1
|
Patra A, Arora A, Ghosh SS, Kaur Saini G. Beauvericin Reverses Epithelial-to-Mesenchymal Transition in Triple-Negative Breast Cancer Cells through Regulation of Notch Signaling and Autophagy. ACS Pharmacol Transl Sci 2024; 7:2878-2893. [PMID: 39296261 PMCID: PMC11406685 DOI: 10.1021/acsptsci.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024]
Abstract
Metastasis stands as a prime contributor to triple-negative breast cancer (TNBC) associated mortality worldwide, presenting heightened severity and significant challenges due to limited treatment options. Addressing TNBC metastasis necessitates innovative approaches and novel therapeutics to specifically target its propensity for dissemination to distant organs. Targeted therapies capable of reversing epithelial-to-mesenchymal transition (EMT) play a crucial role in suppressing metastasis and enhancing the treatment response. Beauvericin, a promising fungal secondary metabolite, exhibits significant potential in diminishing the viability of EMT-induced TNBC cells by triggering intracellular oxidative stress, as evidenced by an enhanced reactive oxygen species level and reduced mitochondrial transmembrane potential. In monolayer cultures, it has exhibited an IC50 of 2.3 μM in both MDA-MB-468 and MDA-MB-231 cells, while in 3D spheroids, the IC50 values are 9.7 and 7.1 μM, respectively. Beauvericin has also reduced the migratory capability of MDA-MB-468 and MDA-MB-231 cells by 1.5- and 1.7-fold, respectively. Both qRT-PCR and Western blot analysis have shown significant upregulation in the expression of epithelial marker (E-cadherin) and downregulation in the expression of mesenchymal markers (N-cadherin, vimentin, Snail, Slug, and β-catenin), following treatment, indicating reversal of EMT. Furthermore, beauvericin has suppressed the Notch signaling pathway by substantially downregulating Notch-1, Notch-3, Hes-1, and cyclinD3 expression and induced autophagy as observed by elevated expression of autophagy markers LC3 and Beclin-1. In conclusion, beauvericin has successfully downregulated TNBC cell survival by inducing oxidative stress and suppressed their migratory potential by reversing EMT through the inhibition of Notch signaling and activation of autophagy.
Collapse
Affiliation(s)
- Arupam Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Arisha Arora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Gurvinder Kaur Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
2
|
Alabaş E, Özçimen AA. The Supression of Migration and Metastasis via Inhibition of Vascular Endothelial Growth Factor in Pancreatic Adenocarcinoma Cells Applied Danusertib. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:150-157. [PMID: 38454247 PMCID: PMC10895890 DOI: 10.5152/tjg.2024.22319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/31/2022] [Indexed: 03/09/2024]
Abstract
BACKGROUND/AIMS Pancreatic ductal adenocarcinoma is an extremely deadly type of cancer with a high metastatic potential. Genetic factors in cellular events play an important role in the emergence of this situation. One of these factors is Aurora kinase family members, which play a role in migration, invasion, and cell cycle. In this study, the expression of vascular endothelial growth factor gene, which plays a role in migration, metastasis, and angiogenesis, on cystic fibrosis human pancreatic ductal adenocarcinoma 1 cells of danusertib, a pan-Aurora kinase inhibitor, was examined. MATERIALS AND METHODS The half maximal inhibitory concentration (IC50) value (400 nM) of danusertib in cystic fibrosis human pancreatic ductal adenocarcinoma 1 cells was determined by the wound-healing test depending on the dose and time and migration with CIM-Plate 16 in the xCELLingence system. In addition, the effect of danusertib on migration was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) method and vascular endothelial growth factor gene expression. RESULTS When the dose- and time-dependent danusertib-applied cystic fibrosis human pancreatic ductal adenocarcinoma 1 cells were compared with the control group, it was observed that the wound formed did not close. In the xCELLigence system CIM-Plate 16 migration analysis, it was observed that migration was inhibited in the group administered danusertib in parallel with the wound dehiscence experiment. The gene expressions of vascular endothelial growth factor decreased 0.5-fold at the 24th hour and 0.3-fold at the 48th hour in the Danusertib-administered groups. CONCLUSION Danusertib, a pan-Aurora kinase inhibitor, is predicted to be used as a potential agent in pancreatic cancers due to its antitumor and anti-metastatic effect.
Collapse
Affiliation(s)
- Erkan Alabaş
- Department of Biology, Mersin University Faculty of Science, Mersin, Turkey
| | - Ahmet Ata Özçimen
- Department of Biology, Mersin University Faculty of Science, Mersin, Turkey
| |
Collapse
|
3
|
Barkovskaya A, Goodwin CM, Seip K, Hilmarsdottir B, Pettersen S, Stalnecker C, Engebraaten O, Briem E, Der CJ, Moestue SA, Gudjonsson T, Maelandsmo GM, Prasmickaite L. Detection of phenotype-specific therapeutic vulnerabilities in breast cells using a CRISPR loss-of-function screen. Mol Oncol 2021; 15:2026-2045. [PMID: 33759347 PMCID: PMC8333781 DOI: 10.1002/1878-0261.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/18/2021] [Accepted: 03/19/2021] [Indexed: 12/09/2022] Open
Abstract
Cellular phenotype plasticity between the epithelial and mesenchymal states has been linked to metastasis and heterogeneous responses to cancer therapy, and remains a challenge for the treatment of triple-negative breast cancer (TNBC). Here, we used isogenic human breast epithelial cell lines, D492 and D492M, representing the epithelial and mesenchymal phenotypes, respectively. We employed a CRISPR-Cas9 loss-of-function screen targeting a 2240-gene 'druggable genome' to identify phenotype-specific vulnerabilities. Cells with the epithelial phenotype were more vulnerable to the loss of genes related to EGFR-RAS-MAPK signaling, while the mesenchymal-like cells had increased sensitivity to knockout of G2 -M cell cycle regulators. Furthermore, we discovered knockouts that sensitize to the mTOR inhibitor everolimus and the chemotherapeutic drug fluorouracil in a phenotype-specific manner. Specifically, loss of EGFR and fatty acid synthase (FASN) increased the effectiveness of the drugs in the epithelial and mesenchymal phenotypes, respectively. These phenotype-associated genetic vulnerabilities were confirmed using targeted inhibitors of EGFR (gefitinib), G2 -M transition (STLC), and FASN (Fasnall). In conclusion, a CRISPR-Cas9 loss-of-function screen enables the identification of phenotype-specific genetic vulnerabilities that can pinpoint actionable targets and promising therapeutic combinations.
Collapse
Affiliation(s)
- Anna Barkovskaya
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.,Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Craig M Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, USA
| | - Kotryna Seip
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Bylgja Hilmarsdottir
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.,Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Solveig Pettersen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Clint Stalnecker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, USA
| | - Olav Engebraaten
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.,Department of Oncology, Oslo University Hospital, Norway
| | - Eirikur Briem
- Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, USA
| | - Siver A Moestue
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Health Sciences, Nord University, Bodø, Norway
| | - Thorarinn Gudjonsson
- Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland
| | - Gunhild M Maelandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.,Faculty of Health Sciences, Institute of Medical Biology, The Arctic University of Norway - University of Tromsø, Norway
| | - Lina Prasmickaite
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
4
|
Aurora Kinase B Inhibition: A Potential Therapeutic Strategy for Cancer. Molecules 2021; 26:molecules26071981. [PMID: 33915740 PMCID: PMC8037052 DOI: 10.3390/molecules26071981] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022] Open
Abstract
Aurora kinase B (AURKB) is a mitotic serine/threonine protein kinase that belongs to the aurora kinase family along with aurora kinase A (AURKA) and aurora kinase C (AURKC). AURKB is a member of the chromosomal passenger protein complex and plays a role in cell cycle progression. Deregulation of AURKB is observed in several tumors and its overexpression is frequently linked to tumor cell invasion, metastasis and drug resistance. AURKB has emerged as an attractive drug target leading to the development of small molecule inhibitors. This review summarizes recent findings pertaining to the role of AURKB in tumor development, therapy related drug resistance, and its inhibition as a potential therapeutic strategy for cancer. We discuss AURKB inhibitors that are in preclinical and clinical development and combination studies of AURKB inhibition with other therapeutic strategies.
Collapse
|
5
|
Du R, Huang C, Liu K, Li X, Dong Z. Targeting AURKA in Cancer: molecular mechanisms and opportunities for Cancer therapy. Mol Cancer 2021; 20:15. [PMID: 33451333 PMCID: PMC7809767 DOI: 10.1186/s12943-020-01305-3] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Aurora kinase A (AURKA) belongs to the family of serine/threonine kinases, whose activation is necessary for cell division processes via regulation of mitosis. AURKA shows significantly higher expression in cancer tissues than in normal control tissues for multiple tumor types according to the TCGA database. Activation of AURKA has been demonstrated to play an important role in a wide range of cancers, and numerous AURKA substrates have been identified. AURKA-mediated phosphorylation can regulate the functions of AURKA substrates, some of which are mitosis regulators, tumor suppressors or oncogenes. In addition, enrichment of AURKA-interacting proteins with KEGG pathway and GO analysis have demonstrated that these proteins are involved in classic oncogenic pathways. All of this evidence favors the idea of AURKA as a target for cancer therapy, and some small molecules targeting AURKA have been discovered. These AURKA inhibitors (AKIs) have been tested in preclinical studies, and some of them have been subjected to clinical trials as monotherapies or in combination with classic chemotherapy or other targeted therapies.
Collapse
Affiliation(s)
- Ruijuan Du
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.
| | - Chuntian Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China. .,College of medicine, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
6
|
Shang YY, Yu N, Xia L, Yu YY, Ma CM, Jiao YN, Li YF, Wang Y, Dang J, Li W. Augmentation of danusertib's anticancer activity against melanoma by blockage of autophagy. Drug Deliv Transl Res 2020; 10:136-145. [PMID: 31625025 DOI: 10.1007/s13346-019-00668-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Previous evidence has shown that the increased expression of aurora kinase is closely related to melanoma progression and is an important therapeutic target in melanoma. Danusertib is an inhibitor of aurora kinase, and recent studies have shown that danusertib treatment induces autophagy in several types of cancer. Interestingly, autophagy plays a dual function in cancer as a pro-survival and anti-survival factor. In this study, we investigated the role of danusertib on the induction of autophagy in melanoma and determined the impact of autophagy induction on its anticancer activity against melanoma. Our results showed that danusertib can significantly inhibit melanoma growth by inducing cell cycle arrest and apoptosis. In addition, we demonstrated that danusertib treatment significantly inhibits the oncogenic Akt/mTOR signaling pathway and induces autophagy in melanoma cells. Furthermore, we identified that the inhibition of autophagy can enhance the inhibitory effects of danusertib on melanoma growth. Thus, the induction of autophagy by danusertib appears to be a survival mechanism in melanoma cells that may counteract its anticancer effects. These findings suggest a novel strategy to enhance the anticancer efficacy of danusertib in melanoma by blocking autophagy.
Collapse
Affiliation(s)
- Yuan-Yuan Shang
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Nan Yu
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Li Xia
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Ying-Yao Yu
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Chun-Mei Ma
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Ya-Ning Jiao
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Yun-Feng Li
- Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yuan Wang
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Jie Dang
- Department of Medical Genetics and Cell Biology, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Weichao Li
- Faculty of Medical Science, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming, 650500, China.
| |
Collapse
|
7
|
Liu Y, Cao J, Zhu YN, Ma Y, Murtaza G, Li Y, Wang JH, Pu YS. C1222C Deletion in Exon 8 of ABL1 Is Involved in Carcinogenesis and Cell Cycle Control of Colorectal Cancer Through IRS1/PI3K/Akt Pathway. Front Oncol 2020; 10:1385. [PMID: 32850446 PMCID: PMC7433659 DOI: 10.3389/fonc.2020.01385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers worldwide. ABL1 (c-Abl) is a non-receptor tyrosine kinase, whose role, and molecular mechanism in CRC remain largely unclear. The aim of this study was to elucidate the role of ABL1 to obtain information on colon cancer gene mutation. We analyzed the tissue samples obtained from patients with CRC, CRC cell lines, and the immunodeficient mice. The proliferation, cell cycle, and apoptosis of CRC cells were examined. IPA software was used to analyze the molecules involved in CRC after ABL1 RNA interference. We found ABL1 was highly expressed in CRC tissues and cells. This high expression was associated with the TNM stage of CRC patients. In exon 8 of the ABL1 gene, we identified a novel mutation of C1222C deletion, which was related to the CRC stage. Depletion of ABL1 resulted in the inhibition of proliferation and escalation of apoptosis in two CRC cell lines, SW480, and HCT-116. Our in vivo study also demonstrated that depletion of ABL1 reduced CRC tumor progression. The results of the ingenuity pathway analysis indicated that the expression of 732 genes was upregulated and that of 691 genes was downregulated in mice transplanted with ABL1-downregulated CRC cells, among which we confirmed that depletion of ABL1 inhibited TGF-β1 via IRS1/PI3K/AKT pathway in CRC progression. These findings demonstrated that ABL1 plays an important role and that it can be a potential molecular target for CRC therapy.
Collapse
Affiliation(s)
- Yi Liu
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jian Cao
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Ya-Ning Zhu
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yu Ma
- Department of Pathology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Yu Li
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jian-Hua Wang
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yan-Song Pu
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
8
|
Guo Y, Wang Y, Huang B. The acute toxicity effects of hexavalent chromium in antioxidant system and gonad development to male clam Geloina coaxans. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1775318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Y. Guo
- Ocean College, Hainan University, Haikou, Hainan, PR China
- A State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, PR China
| | - Y. Wang
- Ocean College, Hainan University, Haikou, Hainan, PR China
- A State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, PR China
| | - B. Huang
- Ocean College, Hainan University, Haikou, Hainan, PR China
- A State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, PR China
| |
Collapse
|
9
|
Lv S, Ning H, Li Y, Wang J, Jia Q, Wen H. Inhibition of cyclinB1 Suppressed the Proliferation, Invasion, and Epithelial Mesenchymal Transition of Hepatocellular Carcinoma Cells and Enhanced the Sensitivity to TRAIL-Induced Apoptosis. Onco Targets Ther 2020; 13:1119-1128. [PMID: 32103981 PMCID: PMC7008233 DOI: 10.2147/ott.s225202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Background CyclinB1 is highly expressed in various tumor tissues and plays an important role in tumor progression. However, its role in hepatocellular carcinoma (HCC) remains unclear. Therefore, the aim of this study was to explore the role of cyclinB1 in the development and progression of HCC. Methods The expression of cyclinB1 was analyzed using the Gene Expression Profiling Interactive Analysis (GEPIA) database, and detected in HCC tissues and HCC cell lines through quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting. CyclinB1-short hairpin RNA (Sh-cyclinB1) was transfected into HCC cells to knockdown cyclinB1, and the effect of cyclinB1 knockdown on HCC was examined via the MTT assay, colony formation assay, wound healing assay, scratch assay, cell cycle analysis in vitro, and xenograft model in nude mice. In addition, the role of cyclinB1 on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis was measured using flow cytometry and Western blotting. Results The GEPIA database analysis showed that cyclinB1 was highly expressed in HCC tissues. The results of qRT-PCR and Western blotting proved that the expression of cyclinB1 was significantly increased in HCC tissues and cell lines. The data of the MTT assay, colony formation assay, and cell cycle analysis indicated that cyclinB1 knockdown inhibited the proliferation of HCC cells. In addition, cell migration, invasion, and epithelial mesenchymal transition were also impaired by cyclinB1 knockdown. Furthermore, the xenograft model in nude mice demonstrated that inhibition of cyclinB1 suppressed tumor growth and metastasis in vivo. Finally, the results of flow cytometry and Western blotting indicated that inhibition of cyclinB1 enhanced the sensitivity of HCC cells to TRAIL-induced apoptosis. Conclusion Overall, these data provide reasonable evidence that cyclinB1 may serve as a proto-oncogene during the progression of HCC.
Collapse
Affiliation(s)
- Shuai Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, Henan Province, People's Republic of China
| | - Hanbing Ning
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, Henan Province, People's Republic of China
| | - Yingxia Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, Henan Province, People's Republic of China
| | - Jingyun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, Henan Province, People's Republic of China
| | - Qiaoyu Jia
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, Henan Province, People's Republic of China
| | - Hongtao Wen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, Henan Province, People's Republic of China
| |
Collapse
|
10
|
Chen HT, Liu H, Mao MJ, Tan Y, Mo XQ, Meng XJ, Cao MT, Zhong CY, Liu Y, Shan H, Jiang GM. Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy. Mol Cancer 2019; 18:101. [PMID: 31126310 PMCID: PMC6533683 DOI: 10.1186/s12943-019-1030-2] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/15/2019] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a highly conserved catabolic process that mediates degradation of pernicious or dysfunctional cellular components, such as invasive pathogens, senescent proteins, and organelles. It can promote or suppress tumor development, so it is a “double-edged sword” in tumors that depends on the cell and tissue types and the stages of tumor. The epithelial-mesenchymal transition (EMT) is a complex biological trans-differentiation process that allows epithelial cells to transiently obtain mesenchymal features, including motility and metastatic potential. EMT is considered as an important contributor to the invasion and metastasis of cancers. Thus, clarifying the crosstalk between autophagy and EMT will provide novel targets for cancer therapy. It was reported that EMT-related signal pathways have an impact on autophagy; conversely, autophagy activation can suppress or strengthen EMT by regulating various signaling pathways. On one hand, autophagy activation provides energy and basic nutrients for EMT during metastatic spreading, which assists cells to survive in stressful environmental and intracellular conditions. On the other hand, autophagy, acting as a cancer-suppressive function, is inclined to hinder metastasis by selectively down-regulating critical transcription factors of EMT in the early phases. Therefore, the inhibition of EMT by autophagy inhibitors or activators might be a novel strategy that provides thought and enlightenment for the treatment of cancer. In this article, we discuss in detail the role of autophagy and EMT in the development of cancers, the regulatory mechanisms between autophagy and EMT, the effects of autophagy inhibition or activation on EMT, and the potential applications in anticancer therapy.
Collapse
Affiliation(s)
- Hong-Tao Chen
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China
| | - Hao Liu
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min-Jie Mao
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuan Tan
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China.,Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiang-Qiong Mo
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xiao-Jun Meng
- Department of Endocrinology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Meng-Ting Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Chu-Yu Zhong
- Department of Geriatrics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yan Liu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China.
| |
Collapse
|
11
|
Zhang C, Lv B, Yi C, Cui X, Sui S, Li X, Qi M, Hao C, Han B, Liu Z. Genistein inhibits human papillary thyroid cancer cell detachment, invasion and metastasis. J Cancer 2019; 10:737-748. [PMID: 30719173 PMCID: PMC6360420 DOI: 10.7150/jca.28111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/08/2018] [Indexed: 12/19/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most commonly diagnosed endocrine cancer, and those with BRAFV600E mutation have high recurrence rate and less favorable clinical behavior. Genistein having anti-carcinoma effects in various types of carcinomas as an estrogen analog, but the mechanism of Genistein in the progression of PTC remains unknown. Genistein significantly inhibits the proliferation and the invasion (P < 0.01), and the apoptosis (P < 0.001) of all tumor cell lines, which was probably due to the inducing of the arrest in G2/M phase of the cell cycle (P < 0.001). The anti-proliferation and apoptosis inducing effects are more obvious in BCPAP, IHH4 cell lines harboring BRAFV600E mutation. Genistein significantly decreased the invasion of PTC cell lines and partially reverses epithelial mesenchymal transition in PTC cell lines. Functional study indicated that small interfering RNA (siRNA) knockdown of β-catenin significantly reverses the effect of genistein on EMT at protein levels. In conclusion, for the first time, our study suggested that genistein has anticarcinoma effect for PTC patients in the range of 2.5 and 80 μg/ml in thyroid carcinoma cells, which was probably through cytoplasmic translocation of β-catenin. Further study will be needed to determine whether genistein could be used in clinical trial of high-risk PTC.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.,Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Bin Lv
- Department of General surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Cuihua Yi
- Department of Chemotherapy, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Xiujie Cui
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Shaofeng Sui
- Department of Occupational and Environmental Health Monitoring and Assessment, Shandong Center for Disease Control and Prevention, Jinan 250012, China
| | - Xueen Li
- Department of General surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Mei Qi
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Chunyan Hao
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.,Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Bo Han
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.,Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Zhiyan Liu
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.,Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| |
Collapse
|
12
|
Ryu J, Pyo J, Lee CW, Kim JE. An Aurora kinase inhibitor, AMG900, inhibits glioblastoma cell proliferation by disrupting mitotic progression. Cancer Med 2018; 7:5589-5603. [PMID: 30221846 PMCID: PMC6246935 DOI: 10.1002/cam4.1771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/09/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022] Open
Abstract
The Aurora kinase family of serine/threonine protein kinases comprises Aurora A, B, and C and plays an important role in mitotic progression. Several inhibitors of Aurora kinase have been developed as anti‐cancer therapeutics. Here, we examined the effects of a pan‐Aurora kinase inhibitor, AMG900, against glioblastoma cells. AMG900 inhibited proliferation of A172, U‐87MG, and U‐118MG glioblastoma cells by upregulating p53 and p21 and subsequently inducing cell cycle arrest and senescence. Abnormal cell cycle progression was triggered by dysregulated mitosis. Mitosis was prolonged due to a defect in mitotic spindle assembly. Despite the presence of an unattached kinetochore, BubR1, a component of the spindle assembly checkpoint, was not recruited. In addition, Aurora B was not recruited to central spindle at anaphase. Abnormal mitotic progression resulted in accumulation of multinuclei and micronuclei, a type of chromosome missegregation, and ultimately inhibited cell survival. Therefore, the data suggest that AMG900‐mediated inhibition of Aurora kinase is a potential anti‐cancer therapy for glioblastoma.
Collapse
Affiliation(s)
- Jaewook Ryu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jaehyuk Pyo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea.,Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
13
|
Shen T, Cai LD, Liu YH, Li S, Gan WJ, Li XM, Wang JR, Guo PD, Zhou Q, Lu XX, Sun LN, Li JM. Ube2v1-mediated ubiquitination and degradation of Sirt1 promotes metastasis of colorectal cancer by epigenetically suppressing autophagy. J Hematol Oncol 2018; 11:95. [PMID: 30016968 PMCID: PMC6050692 DOI: 10.1186/s13045-018-0638-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Background Ubiquitination is a basic post-translational modification for cellular homeostasis, and members of the conjugating enzyme (E2) family are the key components of the ubiquitin–proteasome system. However, the role of E2 family in colorectal cancer (CRC) is largely unknown. Our study aimed to investigate the role of Ube2v1, one of the ubiquitin-conjugating E2 enzyme variant proteins (Ube2v) but without the conserved cysteine residue required for the catalytic activity of E2s, in CRC. Methods Immunohistochemistry and real-time RT-PCR were used to study the expressions of Ube2v1 at protein and mRNA levels in CRC, respectively. Western blotting and immunofluorescence, transmission electron microscopy, and in vivo rescue experiments were used to study the functional effects of Ube2v1 on autophagy and EMT program. Quantitative mass spectrometry, immunoprecipitation, ubiquitination assay, western blotting, and real-time RT-PCR were used to analyze the effects of Ube2v1 on histone H4 lysine 16 acetylation, interaction with Sirt1, ubiquitination of Sirt1, and autophagy-related gene expression. Results Ube2v1 was elevated in CRC samples, and its increased expression was correlated with poorer survival of CRC patients. Ube2v1 promoted migration and invasion of CRC cells in vitro and tumor growth and metastasis of CRC cells in vivo. Interestingly, Ube2v1suppressed autophagy program and promoted epithelial mesenchymal transition (EMT) and metastasis of CRC cells in an autophagy-dependent pattern in vitro and in vivo. Moreover, both rapamycin and trehalose attenuated the enhanced Ube2v1-mediated lung metastasis by inducing the autophagy pathway in an orthotropic mouse xenograft model of lung metastasis. Mechanistically, Ube2v1 promoted Ubc13-mediated ubiquitination and degradation of Sirt1 and inhibited histone H4 lysine 16 acetylation, and finally epigenetically suppressed autophagy gene expression in CRC. Conclusions Our study functionally links Ube2v1, an E2 member in the ubiquitin–proteasome system, to autophagy program, thereby shedding light on developing Ube2v1 targeted therapy for CRC patients. Electronic supplementary material The online version of this article (10.1186/s13045-018-0638-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tong Shen
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Ling-Dong Cai
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Yu-Hong Liu
- Department of Pathology, Baoan Hospital, Southern Medical University, Shenzhen, 518101, People's Republic of China
| | - Shi Li
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Wen-Juan Gan
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Xiu-Ming Li
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Jing-Ru Wang
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Peng-Da Guo
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Qun Zhou
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Xing-Xing Lu
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Li-Na Sun
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Jian-Ming Li
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
14
|
Chen H, Hu Y, Xie K, Chen Y, Wang H, Bian Y, Wang Y, Dong A, Yu Y. Effect of autophagy on allodynia, hyperalgesia and astrocyte activation in a rat model of neuropathic pain. Int J Mol Med 2018; 42:2009-2019. [PMID: 30015858 PMCID: PMC6108883 DOI: 10.3892/ijmm.2018.3763] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/04/2018] [Indexed: 02/05/2023] Open
Abstract
Primary damage or dysfunction of the nervous system may cause or initiate neuropathic pain. However, it has been difficult to establish an effective treatment for neuropathic pain, as the mechanisms responsible for its pathology remain largely unknown. Autophagy is closely associated with the pathological process of neurodegenerative diseases, neuropathic injury and cancer, among others. The aim of the present study was to examine the changes in the autophagy-lysosomal pathway and discuss the effects of autophagy on allodynia, hyperalgesia and astrocyte activation in neuropathic pain. A neuropathic pain model was induced by chronic constriction injury (CCI) in rats. Inducers and inhibitors of autophagy and lysosomes were used to assess autophagy, allodynia, hyperalgesia and astrocyte activity. Neuropathic pain was found to induce an increase in the levels of the autophagy-related proteins, LC3II and Beclin 1 and, and in those of the lysosomal proteins, lysosomal-associated membrane protein type 2 (LAMP2) and Ras-related protein Rab-7a (RAB7), whereas p62 levels were found to decrease from day 1 to 14 following CCI. The autophagy inducer, rapamycin, further increased the LC3II, Beclin 1, lysosomal-associated membrane protein 2 (LAMP2) and Ras-related protein Rab-7a (RAB7) expression levels, and decreased the p62 expression levels, which were accompanied by alleviation of allodynia, hyperalgesia and astrocyte activation in the rats subjected to CCI; the autophagy inhibitor, 3-methyladenine, reversed these effects. The use of the lysosomal inhibitors, bafilomycin and chloroquine, resulted in the accumulation of LC3II and Beclin 1, a decrease in the levels of LAMP2 and RAB7, and the exacerbation of allodynia, hyperalgesia and astrocyte activation in rats with neuropathic pain. On the whole, the findings of this study indicate that neuropathic pain activates autophagy, which alleviates mechanical and thermal hyperalgesia and suppresses astrocyte activity. Therefore, neuropathic pain induced by CCI in rats appears to be mediated via the autophagy-lysosomal pathway.
Collapse
Affiliation(s)
- Hongguang Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yajiao Hu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yajun Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Huixing Wang
- Pain Management Center, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yingxue Bian
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yanyan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Aili Dong
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
15
|
Zhu Q, Yu X, Zhou ZW, Luo M, Zhou C, He ZX, Chen Y, Zhou SF. A quantitative proteomic response of hepatocellular carcinoma Hep3B cells to danusertib, a pan-Aurora kinase inhibitor. J Cancer 2018; 9:2061-2071. [PMID: 29937924 PMCID: PMC6010685 DOI: 10.7150/jca.20822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 02/16/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide, but the overall prognosis remains disappointing especially in the advanced-stage patients. Aberration expression of Aurora kinases is tumorigenic and thus it has attracted interests as therapeutic targets in cancer treatment. Here, we investigated the proteomic response of HCC Hep3B cells to danusertib (Danu), a pan-Aurora kinase inhibitor, and then validated the proteomic results based on stable-isotope labeling by amino acids in cell culture (SILAC). The proteomic data identified that Danu modulated the expression of 542 protein molecules (279 up-regulated; 260 down-regulated; 3 stable). Ingenuity pathway analysis (IPA) and KEGG pathway analysis identified 107 and 24 signaling pathways were regulated by Danu, respectively. IPA analysis showed cellular growth and proliferation, and cell death and survival were among the top five molecular and cellular functions regulated by Danu. The verification experiments showed that Danu inhibited the proliferation of Hep3B cells with a 24-hr IC50 value of 22.03 µM. Danu treatment also arrested Hep3B cells in G2/M phase via regulating the expression of key cell cycle regulators and induced apoptosis via mitochondria-dependent pathway in a dose-dependent manner. Besides, Danu induced a marked autophagy, and inhibition of autophagy enhanced the anticancer effects of Danu, indicating a cyto-protective role of Danu-induced autophagy. Our proteomic data and Western blotting assays showed the PI3K/Akt/mTOR signaling pathway was involved in the inducing effect of Danu on apoptosis and autophagy. Collectively, our findings have demonstrated that the Aurora kinases inhibition with danusertib results in global proteomic response and exerts anticancer effects in Hep3B cells involving regulation of cell cycle, apoptosis and autophagy and associated signaling pathways.
Collapse
Affiliation(s)
- Qiaohua Zhu
- Department of Interventional Radiology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
- Department of Oncology and Interventional Radiology, Shunde Hospital, Southern Medical University, Shunde, Foshan, Guangdong 528300, China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Xinfa Yu
- Department of Oncology and Interventional Radiology, Shunde Hospital, Southern Medical University, Shunde, Foshan, Guangdong 528300, China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Meihua Luo
- Department of Oncology and Interventional Radiology, Shunde Hospital, Southern Medical University, Shunde, Foshan, Guangdong 528300, China
| | - Chengyu Zhou
- Department of Oncology and Interventional Radiology, Shunde Hospital, Southern Medical University, Shunde, Foshan, Guangdong 528300, China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang 550004, China
| | - Yong Chen
- Department of Interventional Radiology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| |
Collapse
|
16
|
Abstract
Autophagy is a catabolic program that is responsible for the degradation of dysfunctional or unnecessary proteins and organelles to maintain cellular homeostasis. Mechanistically, it involves the formation of double-membrane autophagosomes that sequester cytoplasmic material and deliver it to lysosomes for degradation. Eventually, the material is recycled back to the cytoplasm. Abnormalities of autophagy often lead to human diseases, such as neurodegeneration and cancer. In the case of cancer, increasing evidence has revealed the paradoxical roles of autophagy in both tumor inhibition and tumor promotion. Here, we summarize the context-dependent role of autophagy and its complicated molecular mechanisms in the hallmarks of cancer. Moreover, we discuss how therapeutics targeting autophagy can counter malignant transformation and tumor progression. Overall, the findings of studies discussed here shed new light on exploiting the complicated mechanisms of the autophagic machinery and relevant small-molecule modulators as potential antitumor agents to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Tianzhi Huang
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Xiao Song
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Yongyong Yang
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Xuechao Wan
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Angel A. Alvarez
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Namratha Sastry
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Hu
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Shi-Yuan Cheng
- Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
17
|
Choi YJ, Kim H, Kim JW, Song CW, Kim DS, Yoon S, Park HJ. Phthalazinone Pyrazole Enhances the Hepatic Functions of Human Embryonic Stem Cell-Derived Hepatocyte-Like Cells via Suppression of the Epithelial-Mesenchymal Transition. Stem Cell Rev Rep 2017; 14:438-450. [PMID: 29238913 DOI: 10.1007/s12015-017-9795-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During liver development, nonpolarized hepatic progenitor cells differentiate into mature hepatocytes with distinct polarity. This polarity is essential for maintaining the intrinsic properties of hepatocytes. The balance between the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) plays a decisive role in differentiation of polarized hepatocytes. In this study, we found that phthalazinone pyrazole (PP), a selective inhibitor of Aurora-A kinase (Aurora-A), suppressed the EMT during the differentiation of hepatocyte-like cells (HLCs) from human embryonic stem cells. The differentiated HLCs treated with PP at the hepatoblast stage showed enhanced hepatic morphology and functions, particularly with regard to the expression of drug metabolizing enzymes. Moreover, we found that these effects were mediated though suppression of the AKT pathway, which is involved in induction of the EMT, and upregulation of hepatocyte nuclear factor 4α expression rather than Aurora-A inhibition. In conclusion, these findings provided insights into the regulatory role of the EMT on in vitro hepatic maturation, suggesting that inhibition of the EMT may drive transformation of hepatoblast cells into mature and polarized HLCs.
Collapse
Affiliation(s)
- Young-Jun Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
- Human and Environmental Toxicology, School of Engineering, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hyemin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Ji-Woo Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Chang-Woo Song
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
- Human and Environmental Toxicology, School of Engineering, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Dae-Sung Kim
- Department of Biotechnology, Brain Korea 21, Korea University, Seoul, 02841, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
- Human and Environmental Toxicology, School of Engineering, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
18
|
Xue L, Zhang WJ, Fan QX, Wang LX. Licochalcone A inhibits PI3K/Akt/mTOR signaling pathway activation and promotes autophagy in breast cancer cells. Oncol Lett 2017; 15:1869-1873. [PMID: 29399197 DOI: 10.3892/ol.2017.7451] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/17/2017] [Indexed: 01/22/2023] Open
Abstract
Previous studies have demonstrated that Licochalcone A possesses anti-inflammatory, anticancer, anti-bacterial, anti-malarial and anti-parasitic activities. In the present study the potential anticancer effects of Licochalcone A on MCF-7 cells were investigated. Licochalcone A significantly decreased cell viability and promoted autophagy and apoptosis, as demonstrated by an MTT assay, acridine orange staining and Annexin V-fluorescein isothiocyanate staining, respectively. Western blot analyses demonstrated that Licochalcone A treatment activated the LC3-II signaling pathway while suppressing the phosphoinositide 3-kinase (PI3K)/RAC-α serine-threonine-protein kinase (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. In addition, Licochalcone A significantly increased caspase-3 activity and significantly decreased B-cell lymphoma-2 expression. The results from the present study indicate that Licochalcone A inhibits PI3K/Akt/mTOR activation, and promotes autophagy and apoptosis in MCF-7 cells.
Collapse
Affiliation(s)
- Lei Xue
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wei-Jie Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qing-Xia Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liu-Xing Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
19
|
Chao J, Li P, Chao L. Kallistatin suppresses cancer development by multi-factorial actions. Crit Rev Oncol Hematol 2017; 113:71-78. [PMID: 28427524 PMCID: PMC5441310 DOI: 10.1016/j.critrevonc.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 01/07/2023] Open
Abstract
Kallistatin was first identified in human plasma as a tissue kallikrein-binding protein and a serine proteinase inhibitor. Kallistatin via its two structural elements regulates differential signaling cascades, and thus a wide spectrum of biological functions. Kallistatin's active site is essential for: inhibiting tissue kallikrein's activity; stimulating endothelial nitric oxide synthase and sirtuin 1 expression and activation; and modulating the synthesis of the microRNAs, miR-34a, miR-21 and miR-203. Kallistatin's heparin-binding site is crucial for antagonizing the signaling pathways of vascular endothelial growth factor, tumor necrosis factor-α, Wnt, transforming growth factor-β and epidermal growth factor. Circulating kallistatin levels are markedly reduced in patients with prostate and colon cancer. Kallistatin administration attenuates angiogenesis, inflammation, tumor growth and invasion in animal models and cultured cells. Therefore, tumor progression may be substantially suppressed by kallistatin's pleiotropic activities. In this review, we will discuss the role and mechanisms of kallistatin in the regulation of cancer development.
Collapse
Affiliation(s)
- Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| | - Pengfei Li
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
20
|
EMT in Breast Carcinoma-A Review. J Clin Med 2016; 5:jcm5070065. [PMID: 27429011 PMCID: PMC4961996 DOI: 10.3390/jcm5070065] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a cellular program that is involved in embryonic development; wound healing, but also in tumorigenesis. Breast carcinoma (BC) is the most common cancer in women worldwide, and the majority of deaths (90%) are caused by invasion and metastasis. The EMT plays an important role in invasion and subsequent metastasis. Several distinct biological events integrate a cascade that leads not only to a change from an epithelial to mesenchymal phenotype, but allows for detachment, migration, invasion and ultimately, colonization of a second site. Understanding the biological intricacies of the EMT may provide important insights that lead to the development of therapeutic targets in pre-invasive and invasive breast cancer, and could be used as biomarkers identifying tumor subsets with greater chances of recurrence, metastasis and therapeutic resistance leading to death.
Collapse
|
21
|
Mercado-Pimentel ME, Igarashi S, Dunn AM, Behbahani M, Miller C, Read CM, Jacob A. The Novel Small Molecule Inhibitor, OSU-T315, Suppresses Vestibular Schwannoma and Meningioma Growth by Inhibiting PDK2 Function in the AKT Pathway Activation. AUSTIN JOURNAL OF MEDICAL ONCOLOGY 2016; 3:1025. [PMID: 27642646 PMCID: PMC5024787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Activation of PKB/AKT signaling, which requires PDK1 and PDK2 function, drives Vestibular Schwannoma (VS) and meningioma growth. PDK2 function is defined as a molecule that phosphorylates AKT-Ser473. Integrin-Linked Kinase (ILK) functions as PDK2 in PKB/AKT activation in many cancers; therefore, we hypothesized that OSU-T315, a small molecule ILK inhibitor, will inhibit the ILK-PDK2 function in PKB/AKT signaling activation in VS and meningioma cell growth. OSU-T315 decreased cell viability at IC50 < 2μM in VS (HEI193) and meningioma (Ben-Men-1) cell lines, in primary cells at < 3.5μM, while in normal primary Schwann cells at 7.1μM. OSU-T315 inhibits AKT signaling by decreasing phosphorylation at AKT-Ser473, AKT-Thr308, ILK-Ser246 and ILK-Thr173. In addition, OSU-T315 affected the phosphorylation or expression levels of AKT downstream proliferation effectors as well as autophagy markers. Flow cytometry shows that OSU-T315 increased the percentage of cells arrested at G2/M for both, HEI193 (39.99%) and Ben-Men-1 (26.96%) cells, compared to controls (21.54%, 8.47%). Two hours of OSU-T315 treatment increased cell death in both cell lines (34.3%, 9.1%) versus untreated (12.1%, 8.1%). Though longer exposure increased cell death in Ben-Men-1, TUNEL assays showed that OSU-T315 does not induce apoptosis. OSU-T315 was primarily cytotoxic for HEI193 and Ben-Men-1 inducing a dysregulated autophagy. Our studies suggest that OSU-T315 has translational potential as a chemotherapeutic agent against VS and meningioma.
Collapse
Affiliation(s)
- M E Mercado-Pimentel
- Ear Institute, University of Arizona, USA; Department of Otolaryngology, University of Arizona, USA; Arizona Cancer Center, University of Arizona, USA
| | - S Igarashi
- Ear Institute, University of Arizona, USA; Department of Otolaryngology, University of Arizona, USA
| | - A M Dunn
- Ear Institute, University of Arizona, USA; Department of Otolaryngology, University of Arizona, USA
| | - M Behbahani
- Ear Institute, University of Arizona, USA; Department of Otolaryngology, University of Arizona, USA
| | - C Miller
- Ear Institute, University of Arizona, USA; Department of Otolaryngology, University of Arizona, USA
| | - C M Read
- Ear Institute, University of Arizona, USA
| | - A Jacob
- Ear Institute, University of Arizona, USA; Department of Otolaryngology, University of Arizona, USA; Arizona Cancer Center, University of Arizona, USA; BIO5 Institute, University of Arizona, USA
| |
Collapse
|
22
|
Li P, Guo Y, Bledsoe G, Yang Z, Chao L, Chao J. Kallistatin induces breast cancer cell apoptosis and autophagy by modulating Wnt signaling and microRNA synthesis. Exp Cell Res 2016; 340:305-14. [PMID: 26790955 DOI: 10.1016/j.yexcr.2016.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/02/2015] [Accepted: 01/10/2016] [Indexed: 01/07/2023]
Abstract
Kallistatin is an endogenous protein that regulates differential signaling pathways and biological functions. Our previous studies showed that kallistatin gene therapy inhibited angiogenesis, tumor growth and metastasis in mice, and kallistatin protein suppressed Wnt-mediated growth, migration and invasion by blocking Wnt/β-catenin signaling pathway in breast cancer cells. In this study, we show that kallistatin reduced cell viability, and increased apoptotic cell death and caspase-3 activity in MDA-MB-231 breast cancer cells. Kallistatin also induced cancer cell autophagy, as evidenced by increased LC3B levels and elevated Atg5 and Beclin-1 expression; however, co-administration of Wnt or PPARγ antagonist GW9662 abolished these effects. Moreover, kallistatin via its heparin-binding site antagonized Wnt3a-induced cancer cell proliferation and increased PPARγ expression. Kallistatin inhibited oncogenic miR-21 synthesis associated with reduced Akt phosphorylation and Bcl-2 synthesis, but increased BAX expression. Kallistatin via PKC-ERK activation reduced miR-203 levels, leading to increased expression of suppressor of cytokine signaling 3 (SOCS3), a tumor suppressor. Conversely, kallistatin stimulated expression of the tumorigenic suppressors miR-34a and p53. Kallistatin's active site is essential for suppressing miR-21 and miR-203, and stimulating miR-34a and SOCS3 expression. This is the first study to demonstrate that kallistatin's heparin-binding site is essential for inhibiting Wnt-mediated effects, and its active site plays a key role in regulating miR-21, miR-203, miR-34a and SOCS3 synthesis in breast cancer cells. These findings reveal novel mechanisms of kallistatin in inducing apoptosis and autophagy in breast cancer cells, thus inhibiting tumor progression by regulation of Wnt/PPARγ signaling, as well as miR-21, miR-203 and miR-34a synthesis.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Youming Guo
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Grant Bledsoe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Zhirong Yang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
23
|
Zi D, Zhou ZW, Yang YJ, Huang L, Zhou ZL, He SM, He ZX, Zhou SF. Danusertib Induces Apoptosis, Cell Cycle Arrest, and Autophagy but Inhibits Epithelial to Mesenchymal Transition Involving PI3K/Akt/mTOR Signaling Pathway in Human Ovarian Cancer Cells. Int J Mol Sci 2015; 16:27228-51. [PMID: 26580601 PMCID: PMC4661876 DOI: 10.3390/ijms161126018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 01/10/2023] Open
Abstract
Ovarian carcinoma (OC) is one of the most common gynecological malignancies, with a poor prognosis for patients at advanced stage. Danusertib (Danu) is a pan-inhibitor of the Aurora kinases with unclear anticancer effect and underlying mechanisms in OC treatment. This study aimed to examine the cancer cell killing effect and explore the possible mechanisms with a focus on proliferation, cell cycle progression, apoptosis, autophagy, and epithelial to mesenchymal transition (EMT) in human OC cell lines C13 and A2780cp. The results showed that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both cell lines. Danu arrested cells in G₂/M phase and led to an accumulation of polyploidy through the regulation of the expression key cell cycle modulators. Danu induced mitochondria-dependent apoptosis and autophagy in dose and time-dependent manners. Danu suppressed PI3K/Akt/mTOR signaling pathway, evident from the marked reduction in the phosphorylation of PI3K/Akt/mTOR, contributing to the autophagy inducing effect of Danu in both cell lines. In addition, Danu inhibited EMT. In aggregate, Danu exerts potent inducing effect on cell cycle arrest, apoptosis, and autophagy, but exhibits a marked inhibitory effect on EMT. PI3K/Akt/mTOR signaling pathway contributes, partially, to the cancer cell killing effect of Danu in C13 and A2780cp cells.
Collapse
Affiliation(s)
- Dan Zi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
| | - Ying-Jie Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
- Department of Gynecologic Oncology Surgery, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang 550002, China.
| | - Lin Huang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
| | - Zun-Lun Zhou
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
| | - Shu-Ming He
- Department of Obstetrics and Gynecology, Xiaolan Hospital, Southern Medical University, Zhongshan 528415, China.
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University, Guiyang 550004, China.
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|