1
|
Naghipour S, Corben LA, Hulme AJ, Dottori M, Delatycki MB, Lees JG, Lim SY. Omaveloxolone for the Treatment of Friedreich Ataxia: Efficacy, Safety, and Future Perspectives. Mov Disord 2025; 40:226-230. [PMID: 39559924 DOI: 10.1002/mds.30070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Affiliation(s)
- Saba Naghipour
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, Melbourne University, Parkville, Victoria, Australia
| | - Amy J Hulme
- School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| | - Mirella Dottori
- School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, Melbourne University, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia
| | - Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine and Surgery, University of Melbourne, Parkville, Victoria, Australia
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Clayton, Victoria, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine and Surgery, University of Melbourne, Parkville, Victoria, Australia
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Clayton, Victoria, Australia
- National Heart Research Institute, National Heart Center, Singapore
| |
Collapse
|
2
|
Liu Z, Jia J. Omaveloxolone Ameliorates Cognitive Deficits by Inhibiting Apoptosis and Neuroinflammation in APP/PS1 Mice. Mol Neurobiol 2025; 62:2191-2202. [PMID: 39088030 DOI: 10.1007/s12035-024-04361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease associated with aging, characterized by progressive cognitive impairment and memory loss. However, treatments that delay AD progression or improve its symptoms remain limited. The aim of the present study was to investigate the therapeutic effects of omaveloxolone (Omav) on AD and to explore the underlying mechanisms. Thirty-week-old APP/PS1 mice were selected as an experimental model of AD. The spatial learning and memory abilities were tested using the Morris water maze. Amyloid-beta (Aβ) deposition in the brains was measured using immunohistochemistry. Network pharmacological analyses and molecular docking were conducted to gain insights into the therapeutic mechanisms of Omav. Finally, validation analyses were conducted to detect changes in the associated pathways and proteins. Our finding revealed that Omav markedly rescued cognitive dysfunction and reduced Aβ deposition in the brains of APP/PS1 mice. Network pharmacological analysis identified 112 intersecting genes, with CASP3 and MTOR emerging as the key targets. In vivo validation experiments indicated that Omav attenuated neuronal apoptosis by regulating apoptotic proteins, including caspase 3, Bax, and Bcl-2. Moreover, Omav suppressed neuroinflammation and induced autophagy by inhibiting the phosphorylation of mTOR. These findings highlight the therapeutic efficacy of Omav in AD and that its neuroprotective effects were associated with inhibiting neuronal apoptosis and regulating neuroinflammation.
Collapse
Affiliation(s)
- Zhaojun Liu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Changchun Street 45, Beijing, PR China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Changchun Street 45, Beijing, PR China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, PR China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, PR China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, PR China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, PR China.
| |
Collapse
|
3
|
Sethi P, Mehan S, Khan Z, Maurya PK, Kumar N, Kumar A, Tiwari A, Sharma T, Das Gupta G, Narula AS, Kalfin R. The SIRT-1/Nrf2/HO-1 axis: Guardians of neuronal health in neurological disorders. Behav Brain Res 2025; 476:115280. [PMID: 39368713 DOI: 10.1016/j.bbr.2024.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
SIRT1 (Sirtuin 1) is a NAD+-dependent deacetylase that functions through nucleoplasmic transfer and is present in nearly all mammalian tissues. SIRT1 is believed to deacetylate its protein substrates, resulting in neuroprotective actions, including reduced oxidative stress and inflammation, increased autophagy, increased nerve growth factors, and preserved neuronal integrity in aging or neurological disease. Nrf2 is a transcription factor that regulates the genes responsible for oxidative stress response and substance detoxification. The activation of Nrf2 guards cells against oxidative damage, inflammation, and carcinogenic stimuli. Several neurological abnormalities and inflammatory disorders have been associated with variations in Nrf2 activation caused by either pharmacological or genetic factors. Recent evidence indicates that Nrf2 is at the center of a complex cellular regulatory network, establishing it as a transcription factor with genuine pleiotropy. HO-1 is most likely a component of a defense mechanism in cells under stress, as it provides negative feedback for cell activation and mediator synthesis. This mediator is upregulated by Nrf2, nitric oxide (NO), and other factors in various inflammatory states. HO-1 or its metabolites, such as CO, may mitigate inflammation by modulating signal transduction pathways. Neurological diseases may be effectively treated by modulating the activity of HO-1. Multiple studies have demonstrated that SIRT1 and Nrf2 share an important connection. SIRT1 enhances Nrf2, activates HO-1, protects against oxidative injury, and decreases neuronal death. This has been associated with numerous neurodegenerative and neuropsychiatric disorders. Therefore, activating the SIRT1/Nrf2/HO-1 pathway may help treat various neurological disorders. This review focuses on the current understanding of the SIRT1 and Nrf2/HO-1 neuroprotective processes and the potential therapeutic applications of their target activators in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia 1113, Bulgaria; Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad 2700, Bulgaria
| |
Collapse
|
4
|
Umrao A, Pahuja M, Chatterjee NS. Safety and efficacy of omaveloxolone v/s placebo for the treatment of Friedreich's ataxia in patients aged more than 16 years: a systematic review. Orphanet J Rare Dis 2024; 19:495. [PMID: 39736600 DOI: 10.1186/s13023-024-03474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/20/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Friedreich's ataxia (FA) is a rare genetic disorder caused by silencing of the frataxin gene (FXN), which leads to multiorgan damage. Nrf2 is a regulator of FXN, which is a modulator of oxidative stress in animals and humans. Omaveloxolone (Omav) is an Nrf2 activator and has been reported to have antioxidative potential in various disease conditions. The present review was conducted to determine the use of Omav, the only FDA-approved treatment for FA. METHODS Three electronic databases, Cochrane, PubMed and Google Scholar, were searched with terms such as 'Omaveloxolone', 'Friedreich ataxia', 'genetic diseases', 'autosomal recessive', and 'rare disorders' using various advanced search filters. Articles were screened, extracted, and assessed for quality, and a qualitative synthesis of the data was performed. The study protocol was registered in PROSPERO (CRD42024531449). RESULTS A total of 201 records were found, with very few published research articles on the topic. Only two randomized clinical trials published in a series of three research articles were included in the current systematic review. Peak load exercise and modified Friedreich's Ataxia Rating Scale (mFARS) values were considered the major outcome measures for determining the efficacy of 150 mg Omav capsules/day in FA. Exploratory outcome measures, such as low-contrast letter visual acuity test, exercise test, T25-FW, 9-HPT, health-related quality of life, and biochemical tests, were also assessed along with adverse events in all the studies. CONCLUSION Although, the quality of the articles demonstrated low bias. However, the short duration, small sample size, and missing data, including the values of different measures of mFARS scores in patients, limit the generalizability of the results. Further studies with longer durations and in severe patients with foot deformities are needed to clearly define the efficacy of Omav in FA and to determine the optimal drug for FA patients in India.
Collapse
Affiliation(s)
- Ankita Umrao
- Discovery Research Division, Indian Council of Medical Research (ICMR) Headquarters, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box 4911, New Delhi, 110029, India
| | - Monika Pahuja
- Discovery Research Division, Indian Council of Medical Research (ICMR) Headquarters, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box 4911, New Delhi, 110029, India.
| | - Nabendu Sekhar Chatterjee
- Discovery Research Division, Indian Council of Medical Research (ICMR) Headquarters, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box 4911, New Delhi, 110029, India
| |
Collapse
|
5
|
Kaur T, Sidana P, Kaur N, Choubey V, Kaasik A. Unraveling neuroprotection in Parkinson's disease: Nrf2-Keap1 pathway's vital role amidst pathogenic pathways. Inflammopharmacology 2024; 32:2801-2820. [PMID: 39136812 DOI: 10.1007/s10787-024-01549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/01/2024] [Indexed: 10/11/2024]
Abstract
Parkinson's disease (PD) is an age-related chronic neurological condition characterized by progressive degeneration of dopaminergic neurons and the presence of Lewy bodies, primarily composed of alpha-synuclein and ubiquitin. The pathophysiology of PD encompasses alpha-synuclein aggregation, oxidative stress, neuroinflammation, mitochondrial dysfunction, and impaired autophagy and ubiquitin-proteasome systems. Among these, the Keap1-Nrf2 pathway is a key regulator of antioxidant defense mechanisms. Nrf2 has emerged as a crucial factor in managing oxidative stress and inflammation, and it also influences ubiquitination through p62 expression. Keap1 negatively regulates Nrf2 by targeting it for degradation via the ubiquitin-proteasome system. Disruption of the Nrf2-Keap1 pathway in PD affects cellular responses to oxidative stress and inflammation, thereby playing a critical role in disease progression. In addition, the role of neuroinflammation in PD has gained significant attention, highlighting the interplay between immune responses and neurodegeneration. This review discusses the various mechanisms responsible for neuronal degeneration in PD, with a special emphasis on the neuroprotective role of the Nrf2-Keap1 pathway. Furthermore, it explores the implications of inflammopharmacology in modulating these pathways to provide therapeutic insights for PD.
Collapse
Affiliation(s)
- Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, India.
| | - Palak Sidana
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Navpreet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Vinay Choubey
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| |
Collapse
|
6
|
Hynes SM, Goldsberry A, Henneghan PD, Murai M, Shinde A, Wells JA, Wu L, Wu T, Zahir H, Khan S. Relative Bioavailability of Omaveloxolone When Capsules Are Sprinkled Over and Mixed in Applesauce Compared With Administration as Intact Omaveloxolone Capsules: A Phase 1, Randomized, Open-Label, Single-Dose, Crossover Study in Healthy Adults. J Clin Pharmacol 2024; 64:1304-1311. [PMID: 38837775 DOI: 10.1002/jcph.2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Omaveloxolone (SKYCLARYS®) is approved for the treatment of Friedreich ataxia (FA) in patients aged ≥16 years in the United States and European Union (EU). The recommended dosage is 150 mg administered orally once daily as three 50-mg capsules. However, some patients with FA may have oropharyngeal dysphagia or difficulty swallowing whole capsules; therefore, alternate method(s) of administration are needed. A Phase 1 clinical study in 32 healthy volunteers evaluated the relative bioavailability, safety, and tolerability of a single dose of omaveloxolone when capsule contents were sprinkled on and mixed in applesauce compared to when taken as intact capsules. Palatability when sprinkled on and mixed in applesauce was assessed with a questionnaire. After a single 150-mg dose, the peak and overall exposures of omaveloxolone were similar irrespective of administration method, with the 90% CIs of the geometric least squares mean ratio (%) for maximum plasma concentration (Cmax), AUC0-t, and AUC0-∞ within the 80% to 125% reference intervals. Omaveloxolone was absorbed more slowly as intact capsules (median tmax, 10 h) compared with sprinkled capsule contents over applesauce (median tmax, 6 h). With chronic daily administration of omaveloxolone to treat FA, the 4-h difference in tmax is not considered clinically relevant. Sprinkled omaveloxolone capsule contents on applesauce were well tolerated, with acceptable palatability and no serious adverse events. Given the similar systemic exposure when capsules were swallowed whole, sprinkling omaveloxolone capsule contents on and mixing in applesauce is a feasible alternative method of administering omaveloxolone and has been included in both the United States and EU prescribing information.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lucy Wu
- Biogen Inc., Cambridge, Massachusetts, USA
| | - Tony Wu
- Reata Pharmaceuticals Inc., Plano, Texas, USA
| | | | - Seemi Khan
- Biogen Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Zheng W, Lv G, Li J, Zhang Y, Qi W, Yan M, Wu J, Chan C, Pan X, Zhang W. Repurposing of a library for high-content screening of inhibitors against Echinococcus granulosus. Parasit Vectors 2024; 17:373. [PMID: 39227942 PMCID: PMC11370232 DOI: 10.1186/s13071-024-06456-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is a zoonotic disease caused by the larval stage of the dog tapeworm Echinococcus granulosus sensu lato (E. granulosus), with a worldwide distribution. The current treatment strategy for CE is insufficient. Limited drug screening models severely hamper the discovery of effective anti-echinococcosis drugs. METHODS In the present study, using high-content screening technology, we developed a novel high-throughput screening (HTS) assay by counting the ratio of propidium iodide-stained dead protoscoleces (PSCs) to the total number of PSCs. In vitro and ex vivo cyst viability assays were utilized to determine the effect of drugs on cyst viability. RESULTS Using the newly established HTS assay, we screened approximately 12,000 clinical-stage or The Food and Drug Administration (FDA)-approved small molecules from the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library, as well as the LOPAC1280 and SelleckChem libraries, as a strategic approach to facilitate the drug discovery process. Initial screening yielded 173 compounds with anti-echinococcal properties, 52 of which demonstrated dose-response efficacy against E. granulosus PSCs in vitro. Notably, two agents, omaveloxolone and niclosamide, showed complete inhibition upon further validation in cyst and microcyst viability assays in vitro after incubation for 3 days, and in an ex vivo cyst viability assay using cysts isolated from the livers of mice infected with E. granulosus, as determined by morphological assessment. CONCLUSIONS Through the development of a novel HTS assay and by repurposing libraries, we identified omaveloxolone and niclosamide as potent inhibitors against E. granulosus. These compounds show promise as potential anti-echinococcal drugs, and our strategic approach has the potential to promote drug discovery for parasitic infections.
Collapse
Affiliation(s)
- Weinan Zheng
- Department of Disease Biology, Global Health Drug Discovery Institute, Beijing, 100000, China.
| | - Gaofei Lv
- Department of Disease Biology, Global Health Drug Discovery Institute, Beijing, 100000, China
| | - Jun Li
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Yao Zhang
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Wenjing Qi
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Mingzhi Yan
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Jinzhi Wu
- Department of Disease Biology, Global Health Drug Discovery Institute, Beijing, 100000, China
| | - Chikin Chan
- Department of Disease Biology, Global Health Drug Discovery Institute, Beijing, 100000, China
| | - Xiaoben Pan
- Department of Disease Biology, Global Health Drug Discovery Institute, Beijing, 100000, China.
| | - Wenbao Zhang
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| |
Collapse
|
8
|
Khaghani F, Hemmati M, Ebrahimi M, Salmaninejad A. Emerging Multi-omic Approaches to the Molecular Diagnosis of Mitochondrial Disease and Available Strategies for Treatment and Prevention. Curr Genomics 2024; 25:358-379. [PMID: 39323625 PMCID: PMC11420563 DOI: 10.2174/0113892029308327240612110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 09/27/2024] Open
Abstract
Mitochondria are semi-autonomous organelles present in several copies within most cells in the human body that are controlled by the precise collaboration of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) encoding mitochondrial proteins. They play important roles in numerous metabolic pathways, such as the synthesis of adenosine triphosphate (ATP), the predominant energy substrate of the cell generated through oxidative phosphorylation (OXPHOS), intracellular calcium homeostasis, metabolite biosynthesis, aging, cell cycles, and so forth. Previous studies revealed that dysfunction of these multi-functional organelles, which may arise due to mutations in either the nuclear or mitochondrial genome, leads to a diverse group of clinically and genetically heterogeneous disorders. These diseases include neurodegenerative and metabolic disorders as well as cardiac and skeletal myopathies in both adults and newborns. The plethora of phenotypes and defects displayed leads to challenges in the diagnosis and treatment of mitochondrial diseases. In this regard, the related literature proposed several diagnostic options, such as high throughput mitochondrial genomics and omics technologies, as well as numerous therapeutic options, such as pharmacological approaches, manipulating the mitochondrial genome, increasing the mitochondria content of the affected cells, and recently mitochondrial diseases transmission prevention. Therefore, the present article attempted to review the latest advances and challenges in diagnostic and therapeutic options for mitochondrial diseases.
Collapse
Affiliation(s)
- Faeze Khaghani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboobeh Hemmati
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Ebrahimi
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Arash Salmaninejad
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
9
|
Chang KH, Chen CM. The Role of NRF2 in Trinucleotide Repeat Expansion Disorders. Antioxidants (Basel) 2024; 13:649. [PMID: 38929088 PMCID: PMC11200942 DOI: 10.3390/antiox13060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an imbalance of reactive oxygen species that harms cellular components. This review explores the interplay between oxidative stress and the NRF2 pathway in these disorders. NRF2 acts as the master regulator of the cellular antioxidant response, orchestrating the expression of enzymes that combat oxidative stress. Trinucleotide repeat expansion disorders often exhibit impaired NRF2 signaling, resulting in inadequate responses to excessive ROS production. NRF2 activation has been shown to upregulate antioxidative gene expression, effectively alleviating oxidative stress damage. NRF2 activators, such as omaveloxolone, vatiquinone, curcumin, sulforaphane, dimethyl fumarate, and resveratrol, demonstrate neuroprotective effects by reducing oxidative stress in experimental cell and animal models of these diseases. However, translating these findings into successful clinical applications requires further research. In this article, we review the literature supporting the role of NRF2 in the pathogenesis of these diseases and the potential therapeutics of NRF2 activators.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
10
|
Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Romero Domínguez JM, Talaverón-Rey M, Reche-López D, Suárez-Rivero JM, Álvarez-Córdoba M, Romero-González A, López-Cabrera A, Oliveira MCD, Rodríguez-Sacristan A, Sánchez-Alcázar JA. Polydatin and Nicotinamide Rescue the Cellular Phenotype of Mitochondrial Diseases by Mitochondrial Unfolded Protein Response (mtUPR) Activation. Biomolecules 2024; 14:598. [PMID: 38786005 PMCID: PMC11118892 DOI: 10.3390/biom14050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Primary mitochondrial diseases result from mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) genes, encoding proteins crucial for mitochondrial structure or function. Given that few disease-specific therapies are available for mitochondrial diseases, novel treatments to reverse mitochondrial dysfunction are necessary. In this work, we explored new therapeutic options in mitochondrial diseases using fibroblasts and induced neurons derived from patients with mutations in the GFM1 gene. This gene encodes the essential mitochondrial translation elongation factor G1 involved in mitochondrial protein synthesis. Due to the severe mitochondrial defect, mutant GFM1 fibroblasts cannot survive in galactose medium, making them an ideal screening model to test the effectiveness of pharmacological compounds. We found that the combination of polydatin and nicotinamide enabled the survival of mutant GFM1 fibroblasts in stress medium. We also demonstrated that polydatin and nicotinamide upregulated the mitochondrial Unfolded Protein Response (mtUPR), especially the SIRT3 pathway. Activation of mtUPR partially restored mitochondrial protein synthesis and expression, as well as improved cellular bioenergetics. Furthermore, we confirmed the positive effect of the treatment in GFM1 mutant induced neurons obtained by direct reprogramming from patient fibroblasts. Overall, we provide compelling evidence that mtUPR activation is a promising therapeutic strategy for GFM1 mutations.
Collapse
Affiliation(s)
- Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - José Manuel Romero Domínguez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Juan Miguel Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Alejandra López-Cabrera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Marta Castro De Oliveira
- Neuropediatria, Neurolinkia, C. Jardín de la Isla, 8, Local 4 y 5, 41014 Sevilla, Spain;
- FEA Pediatría, Centro Universitario Hospitalar de Faro, R. Leão Penedo, 8000-386 Faro, Portugal
| | - Andrés Rodríguez-Sacristan
- Neuropediatría, Servicio de Pediatría, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain;
- Departamento de Farmacología, Radiología y Pediatría, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
| | - José Antonio Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| |
Collapse
|
11
|
Gunther K, Lynch DR. Pharmacotherapeutic strategies for Friedreich Ataxia: a review of the available data. Expert Opin Pharmacother 2024; 25:529-539. [PMID: 38622054 DOI: 10.1080/14656566.2024.2343782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Friedreich ataxia (FRDA) is a rare autosomal recessive disease, marked by loss of coordination as well as impaired neurological, endocrine, orthopedic, and cardiac function. There are many symptomatic medications for FRDA, and many clinical trials have been performed, but only one FDA-approved medication exists. AREAS COVERED The relative absence of the frataxin protein (FXN) in FRDA causes mitochondrial dysfunction, resulting in clinical manifestations. Currently, the only approved treatment for FRDA is an Nrf2 activator called omaveloxolone (Skyclarys). Patients with FRDA also rely on various symptomatic medications for treatment. Because there is only one approved medication for FRDA, clinical trials continue to advance in FRDA. Although some trials have not met their endpoints, many current and upcoming clinical trials provide exciting possibilities for the treatment of FRDA. EXPERT OPINION The approval of omaveloxolone provides a major advance in FRDA therapeutics. Although well tolerated, it is not curative. Reversal of deficient frataxin levels with gene therapy, protein replacement, or epigenetic approaches provides the most likely prospect for enduring, disease-modifying therapy in the future.
Collapse
Affiliation(s)
- Katherine Gunther
- Friedreich Ataxia Program, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David R Lynch
- Friedreich Ataxia Program, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
12
|
Hu Y, Zhang F, Ikonomovic M, Yang T. The Role of NRF2 in Cerebrovascular Protection: Implications for Vascular Cognitive Impairment and Dementia (VCID). Int J Mol Sci 2024; 25:3833. [PMID: 38612642 PMCID: PMC11012233 DOI: 10.3390/ijms25073833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Vascular cognitive impairment and dementia (VCID) represents a broad spectrum of cognitive decline secondary to cerebral vascular aging and injury. It is the second most common type of dementia, and the prevalence continues to increase. Nuclear factor erythroid 2-related factor 2 (NRF2) is enriched in the cerebral vasculature and has diverse roles in metabolic balance, mitochondrial stabilization, redox balance, and anti-inflammation. In this review, we first briefly introduce cerebrovascular aging in VCID and the NRF2 pathway. We then extensively discuss the effects of NRF2 activation in cerebrovascular components such as endothelial cells, vascular smooth muscle cells, pericytes, and perivascular macrophages. Finally, we summarize the clinical potential of NRF2 activators in VCID.
Collapse
Affiliation(s)
- Yizhou Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Department of Internal Medicine, University of Pittsburgh Medical Center (UPMC) McKeesport, McKeesport, PA 15132, USA
| | - Feng Zhang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Milos Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Tuo Yang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Department of Internal Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15216, USA
| |
Collapse
|
13
|
Lynch DR, Perlman S, Schadt K. Omaveloxolone for the treatment of Friedreich ataxia: clinical trial results and practical considerations. Expert Rev Neurother 2024; 24:251-258. [PMID: 38269532 DOI: 10.1080/14737175.2024.2310617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
INTRODUCTION Omavaloxolone, an NRF2 activator, recently became the first drug approved specifically for the treatment of Friedreich ataxia (FRDA). This landmark achievement provides a background for a review of the detailed data leading to the approval. AREAS COVERED The authors review the data from the 4 major articles on FRDA in the context of the authors' considerable (>1000 patients) experience in treating individuals with FRDA. The data is presented in the context not only of its scientific meaning but also in the practical context of therapy in FRDA. EXPERT OPINION Omaveloxolone provides a significant advance in the treatment of FRDA that is likely to be beneficial in a majority of the FRDA population. The data suggesting a benefit is consistent, and adverse issues are relatively modest. The major remaining questions are the subgroups that are most responsive and how long the beneficial effects will remain significant in FRDA patients.
Collapse
Affiliation(s)
- David R Lynch
- Friedrech Ataxia Program, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susan Perlman
- Department of Neurology, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Kim Schadt
- Friedreich Ataxia Program, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
14
|
Park JS, Rustamov N, Roh YS. The Roles of NFR2-Regulated Oxidative Stress and Mitochondrial Quality Control in Chronic Liver Diseases. Antioxidants (Basel) 2023; 12:1928. [PMID: 38001781 PMCID: PMC10669501 DOI: 10.3390/antiox12111928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic liver disease (CLD) affects a significant portion of the global population, leading to a substantial number of deaths each year. Distinct forms like non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (ALD), though they have different etiologies, highlight shared pathologies rooted in oxidative stress. Central to liver metabolism, mitochondria are essential for ATP production, gluconeogenesis, fatty acid oxidation, and heme synthesis. However, in diseases like NAFLD, ALD, and liver fibrosis, mitochondrial function is compromised by inflammatory cytokines, hepatotoxins, and metabolic irregularities. This dysfunction, especially electron leakage, exacerbates the production of reactive oxygen species (ROS), augmenting liver damage. Amidst this, nuclear factor erythroid 2-related factor 2 (NRF2) emerges as a cellular protector. It not only counters oxidative stress by regulating antioxidant genes but also maintains mitochondrial health by overseeing autophagy and biogenesis. The synergy between NRF2 modulation and mitochondrial function introduces new therapeutic potentials for CLD, focusing on preserving mitochondrial integrity against oxidative threats. This review delves into the intricate role of oxidative stress in CLD, shedding light on innovative strategies for its prevention and treatment, especially through the modulation of the NRF2 and mitochondrial pathways.
Collapse
Affiliation(s)
| | | | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.-S.P.); (N.R.)
| |
Collapse
|
15
|
Profeta V, McIntyre K, Wells M, Park C, Lynch DR. Omaveloxolone: an activator of Nrf2 for the treatment of Friedreich ataxia. Expert Opin Investig Drugs 2023; 32:5-16. [PMID: 36708320 DOI: 10.1080/13543784.2023.2173063] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Friedreich ataxia (FRDA) is a rare autosomal recessive degenerative disorder characterized by ataxia, dysarthria, diabetes, cardiomyopathy, scoliosis, and occasionally vision loss in late-stage disease. The discovery of the abnormal gene in FRDA and its product frataxin has provided insight into the pathophysiology and mechanisms of treatment. AREAS COVERED Although the neurologic phenotype of FRDA is well defined, there are currently no established pharmacological treatments. Omaveloxolone, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, is currently under review by the Food and Drug Administration (FDA) and has the potential to be the first approved treatment for FRDA. In the present report, we have reviewed the basic and clinical literature on Nrf2 deficiency in FRDA, and evidence for the benefit of omaveloxolone. EXPERT OPINION The present perspective suggests that omaveloxolone is a rational and efficacious therapy that is possibly disease modifying in treatment of FRDA.
Collapse
Affiliation(s)
- Victoria Profeta
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kellie McIntyre
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - McKenzie Wells
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Courtney Park
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David R Lynch
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Ramachandran V, Mohanasundaram T, Tiwari R, Tiwari G, Vijayakumar P, Bhongiri B, Xavier RM. Nrf2 Mediated Heme Oxygenase-1 Activation Contributes to Diabetic Wound Healing - an Overview. Drug Res (Stuttg) 2022; 72:487-495. [PMID: 35931068 DOI: 10.1055/a-1899-8233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Diabetic wound healing is a complicated procedure because hyperglycemia changes the various stages of wound healing. In type 2 diabetes mellitus (T2DM), oxidative stress is proven to be a critical factor in causing non-healing wounds and aggravating the inflammatory phase, resulting in the amputation of lower limbs in T2DM patients. This makes scientists figure out how to control oxidative stress and chronic inflammation at the molecular level. Nuclear factor erythroid 2- related factor 2 (Nrf2) releases antioxidant proteins to suppress reactive oxygen species (ROS) activation and inflammation. The current review discusses the role of Nrf2 in improving diabetic wound healing by reducing the production of ROS and thus reducing oxidative stress, as well as inhibiting nuclear factor kappa B (NF-kB) dissociation and nuclear translocation, which prevents the release of inflammatory mediators and increases antioxidant protein levels, thereby improving diabetic wound healing. As a result, the researcher will be able to find a more effective diabetic wound healing therapy.
Collapse
Affiliation(s)
- Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Tharani Mohanasundaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Ruchi Tiwari
- Pranveer Singh institute of Technology (Pharmacy), Kanpur - Agra - Delhi, NH2, Bhauti, Kanpur, Uttar Pradesh, India
| | - Gaurav Tiwari
- Pranveer Singh institute of Technology (Pharmacy), Kanpur - Agra - Delhi, NH2, Bhauti, Kanpur, Uttar Pradesh, India
| | - Putta Vijayakumar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Bhargav Bhongiri
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Rinu Mary Xavier
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamilnadu, India
| |
Collapse
|
17
|
Markov AV, Ilyina AA, Salomatina OV, Sen’kova AV, Okhina AA, Rogachev AD, Salakhutdinov NF, Zenkova MA. Novel Soloxolone Amides as Potent Anti-Glioblastoma Candidates: Design, Synthesis, In Silico Analysis and Biological Activities In Vitro and In Vivo. Pharmaceuticals (Basel) 2022; 15:ph15050603. [PMID: 35631429 PMCID: PMC9145754 DOI: 10.3390/ph15050603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
The modification of natural or semisynthetic triterpenoids with amines can be explored as a promising strategy for improving their pharmacological properties. Here, we report the design and synthesis of 11 novel amide derivatives of soloxolone methyl (SM), a cyano enone-bearing derivative of 18βH-glycyrrhetinic acid. Analysis of their bioactivities in vitro and in silico revealed their high toxicity against a panel of tumor cells (average IC50(24 h) = 3.7 µM) and showed that the formation of amide moieties at the C-30 position of soloxolone did not enhance the cytotoxicity of derivatives toward tumor cells compared to SM, though it can impart an ability to pass across the blood–brain barrier. Further HPLC–MS/MS and mechanistic studies verified significant brain accumulation of hit compound 12 (soloxolone tryptamide) in a murine model and showed its high anti-glioblastoma potential. It was found that 12 induced ROS-dependent and autophagy-independent death of U87 and U118 glioblastoma cells via mitochondrial apoptosis and effectively blocked their clonogenicity, motility and capacity to form vessel-like structures. Further in vivo study demonstrated that intraperitoneal injection of 12 at a dosage of 20 mg/kg effectively inhibited the growth of U87 glioblastoma in a mouse xenograft model, reducing the proliferative potential of the tumor and leading to a depletion of collagen content and normalization of blood vessels in tumor tissue. The obtained results clearly demonstrate that 12 can be considered as a promising leading compound for drug development in glioblastoma treatment.
Collapse
Affiliation(s)
- Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.A.I.); (O.V.S.); (A.V.S.); (M.A.Z.)
- Correspondence: ; Tel.: +7-383-363-51-61
| | - Anna A. Ilyina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.A.I.); (O.V.S.); (A.V.S.); (M.A.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia; (A.A.O.); (A.D.R.)
| | - Oksana V. Salomatina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.A.I.); (O.V.S.); (A.V.S.); (M.A.Z.)
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.A.I.); (O.V.S.); (A.V.S.); (M.A.Z.)
| | - Alina A. Okhina
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia; (A.A.O.); (A.D.R.)
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Artem D. Rogachev
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia; (A.A.O.); (A.D.R.)
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.A.I.); (O.V.S.); (A.V.S.); (M.A.Z.)
| |
Collapse
|
18
|
Low-Molecular-Weight Synthetic Antioxidants: Classification, Pharmacological Profile, Effectiveness and Trends. Antioxidants (Basel) 2022; 11:antiox11040638. [PMID: 35453322 PMCID: PMC9031493 DOI: 10.3390/antiox11040638] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Mounting research has been performed and published on natural antioxidants, more so than on synthetic ones, as key molecules that control oxidative damage and its pathway to disease. Since the discovery of vitamins, various fully synthetic or natural-identical compounds have been developed as stable small molecules translated into constantly active and completely controlled products which are widely exploited in the food and pharmaceutical industries. There is currently a debate within the literature about their mechanism of action, bioavailability, safety and real benefit for human health. Using a semiquantitative method and eligible criteria of selection, this review aimed to provide a very useful classification of antioxidants and a comprehensive cross-disciplinary description of 32 approved synthetic/natural-identical antioxidants, in terms of regulatory, antioxidant mechanism of action, safety issues, pharmacological properties, effectiveness in human health, timeline and future trends. Enriched interpretation of the data was obtained from summary bibliometrics, useful to portray the “good antioxidant” within the period 1966–2021 and, hopefully, to encourage further research.
Collapse
|
19
|
Cohen‐Nowak A, Cohen A, Correia E, Portocarrero C, South A, Nikbakht N. Omaveloxolone attenuates squamous cell carcinoma growth and disease severity in an Epidermolysis Bullosa mouse model. Exp Dermatol 2022; 31:1083-1088. [DOI: 10.1111/exd.14564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 11/27/2022]
Affiliation(s)
- A.J. Cohen‐Nowak
- Sidney Kimmel Medical College Thomas Jefferson University Philadelphia PA USA
| | - A. Cohen
- Sidney Kimmel Medical College Thomas Jefferson University Philadelphia PA USA
| | - E. Correia
- Sidney Kimmel Medical College Thomas Jefferson University Philadelphia PA USA
| | - C Portocarrero
- Department of Dermatology and Cutaneous Biology Thomas Jefferson University Philadelphia PA USA
| | - A.P. South
- Department of Dermatology and Cutaneous Biology Thomas Jefferson University Philadelphia PA USA
| | - N. Nikbakht
- Department of Dermatology and Cutaneous Biology Thomas Jefferson University Philadelphia PA USA
| |
Collapse
|
20
|
The Novel Nrf2 Activator Omaveloxolone Regulates Microglia Phenotype and Ameliorates Secondary Brain Injury after Intracerebral Hemorrhage in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4564471. [PMID: 35308167 PMCID: PMC8933082 DOI: 10.1155/2022/4564471] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/08/2021] [Accepted: 02/22/2022] [Indexed: 11/17/2022]
Abstract
The polarization of microglia is recognized as a crucial factor in reducing neuroinflammation and promoting hematoma clearance after intracerebral hemorrhage (ICH). Previous studies have revealed that redox components participate in the regulation of microglial polarization. Recently, the novel Nrf2 activator omaveloxolone (Omav) has been validated to improve neurological function in patients with neurodegenerative disorders by regulating antioxidant responses. In this study, we examined the efficacy of Omav in ICH. Omav significantly promoted Nrf2 nuclear accumulation and the expression of HO-1 and NQO1 in BV2 cells. In addition, both in vitro and in vivo experiments showed that Omav treatment inhibited M1-like activation and promoted the activation of the M2-like microglial phenotype. Omav inhibited OxyHb-induced ROS generation and preserved the function of mitochondria in BV2 cells. Intraperitoneal administration of Omav improved sensorimotor function in the ICH mouse model. Importantly, these effects were blocked by pretreatment with ML385, a selective inhibitor of Nrf2. Collectively, Omav modulated microglial polarization by activating Nrf2 and inhibiting ROS generation in ICH models, suggesting that it might be a promising drug candidate for the treatment of ICH.
Collapse
|
21
|
Luginbuhl AJ, Hobelmann K, Rodin J, Shukla S, Rodeck U, Linnenbach A. Synthetic Triterpenoid RTA-408: Limits Radiation Damage to Normal Tissue. Laryngoscope 2021; 132:1196-1204. [PMID: 34709651 DOI: 10.1002/lary.29930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 11/05/2022]
Abstract
OBJECTIVES/HYPOTHESIS To assess the efficacy and mechanism of action of a novel approach to mitigate acute and chronic radiation toxicity in a validated animal model. STUDY DESIGN Randomized, prospective study using an in vivo rat model. METHODS Experimental animal study utilizing Sprague-Dawley rats divided into three cohorts: 1) radiation + dimethyl sulfoxide (DMSO) (inert vehicle); 2) radiation + RTA-408 (therapeutic drug); and 3) no radiation + DMSO. All animals in the radiation cohorts underwent 40 Gy of radiation with subsequent inferior epigastric axial rotational flap 30 days later in all cohorts with percentage of flap necrosis and vascular density calculated by blinded observers. In a second experiment, an additional three cohorts, underwent serial punch biopsies of the abdominal skin before, during, and after radiation and drug/vehicle control treatment. Transcriptome analysis utilizing gene set enrichment analysis and digital polymerase chain reaction were performed at various time points. RESULTS The first experiment revealed average flap necrosis of 20% (95% confidence interval [CI] 16-45) in the radiation control group, 3% (95% CI 0-11) in the nonirradiated control, and 3% (95% CI 0.2-10) in the radiation group treated with RTA-408. Vascular density was preserved in the treatment group as compared to the radiated control. Nine rats were included in the second experiment, and transcriptome analyses in the treatment group revealed robust activation of antioxidant pathways with induced expression of genes associated with hypoxia and adipogenesis/angiogenesis. CONCLUSIONS Administration of RTA-408 during radiation treatment in a rat model resulted in transcriptome changes which appear to mitigate the toxic effects of radiation, preserving capillary networks and improving flap survival and tissue healing after subsequent surgery. LEVEL OF EVIDENCE Foundational Evidence, Animal Research Laryngoscope, 2021.
Collapse
Affiliation(s)
- Adam J Luginbuhl
- Department of Otolaryngology, Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Kealan Hobelmann
- Department of Otolaryngology, Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Julianna Rodin
- Department of Otolaryngology, Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Sanket Shukla
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Ulrich Rodeck
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Alban Linnenbach
- Department of Otolaryngology, Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
22
|
Lee MTW, Mahy W, Rackham MD. The medicinal chemistry of mitochondrial dysfunction: a critical overview of efforts to modulate mitochondrial health. RSC Med Chem 2021; 12:1281-1311. [PMID: 34458736 PMCID: PMC8372206 DOI: 10.1039/d1md00113b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are subcellular organelles that perform a variety of critical biological functions, including ATP production and acting as hubs of immune and apoptotic signalling. Mitochondrial dysfunction has been extensively linked to the pathology of multiple neurodegenerative disorders, resulting in significant investment from the drug discovery community. Despite extensive efforts, there remains no disease modifying therapies for neurodegenerative disorders. This manuscript aims to review the compounds historically used to modulate the mitochondrial network through the lens of modern medicinal chemistry, and to offer a perspective on the evidence that relevant exposure was achieved in a representative model and that exposure was likely to result in target binding and engagement of pharmacology. We hope this manuscript will aid the community in identifying those targets and mechanisms which have been convincingly (in)validated with high quality chemical matter, and those for which an opportunity exists to explore in greater depth.
Collapse
Affiliation(s)
| | - William Mahy
- MSD The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| | | |
Collapse
|
23
|
Cheng Z, Li Y, Zhu X, Wang K, Ali Y, Shu W, Zhang T, Zhu L, Murray M, Zhou F. The Potential Application of Pentacyclic Triterpenoids in the Prevention and Treatment of Retinal Diseases. PLANTA MEDICA 2021; 87:511-527. [PMID: 33761574 DOI: 10.1055/a-1377-2596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Retinal diseases are a leading cause of impaired vision and blindness but some lack effective treatments. New therapies are required urgently to better manage retinal diseases. Natural pentacyclic triterpenoids and their derivatives have a wide range of activities, including antioxidative, anti-inflammatory, cytoprotective, neuroprotective, and antiangiogenic properties. Pentacyclic triterpenoids have great potential in preventing and/or treating retinal pathologies. The pharmacological effects of pentacyclic triterpenoids are often mediated through the modulation of signalling pathways, including nuclear factor erythroid-2 related factor 2, high-mobility group box protein 1, 11β-hydroxysteroid dehydrogenase type 1, and Src homology region 2 domain-containing phosphatase-1. This review summarizes recent in vitro and in vivo evidence for the pharmacological potential of pentacyclic triterpenoids in the prevention and treatment of retinal diseases. The present literature supports the further development of pentacyclic triterpenoids. Future research should now attempt to improve the efficacy and pharmacokinetic behaviour of the agents, possibly by the use of medicinal chemistry and targeted drug delivery strategies.
Collapse
Affiliation(s)
- Zhengqi Cheng
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| | - Yue Li
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Youmna Ali
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| | - Wenying Shu
- Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ting Zhang
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Michael Murray
- Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| |
Collapse
|
24
|
Bhandari R, Kaur J, Kaur S, Kuhad A. The Nrf2 pathway in psychiatric disorders: pathophysiological role and potential targeting. Expert Opin Ther Targets 2021; 25:115-139. [PMID: 33557652 DOI: 10.1080/14728222.2021.1887141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: All psychiatric disorders exhibit excitotoxicity, mitochondrial dysfunction, inflammation, oxidative stress, and neural damage as their common characteristic. The endogenous nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is implicated in the defense mechanism against oxidative stress and has a significant role in psychiatric disorders.Areas covered: We explore the role of Nrf2 pathway and its modulators in psychiatric disorders. The literature was searched utilizing various databases such as Embase, Medline, Web of Science, Pub-Med, and Google Scholar from 2010 to 2020. The search included research articles, clinical reports, systematic reviews, and meta-analyses.Expert opinion: Environmental factors and genetic predisposition can be a trigger for the development of psychiatric disorders. Nrf2 downregulates certain inflammatory pathways and upregulates various antioxidant enzymes to maintain a balance. However, its intricate balance with NF-Kβ (Nuclear factor kappa light chain enhancer of activated B cells) and its crosstalk with the transcription factor Nrf2 is critical in severe oxidative stress. Several Nrf2 modulators are now in clinical trials and can help reduce oxidative stress and neuroinflammation. There are immense potential opportunities for these modulators to become a novel therapeutic option.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Japneet Kaur
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Simerpreet Kaur
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| |
Collapse
|
25
|
Mazur A, Fangman M, Ashouri R, Arcenas A, Doré S. Nrf2 as a therapeutic target in ischemic stroke. Expert Opin Ther Targets 2021; 25:163-166. [PMID: 33648411 DOI: 10.1080/14728222.2021.1890716] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Tinker RJ, Lim AZ, Stefanetti RJ, McFarland R. Current and Emerging Clinical Treatment in Mitochondrial Disease. Mol Diagn Ther 2021; 25:181-206. [PMID: 33646563 PMCID: PMC7919238 DOI: 10.1007/s40291-020-00510-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 12/11/2022]
Abstract
Primary mitochondrial disease (PMD) is a group of complex genetic disorders that arise due to pathogenic variants in nuclear or mitochondrial genomes. Although PMD is one of the most prevalent inborn errors of metabolism, it often exhibits marked phenotypic variation and can therefore be difficult to recognise. Current treatment for PMD revolves around supportive and preventive approaches, with few disease-specific therapies available. However, over the last decade there has been considerable progress in our understanding of both the genetics and pathophysiology of PMD. This has resulted in the development of a plethora of new pharmacological and non-pharmacological therapies at varying stages of development. Many of these therapies are currently undergoing clinical trials. This review summarises the latest emerging therapies that may become mainstream treatment in the coming years. It is distinct from other recent reviews in the field by comprehensively addressing both pharmacological non-pharmacological therapy from both a bench and a bedside perspective. We highlight the current and developing therapeutic landscape in novel pharmacological treatment, dietary supplementation, exercise training, device use, mitochondrial donation, tissue replacement gene therapy, hypoxic therapy and mitochondrial base editing.
Collapse
Affiliation(s)
- Rory J Tinker
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Albert Z Lim
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Renae J Stefanetti
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders for Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
27
|
Baxter PS, Márkus NM, Dando O, He X, Al-Mubarak BR, Qiu J, Hardingham GE. Targeted de-repression of neuronal Nrf2 inhibits α-synuclein accumulation. Cell Death Dis 2021; 12:218. [PMID: 33637689 PMCID: PMC7910424 DOI: 10.1038/s41419-021-03507-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
Many neurodegenerative diseases are associated with neuronal misfolded protein accumulation, indicating a need for proteostasis-promoting strategies. Here we show that de-repressing the transcription factor Nrf2, epigenetically shut-off in early neuronal development, can prevent protein aggregate accumulation. Using a paradigm of α-synuclein accumulation and clearance, we find that the classical electrophilic Nrf2 activator tBHQ promotes endogenous Nrf2-dependent α-synuclein clearance in astrocytes, but not cortical neurons, which mount no Nrf2-dependent transcriptional response. Moreover, due to neuronal Nrf2 shut-off and consequent weak antioxidant defences, electrophilic tBHQ actually induces oxidative neurotoxicity, via Nrf2-independent Jun induction. However, we find that epigenetic de-repression of neuronal Nrf2 enables them to respond to Nrf2 activators to drive α-synuclein clearance. Moreover, activation of neuronal Nrf2 expression using gRNA-targeted dCas9-based transcriptional activation complexes is sufficient to trigger Nrf2-dependent α-synuclein clearance. Thus, targeting reversal of the developmental shut-off of Nrf2 in forebrain neurons may alter neurodegenerative disease trajectory by boosting proteostasis.
Collapse
Affiliation(s)
- Paul S Baxter
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
| | - Nóra M Márkus
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Owen Dando
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Xin He
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Bashayer R Al-Mubarak
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Jing Qiu
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
28
|
Lynch DR, Johnson J. Omaveloxolone: potential new agent for Friedreich ataxia. Neurodegener Dis Manag 2021; 11:91-98. [PMID: 33430645 DOI: 10.2217/nmt-2020-0057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Friedreich ataxia is a slowly progressive neurodegenerative disorder leading to ataxia, dyscoordination, dysarthria and in many individuals vision and hearing loss. It is associated with cardiomyopathy, the leading cause of death in Friedreich ataxia (FRDA), diabetes and scoliosis. There are no approved therapies, but elucidation of the pathophysiology of FRDA suggest that agents that increase the activity of the transcription factor Nrf2 may provide a mechanism for ameliorating disease progression or severity. In this work, we review the evidence for use of omaveloxolone in FRDA from recent clinical trials. Though not at present approved for any indication, the present data suggest that this agent acting though increases in Nrf2 activity may provide a novel therapy for FRDA.
Collapse
Affiliation(s)
- David R Lynch
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Neurology & Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph Johnson
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Pitceathly RD, Keshavan N, Rahman J, Rahman S. Moving towards clinical trials for mitochondrial diseases. J Inherit Metab Dis 2021; 44:22-41. [PMID: 32618366 PMCID: PMC8432143 DOI: 10.1002/jimd.12281] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
Primary mitochondrial diseases represent some of the most common and severe inherited metabolic disorders, affecting ~1 in 4,300 live births. The clinical and molecular diversity typified by mitochondrial diseases has contributed to the lack of licensed disease-modifying therapies available. Management for the majority of patients is primarily supportive. The failure of clinical trials in mitochondrial diseases partly relates to the inefficacy of the compounds studied. However, it is also likely to be a consequence of the significant challenges faced by clinicians and researchers when designing trials for these disorders, which have historically been hampered by a lack of natural history data, biomarkers and outcome measures to detect a treatment effect. Encouragingly, over the past decade there have been significant advances in therapy development for mitochondrial diseases, with many small molecules now transitioning from preclinical to early phase human interventional studies. In this review, we present the treatments and management strategies currently available to people with mitochondrial disease. We evaluate the challenges and potential solutions to trial design and highlight the emerging pharmacological and genetic strategies that are moving from the laboratory to clinical trials for this group of disorders.
Collapse
Affiliation(s)
- Robert D.S. Pitceathly
- Department of Neuromuscular DiseasesUCL Queen Square Institute of Neurology and The National Hospital for Neurology and NeurosurgeryLondonUK
| | - Nandaki Keshavan
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Joyeeta Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Shamima Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| |
Collapse
|
30
|
Cancela MB, Zugbi S, Winter U, Martinez AL, Sampor C, Sgroi M, Francis JH, Garippa R, Abramson DH, Chantada G, Schaiquevich P. A decision process for drug discovery in retinoblastoma. Invest New Drugs 2020; 39:426-441. [PMID: 33200242 DOI: 10.1007/s10637-020-01030-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/28/2020] [Indexed: 11/28/2022]
Abstract
Intraocular retinoblastoma treatment has changed radically over the last decade, leading to a notable improvement in ocular survival. However, eyes that relapse remain difficult to treat, as few alternative active drugs are available. More challenging is the scenario of central nervous system (CNS) metastasis, in which almost no advancements have been made. Both clinical scenarios represent an urgent need for new drugs. Using an integrated multidisciplinary approach, we developed a decision process for prioritizing drug selection for local (intravitreal [IVi], intrathecal/intraventricular [IT/IVt]), systemic, or intra-arterial chemotherapy (IAC) treatment by means of high-throughput pharmacological screening of primary cells from two patients with intraocular tumor and CNS metastasis and a thorough database search to identify clinical and biopharmaceutical data. This process identified 169 compounds to be cytotoxic; only 8 are FDA-approved, lack serious toxicities and available for IVi administration. Four of these agents could also be delivered by IT/IVt. Twelve FDA-approved drugs were identified for systemic delivery as they are able to cross the blood-brain barrier and lack serious adverse events; four drugs are of oral usage and six compounds that lack vesicant or neurotoxicity could be delivered by IAC. We also identified promising compounds in preliminary phases of drug development including inhibitors of survivin, antiapoptotic Bcl-2 family proteins, methyltransferase, and kinesin proteins. This systematic approach may be applied more broadly to prioritize drugs to be repurposed or to identify novel hits for use in retinoblastoma treatment.
Collapse
Affiliation(s)
- María Belen Cancela
- Precision Medicine, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina.,National Scientific and Technical Research Council, CONICET, 1425, Buenos Aires, Argentina
| | - Santiago Zugbi
- Precision Medicine, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina.,National Scientific and Technical Research Council, CONICET, 1425, Buenos Aires, Argentina
| | - Ursula Winter
- Pathology Service, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina
| | - Ana Laura Martinez
- Precision Medicine, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina
| | - Claudia Sampor
- Hematology-Oncology Service, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina
| | - Mariana Sgroi
- Ophthalmology Service, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina
| | - Jasmine H Francis
- Ophthalmic Oncology Service, Memorial Sloan-Kettering Institute and Cancer Center, New York, NY, 10065, USA
| | - Ralph Garippa
- Gene Editing And Screening Core facility, Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Institute and Cancer Center, New York, NY, 10065, USA
| | - David H Abramson
- Ophthalmic Oncology Service, Memorial Sloan-Kettering Institute and Cancer Center, New York, NY, 10065, USA
| | - Guillermo Chantada
- Precision Medicine, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina.,National Scientific and Technical Research Council, CONICET, 1425, Buenos Aires, Argentina
| | - Paula Schaiquevich
- Precision Medicine, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina. .,National Scientific and Technical Research Council, CONICET, 1425, Buenos Aires, Argentina.
| |
Collapse
|
31
|
Turchi R, Faraonio R, Lettieri-Barbato D, Aquilano K. An Overview of the Ferroptosis Hallmarks in Friedreich's Ataxia. Biomolecules 2020; 10:E1489. [PMID: 33126466 PMCID: PMC7693407 DOI: 10.3390/biom10111489] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Friedreich's ataxia (FRDA) is a neurodegenerative disease characterized by early mortality due to hypertrophic cardiomyopathy. FRDA is caused by reduced levels of frataxin (FXN), a mitochondrial protein involved in the synthesis of iron-sulphur clusters, leading to iron accumulation at the mitochondrial level, uncontrolled production of reactive oxygen species and lipid peroxidation. These features are also common to ferroptosis, an iron-mediated type of cell death triggered by accumulation of lipoperoxides with distinct morphological and molecular characteristics with respect to other known cell deaths. SCOPE OF REVIEW Even though ferroptosis has been associated with various neurodegenerative diseases including FRDA, the mechanisms leading to disease onset/progression have not been demonstrated yet. We describe the molecular alterations occurring in FRDA that overlap with those characterizing ferroptosis. MAJOR CONCLUSIONS The study of ferroptotic pathways is necessary for the understanding of FRDA pathogenesis, and anti-ferroptotic drugs could be envisaged as therapeutic strategies to cure FRDA.
Collapse
Affiliation(s)
- Riccardo Turchi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy;
| | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy;
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
32
|
Reisman SA, Ferguson DA, Lee CI, Proksch JW. Omaveloxolone and TX63682 are hepatoprotective in the STAM mouse model of nonalcoholic steatohepatitis. J Biochem Mol Toxicol 2020; 34:e22526. [PMID: 32410268 PMCID: PMC9285621 DOI: 10.1002/jbt.22526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/11/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
Omaveloxolone is a potent activator of Nrf2, a master transcriptional regulator of a multitude of cytoprotective functions, including antioxidative, anti-inflammatory, and mitochondrial bioenergetic effects. Some of the most potent known effects of Nrf2 involve hepatoprotective functions. The purpose of this study was to evaluate the effects of omaveloxolone and TX63682, a closely related structural analog with similar oral bioavailability, in the STAM mouse model of nonalcoholic steatohepatitis (NASH). C57Bl/6 mice received a single subcutaneous injection of streptozotocin two days after birth and were fed a high-fat diet from 4 to 9 weeks of age. Omaveloxolone and TX63682 were orally administered at doses of 1, 3, and 10 mg/kg/d from 6 to 9 weeks of age. Consistent with the beneficial effects of Nrf2 on hepatoprotection and improved lipid handling, both omaveloxolone and TX63682 decreased hepatic fat deposition, hepatocellular ballooning, inflammatory cell infiltration, and collagen deposition. Omaveloxolone and TX63682 also improved blood glucose control, as evidenced by reductions in nonfasting blood glucose and glycated hemoglobin A1C concentrations. Reductions in liver and serum triglycerides with omaveloxolone and TX63682 treatment were also observed. Both omaveloxolone and TX63682 decreased leptin and increased adiponectin in serum, which is consistent with the anti-inflammatory and antifibrotic effects observed in the liver. These results were associated with significant induction of Nrf2 target gene expression in the liver, including NAD(P)H:quinone oxidoreductase 1, sulfiredoxin 1, and ferritin heavy chain 1. Overall, these data suggest that omaveloxolone and related Nrf2 activators may be useful for the treatment of NASH.
Collapse
|
33
|
Rodríguez LR, Lapeña T, Calap-Quintana P, Moltó MD, Gonzalez-Cabo P, Navarro Langa JA. Antioxidant Therapies and Oxidative Stress in Friedreich´s Ataxia: The Right Path or Just a Diversion? Antioxidants (Basel) 2020; 9:E664. [PMID: 32722309 PMCID: PMC7465446 DOI: 10.3390/antiox9080664] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
Friedreich´s ataxia is the commonest autosomal recessive ataxia among population of European descent. Despite the huge advances performed in the last decades, a cure still remains elusive. One of the most studied hallmarks of the disease is the increased production of oxidative stress markers in patients and models. This feature has been the motivation to develop treatments that aim to counteract such boost of free radicals and to enhance the production of antioxidant defenses. In this work, we present and critically review those "antioxidant" drugs that went beyond the disease´s models and were approved for its application in clinical trials. The evaluation of these trials highlights some crucial aspects of the FRDA research. On the one hand, the analysis contributes to elucidate whether oxidative stress plays a central role or whether it is only an epiphenomenon. On the other hand, it comments on some limitations in the current trials that complicate the analysis and interpretation of their outcome. We also include some suggestions that will be interesting to implement in future studies and clinical trials.
Collapse
Affiliation(s)
- Laura R. Rodríguez
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
| | - Tamara Lapeña
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Pablo Calap-Quintana
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - María Dolores Moltó
- Department of Genetics, Universitat de València-INCLIVA, 46100 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 46100 Valencia, Spain
| | - Pilar Gonzalez-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | | |
Collapse
|
34
|
Dayalan Naidu S, Dinkova-Kostova AT. KEAP1, a cysteine-based sensor and a drug target for the prevention and treatment of chronic disease. Open Biol 2020; 10:200105. [PMID: 32574549 PMCID: PMC7333886 DOI: 10.1098/rsob.200105] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/22/2020] [Indexed: 12/29/2022] Open
Abstract
Redox imbalance and persistent inflammation are the underlying causes of most chronic diseases. Mammalian cells have evolved elaborate mechanisms for restoring redox homeostasis and resolving acute inflammatory responses. One prominent mechanism is that of inducing the expression of antioxidant, anti-inflammatory and other cytoprotective proteins, while also suppressing the production of pro-inflammatory mediators, through the activation of transcription factor nuclear factor-erythroid 2 p45-related factor 2 (NRF2). At homeostatic conditions, NRF2 is a short-lived protein, which avidly binds to Kelch-like ECH-associated protein 1 (KEAP1). KEAP1 functions as (i) a substrate adaptor for a Cullin 3 (CUL3)-based E3 ubiquitin ligase that targets NRF2 for ubiquitination and proteasomal degradation, and (ii) a cysteine-based sensor for a myriad of physiological and pharmacological NRF2 activators. Here, we review the intricate molecular mechanisms by which KEAP1 senses electrophiles and oxidants. Chemical modification of specific cysteine sensors of KEAP1 results in loss of NRF2-repressor function and alterations in the expression of NRF2-target genes that encode large networks of diverse proteins, which collectively restore redox balance and resolve inflammation, thus ensuring a comprehensive cytoprotection. We focus on the cyclic cyanoenones, the most potent NRF2 activators, some of which are currently in clinical trials for various pathologies characterized by redox imbalance and inflammation.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
35
|
Bozi LHM, Campos JC, Zambelli VO, Ferreira ND, Ferreira JCB. Mitochondrially-targeted treatment strategies. Mol Aspects Med 2019; 71:100836. [PMID: 31866004 DOI: 10.1016/j.mam.2019.100836] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Disruption of mitochondrial function is a common feature of inherited mitochondrial diseases (mitochondriopathies) and many other infectious and non-infectious diseases including viral, bacterial and protozoan infections, inflammatory and chronic pain, neurodegeneration, diabetes, obesity and cardiovascular diseases. Mitochondria therefore become an attractive target for developing new therapies. In this review we describe critical mechanisms involved in the maintenance of mitochondrial functionality and discuss strategies used to identify and validate mitochondrial targets in different diseases. We also highlight the most recent preclinical and clinical findings using molecules targeting mitochondrial bioenergetics, morphology, number, content and detoxification systems in common pathologies.
Collapse
Affiliation(s)
- Luiz H M Bozi
- Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Juliane C Campos
- Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | | | | | - Julio C B Ferreira
- Institute of Biomedical Sciences, University of Sao Paulo, Brazil; Department of Chemical and Systems Biology, School of Medicine, Stanford University, USA.
| |
Collapse
|
36
|
Kangussu-Marcolino MM, Ehrenkaufer GM, Chen E, Debnath A, Singh U. Identification of plicamycin, TG02, panobinostat, lestaurtinib, and GDC-0084 as promising compounds for the treatment of central nervous system infections caused by the free-living amebae Naegleria, Acanthamoeba and Balamuthia. Int J Parasitol Drugs Drug Resist 2019; 11:80-94. [PMID: 31707263 PMCID: PMC6849155 DOI: 10.1016/j.ijpddr.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/18/2019] [Accepted: 10/17/2019] [Indexed: 01/11/2023]
Abstract
The free-living amebae Naegleria, Acanthamoeba, and Balamuthia cause rare but life-threatening infections. All three parasites can cause meningoencephalitis. Acanthamoeba can also cause chronic keratitis and both Balamuthia and Acanthamoeba can cause skin and systemic infections. There are minimal drug development pipelines for these pathogens despite a lack of available treatment regimens and high fatality rates. To identify anti-amebic drugs, we screened 159 compounds from a high-value repurposed library against trophozoites of the three amebae. Our efforts identified 38 compounds with activity against at least one ameba. Multiple drugs that bind the ATP-binding pocket of mTOR and PI3K are active, highlighting these compounds as important inhibitors of these parasites. Importantly, 24 active compounds have progressed at least to phase II clinical studies and overall 15 compounds were active against all three amebae. Based on central nervous system (CNS) penetration or exceptional potency against one amebic species, we identified sixteen priority compounds for the treatment of meningoencephalitis caused by these pathogens. The top five compounds are (i) plicamycin, active against all three free-living amebae and previously U.S. Food and Drug Administration (FDA) approved, (ii) TG02, active against all three amebae, (iii and iv) FDA-approved panobinostat and FDA orphan drug lestaurtinib, both highly potent against Naegleria, and (v) GDC-0084, a CNS penetrant mTOR inhibitor, active against at least two of the three amebae. These results set the stage for further investigation of these clinically advanced compounds for treatment of infections caused by the free-living amebae, including treatment of the highly fatal meningoencephalitis.
Collapse
Affiliation(s)
- Monica M Kangussu-Marcolino
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Gretchen M Ehrenkaufer
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Emily Chen
- uHTS Laboratory Rm 101, 11119 N Torrey Pines Rd. Calibr, A Division of the Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Upinder Singh
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA, 94305, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|