABC) isolates discovered in patients with chronic obstructive pulmonary disease (COPD) and community-acquired pneumonia (CAP) requiring invasive mechanical ventilation and admission to an intensive care unit. Thus, our study aimed to investigate the clinical characteristics and antimicrobial susceptibilities of PA and ABC isolates cultured from endotracheal aspirates (EAs) in such population. Patients and Methods In this retrospective, cross-sectional study, clinical data from medical records were reviewed and collected for analysis. Results Of the 262 participants, 17.2% (45/262), 11.5% (30/262), and 27.1% (71/262) had PA, ABC, and any of the two isolates discovered from EA cultures, respectively. Patients with PA isolates were associated with poorer lung function (the Global Initiative for Chronic Obstructive Lung Disease (GOLD) III+IV versus GOLD I+II, odds ratio (OR)=2.39, p= 0.022) and a lower body mass index (per increase of 1 kg/m2, OR= 0.93, p= 0.106) while the former was an independent predictor. Moreover, both subjects with ABC isolates and those with any of these two microorganisms were independently associated with a lower serum albumin level (per increase of 1 g/dL, OR= 0.44, p=0.009 and OR= 0.59, p=0.023, respectively). Participants with PA isolates were more likely to have failed weaning (62.2% versus 44.7%, p= 0.048) and death (28.9% versus 12.4%, p= 0.010) than those without PA isolates. The majority of the PA and ABC isolates were susceptible and resistant to all the tested antimicrobials, respectively, except that tigecycline had a reliable activity against ABC. Conclusion Our findings provide important information to help intensivists make better treatment decisions in critically ill patients with COPD and CAP.
Collapse
Affiliation(s)
- Ko-Yun Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Pi-Chu Wu
- Nursing Department, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, 350, Taiwan
| | - Yu-Che Lee
- Department of Medicine, University at Buffalo-Catholic Health, Buffalo, NY, USA
| | - Hui-Chen Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Wei-Chang Huang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 407, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, 350, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
- Master Program for Health Administration, Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, 407, Taiwan
| | - Ming-Feng Wu
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 407, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| |
Collapse
|
11
|
Pérez-Cruz M, Koné B, Porte R, Carnoy C, Tabareau J, Gosset P, Trottein F, Sirard JC, Pichavant M, Gosset P. The Toll-Like Receptor 5 agonist flagellin prevents Non-typeable Haemophilus influenzae-induced infection in cigarette smoke-exposed mice. PLoS One 2021; 16:e0236216. [PMID: 33784296 PMCID: PMC8009382 DOI: 10.1371/journal.pone.0236216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/25/2021] [Indexed: 01/13/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. The major bacterial cause of COPD exacerbations is non-typeable Haemophilus influenzae (NTHi). 25 to over 80% of cases are associated with NTHi. This susceptibility to infection involves a defective production of interleukin (IL)-22 which plays an important role in mucosal defense. Prophylactic administration of flagellin, a Toll-like receptor 5 (TLR5) agonist, protects healthy mice against respiratory pathogenic bacteria. We hypothesized that TLR5-mediated stimulation of lung immunity might prevent COPD exacerbations. Mice chronically exposed to cigarette smoke (CS), which presented COPD symptoms, were infected with NTHi and intraperitoneally treated with recombinant flagellin following a prophylactic or therapeutic protocol. Compared with control, cigarette smoke-exposed mice treated with flagellin showed a lower bacterial load in the airways, the lungs and the blood. This protection was associated with an early neutrophilia, a lower production of pro-inflammatory cytokines and an increased IL-22 production. Flagellin treatment decreased the recruitment of inflammatory cells and the lung damages related to exacerbation. Morover, the protective effect of flagellin against NTHi was altered by treatment with anti-IL-22 blocking antibodies in cigarette smoke-exposed mice and in Il22-/- mice. The effect of flagellin treatment did not implicated the anti-bacterial peptides calgranulins and defensin-β2. This study shows that stimulation of innate immunity by a TLR5 ligand is a potent antibacterial treatment in CS-exposed mice, suggesting innovative therapeutic strategies against acute exacerbation in COPD.
Collapse
Affiliation(s)
- Magdiel Pérez-Cruz
- Univ. Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Bachirou Koné
- Univ. Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Rémi Porte
- Univ. Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Christophe Carnoy
- Univ. Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Julien Tabareau
- Univ. Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Pierre Gosset
- Service d’Anatomo-pathologie, Hôpital Saint Vincent de Paul, Lille, France
| | - François Trottein
- Univ. Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Claude Sirard
- Univ. Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Muriel Pichavant
- Univ. Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Philippe Gosset
- Univ. Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL—Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
12
|
Kunadharaju R, Sethi S. Treatment of Acute Exacerbations in Chronic Obstructive Pulmonary Disease. Clin Chest Med 2020; 41:439-451. [PMID: 32800197 DOI: 10.1016/j.ccm.2020.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Management of a chronic obstructive pulmonary disease (COPD) exacerbation begins with an accurate diagnosis. Although more than 80% of exacerbations are managed on an outpatient basis, hospitalization is all too common and associated with considerable health care costs and mortality. Irrespective of the site of treatment, the treatment modalities are the same. Noninvasive ventilation has greatly decreased the mortality in exacerbations that require ventilatory support. Across the range of exacerbation severity, treatment failure and relapses are frequent, and should be carefully evaluated. New therapeutic options to address infection and inflammation in COPD are needed to improve the outcome of exacerbations.
Collapse
Affiliation(s)
- Rajesh Kunadharaju
- Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Sanjay Sethi
- Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; Clinical and Translational Research Center, Room 6045A, 875 Ellicott Street, Buffalo, NY 14203, USA.
| |
Collapse
|
13
|
Koné B, Pérez‐Cruz M, Porte R, Hennegrave F, Carnoy C, Gosset P, Trottein F, Sirard J, Pichavant M, Gosset P. Boosting the IL-22 response using flagellin prevents bacterial infection in cigarette smoke-exposed mice. Clin Exp Immunol 2020; 201:171-186. [PMID: 32324274 PMCID: PMC7366752 DOI: 10.1111/cei.13445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/27/2020] [Accepted: 04/10/2020] [Indexed: 12/29/2022] Open
Abstract
The progression of chronic obstructive pulmonary disease (COPD), a lung inflammatory disease being the fourth cause of death worldwide, is marked by acute exacerbations. These episodes are mainly caused by bacterial infections, frequently due to Streptococcus pneumoniae. This susceptibility to infection involves a defect in interleukin (IL)-22, which plays a pivotal role in mucosal defense mechanism. Administration of flagellin, a Toll-like receptor 5 (TLR-5) agonist, can protect mice and primates against respiratory infections in a non-pathological background. We hypothesized that TLR-5-mediated stimulation of innate immunity might improve the development of bacteria-induced exacerbations in a COPD context. Mice chronically exposed to cigarette smoke (CS), mimicking COPD symptoms, are infected with S. pneumoniae, and treated in a preventive and a delayed manner with flagellin. Both treatments induced a lower bacterial load in the lungs and blood, and strongly reduced the inflammation and lung lesions associated with the infection. This protection implicated an enhanced production of IL-22 and involved the recirculation of soluble factors secreted by spleen cells. This is also associated with higher levels of the S100A8 anti-microbial peptide in the lung. Furthermore, human mononuclear cells from non-smokers were able to respond to recombinant flagellin by increasing IL-22 production while active smoker cells do not, a defect associated with an altered IL-23 production. This study shows that stimulation of innate immunity by a TLR-5 ligand reduces CS-induced susceptibility to bacterial infection in mice, and should be considered in therapeutic strategies against COPD exacerbations.
Collapse
Affiliation(s)
- B. Koné
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - M. Pérez‐Cruz
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - R. Porte
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - F. Hennegrave
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - C. Carnoy
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - P. Gosset
- Service d’Anatomo‐pathologieHôpital Saint Vincent de PaulLilleFrance
| | - F. Trottein
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - J.‐C. Sirard
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - M. Pichavant
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - P. Gosset
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| |
Collapse
|
14
|
Acute exacerbations in chronic obstructive pulmonary disease: should we use antibiotics and if so, which ones? Curr Opin Infect Dis 2020; 32:143-151. [PMID: 30672788 DOI: 10.1097/qco.0000000000000533] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW Acute exacerbations are a major cause of morbidity and mortality in chronic obstructive pulmonary disease (COPD) with evidence suggesting at least 50% of exacerbations involve bacteria that benefit from antibiotic treatment. Here, we review the most relevant data regarding the use of antibiotics in exacerbations of COPD and provide insights on the selection of initial antibiotic therapy for their treatment. RECENT FINDINGS Identification of bacterial exacerbations still relies on clinical assessment rather than laboratory biomarkers. Several recent studies, including a meta-analysis and placebo-controlled trials, demonstrate improved outcomes with antibiotics in all but mild exacerbations of COPD, including both inpatient and outpatient. A broader antibiotic regimen should be used for patients who have risk factors for poor outcomes. A risk-stratification approach can guide antibiotic choice, although the stratification algorithm still needs to be validated in a randomized controlled trial. SUMMARY The use of antibiotics for the treatment of moderate-to-severe suspected bacterial exacerbations in COPD is supported by published trials and evidence-based systematic reviews. Recent trials also show differences in outcomes based on antibiotic choice. More research is necessary to evaluate risk stratification approaches when selecting initial antibiotic therapy.
Collapse
|
15
|
Moghoofei M, Azimzadeh Jamalkandi S, Moein M, Salimian J, Ahmadi A. Bacterial infections in acute exacerbation of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Infection 2019; 48:19-35. [PMID: 31482316 DOI: 10.1007/s15010-019-01350-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Due to the importance of Chronic obstructive pulmonary disease (COPD) as the fourth cause of mortality worldwide and the lack of studies evaluating the prevalence of bacterial infections in disease exacerbation, this systematic review and meta-analysis was performed to determine the prevalence rate of bacterial infections in COPD patients. METHODS PubMed, ISI Web of Science, and Scopus databases were systematically searched for population-based prevalence studies (1980-2018). MeSH terms for "Bacterial infections" and "AECOPD" were used as search keywords. The selected studies were filtered according to the inclusion and exclusion criteria. Fixed and random-effects models were used for estimation of summary effect sizes. Between-study heterogeneity, as well as publication bias, were calculated. RESULTS Finally, 118 out of 31,440 studies were selected. The overall estimation of the prevalence of bacterial infection was 49.59% [95% confidence interval (CI) 0.4418-0.55]. The heterogeneity in estimating the pooled prevalence of bacterial infections was shown in the studies (Cochran Q test: 6615, P < 0.0001, I2 = 98.23%). In addition, S. pneumoniae, H. influenzae, M. catarrhalis, A. baumannii, P. aeruginosa, and S. aureus were the most prevalent reported bacteria. CONCLUSIONS Our results as the first meta-analysis for the issue demonstrated that bacterial infections are an important risk factor for AECOPD. Further studies must be performed for understanding the exact role of bacterial agents in AECOPD and help physicians for more applicable preventive and therapeutic measurements.
Collapse
Affiliation(s)
- Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masood Moein
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Crisan L, Wong N, Sin DD, Lee HM. Karma of Cardiovascular Disease Risk Factors for Prevention and Management of Major Cardiovascular Events in the Context of Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Front Cardiovasc Med 2019; 6:79. [PMID: 31294030 PMCID: PMC6603127 DOI: 10.3389/fcvm.2019.00079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
There is compelling epidemiological evidence that airway exposure to cigarette smoke, air pollution particles, as well as bacterial and viral pathogens is strongly related to acute ischemic events. Over the years, there have been important animal and human studies that have provided experimental evidence to support a causal link. Studies show that patients with cardiovascular diseases (CVDs) or risk factors for CVD are more likely to have major adverse cardiovascular events (MACEs) after an acute exacerbation of chronic obstructive pulmonary disease (COPD), and patients with more severe COPD have higher cardiovascular mortality and morbidity than those with less severe COPD. The risk of MACEs in acute exacerbation of COPD is determined by the complex interactions between genetics, behavioral, metabolic, infectious, and environmental risk factors. To date, there are no guidelines regarding the prevention, screening, and management of the modifiable risk factors for MACEs in the context of COPD or COPD exacerbations, and there is insufficient CVD risk control in those with COPD. A deeper insight of the modifiable risk factors shared by CVD, COPD, and acute exacerbations of COPD may improve the strategies for reduction of MACEs in patients with COPD through vaccination, tight control of traditional CV risk factors and modifying lifestyle. This review summarizes the most recent studies regarding the pathophysiology and epidemiology of modifiable risk factors shared by CVD, COPD, and COPD exacerbations that could influence overall morbidity and mortality due to MACEs in patients with acute exacerbations of COPD.
Collapse
Affiliation(s)
- Liliana Crisan
- Heart Disease Prevention Program, Division of Cardiology, University of California, Irvine, Irvine, CA, United States
| | - Nathan Wong
- Heart Disease Prevention Program, Division of Cardiology, University of California, Irvine, Irvine, CA, United States
| | - Don D. Sin
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, Vancouver, BC, Canada
| | - Hwa Mu Lee
- Heart Disease Prevention Program, Division of Cardiology, University of California, Irvine, Irvine, CA, United States
- Division of Pulmonary and Critical Care Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
17
|
Wan C, Zhang J, Zhao L, Cheng X, Gao C, Wang Y, Xu W, Zou Q, Gu J. Rational Design of a Chimeric Derivative of PcrV as a Subunit Vaccine Against Pseudomonas aeruginosa. Front Immunol 2019; 10:781. [PMID: 31068928 PMCID: PMC6491502 DOI: 10.3389/fimmu.2019.00781] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/25/2019] [Indexed: 01/20/2023] Open
Abstract
Pseudomonas aeruginosa (PA) is a major cause of nosocomial infections, which remain an unsolved problem in the clinic despite conventional antibiotic treatment. A PA vaccine could be both an effective and economical strategy to address this issue. Many studies have shown that PcrV, a structural protein of the type 3 secretion system (T3SS) from PA, is an ideal target for immune prevention and therapy. However, difficulties in the production of high-quality PcrV likely hinder its further application in the vaccine industry. Thus, we hypothesized that an optimized PcrV derivative with a rational design could be produced. In this study, the full-length PcrV was divided into four domains with the guidance of its structure, and the Nter domain (Met1-Lys127) and H12 domain (Leu251-Ile294) were found to be immunodominant. Subsequently, Nter and H12 were combined with a flexible linker to generate an artificial PcrV derivative (PcrVNH). PcrVNH was successfully produced in E. coli and behaved as a homogenous monomer. Moreover, immunization with PcrVNH elicited a multifactorial immune response and conferred broad protection in an acute PA pneumonia model and was equally effective to full-length PcrV. In addition, passive immunization with anti-PcrVNH antibodies alone also showed significant protection, at least based on inhibition of the T3SS and mediation of opsonophagocytic killing activities. These results provide an additional example for the rational design of antigens and suggest that PcrVNH is a promising vaccine candidate for the control of PA infection.
Collapse
Affiliation(s)
- Chuang Wan
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jin Zhang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liqun Zhao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xin Cheng
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Chen Gao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ying Wang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wanting Xu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jiang Gu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
18
|
Stockwell RE, Chin M, Johnson GR, Wood ME, Sherrard LJ, Ballard E, O'Rourke P, Ramsay KA, Kidd TJ, Jabbour N, Thomson RM, Knibbs LD, Morawska L, Bell SC. Transmission of bacteria in bronchiectasis and chronic obstructive pulmonary disease: Low burden of cough aerosols. Respirology 2019; 24:980-987. [PMID: 30919511 DOI: 10.1111/resp.13544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Aerosol transmission of Pseudomonas aeruginosa has been suggested as a possible mode of respiratory infection spread in patients with cystic fibrosis (CF); however, whether this occurs in other suppurative lung diseases is unknown. Therefore, we aimed to determine if (i) patients with bronchiectasis (unrelated to CF) or chronic obstructive pulmonary disease (COPD) can aerosolize P. aeruginosa during coughing and (ii) if genetically indistinguishable (shared) P. aeruginosa strains are present in these disease cohorts. METHODS People with bronchiectasis or COPD and P. aeruginosa respiratory infection were recruited for two studies. Aerosol study: Participants (n = 20) underwent cough testing using validated cough rigs to determine the survival of P. aeruginosa aerosols in the air over distance and duration. Genotyping study: P. aeruginosa sputum isolates (n = 95) were genotyped using the iPLEX20SNP platform, with a subset subjected to the enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) assay to ascertain their genetic relatedness. RESULTS Aerosol study: Overall, 7 of 20 (35%) participants released P. aeruginosa cough aerosols during at least one of the cough aerosol tests. These cough aerosols remained viable for 4 m from the source and for 15 min after coughing. The mean total aerosol count of P. aeruginosa at 2 m was two colony-forming units. Typing study: No shared P. aeruginosa strains were identified. CONCLUSION Low viable count of P. aeruginosa cough aerosols and a lack of shared P. aeruginosa strains observed suggest that aerosol transmission of P. aeruginosa is an unlikely mode of respiratory infection spread in patients with bronchiectasis and COPD.
Collapse
Affiliation(s)
- Rebecca E Stockwell
- Lung Bacteria Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Melanie Chin
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Division of Respirology, The University of Ottawa, Ottawa, ON, Canada.,Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Graham R Johnson
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Michelle E Wood
- Lung Bacteria Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | | | - Emma Ballard
- Statistical Support Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Peter O'Rourke
- Statistical Support Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kay A Ramsay
- Lung Bacteria Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Timothy J Kidd
- Lung Bacteria Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nassib Jabbour
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rachel M Thomson
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Gallipoli Medical Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Luke D Knibbs
- School of Public Health, The University of Queensland, Brisbane, QLD, Australia
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Scott C Bell
- Lung Bacteria Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Choi J, Oh JY, Lee YS, Hur GY, Lee SY, Shim JJ, Kang KH, Min KH. Bacterial and Viral Identification Rate in Acute Exacerbation of Chronic Obstructive Pulmonary Disease in Korea. Yonsei Med J 2019; 60:216-222. [PMID: 30666844 PMCID: PMC6342712 DOI: 10.3349/ymj.2019.60.2.216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/14/2018] [Accepted: 12/03/2018] [Indexed: 01/06/2023] Open
Abstract
PURPOSE The most common cause of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is respiratory infection. Most studies of bacterial or viral cause in AECOPD have been conducted in Western countries. We investigated bacterial and viral identification rates in AECOPD in Korea. MATERIALS AND METHODS We reviewed and analyzed medical records of 736 cases of AECOPD at the Korea University Guro Hospital. We analyzed bacterial and viral identification rates and classified infections according to epidemiological factors, such as Global Initiative for Chronic Obstructive Lung Disease stage, mortality, and seasonal variation. RESULTS The numbers of AECOPD events involving only bacterial identification, only viral identification, bacterial-viral co-identification, and no identification were 200 (27.2%), 159 (21.6%), 107 (14.5%), and 270 (36.7%), respectively. The most common infectious bacteria identified were Pseudomonas aeruginosa (13.0%), Streptococcus pneumoniae (11.4%), and Haemophilus influenzae (5.3%); the most common viruses identified were influenza virus (12.4%), rhinovirus (9.4%), parainfluenza virus (5.2%), and metapneumovirus (4.9%). The bacterial identification rate tended to be higher at more advanced stages of chronic obstructive pulmonary disease (p=0.020 overall, p=0.011 for P. aeruginosa, p=0.048 for S. pneumoniae). Staphylococcus aureus and Klebsiella pneumoniae were identified more in mortality group (p=0.003 for S. aureus, p=0.009 for K. pneumoniae). All viruses were seasonal (i.e., greater prevalence in a particular season; p<0.050). Influenza virus and rhinovirus were mainly identified in the winter, parainfluenza virus in the summer, and metapneumovirus in the spring. CONCLUSION This information on the epidemiology of respiratory infections in AECOPD will improve the management of AECOPD using antibiotics and other treatments in Korea.
Collapse
Affiliation(s)
- Juwhan Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jee Youn Oh
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Young Seok Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Gyu Young Hur
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Sung Yong Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jae Jeong Shim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Kyung Ho Kang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Kyung Hoon Min
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
20
|
González Del Castillo J, Candel FJ, de la Fuente J, Gordo F, Martín-Sánchez FJ, Menéndez R, Mujal A, Barberán J. [Integral approach to the acute exacerbation of chronic obstructive pulmonary disease]. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2018; 31:461-484. [PMID: 30284414 PMCID: PMC6194861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/04/2018] [Indexed: 11/12/2022]
Abstract
Chronic obstructive pulmonary disease is a set of clinical processes that have in common a chronic and progressive obstruction to airflow, with episodes of exacerbation. These exacerbations are more frequent and severe over time, deteriorating the lung function. The main cause of exacerbations is bacterial infection. There are multiple guidelines and documents that statement the management of this pathology. However, they focus primarily on the treatment during the stable phase. This document addresses the problem of acute exacerbation due to an infection from a multidisciplinary perspective, focusing on the integral approach to the process, and including etiology, microbiological studies, resistance to antimicrobials, risk stratification and initial empirical therapeutic management (antibiotic and concomitant). In addition, it includes an approach to more complex aspects such as the management of special populations (elderly and immunosuppressed) or therapeutic failure. Finally, more controversial topics such as prophylaxis of infection or palliative treatment are specifically discussed.
Collapse
Affiliation(s)
- J González Del Castillo
- Juan González del Castillo, Servicio de Urgencias. Hospital Clínico San Carlos. Calle Profesor Martín-Lagos s/n, 28040 Madrid. Spain.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Dicker AJ, Crichton ML, Cassidy AJ, Brady G, Hapca A, Tavendale R, Einarsson GG, Furrie E, Elborn JS, Schembri S, Marshall SE, Palmer CNA, Chalmers JD. Genetic mannose binding lectin deficiency is associated with airway microbiota diversity and reduced exacerbation frequency in COPD. Thorax 2018; 73:510-518. [PMID: 29101284 PMCID: PMC5969339 DOI: 10.1136/thoraxjnl-2016-209931] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 08/19/2017] [Accepted: 10/02/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND In cystic fibrosis and bronchiectasis, genetic mannose binding lectin (MBL) deficiency is associated with increased exacerbations and earlier mortality; associations in COPD are less clear. Preclinical data suggest MBL interferes with phagocytosis of Haemophilus influenzae, a key COPD pathogen. We investigated whether MBL deficiency impacted on clinical outcomes or microbiota composition in COPD. METHODS Patients with COPD (n=1796) underwent MBL genotyping; linkage to health records identified exacerbations, lung function decline and mortality. A nested subcohort of 141 patients, followed for up to 6 months, was studied to test if MBL deficiency was associated with altered sputum microbiota, through 16S rRNA PCR and sequencing, or airway inflammation during stable and exacerbated COPD. FINDINGS Patients with MBL deficiency with COPD were significantly less likely to have severe exacerbations (incidence rate ratio (IRR) 0.66, 95% CI 0.48 to 0.90, p=0.009), or to have moderate or severe exacerbations (IRR 0.77, 95% CI 0.60 to 0.99, p=0.047). MBL deficiency did not affect rate of FEV1 decline or mortality. In the subcohort, patients with MBL deficiency had a more diverse lung microbiota (p=0.008), and were less likely to be colonised with Haemophilus spp. There were lower levels of airway inflammation in patients with MBL deficiency. INTERPRETATION Patients with MBL deficient genotype with COPD have a lower risk of exacerbations and a more diverse lung microbiota. This is the first study to identify a genetic association with the lung microbiota in COPD.
Collapse
Affiliation(s)
- Alison J Dicker
- Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Megan L Crichton
- Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Andrew J Cassidy
- Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Gill Brady
- Tayside Respiratory Research Group, Clinical Research Centre, Dundee, UK
| | - Adrian Hapca
- Dundee Epidemiology and Biostatistics Unit, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Roger Tavendale
- Pat MacPherson Centre for Pharmacogenetics and Pharmacogenomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Gisli G Einarsson
- School of Medicine, Centre for Experimental Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | - Elizabeth Furrie
- Department of Immunology, NHS Tayside, Ninewells Hospital Department of Medicine, Dundee, Dundee, UK
| | - J Stuart Elborn
- School of Medicine, Centre for Experimental Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Stuart Schembri
- Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Sara E Marshall
- Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Colin N A Palmer
- Pat MacPherson Centre for Pharmacogenetics and Pharmacogenomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
22
|
Underner M, Cuvelier A, Peiffer G, Perriot J, Jaafari N. Influence de l’anxiété et de la dépression sur les exacerbations au cours de la BPCO. Rev Mal Respir 2018; 35:604-625. [PMID: 29937312 DOI: 10.1016/j.rmr.2018.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/13/2018] [Indexed: 02/05/2023]
Affiliation(s)
- M Underner
- Unité de recherche clinique, centre hospitalier Henri-Laborit, université de Poitiers, 370, avenue Jacques-Cœur CS 10587, 86021 Poitiers cedex, France.
| | - A Cuvelier
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, centre hospitalier universitaire de Rouen, 76031 Rouen, France; Université de Rouen-Normandie, UPRES EA3830 groupe de recherche sur le handicap ventilatoire (GRHV), Institut de recherche et d'innovation biomédicale (IRIB), 76000 Rouen, France
| | - G Peiffer
- Service de pneumologie, centre hospitalier régional Metz-Thionville, 57038 Metz, France
| | - J Perriot
- Dispensaire Émile-Roux, centre de tabacologie, 63100 Clermont-Ferrand, France
| | - N Jaafari
- Unité de recherche clinique, centre hospitalier Henri-Laborit, université de Poitiers, 370, avenue Jacques-Cœur CS 10587, 86021 Poitiers cedex, France
| |
Collapse
|
23
|
Messous S, Grissa MH, Beltaief K, Boukef R, Nouira S, Mastouri M. [Bacteriology of acute exacerbations of chronic obstructive pulmonary disease in Tunisia]. Rev Mal Respir 2018; 35:36-47. [PMID: 29395563 DOI: 10.1016/j.rmr.2017.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/17/2017] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The role of bacteria, including atypical organisms, in acute exacerbations of chronic obstructive pulmonary disease (AECOPD) has been assessed in various ways in Tunisia. METHODS This was a descriptive and analytical study of patients with a mean age of 68.3±10.5 years hospitalized for AECOPD. Bacteriological examination included a cytological sputum exam and serology for atypical organisms including Mycoplasma pneumoniae, Coxiella burnetii, Chlamydophila pneumoniae and Legionella pneumophila using standard techniques. RESULTS Of the 240 patients enrolled, 175 sputum cultures (73%) were considered significant. Twenty-nine cultures were positive (16.5%) and 31 microorganisms were isolated of which the most frequent were P. aeruginosa (25.8%), K. pneumoniae (16.2%), H. influenzae (13%) and S. pneumoniae (9.7%). The prevalence of C. pneumoniae, M. pneumoniae and C. burnetii was 8.4%, 9% and 6.6%, respectively. No L. pneumophila infection was found. The Anthonisen criteria were associated with a positive culture (P=0.04). Almost half (40.9%) of the isolates were resistant to conventional first line antibiotics (43.7% to amoxicillin-clavulanic acid). CONCLUSIONS Awareness of the low positivity of quantitative sputum bacteriology and the large percentage of resistant strains with a predominance of exclusively multi-resistant Pseudomonas should help in the management of patients with AECOPD.
Collapse
Affiliation(s)
- S Messous
- Laboratoire de recherche (LR12SP18), université de Monastir, Monastir, Tunisie; Laboratoire de microbiologie, hôpital universitaire Fattouma Bourguiba de Monastir, Monastir, Tunisie.
| | - M H Grissa
- Laboratoire de recherche (LR12SP18), université de Monastir, Monastir, Tunisie; Services des urgences, hôpital universitaire Fattouma Bourguiba de Monastir, Monastir, Tunisie
| | - K Beltaief
- Laboratoire de recherche (LR12SP18), université de Monastir, Monastir, Tunisie; Services des urgences, hôpital universitaire Fattouma Bourguiba de Monastir, Monastir, Tunisie
| | - R Boukef
- Laboratoire de recherche (LR12SP18), université de Monastir, Monastir, Tunisie; Services des urgences, hôpital universitaire Sahloul de Sousse, Sousse, Tunisie
| | - S Nouira
- Laboratoire de recherche (LR12SP18), université de Monastir, Monastir, Tunisie; Services des urgences, hôpital universitaire Fattouma Bourguiba de Monastir, Monastir, Tunisie
| | - M Mastouri
- Laboratoire de recherche (LR12SP18), université de Monastir, Monastir, Tunisie; Laboratoire de microbiologie, hôpital universitaire Fattouma Bourguiba de Monastir, Monastir, Tunisie
| |
Collapse
|
24
|
Villar-Álvarez F, Moreno-Zabaleta R, Mira-Solves JJ, Calvo-Corbella E, Díaz-Lobato S, González-Torralba F, Hernando-Sanz A, Núñez-Palomo S, Salgado-Aranda S, Simón-Rodríguez B, Vaquero-Lozano P, Navarro-Soler IM. Do not do in COPD: consensus statement on overuse. Int J Chron Obstruct Pulmon Dis 2018; 13:451-463. [PMID: 29440883 PMCID: PMC5799849 DOI: 10.2147/copd.s151939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background To identify practices that do not add value, cause harm, or subject patients with chronic obstructive pulmonary disease (COPD) to a level of risk that outweighs possible benefits (overuse). Methods A qualitative approach was applied. First, a multidisciplinary group of healthcare professionals used the Metaplan technique to draft and rank a list of overused procedures as well as self-care practices in patients with stable and exacerbated COPD. Second, in successive consensus-building rounds, description files were created for each "do not do" (DND) recommendation, consisting of a definition, description, quality of supporting evidence for the recommendation, and the indicator used to measure the degree of overuse. The consensus group comprised 6 pulmonologists, 2 general practitioners, 1 nurse, and 1 physiotherapist. Results In total, 16 DND recommendations were made for patients with COPD: 6 for stable COPD, 6 for exacerbated COPD, and 4 concerning self-care. Conclusion Overuse poses a risk for patients and jeopardizes care quality. These 16 DND recommendations for COPD will lower care risks and improve disease management, facilitate communication between physicians and patients, and bolster patient ability to provide self-care.
Collapse
Affiliation(s)
| | - Raúl Moreno-Zabaleta
- Pulmonology, Inpatient and Noninvasive Mechanical Ventilation, Hospital Universitario Infanta Sofía, Madrid
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Oliveira AS, Munhá J, Bugalho A, Guimarães M, Reis G, Marques A. Identification and assessment of COPD exacerbations. Pulmonology 2017; 24:S2173-5115(17)30165-3. [PMID: 29279278 DOI: 10.1016/j.rppnen.2017.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 11/17/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) exacerbations play a central role in the disease natural history of the disease, affecting its overall severity, decreasing pulmonary function, worsening underlying co-morbidities, impairing quality of life (QoL) and leading to severe morbidity and mortality. Therefore, identification and correct assessment of COPD exacerbations is paramount, given it will strongly influence therapy success. For the identification of exacerbations, several questionnaires exist, with varying degrees of complexity. However, most questionnaires remain of limited clinical utility, and symptom scales seem to be more useful in clinical practice. In the assessment of exacerbations, the type and degree of severity should be ascertained in order to define the management setting and optimize treatment options. Still, a consensual and universal classification system to assess the severity and type of an exacerbation is lacking, and there are no established criteria for less severely ill patients not requiring hospital assessment. This might lead to under-reporting of minor to moderate exacerbations, which has an impact on patients' health status. There is a clear unmet need to develop clinically useful questionnaires and a comprehensive system to evaluate the severity of exacerbations that can be used in all settings, from primary health care to general hospitals.
Collapse
Affiliation(s)
- A S Oliveira
- Pulmonology Department, Hospital Pulido Valente, CHLN, Lisbon, Portugal
| | - J Munhá
- Pulmonology Department, Centro Hospitalar do Barlavento Algarvio, EPE, Portimão, Portugal
| | - A Bugalho
- Pulmonology Department, Hospital CUF Infante Santo/Hospital CUF Descobertas, Lisbon, Portugal; Chronic Diseases Research Center (CEDOC), Lisbon School of Medical Sciences, Nova University, Lisbon, Portugal
| | - M Guimarães
- Pulmonology Department, Centro Hospitalar Gaia-Espinho, EPE, Portugal
| | - G Reis
- Pulmonology Department, Hospital Distrital de Santarém, Portugal
| | - A Marques
- Pulmonology Department, São João Hospital Center, Porto, Portugal.
| |
Collapse
|
26
|
Clinical presentations and outcome of severe community-acquired pneumonia. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2016; 65:831-839. [PMID: 32288129 PMCID: PMC7125902 DOI: 10.1016/j.ejcdt.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/02/2016] [Indexed: 12/02/2022] Open
Abstract
Background Severe community-acquired pneumonia (SCAP) represents a frequent and potentially life-threatening condition. About 10% of all hospitalized patients with CAP require admission to the intensive care unit (ICU), and the mortality of these patients reaches 20–50%. Objective To evaluate the clinical presentation, bacteriological profile and outcome of severe community-acquired pneumonia (SCAP). Patients and methods 54 patients presented by symptoms and sign of severe community acquired pneumonia who were admitted to respiratory care unit of Alhussein, Al-Azhar University Hospital from August 2015 to March 2016 were subjected to full clinical examination, chest X ray, complete blood picture, sputum and blood culture, PCR for suspected cases of Influenza H1N1 and MERS-COV, treatment, follow up, data collections and statistical analysis. Results The present study included 54 patients 26 males and 28 females with SCAP who were admitted to respiratory care unit of Alhussein, Al-Azhar University Hospital. The most common comorbidities were diabetes mellitus and hypertension. The most common presentations were fever, cough, dyspnea and hypoxemia. Two patients developed renal failure and 4 patients developed septic shock. The most common isolated organism was Streptococcus pneumoniae, Influenza H1N1, and Staphylococcus aureus. Mortality was 24% and it was common in patients with comorbidity than in patients without comorbidities. Conclusion SCAP occurs more frequently in those with comorbidities. The most frequent isolated causative organism of SCAP is S. pneumoniae, Influenza H1N1 and S. aureus. SCAP is associated with significant mortality, early recognition and prompt treatment may improve outcome.
Collapse
|
27
|
Matsumoto T, Fujita M, Hirano R, Uchino J, Tajiri Y, Fukuyama S, Morimoto Y, Watanabe K. Chronic Pseudomonas aeruginosa infection-induced chronic bronchitis and emphysematous changes in CCSP-deficient mice. Int J Chron Obstruct Pulmon Dis 2016; 11:2321-2327. [PMID: 27703342 PMCID: PMC5036550 DOI: 10.2147/copd.s113707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The club cell secretory protein (CCSP) is a regulator of lung inflammation following acute respiratory infection or lung injury. Recently, the relationship between CCSP and COPD has been reported. Since COPD results from an abnormal inflammatory response, we hypothesized that CCSP could have a protective role against chronic inflammation-induced lung damage. To address this issue, the pathophysiology of chronic lung inflammation induced by Pseudomonas aeruginosa in CCSP-deficient mice was determined. A tube of 5 mm in length was soaked in a fluid containing P. aeruginosa (PAO01 strain) for 1 week and inserted into the trachea of CCSP-deficient mice. One week later, P. aeruginosa was administered into the trachea. Five weeks after insertion of tube, the mice were sacrificed. Bronchoalveolar lavage fluids were collected to determine the bacterial growth, and the lung histology and physiology were also examined. P. aeruginosa was continuously detected in bronchoalveolar lavage fluids during the study. Neutrophils were increased in the bronchoalveolar lavage fluids from the CCSP-deficient mice in comparison to wild-type mice. A histological study demonstrated chronic inflammation around bronchus, serious bronchial stenosis, and alveolar enlargement in the CCSP-deficient mice. The lung physiology study demonstrated an increase in the lung compliance of the CCSP-deficient mice. Chronic P. aeruginosa inflammation resulted in chronic bronchitis and emphysematous changes in the CCSP-deficient mice. CCSP could play an important role in protecting the host from the chronic inflammation-induced lung damage.
Collapse
Affiliation(s)
- Takemasa Matsumoto
- Department of Respiratory Medicine, Faculty of Medicine, Fukuoka University
| | - Masaki Fujita
- Department of Respiratory Medicine, Faculty of Medicine, Fukuoka University
| | - Ryosuke Hirano
- Department of Respiratory Medicine, Faculty of Medicine, Fukuoka University
| | - Junji Uchino
- Department of Respiratory Medicine, Faculty of Medicine, Fukuoka University
| | - Yukari Tajiri
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Satoru Fukuyama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial and Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kentaro Watanabe
- Department of Respiratory Medicine, Faculty of Medicine, Fukuoka University
| |
Collapse
|
28
|
Núñez B, Sauleda J, Garcia-Aymerich J, Noguera A, Monsó E, Gómez F, Barreiro E, Marín A, Antó JM, Agusti A. Lack of Correlation Between Pulmonary and Systemic Inflammation Markers in Patients with Chronic Obstructive Pulmonary Disease: A Simultaneous, Two-Compartmental Analysis. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.arbr.2016.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Lack of Correlation Between Pulmonary and Systemic Inflammation Markers in Patients with Chronic Obstructive Pulmonary Disease: A Simultaneous, Two-Compartmental Analysis. Arch Bronconeumol 2016; 52:361-7. [PMID: 26921918 DOI: 10.1016/j.arbres.2016.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 02/01/2023]
Abstract
INTRODUCTION The origin of systemic inflammation in chronic obstructive pulmonary disease (COPD) patients remains to be defined, but one of the most widely accepted hypothesis is the 'spill over' of inflammatory mediators from the lung to the circulation. OBJECTIVE To evaluate the relationship between pulmonary and systemic inflammation in COPD quantifying several inflammatory markers in sputum and serum determined simultaneously. METHODOLOGY Correlations between various inflammatory variables (TNF-α, IL6, IL8) in sputum and serum were evaluated in 133 patients from the PAC-COPD cohort study. A secondary objective was the evaluation of relationships between inflammatory variables and lung function. RESULTS Inflammatory markers were clearly higher in sputum than in serum. No significant correlation was found (absolute value, r=0.03-0.24) between inflammatory markers in blood and in sputum. There were no significant associations identified between those markers and lung function variables, such as FEV1, DLCO and PaO2 neither. CONCLUSIONS We found no correlation between pulmonary and systemic inflammation in patients with stable COPD, suggesting different pathogenic mechanisms.
Collapse
|