1
|
Ge WD, Du TT, Wang CY, Sun LN, Wang YQ. Calcium signaling crosstalk between the endoplasmic reticulum and mitochondria, a new drug development strategies of kidney diseases. Biochem Pharmacol 2024; 225:116278. [PMID: 38740223 DOI: 10.1016/j.bcp.2024.116278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Calcium (Ca2+) acts as a second messenger and constitutes a complex and large information exchange system between the endoplasmic reticulum (ER) and mitochondria; this process is involved in various life activities, such as energy metabolism, cell proliferation and apoptosis. Increasing evidence has suggested that alterations in Ca2+ crosstalk between the ER and mitochondria, including alterations in ER and mitochondrial Ca2+ channels and related Ca2+ regulatory proteins, such as sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), inositol 1,4,5-trisphosphate receptor (IP3R), and calnexin (CNX), are closely associated with the development of kidney disease. Therapies targeting intracellular Ca2+ signaling have emerged as an emerging field in the treatment of renal diseases. In this review, we focused on recent advances in Ca2+ signaling, ER and mitochondrial Ca2+ monitoring methods and Ca2+ homeostasis in the development of renal diseases and sought to identify new targets and insights for the treatment of renal diseases by targeting Ca2+ channels or related Ca2+ regulatory proteins.
Collapse
Affiliation(s)
- Wen-Di Ge
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Tian-Tian Du
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Cao-Yang Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
He J, Cui J, Shi Y, Wang T, Xin J, Li Y, Shan X, Zhu Z, Gao Y. Astragaloside IV Attenuates High-Glucose-Induced Impairment in Diabetic Nephropathy by Increasing Klotho Expression via the NF- κB/NLRP3 Axis. J Diabetes Res 2023; 2023:7423661. [PMID: 37261217 PMCID: PMC10228232 DOI: 10.1155/2023/7423661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 06/02/2023] Open
Abstract
Objective Deficiencies in klotho are implicated in various kidney dysfunctions including diabetic nephropathy (DN) related to inflammatory responses. Klotho is closely related to inflammatory responses and is a potential target for ameliorating kidney failure. Pyroptosis, an inflammatory form of programmed cell death, is reported to take part in DN pathogenesis recently. This study is aimed at exploring whether and how klotho inhibited podocyte pyroptosis and whether astragaloside IV (AS-IV) protect podocyte through the regulation of klotho. Materials and Methods SD rat model of DN and conditionally immortalized mouse podocytes exposed to high glucose were treated with AS-IV. Biochemical assays and morphological examination, cell viability assay, cell transfection, phalloidin staining, ELISA, LDH release assay, SOD and MDA detection, MMP assay, ROS level detection, flow cytometry analysis, TUNEL staining assay, PI/Hoechst 33342 staining, immunofluorescence assay, and western blot were performed to elucidate podocyte pyroptosis and to observe the renal morphology. Results The treatment of AS-IV can improve renal function and protect podocytes exposed to high glucose. Klotho was decreased, and AS-IV increased klotho levels in serum and kidney tissue of DN rats as well as podocytes exposed to high glucose. AS-IV can inhibit DN glomeruli pyroptosis in vivo. In vitro, overexpressed klotho and treatment with AS-IV inhibited pyroptosis of podocytes cultured in high glucose. Klotho knockdown promoted podocyte pyroptosis, and treatment with AS-IV reversed this effect. Furthermore, the overexpression of klotho and AS-IV reduces oxidative stress levels and inhibited NF-κB activation and NLRP3-mediated podocytes' pyroptosis which was abolished by klotho knockdown. In addition, both the ROS inhibitor NAC and the NF-κB pathway inhibitor PDTC can inhibit NLRP3 inflammasome activation. NLRP3 inhibitor MCC950 can inhibit pyroptosis of podocytes exposed to high glucose. Conclusion Altogether, our results demonstrate that the protective effect of AS-IV in upregulating klotho expression in diabetes-induced podocyte injury is associated with the inhibition of NLRP3-mediated pyroptosis via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jiaxin He
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Jialin Cui
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Yimin Shi
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Tao Wang
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Junyan Xin
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Yimeng Li
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Xiaomeng Shan
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Zhiyao Zhu
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Yanbin Gao
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
3
|
Abozaid OAR, El-Sonbaty SM, Hamam NMA, Farrag MA, Kodous AS. Chitosan-Encapsulated Nano-selenium Targeting TCF7L2, PPARγ, and CAPN10 Genes in Diabetic Rats. Biol Trace Elem Res 2023; 201:306-323. [PMID: 35237941 PMCID: PMC9823051 DOI: 10.1007/s12011-022-03140-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/26/2022] [Indexed: 01/11/2023]
Abstract
This study investigates the antidiabetic and antioxidant potential of chitosan-encapsulated selenium nanoparticles in streptozotocin-induced diabetic model. Glibenclamide was used as a reference antidiabetic drug. Forty-eight adult male Wistar rats were used along the study and divided equally into 6 groups of (I) normal control, (II) chitosan-encapsulated selenium nanoparticles (CTS-SeNPs), (III) glibenclamide, (IV) streptozotocin (STZ), (V) STZ + CTS-SeNPs, and (VI) STZ + Glib. The animals were sacrificed on the 35th day of the experiment. Serum glucose, insulin, IGF-1, ALT, AST, CK-MB, oxidative stress, lipid profile, and inflammatory parameters were subsequently assessed. Also, the expression level of TCF7L2, CAPN10, and PPAR-γ genes were evaluated using qPCR. In addition, histopathological studies on pancreatic tissue were carried out. The results revealed that STZ induced both diabetes and oxidative stress in normal rats, manifested by the significant changes in the studied parameters and in the physical structure of pancreatic tissue. Oral administration of CTS-SeNPs or Glib results in a significant amelioration of the levels of serum fasting blood glucose, insulin, IGF-1, AST, ATL, and CK-MB as compared with STZ-induced diabetic rats. CTS-SeNPs and Glib diminished the level of lipid peroxidation, increased total antioxidant capacity level, as well as possessed strong inhibition against serum α-amylase and α-glucosidase activities. Diabetic animals received CTS-SeNPs, or Glib demonstrated a significant (p < 0.05) decrease in the expression level of TCF7L2 and CAPN10 genes with a significant increase in the expression level of PPAR-γ gene, compared to STZ group. The above findings clarify the promising antidiabetic and antioxidant effect of CTS-SeNPs, recommending its inclusion in the currently used protocols for the treatment of diabetes and in the prevention of its related complications.
Collapse
Affiliation(s)
- Omayma A. R. Abozaid
- Clinical Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Sawsan M. El-Sonbaty
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Neama M. A. Hamam
- Clinical Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Moustafa A. Farrag
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmad S. Kodous
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
4
|
Oh H, Cho W, Park SY, Abd El-Aty A, Jeong JH, Jung TW. Ginsenoside Rb3 ameliorates podocyte injury under hyperlipidemic conditions via PPARδ- or SIRT6-mediated suppression of inflammation and oxidative stress. J Ginseng Res 2022; 47:400-407. [DOI: 10.1016/j.jgr.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/29/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
|
5
|
Qu G, He T, Dai A, Zhao Y, Guan D, Li S, Shi H, Gan W, Zhang A. miR-199b-5p mediates adriamycin-induced podocyte apoptosis by inhibiting the expression of RGS10. Exp Ther Med 2021; 22:1469. [PMID: 34737809 PMCID: PMC8561778 DOI: 10.3892/etm.2021.10904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/01/2021] [Indexed: 11/06/2022] Open
Abstract
Podocyte apoptosis is a key risk factor for the progression of kidney diseases. MicroRNA (miR)-199b-5p has been shown to be involved in cell apoptosis. However, the molecular mechanisms of miR-199b-5p in podocyte apoptosis remain uncertain. Thus, the present study aimed to investigate whether miR-199b-5p participates in the regulation of podocyte apoptosis and to elucidate the involved mechanisms of this process. A podocyte apoptosis model was constructed using adriamycin (ADR) in vitro. miR-199b-5p mimic and inhibitor were transfected in podocytes to change the expression level of miR-199b-5p. RNA expression was examined by reverse transcription-quantitative PCR. Western blotting was used to measure protein expression. Apoptosis was monitored via flow cytometry and detection of apoptosis-associated proteins. The results from the present study demonstrated that miR-199b-5p was upregulated and that regulator of G-protein signaling 10 (RGS10) was downregulated in ADR-stimulated podocytes. Overexpression of miR-199b-5p could inhibit RGS10 expression and stimulate podocyte apoptosis, whereas miR-199b-5p knockdown restored the levels of RGS10 and ameliorated podocyte apoptosis in ADR-induced podocytes. Furthermore, the effects of miR-199b-5p overexpression could be significantly reversed by RGS10 overexpression. In addition, podocyte transfection of miR-199b-5p activated the AKT/mechanistic target of rapamycin (mTOR) signaling, which was blocked following RGS10 overexpression. Taken together, the present study demonstrated that miR-199b-5p upregulation could promote podocyte apoptosis by inhibiting the expression of RGS10 through the activation of AKT/mTOR signaling.
Collapse
Affiliation(s)
- Gaoting Qu
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Tiantian He
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Aisuo Dai
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Yajie Zhao
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Dian Guan
- Department of Pediatric Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shanwen Li
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Huimin Shi
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Weihua Gan
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Aiqing Zhang
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| |
Collapse
|
6
|
Exploring the Potential Mechanism of Tang-Shen-Ning Decoction against Diabetic Nephropathy Based on the Combination of Network Pharmacology and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1025053. [PMID: 34539795 PMCID: PMC8445713 DOI: 10.1155/2021/1025053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022]
Abstract
Background Diabetic nephropathy (DN) has become one of the leading causes of the end-stage renal disease (ESRD). Tang-Shen-Ning (TSN) decoction, an effective Traditional Chinese formula for DN, can improve the renal function and inhibit renal fibrosis in DN. However, its potential mechanism is still unexplored. Methods A network pharmacology approach was employed in this study, including screening for differential expressed genes of DN (DN-DEGs), protein-protein interaction (PPI) network analysis, and GO and KEGG enrichment analysis. Besides, a rat model was established to verify the potential effect of TSN in DN. Results Twenty-three TSN-related DN-DEGs targets were identified. These genes were associated with decreased glomerular filtration rate (GFR) DN. The enrichment analysis suggested that the inhibition of renal fibrosis and inflammation through growth factors and chemokines is the potential mechanism through which TSN improves DN. TSN reduced renal fibrosis and improved pathological damage in the kidney in vivo through the regulation of GJA1, CTGF, MMP7, and CCL5, which are genes associated with ECM deposition. Conclusion This study revealed that TSN improves DN through a multicomponent, multitarget, and multipathway synergy. We provide a scientific basis for potential targets for TSN use to treat DN, yet further experimental validation is needed to investigate these targets and mechanisms.
Collapse
|
7
|
Hammoud SH, AlZaim I, Mougharbil N, Koubar S, Eid AH, Eid AA, El-Yazbi AF. Peri-renal adipose inflammation contributes to renal dysfunction in a non-obese prediabetic rat model: Role of anti-diabetic drugs. Biochem Pharmacol 2021; 186:114491. [PMID: 33647265 DOI: 10.1016/j.bcp.2021.114491] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy is a major health challenge with considerable economic burden and significant impact on patients' quality of life. Despite recent advances in diabetic patient care, current clinical practice guidelines fall short of halting the progression of diabetic nephropathy to end-stage renal disease. Moreover, prior literature reported manifestations of renal dysfunction in early stages of metabolic impairment prior to the development of hyperglycemia indicating the involvement of alternative pathological mechanisms apart from those typically triggered by high blood glucose. Here, we extend our prior research work implicating localized inflammation in specific adipose depots in initiating cardiovascular dysfunction in early stages of metabolic impairment. Non-obese prediabetic rats showed elevated glomerular filtration rates and mild proteinuria in absence of hyperglycemia, hypertension, and signs of systemic inflammation. Isolated perfused kidneys from these rats showed impaired renovascular endothelial feedback in response to vasopressors and increased flow. While endothelium dependent dilation remained functional, renovascular relaxation in prediabetic rats was not mediated by nitric oxide and prostaglandins as in control tissues, but rather an upregulation of the function of epoxy eicosatrienoic acids was observed. This was coupled with signs of peri-renal adipose tissue (PRAT) inflammation and renal structural damage. A two-week treatment with non-hypoglycemic doses of metformin or pioglitazone, shown previously to ameliorate adipose inflammation, not only reversed PRAT inflammation in prediabetic rats, but also reversed the observed functional, renovascular, and structural renal abnormalities. The present results suggest that peri-renal adipose inflammation triggers renal dysfunction early in the course of metabolic disease.
Collapse
Affiliation(s)
- Safaa H Hammoud
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Nahed Mougharbil
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Sahar Koubar
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Assaad A Eid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon.
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt.
| |
Collapse
|
8
|
Chen Y, Su Z, Liu F. Effects of functionally diverse calpain system on immune cells. Immunol Res 2021; 69:8-17. [PMID: 33483937 DOI: 10.1007/s12026-021-09177-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Calpains are a family of nonlysosomal cysteine proteases, which play important roles in numerous physiological and pathological processes. Locations of them dictates the functions so that they are classified as ubiquitously expressed calpains and tissue-specific calpains. Recent studies are mainly focused on conventional calpains (calpain-1,2) in development and diseases, and increasing people pay attention to other subtypes of calpains but may not been summarized appropriately. Growing evidence suggests that calpains are also involved in immune regulation. However, seldom articles review the regulation of calpains on immune cells. The aim of this article is to review the research progress of each calpain isozyme and the effect of calpains on immune cells, especially the promotion effect of calpains on the immune response of macrophage, neutrophils, dendritic cells, mast cells, natural killed cells, and lymphocytes. These effects would hold great promise for the clinical application of calpains as a practicable therapeutic option in the treatment of immune related diseases.
Collapse
Affiliation(s)
- Yueqi Chen
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Fang Liu
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
9
|
Ginsenoside Rg1 Alleviates Podocyte Injury Induced by Hyperlipidemia via Targeting the mTOR/NF- κB/NLRP3 Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2735714. [PMID: 33133213 PMCID: PMC7568787 DOI: 10.1155/2020/2735714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/03/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Background Podocyte injury plays an important role in diabetic nephropathy (DN). The aim of this study was to determine the potential therapeutic effects of the ginsenoside Rg1 on hyperlipidemia-stressed podocytes and elucidate the underlying mechanisms. Methods In vitro and in vivo models of DN were established as previously described, and the expression levels of relevant markers were analyzed by Western blotting, real-time Polymerase Chain Reaction (PCR), immunofluorescence, and immunohistochemistry. Results Ginsenoside Rg1 alleviated pyroptosis in podocytes cultured under hyperlipidemic conditions, as well as in the renal tissues of diabetic rats, and downregulated the mammalian target of rapamycin (mTOR)/NF-κB pathway. In addition, Rg1 also inhibited hyperlipidemia-induced NLRP3 inflammasome in the podocytes, which was abrogated by the mTOR activator L-leucine (LEU). The antipyroptotic effects of Rg1 manifested as improved renal function in the DN rats. Conclusion Ginsenoside Rg1 protects podocytes from hyperlipidemia-induced damage by inhibiting pyroptosis through the mTOR/NF-κB/NLRP3 axis, indicating a potential therapeutic function in DN.
Collapse
|
10
|
Cheng L, Cheng J, Peng W, Jiang X, Huang S. Long non-coding RNA Dlx6os1 serves as a potential treatment target for diabetic nephropathy via regulation of apoptosis and inflammation. Exp Ther Med 2020; 20:3791-3797. [PMID: 32855728 PMCID: PMC7444328 DOI: 10.3892/etm.2020.9112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
The present study investigated the effect of long non-coding RNA (lncRNA) Dlx6os1 silencing on cell proliferation, apoptosis and fibrosis, and further explored its influence on the mRNA expression profile in mouse mesangial cells (MMCs) of a diabetic nephropathy (DN) cellular model. A DN cellular model was constructed in SV40 MES13 MMCs under high glucose conditions (30 mmol/l glucose culture). lncRNA Dlx6os1 short hairpin (sh)RNA plasmids and negative control (NC) shRNA plasmids were transfected into the MMCs of the DN cellular model as the sh-lncRNA group and sh-NC group respectively. The mRNA expression profile was determined in the sh-lncRNA and sh-NC groups. Compared with the sh-NC group, the cell proliferation, mRNA and protein expression levels of proliferative markers (cyclin D1 and proliferating cell nuclear antigen) as well as fibrosis markers (fibronectin and collagen I) were suppressed, whereas cell apoptosis was promoted in the sh-lncRNA group. The mRNA expression profile identified 423 upregulated mRNAs and 438 downregulated mRNAs in the sh-lncRNA group compared with the sh-NC group. Additionally, Gene Ontology/Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the differentially expressed mRNAs were enriched in apoptosis and inflammation-related pathways. Further gene-set enrichment analysis of apoptosis and inflammation revealed that lncRNA Dlx6os1 inhibition promoted apoptosis and suppressed inflammation in MMCs of the DN cellular model. In conclusion, lncRNA Dlx6os1 may serve as a potential treatment target for DN via regulation of multiple apoptosis- and inflammation-related pathways.
Collapse
Affiliation(s)
- Li Cheng
- Department of Gynecology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P.R. China
| | - Jie Cheng
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Wenfang Peng
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Xiaohong Jiang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Shan Huang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| |
Collapse
|
11
|
Yang Y, Wang Y, He Z, Liu Y, Chen C, Wang Y, Wang DW, Wang H. Trimetazidine Inhibits Renal Tubular Epithelial Cells to Mesenchymal Transition in Diabetic Rats via Upregulation of Sirt1. Front Pharmacol 2020; 11:1136. [PMID: 32848753 PMCID: PMC7403491 DOI: 10.3389/fphar.2020.01136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Trimetazidine (TMZ), as a metabolic regulator, is effective in treatment of coronary atherosclerotic heart disease with rare side effects in the clinic for long years. Interestingly, studies have shown that TMZ protects against several acute kidney injuries (AKI). However, the effect of TMZ on chronic kidney diseases (CKD) remains unknown. This study aimed to investigate the role of TMZ in diabetic nephropathy (DN) and its potential mechanisms. A rat model of DN was established in male Sprague-Dawley rats by streptozotocin (STZ) intraperitoneal injection. Experimental rats were separated into three groups: control, DN and DN + TMZ treatment. Metabolic parameters, pathological features and renal function markers were evaluated after 20 weeks of diabetes induction. In vitro experiments, the effect of TMZ on high fat and high glucose (HFG) induced or TGFβ1-induced epithelial-to-mesenchymal transition (EMT) was examined in HK-2 cells. Our results showed that TMZ could maintain renal function without affecting hemodynamic and plasma metabolic levels in diabetic rats. The effect was associated with a reversion of pathological progression of DN, especially for tubulointerstitial fibrosis. EMT is an important contributor to renal fibrosis. In this study, we investigated the role of TMZ in the process of EMT in DN. Mechanistically; TMZ attenuated HFG-induced EMT by relieving oxidative stress via deacetylation forkhead box O1 (FoxO1) in a Sirt1-dependent pathway. And it suppressed TGFβ1-induced EMT by deacetylating Smd4 in a Sirt1-dependent manner. Moreover, our study found that TMZ upregulated Sirt1 expression by increasing the expression of nicotinamide phosphoribosyl transferase (Nampt), which is a rate limiting enzyme for nicotinamide adenine dinucleotide (NAD+) generation by salvage pathway. And the increased NAD+ promoted Sirt1 expression. In conclusion, TMZ can prevent renal dysfunction and pathogenesis of tubulointerstitial fibrosis in DN, partly by inhibition of EMT via FoxO1/ROS pathway and TGFβ/Smad pathway in a Nampt/NAD+/Sirt1 dependent manner.
Collapse
Affiliation(s)
- Yong Yang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Zuowen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yunchang Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Abdelrahman AM, Al Salam S, Al Suleimani Y, Ashique M, Manoj P, Ali BH. Effect of levosimendan, an inodilator, on streptozotocin-induced diabetic nephropathy in rats. Eur J Pharmacol 2020; 873:172960. [PMID: 32001219 DOI: 10.1016/j.ejphar.2020.172960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/06/2020] [Accepted: 01/24/2020] [Indexed: 01/26/2023]
Abstract
This study examined the effect of levosimendan on streptozotocin-induced early diabetic nephropathy. Rats were distributed into four groups and treated for six weeks. The first and third group received either vehicle or levosimendan (1 mg/kg/day) for the last three weeks, respectively. The second and fourth groups were rendered diabetic by a single intraperitoneal injection of streptozotocin (60 mg/kg) and were treated as the first and third groups, respectively. In the untreated diabetic group, there was a significant decrease in body weight, polyuria and hyperglycemia as well as, increased urinary albumin/creatinine ratio (UACR) and N-acetyl-β-D-glucosaminidase (NAG)/creatinine ratio (UNCR) with no change in creatinine clearance. In addition, diabetes was associated with increased oxidative stress as evidenced by reduced plasma total antioxidant capacity (TAC) and catalase activity and increased plasma malondialdhyde (MDA) and the inflammatory marker, tumor necrosis factor-alpha, (TNF-α). Kidneys from streptozotocin-treated rats showed focal clear renal tubular cells affecting proximal convoluted tubules and mild interstitial fibrosis at the cortico-medullary junction. Levosimendan significantly attenuated the streptozotocin-induced physiological and biochemical changes and there was less clear renal tubular cells. This study shows that levosimendan ameliorated some of the changes seen in streptozotocin-induced early diabetic nephropathy in rats. This could be partly due to its antioxidative and anti-inflammatory effects.
Collapse
Affiliation(s)
- Aly M Abdelrahman
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khod, Oman.
| | - Suhail Al Salam
- Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yousuf Al Suleimani
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khod, Oman
| | - Mohamed Ashique
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khod, Oman
| | - Priyadarsini Manoj
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khod, Oman
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khod, Oman
| |
Collapse
|
13
|
Shopit A, Niu M, Wang H, Tang Z, Li X, Tesfaldet T, Ai J, Ahmad N, Al-Azab M, Tang Z. Protection of diabetes-induced kidney injury by phosphocreatine via the regulation of ERK/Nrf2/HO-1 signaling pathway. Life Sci 2019; 242:117248. [PMID: 31899224 DOI: 10.1016/j.lfs.2019.117248] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/25/2019] [Accepted: 12/29/2019] [Indexed: 12/19/2022]
Abstract
Diabetic nephropathy is the most common long-term complication of diabetes mellitus. The Methylglyoxal (MGO) production is mainly by metabolic pathways, such as lipolysis and glycolysis, its increases in the DM enhances oxidative stress and plays a crucial role in the diabetic nephrotic pathogenesis. Phosphocreatine (PCr) can improve lipopolysaccharide, ox-LDL-induced atherosclerosis, and alleviate vascular endothelial cell injury in diabetes. The aim of our present study is to examine the potential role of phosphocreatine (PCr) as a molecule protects against diabetes-induced Kidney Injury in-vitro and in-vivo through ERK/Nrf2/HO-1 signaling pathway. NRK-52E cells treatment with PCr obviously suppressed MGO-induced change of viability, apoptosis, coupled with decreased Bax/Bcl-2ratio, casapse-9 and caspase-3expressions. We determined the generation of reactive oxygen species (ROS) using membrane permeable fluorescent probe DCFH-DA as well as intracellular calcium by flow cytometry. ERK, Nrf2 and HO-1 expressions were determined by Western blot. PCr pretreatment significantly returned the oxidative stress enzymes to normal condition in-vitro and in-vivo. PCr pretreatment significantly reduced apoptosis, calcium and ROS production, induced by MGO, in NRK-52E cells. Moreover, pretreatment with PCr significantly inhibited cleaved caspase-3, cleaved caspase-9 and p-ERK expressions, while increased Nrf-2 and HO-1 expressions. Furthermore, PCr pretreatment significantly decreased p-ERK expression of MGO-induced injury in NRK-52E cells transfected with p-ERK cDNA. In conclusion, the renal protective effect of PCr in-vitro and in-vivo depends on suppressing apoptosis and ROS generation through ERK mediated Nrf-2/HO-1 pathway, suggesting that PCr may be a novel therapeutic candidate for the diabetic nephropathy treatment.
Collapse
Affiliation(s)
- Abdullah Shopit
- Acad integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Mengyue Niu
- Acad integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Hongyan Wang
- Acad integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Zhongyuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun 130000, China
| | - Xiaodong Li
- Second Clinical College, Dalian Medical University, Dalian 116044, China
| | - Tsehaye Tesfaldet
- Acad integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Jie Ai
- Acad integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Nisar Ahmad
- Acad integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Mahmoud Al-Azab
- Department of immunology, Dalian Medical University, Dalian 116044, China
| | - Zeyao Tang
- Acad integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|