1
|
Ahmed A, Zaib S, Bhat MA, Saeed A, Altaf MZ, Zahra FT, Shabir G, Rana N, Khan I. Acyl pyrazole sulfonamides as new antidiabetic agents: synthesis, glucosidase inhibition studies, and molecular docking analysis. Front Chem 2024; 12:1380523. [PMID: 38694406 PMCID: PMC11061460 DOI: 10.3389/fchem.2024.1380523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/11/2024] [Indexed: 05/04/2024] Open
Abstract
Diabetes mellitus is a multi-systematic chronic metabolic disorder and life-threatening disease resulting from impaired glucose homeostasis. The inhibition of glucosidase, particularly α-glucosidase, could serve as an effective methodology in treating diabetes. Attributed to the catalytic function of glucosidase, the present research focuses on the synthesis of sulfonamide-based acyl pyrazoles (5a-k) followed by their in vitro and in silico screening against α-glucosidase. The envisaged structures of prepared compounds were confirmed through NMR and FTIR spectroscopy and mass spectrometry. All compounds were found to be more potent against α-glucosidase than the standard drug, acarbose (IC50 = 35.1 ± 0.14 µM), with IC50 values ranging from 1.13 to 28.27 µM. However, compound 5a displayed the highest anti-diabetic activity (IC50 = 1.13 ± 0.06 µM). Furthermore, in silico studies revealed the intermolecular interactions of most potent compounds (5a and 5b), with active site residues reflecting the importance of pyrazole and sulfonamide moieties. This interaction pattern clearly manifests various structure-activity relationships, while the docking results correspond to the IC50 values of tested compounds. Hence, recent investigation reveals the medicinal significance of sulfonamide-clubbed pyrazole derivatives as prospective therapeutic candidates for treating type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Atteeque Ahmed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Zain Altaf
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Fatima Tuz Zahra
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ghulam Shabir
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nehal Rana
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Chen A, Ma T, Zhong Y, Deng S, Zhu S, Fu Z, Huang Y, Fu J. Effect of tea polyphenols supplement on growth performance, antioxidation, and gut microbiota in squabs. Front Microbiol 2024; 14:1329036. [PMID: 38287959 PMCID: PMC10822925 DOI: 10.3389/fmicb.2023.1329036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/12/2023] [Indexed: 01/31/2024] Open
Abstract
Early life nutritional supplementation can significantly improve pigeon health. Both the nutritional crops of parental pigeons and the intestinal development of squabs play key roles in the growth rate of squabs. Tea polyphenols (TPs), as natural plant extracts, exhibit potential biological activities. However, the impact of TPs on the intestinal function of squabs is not known. This study evaluated the effects of TPs on growth performance, immunity, antioxidation, and intestinal function in squabs. A total of 432 young pigeons (1 day old) were divided into four groups: a control group (fed a basic diet) and three treatment groups (low, medium, and high dose groups; 100, 200, and 400 mg/kg TPs, respectively). On the 28th day, samples of serum, mucosal tissue, and digests from the ileum of squabs were collected for analysis. The results revealed that TP supplementation significantly reduced the feed-to-meat ratio and improved the feed utilization rate and serum biochemical indices in squabs. Additionally, it enhanced the intestinal barrier function of birds by promoting intestinal development and integrity of tight junctions and regulating digestive enzyme activities and intestinal flora. Mechanistically, TPs activated the Nrf2-ARE signaling pathway, which may be associated with improved antioxidant and immune responses, correlating with an increased abundance of Candida arthritis and Corynebacterium in the ileum.
Collapse
Affiliation(s)
- Ailing Chen
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Tingting Ma
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yajing Zhong
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Shan Deng
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Shaoping Zhu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Zhiqi Fu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Jing Fu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Design, synthesis and α-glucosidase inhibition study of novel pyridazin-based derivatives. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
4
|
Kareem B, Irondi EA, Alamu EO, Ajani EO, Abass A, Adesokan M, Parkes E, Maziya-Dixon B. Influence of traditional processing and genotypes on the antioxidant and antihyperglycaemic activities of yellow-fleshed cassava. Front Nutr 2022; 9:894843. [PMID: 36313071 PMCID: PMC9614258 DOI: 10.3389/fnut.2022.894843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Yellow-fleshed cassava root (YFCR) is processed into traditional products that may influence its bioactivities. In this study, the antioxidant and anti-hyperglycaemic activities of three traditional products (lafun, fufu and gari) from five genotypes (IITA-TMS-IBA070337, 182961, 182962, 182986, 183044) of YFCR were evaluated. The YFCR genotypes were grown at the International Institute of Tropical Agriculture (IITA) research field, Ibadan. The bioactive constituents (total carotenoids, total phenolics, tannins and total flavonoids), antioxidant [2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) radical cation (ABTS•+) and 1,1-diphenyl-2- picrylhydrazyl radical (DPPH•) scavenging capacities, and reducing power], and starch-digesting enzymes (α-amylase and α-glucosidase) inhibitory activities of the products were determined using standard laboratory methods. The glucose response of the products was assessed in human subjects. The concentrations of the bioactive constituents of the products from different genotypes varied significantly (p < 0.05). The ABTS•+ and DPPH• scavenging capacities and the reducing power of the products also differed significantly (p < 0.05), such that the lafun from IITA-TMS-IBA182962, IITA-TMS-IBA070337 and IITA-TMS-IBA070337 had the strongest ABTS•+ and DPPH• scavenging capacities, and reducing power, respectively. The α-amylase and α-glucosidase inhibitory activities of the three products differed significantly (p < 0.05), with the lafun from IITA-TMS-IBA070337 and IITA-TMS-IBA07033 having the strongest α-amylase and α-glucosidase inhibitory activity, respectively. Also, the lafun from IITA-TMS-182986 had the least glucose response, while the fufu from IITA-TMS-IBA070337 had the highest glucose response. Overall, the lafun from different genotypes of YFCR had the most potent antioxidant and starch-digesting enzymes inhibitory activities and the least glucose responses. Hence, lafun may be a promising dietary intervention targeting oxidative stress, hyperglycaemia, and their resultant type 2 diabetes.
Collapse
Affiliation(s)
- Babajide Kareem
- Department of Medical Biochemistry and Pharmacology, Kwara State University, Ilorin, Nigeria,Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture, Lusaka, Zambia
| | | | - Emmanuel Oladeji Alamu
- Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture, Lusaka, Zambia,Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture, Lusaka, Zambia,*Correspondence: Emmanuel Oladeji Alamu
| | - Emmanuel Oladipo Ajani
- Department of Medical Biochemistry and Pharmacology, Kwara State University, Ilorin, Nigeria
| | - Adebayo Abass
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | - Michael Adesokan
- Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture, Lusaka, Zambia
| | - Elizabeth Parkes
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Busie Maziya-Dixon
- Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture, Lusaka, Zambia
| |
Collapse
|
5
|
Biogenic Phytochemicals Modulating Obesity: From Molecular Mechanism to Preventive and Therapeutic Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6852276. [PMID: 35388304 PMCID: PMC8977300 DOI: 10.1155/2022/6852276] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/05/2022] [Indexed: 02/06/2023]
Abstract
The incidence of obesity and over bodyweight is emerging as a major health concern. Obesity is a complex metabolic disease with multiple pathophysiological clinical conditions as comorbidities are associated with obesity such as diabetes, hypertension, cardiovascular disorders, sleep apnea, osteoarthritis, some cancers, and inflammation-based clinical conditions. In obese individuals, adipocyte cells increased the expression of leptin, angiotensin, adipocytokines, plasminogen activators, and C-reactive protein. Currently, options for treatment and lifestyle behaviors interventions are limited, and keeping a healthy lifestyle is challenging. Various types of phytochemicals have been investigated for antiobesity potential. Here, we discuss pathophysiology and signaling pathways in obesity, epigenetic regulations, regulatory mechanism, functional ingredients in natural antiobesity products, and therapeutic application of phytochemicals in obesity.
Collapse
|
6
|
Antioxidant and Starch-Hydrolyzing Enzymes Inhibitory Properties of Striga-Resistant Yellow-Orange Maize Hybrids. Molecules 2021; 26:molecules26226874. [PMID: 34833966 PMCID: PMC8617639 DOI: 10.3390/molecules26226874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Most of the health benefits derived from cereals are attributed to their bioactive compounds. This study evaluated the levels of the bioactive compounds, and the antioxidant and starch-hydrolyzing enzymes inhibitory properties of six pipeline Striga-resistant yellow-orange maize hybrids (coded AS1828-1, 4, 6, 8, 9, 11) in vitro. The maize hybrids were grown at the International Institute of Tropical Agriculture (IITA), Nigeria. The bioactive compounds (total phenolics, tannins, flavonoids, and phytate) levels, antioxidant (DPPH• and ABTS•+ scavenging capacity and reducing power) and starch-hydrolyzing enzymes (α-amylase and α-glucosidase) inhibitory activities of the maize hybrids were determined by spectrophotometry. At the same time, carotenoids were quantified using a reverse-phase HPLC system. The ranges of the bioactive compounds were: 11.25-14.14 mg GAE/g (total phenolics), 3.62-4.67 mg QE/g (total flavonoids), 3.63-6.29 mg/g (tannins), 3.66-4.31% (phytate), 8.92-12.11 µg/g (total xanthophylls), 2.42-2.89 µg/g (total β-carotene), and 3.17-3.77 µg/g (total provitamin A carotenoids). Extracts of the maize hybrids scavenged DPPH• (SC50: 9.07-26.35 mg/mL) and ABTS•+ (2.65-7.68 TEAC mmol/g), reduced Fe3+ to Fe2+ (0.25 ± 0.64-0.43 ± 0.01 mg GAE/g), and inhibited α-amylase and α-glucosidase, with IC50 ranges of 26.28-52.55 mg/mL and 47.72-63.98 mg/mL, respectively. Among the six clones of the maize hybrids, AS1828-9 had the highest (p < 0.05) levels of tannins and phytate and the strongest antioxidant and starch-hydrolyzing enzymes inhibitory activities. Significant correlations were observed between total phenolics and the following: ABTS•+ (p < 0.01, r = 0.757), DPPH• SC50 (p < 0.01, r = -0.867), reducing power (p < 0.05, r = 0.633), α-amylase IC50 (p < 0.01, r = -0.836) and α-glucosidase IC50 (p < 0.05, r = -0.582). Hence, the Striga-resistant yellow-orange maize hybrids (especially AS1828-9) may be beneficial for alleviating oxidative stress and postprandial hyperglycemia.
Collapse
|
7
|
Santos JAM, Santos CLAA, Freitas Filho JR, Menezes PH, Freitas JCR. Polyacetylene Glycosides: Isolation, Biological Activities and Synthesis. CHEM REC 2021; 22:e202100176. [PMID: 34665514 DOI: 10.1002/tcr.202100176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/17/2023]
Abstract
Polyacetylene glycosides (PAGs) constitute a relatively small class of secondary metabolites characterized by the presence of a sugar unit anomerically connected to a polyacetylene. These compounds are found in fungi, seaweed, and more often in plants. PAGs exhibit a wide range of biological and pharmacological activities and, as a result, the literature of these compounds has grown exponentially in recent years.
Collapse
Affiliation(s)
- Jonh A M Santos
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil.,Instituto Federal de Pernambuco, Barreiros, PE, Brazil
| | - Cláudia L A A Santos
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife,PE, Brazil
| | - João R Freitas Filho
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Paulo H Menezes
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife,PE, Brazil
| | - Juliano C R Freitas
- Centro de Educação e Saúde, Universidade Federal de Campina Grande, Cuité, PB, Brazil
| |
Collapse
|
8
|
Jaradat N, Qadi M, Ali I, Hussein F, Issa L, Rashdan D, Jamoos M, Najem R, Zarour A, Arar M. Phytochemical screening, antiobesity, antidiabetic and antimicrobial assessments of Orobanche aegyptiaca from Palestine. BMC Complement Med Ther 2021; 21:256. [PMID: 34625075 PMCID: PMC8501537 DOI: 10.1186/s12906-021-03431-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Background Microbial resistance, diabetes mellitus, and obesity are global health care problems that have posed a serious threat to both human and environmental ecosystems. The goals of the present investigations are to investigate the phytoconstituents, antilipase, anti-α-amylase, and antimicrobial activity of Orobanche aegyptiaca Pers. (OA) from Palestine. Methods Identification of the phytoconstituents of OA plant petroleum ether, methylene chloride, chloroform, acetone, and methanol extracts were conducted using pharmacopeia’s methods, while porcine pancreatic lipase and α–amylase inhibitory activities were examined using p-nitrophenyl butyrate and 3,5-dinitro salicylic acid methods, respectively. Moreover, the antimicrobial activity was evaluated utilizing broth microdilution assay against eight bacterial and fungal strains. Results The phytochemical screening results showed that the methanol extract of the OA plant is rich in phytochemical components, also this extract has powerful antilipase potential with an IC50 value of 19.49 ± 0.16 μg/ml comparing with the positive control (Orlistat) which has antilipase activity with IC50 value of 12.3 ± 0.35 μg/ml. Moreover, the methanol and chloroform extracts have powerful α-amylase inhibitory activity with IC50 values of 28.18 ± 0.22 and 28.18 ± 1.22 μg/ml, respectively comparing with Acarbose which has α-amylase inhibitory activity with IC50 dose of 26.3.18 ± 0.28 μg/ml. The antibacterial results showed that the methylene chloride extract exhibited the highest antibacterial activity among the other OA plant extracts with a MIC value of 0.78 mg/ml against S. aureus, while, the methylene chloride, petroleum ether, and chloroform extracts of the OA plant showed potential antifungal activity against C. albicans strains with MIC value of 0.78 mg/ml. Conclusion The OA methanol and chloroform extracts could be excellent candidates as antilipase and anti-α-amylase bioactive materials. In addition, methylene chloride, petroleum ether, and chloroform extracts could be potential natural antimicrobial products.
Collapse
Affiliation(s)
- Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine.
| | - Mohammad Qadi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine.
| | - Iyad Ali
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Fatima Hussein
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Linda Issa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Doaa Rashdan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Manal Jamoos
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Re'as Najem
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Abdulraziq Zarour
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Mohammad Arar
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| |
Collapse
|
9
|
Suo H, Shishir MRI, Xiao J, Wang M, Chen F, Cheng KW. Red Wine High-Molecular-Weight Polyphenolic Complex: An Emerging Modulator of Human Metabolic Disease Risk and Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10907-10919. [PMID: 34461020 DOI: 10.1021/acs.jafc.1c03158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Moderate red wine consumption has been linked to reduced chronic disease risk. Thus far, little has been known about the physicochemical properties and potential biological effects of high-molecular-weight polyphenolic complexes (HPPCs), a major fraction of red wine polyphenols. In this work, the stability and biochemical properties of HPPCs under simulated gastrointestinal conditions in vitro were studied. The results showed that HPPCs were resistant to simulated gastric digestion (SGD) and simulated intestinal digestion (SID). They exhibited significant inhibitory activity against key metabolic syndrome-associated digestive enzymes, achieving 17.1-90.9% inhibition of pancreatic α-amylase, lipase, and cholesterol esterase at 0.02-0.45 mg/mL. HPPCs were metabolized by gut microbiota (GM), leading to significantly enhanced antioxidant capacity when compared with the original, SGD, and SID samples. Furthermore, they favorably modulated GM profiles, which was accompanied by significantly increased short-chain fatty acid generation during the early colonic fermentation phase. These findings suggest that HPPCs are a promising modulator of human metabolic disease risk.
Collapse
Affiliation(s)
- Hao Suo
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Mohammad Rezaul Islam Shishir
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jiangsu University, Zhenjiang 212013, China.,Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo 36310, Spain
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Kaur N, Kumar V, Nayak SK, Wadhwa P, Kaur P, Sahu SK. Alpha-amylase as molecular target for treatment of diabetes mellitus: A comprehensive review. Chem Biol Drug Des 2021; 98:539-560. [PMID: 34173346 DOI: 10.1111/cbdd.13909] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 01/13/2023]
Abstract
The alpha (α)-amylase is a calcium metalloenzyme that aids digestion by breaking down polysaccharide molecules into smaller ones such as glucose and maltose. In addition, the enzyme causes postprandial hyperglycaemia and blood glucose levels to rise. α-Amylase is a well-known therapeutic target for the treatment and maintenance of postprandial blood glucose elevations. Various enzymatic inhibitors, such as acarbose, miglitol and voglibose, have been found to be effective in targeting this enzyme, prompting researchers to express an interest in developing potent alpha-amylase inhibitor molecules. The review mainly focused on designing different derivatives of drug molecules such as benzofuran hydrazone, indole hydrazone, spiroindolone, benzotriazoles, 1,3-diaryl-3-(arylamino) propan-1-one, oxadiazole and flavonoids along with their target-receptor interactions, IC50 values and other biological activities.
Collapse
Affiliation(s)
- Navjot Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vanktesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Surendra Kumar Nayak
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pankaj Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Paranjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
11
|
Nawaz M, Taha M, Qureshi F, Ullah N, Selvaraj M, Shahzad S, Chigurupati S, Waheed A, Almutairi FA. Structural elucidation, molecular docking, α-amylase and α-glucosidase inhibition studies of 5-amino-nicotinic acid derivatives. BMC Chem 2020; 14:43. [PMID: 32685927 PMCID: PMC7362424 DOI: 10.1186/s13065-020-00695-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/07/2020] [Indexed: 01/18/2023] Open
Abstract
In this study, 5-amino-nicotinic acid derivatives (1-13) have been designed and synthesized to evaluate their inhibitory potential against α-amylase and α-glucosidase enzymes. The synthesized compounds (1-13) exhibited promising α-amylase and α-glucosidase activities. IC50 values for α-amylase activity ranged between 12.17 ± 0.14 to 37.33 ± 0.02 µg/mL ± SEM while for α-glucosidase activity the IC50 values were ranged between 12.01 ± 0.09 to 38.01 ± 0.12 µg/mL ± SEM. In particular, compounds 2 and 4-8 demonstrated significant inhibitory activities against α-amylase and α-glucosidase and the inhibitory potential of these compounds was comparable to the standard acarbose (10.98 ± 0.03 and 10.79 ± 0.17 µg/mL ± SEM, respectively). In addition, the impact of substituent on the inhibitory potential of these compounds was assessed to establish structure activity relationships. Studies in molecular simulations were conducted to better comprehend the binding properties of the compounds. All the synthesized compounds were extensively characterized with modern spectroscopic methods including 1H-NMR, 13C-NMR, FTIR, HR-MS and elemental analysis.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Faiza Qureshi
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
- Deanship of Scientific Research, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261 Saudi Arabia
| | - Manikandan Selvaraj
- School of Chemical Engineering, Monash University, Bandar Subway, 47500 Selangor Darul Ehsan, Malaysia
| | - Sumaira Shahzad
- School of Business Administration, College of International Education, Zhejiang Gongshang University, Hangzhou, China
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, 52571 Saudi Arabia
| | - Abdul Waheed
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261 Saudi Arabia
| | - Fadiah Ammar Almutairi
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, 52571 Saudi Arabia
| |
Collapse
|
12
|
Chamnansilpa N, Aksornchu P, Adisakwattana S, Thilavech T, Mäkynen K, Dahlan W, Ngamukote S. Anthocyanin-rich fraction from Thai berries interferes with the key steps of lipid digestion and cholesterol absorption. Heliyon 2020; 6:e05408. [PMID: 33204882 PMCID: PMC7653067 DOI: 10.1016/j.heliyon.2020.e05408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Several studies have documented the hypolipidemic effect of anthocyanin-rich plants in vitro and in vivo. The objective of this study was to elucidate the inhibitory activity of anthocyanin-rich fraction from Thai berries against fat digestive enzymes. The ability of Thai berries to bind bile acid, disrupt cholesterol micellization and the cholesterol uptake into Caco-2 cells was also determined. The content of total phenolics, flavonoid and anthocyanin in Prunus domestica L. (TPE), Antidesma bunius (L.) Spreng, Syzygium cumini (L.) Skeels, and Syzygium nervosum A. Cunn. Ex DC was 222.7–283.5 mg gallic acid equivalents, 91.2–184.3 mg catechin equivalents, and 37.9–49.5 mg cyanidin-3-glucoside equivalents/g extract, respectively. The anthocyanin-rich fraction of all extracts inhibited pancreatic lipase and cholesterol esterase with the IC50 values of 90.6–181.7 μg/mL and 288.7–455.0 μg/mL, respectively. Additionally, all extracts could bind primary and secondary bile acids (16.4–36.6%) and reduce the solubility of cholesterol in artificial micelles (53.0–67.6%). Interestingly, TPE was the most potent extract on interfering the key steps of lipid digestion among the tested extracts. In addition, TPE (0.10–0.50 mg/mL) significantly reduced the cholesterol uptake into Caco-2 cells in a concentration-dependent manner. These results demonstrate a new insight into the role of anthocyanin-rich Thai berry extract on interfering the key steps of lipid digestion and absorption.
Collapse
Affiliation(s)
- Netima Chamnansilpa
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pattamaporn Aksornchu
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirichai Adisakwattana
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thavaree Thilavech
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Kittana Mäkynen
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Winai Dahlan
- The Halal Science Center, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sathaporn Ngamukote
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,The Halal Science Center, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
13
|
Gil-Rodríguez AM, Beresford TP. Lipase inhibitory activity assay for fermented milk. MethodsX 2020; 7:100999. [PMID: 32775223 PMCID: PMC7397403 DOI: 10.1016/j.mex.2020.100999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 07/15/2020] [Indexed: 11/29/2022] Open
Abstract
The lipase inhibitory activity method described here was developed to identify potential anti-obesity properties in milk fermented with different strains of lactic acid bacteria via inhibition of pancreatic lipase and a subsequent decrease in fat digestion and absorption in the gut. The method is based on the hydrolysis of 4-nitrophenyl octanoate by pancreatic lipase and the subsequent release of p-nitrophenol, a coloured product whose absorbance can be measured at 412 nm. Inhibition of lipase leads to a decrease in the amount of p-nitrophenol released and a subsequent reduction in the absorbance with respect to a 100% activity control. The assay was developed by adapting various methods previously described in published literature and includes modifications that are key to adapt the existing protocols to fermented milk samples, in particular the pH issues encountered when analysing acidic samples:•A two buffer system is introduced to allow optimal pH control after addition of fermented milk samples with pH values between 3.5 and 6.5.•A post-clarification filtration step is added for samples where turbidity remains after addition of the clarifying reagent for dairy products.•An absorbance correction factor is calculated and applied to the samples to account for the reduction in the absorbance of p-nitrophenol caused by milk.
Collapse
Affiliation(s)
- Ana María Gil-Rodríguez
- Teagasc Food Research Centre, Moorepark and Food for Health Ireland, Fermoy, Co. Cork, Ireland
| | - Thomas P Beresford
- Teagasc Food Research Centre, Moorepark and Food for Health Ireland, Fermoy, Co. Cork, Ireland
| |
Collapse
|
14
|
Sultana R, Alashi AM, Islam K, Saifullah M, Haque CE, Aluko RE. Inhibitory Activities of Polyphenolic Extracts of Bangladeshi Vegetables against α-Amylase, α-Glucosidase, Pancreatic Lipase, Renin, and Angiotensin-Converting Enzyme. Foods 2020; 9:foods9070844. [PMID: 32610462 PMCID: PMC7404479 DOI: 10.3390/foods9070844] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
The aim of the study was to determine the in vitro enzyme inhibition activities of aqueous polyphenolic extracts of nine popular Bangladeshi vegetables, namely ash gourd, bitter gourd, brinjal, Indian spinach, kangkong, okra, ridge gourd, snake gourd, and stem amaranth. Polyphenolic glycosides were the major compounds present in the extracts. Inhibition of α-amylase (up to 100% at 1 mg/mL) was stronger than α-glucosidase inhibition (up to 70.78% at 10 mg/mL). The Indian spinach extract was the strongest inhibitor of pancreatic lipase activity (IC50 = 276.77 µg/mL), which was significantly better than that of orlistat (381.16 µg/mL), a drug. Ash gourd (76.51%), brinjal (72.48%), and snake gourd (66.82%) extracts were the most effective inhibitors of angiotensin-converting enzyme (ACE), an enzyme whose excessive activities have been associated with hypertension. Brinjal also had a significantly higher renin-inhibitory activity than the other vegetable extracts. We conclude that the vegetable extracts may have the ability to reduce enzyme activities that have been associated with hyperglycemia, hyperlipidemia, and hypertension.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (R.S.); (A.M.A.)
| | - Adeola M. Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (R.S.); (A.M.A.)
| | - Khaleda Islam
- Institute of Nutrition and Food Sciences, University of Dhaka, Nilkhet Rd, Dhaka 1000, Bangladesh;
| | - Md Saifullah
- Natural Resources Management Division, Bangladesh Agricultural Research Council, Dhaka 1215, Bangladesh;
| | - C. Emdad Haque
- Natural Resources Institute, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (R.S.); (A.M.A.)
- The Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: ; Tel.: +1-204-474-9555
| |
Collapse
|
15
|
Inhibitory effect of a weight-loss Chinese herbal formula RCM-107 on pancreatic α-amylase activity: Enzymatic and in silico approaches. PLoS One 2020; 15:e0231815. [PMID: 32348327 PMCID: PMC7190128 DOI: 10.1371/journal.pone.0231815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/27/2020] [Indexed: 12/31/2022] Open
Abstract
Reducing carbohydrates digestion by having a low glycaemic index (GI) foods has been linked to weight loss. Inhibiting related enzymes is an alternative way to decrease carbohydrate digestion. RCM-107 (Slimming Plus), an eight-herb formula that is modified from RCM-104, indicated significant weight-loss action in clinical trials. However, no published research has studied its mechanism of action on reducing carbohydrate absorption via suppressing the activities of porcine pancreatic alpha-amylase (PPA). In this paper, we used fluorescence PPA inhibition assay to investigate the inhibitory effects of RCM-107 and the individual herbs present in this herbal mixture on amylase activity. Subsequently, molecular docking predicted the key active compounds that may be responsible for the enzyme inhibition. According to our results, both the RCM-107 formula and several individual herbs displayed α-amylase inhibitory effects. Also, marginal synergistic effects of RCM-107 were detected. In addition, alisol B, (-)-epigallocatechin-3-gallate (EGCG) and plantagoside have been predicted as the key active compounds that may be responsible for the α-amylase inhibition effect of RCM-107 according to inter-residue contact analysis. Finally, Glu233, Gln63, His305, Asp300 and Tyr151 are predicted to be markers of important areas with which potential amylase inhibitors would interact. Therefore, our data has provided new knowledge on the mechanisms of action of the RCM-107 formula and its individual herbal ingredients for weight loss, in terms of decreasing carbohydrate digestion via the inhibition of pancreatic alpha-amylase.
Collapse
|
16
|
Chu XY, Yang SZ, Zhu MQ, Zhang DY, Shi XC, Xia B, Yuan Y, Liu M, Wu JW. Isorhapontigenin Improves Diabetes in Mice via Regulating the Activity and Stability of PPARγ in Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3976-3985. [PMID: 32178518 DOI: 10.1021/acs.jafc.0c00515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Isorhapontigenin is a natural bioactive stilbene isolated from various plants and fruits. It has been reported to exhibit several physiological activities including anticancer and anti-inflammation activity in vitro and in experimental animal models. This study aimed to investigate whether isorhapontigenin exerts antidiabetic effects in vivo. To this end, diabetic db/db mice were treated with either 25 mg kg-1 of isorhapontigenin or vehicle intraperitoneally for a period of 5 weeks. The results show that isorhapontigenin treatment significantly reduced postprandial levels of glucose, insulin, as well as free fatty acid, three markers of diabetes. Further studies show that isorhapontigenin treatment markedly improves insulin sensitivity and glucose tolerance of db/db mice as shown by ITT and GTT. Together, these physiological results show that isorhapontigenin possesses antidiabetic properties in vivo. Mechanistically, the isorhapontigenin-mediated antidiabetic effect is caused by favorable changes in adipose tissue, including reductions in adipocyte diameter and improved adipose insulin sensitivity. Further studies with 3T3-L1 cells show that isorhapontigenin treatment promotes preadipocyte differentiation by upregulation of the activity of the master adipogenic regulator PPARγ and deceleration of its proteasomal degradation. Together, our results establish for the first time an important role of isorhapontigenin as a potential nutraceutical agent for diabetes treatment.
Collapse
Affiliation(s)
- Xin Yi Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shi Zhen Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Qing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Yang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Chen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ye Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
17
|
Çelenk FG, Sukatar A. Macroalgae of Izmir Gulf: Cystoseira barbata, Cystoseira compressa and Cystoseira crinita species have high α-glucosidase and Moderate Pancreatic Lipase Inhibition Activities. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:391-402. [PMID: 33224246 PMCID: PMC7667568 DOI: 10.22037/ijpr.2020.1100953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hyperglycemia and hyperlipidemia have been symptoms of many serious diseases such as diabetes and atherosclerosis overall the world. Thus, drug researchers have focused on new, natural and healthy drug alternatives. Marine macroalgae is a great source of hypoglycemic, hypolipidemic or hypocholesterolemic agents. In this study, we investigated that hypoglycemic, hypolipidemic and cytotoxic potentials of 22 marine macroalgae from the Gulf of Izmir. According to our results, the cold methanol extract of Polysiphonia denudata exhibited the highest antioxidant activity (93.6%) compared to BHA (95.3%). Three Cystoseira species, Cystoseria crinita (91.9%), Cystoseria barbata (90.7%), Cystoseria compressa (89.8%) showed higher α-glucosidase inhibition rates than oral antidiabetic acarbose (79.5%). It has also been observed that same species are potent inhibitors of pancreatic lipase. Cytotoxicity test revealed that these extracts did not cause viability inhibition on MCF-7. The results of maltose- glucose assay indirectly displayed that Cystoseira cold methanolic extracts inhibited maltose consumption better than acarbose on HT29. The results of this screening study show that these Cystoseira species may provide non- toxic bioactive agents to control non-communicable diseases (NCDs) such as cardiovascular disease and diabetes mellitus.
Collapse
Affiliation(s)
- Fatma Gül Çelenk
- Department of Medical Genetics, Faculty of Medicine, Ege University, Izmir, 35040, Turkey.
| | - Atakan Sukatar
- Department of Biology, Faculty of Science, Ege University, Izmir, 35040, Turkey.
| |
Collapse
|
18
|
Kang GG, Francis N, Hill R, Waters D, Blanchard C, Santhakumar AB. Dietary Polyphenols and Gene Expression in Molecular Pathways Associated with Type 2 Diabetes Mellitus: A Review. Int J Mol Sci 2019; 21:ijms21010140. [PMID: 31878222 PMCID: PMC6981492 DOI: 10.3390/ijms21010140] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder with various contributing factors including genetics, epigenetics, environment and lifestyle such as diet. The hallmarks of T2DM are insulin deficiency (also referred to as β-cell dysfunction) and insulin resistance. Robust evidence suggests that the major mechanism driving impaired β-cell function and insulin signalling is through the action of intracellular reactive oxygen species (ROS)-induced stress. Chronic high blood glucose (hyperglycaemia) and hyperlipidaemia appear to be the primary activators of these pathways. Reactive oxygen species can disrupt intracellular signalling pathways, thereby dysregulating the expression of genes associated with insulin secretion and signalling. Plant-based diets, containing phenolic compounds, have been shown to exhibit remedial benefits by ameliorating insulin secretion and insulin resistance. The literature also provides evidence that polyphenol-rich diets can modulate the expression of genes involved in insulin secretion, insulin signalling, and liver gluconeogenesis pathways. However, whether various polyphenols and phenolic compounds can target specific cellular signalling pathways involved in the pathogenesis of T2DM has not been elucidated. This review aims to evaluate the modulating effects of various polyphenols and phenolic compounds on genes involved in cellular signalling pathways (both in vitro and in vivo from human, animal and cell models) leading to the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Gideon Gatluak Kang
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Nidhish Francis
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Animal and Veterinary Sciences, Charles Sturt University, NSW 2650, Australia
| | - Rodney Hill
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Daniel Waters
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Christopher Blanchard
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Abishek Bommannan Santhakumar
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
- Correspondence: ; Tel.: +61-2-6933-2678
| |
Collapse
|
19
|
Sadeer NB, Rocchetti G, Senizza B, Montesano D, Zengin G, Uysal A, Jeewon R, Lucini L, Mahomoodally MF. Untargeted Metabolomic Profiling, Multivariate Analysis and Biological Evaluation of the True Mangrove ( Rhizophora mucronata Lam.). Antioxidants (Basel) 2019; 8:E489. [PMID: 31623170 PMCID: PMC6827162 DOI: 10.3390/antiox8100489] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Currently, there is a renewed interest towards the development of plant-based pharmacophores. In this work, 16 extracts prepared from the leaves, twigs, roots and fruits of a hydro-halophyte, Rhizophora mucronata Lam. (Family: Rhizophoraceae), were studied for possible antioxidant activity and the phenolic profiles established. Thereafter, enzymatic inhibitory activities (α-amylase, α-glucosidase, tyrosinase, acetyl- (AChE), butyrylcholinesterase (BChE), lipase, and elastase) were assessed. The total phenolic, flavonoid, phenolic acid, tannin, flavanol and triterpenoid content were estimated using standard assays. An untargeted metabolomics-based approach, based on ultra-high-pressure liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS) followed by multivariate statistics, was then used to comprehensively profile and describe the phenolics present. UHPLC-QTOF-MS allowed for putatively annotating 104 phenolic acids, 103 flavonols, 94 flavones, 71 anthocyanins, 66 tyrosols, 29 lignans, 15 alkylphenols and 10 stilbenes in the extracts. Nine strains (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Methicillin-resistant Staphylococcus aureus (MRSA), Salmonella enteritidis, Sarcina lutea, Proteus mirabilis, Bacillus cereus and Candida albicans) were then used to investigate the antimicrobial properties. The methanolic twig extract exhibited significant reducing potential towards Cu (II)/Cu (I) and Fe (III)/Fe (II) (1336.88 ± 15.70 and 710.18 ± 21.04 mg TE/g, respectively) and was the most potent DPPH radical scavenger (807.07 ± 6.83 mg TE/g). Additionally, the methanolic twig extract showed significant inhibition against most targeted enzymes. Anti-microbial results showed that all extracts were active against MRSA. Multivariate analysis demonstrated that the phenolic profile of ethyl acetate extracts and leaves were the two most discriminative parameters in terms of solvents and organs, respectively. The present findings indicated that R. mucronata may be further explored for the management/prevention of oxidative stress, neurodegenerative complications and hyperpigmentation.
Collapse
Affiliation(s)
- Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius.
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Biancamaria Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Domenico Montesano
- Department of Pharmaceutical Sciences, Food Science and Nutrition Section, University of Perugia, Via S. Costanzo 1, 06126 Perugia, Italy.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, 42130 Konya, Turkey.
| | - Ahmet Uysal
- Department of Medicinal Laboratory, Vocational School of Health Services, Selcuk University, 42130 Konya, Turkey.
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius.
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | | |
Collapse
|
20
|
Yakaiah V, Dakshinamoorthi A, Kavimani S. Effect of Myristica fragrans extract on total body composition in cafeteria diet induced obese rats. Bioinformation 2019; 15:657-665. [PMID: 31787815 PMCID: PMC6859705 DOI: 10.6026/97320630015657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/04/2022] Open
Abstract
It is of interest to evaluate the effect of Myristica fragrans on body composition of cafeteria diet induced obese rats. Thirty rats (150-160g) grouped into 5 and each group contains 6 rats. Group-1 was normal control and 2-5 groups were fed with cafeteria diet for 15 weeks to induce obesity. From 16th week to 25th week test drugs were given as mentioned in the experimental protocol. Body weight, BMI, changes in body composition was measured by TOBEC, adipose tissue weights, organ weights, abdominal circumference were measured according to standard methods. After 70days of treatment with MFE 200mg/kg, 400mg/kg Body weight reduced by 9.29%, 12.87% respectively. BMI was also decreased. Abdominal circumference, total fat percentage, organ weights, was substantially reduced. At 400mg/kg of MFE has shown maximum potentiality when compared with 200mg/kg. Orlistat 50mg was used as standard drug. Tetrahydrofuran, flavonoids, saponins, present in Myristica fragrans has shown anti obesity activity. Our findings explain the potentiality of phytochemicals as a potent anti obesity agent, provide scientific evidence for its traditional use and suggest the possible mechanism of action.
Collapse
Affiliation(s)
| | | | - Subramanian Kavimani
- Mother Theresa Post Graduate and Research Institute of Health Sciences, Pondicherry
| |
Collapse
|
21
|
Jurgoński A, Billing-Marczak K, Juśkiewicz J, Krotkiewski M. Formulation of a Mixture of Plant Extracts for Attenuating Postprandial Glycemia and Diet-Induced Disorders in Rats. Molecules 2019; 24:molecules24203669. [PMID: 31614685 PMCID: PMC6832206 DOI: 10.3390/molecules24203669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to design a mixture consisting of plant-derived preparations containing inhibitors of carbohydrate digestion and/or glucose absorption that could lower postprandial glycemia and attenuate dietary-induced disorders. The following standardized preparations were tested: white mulberry leaf extract, green coffee bean extract, white kidney bean extract, pomelo fruit extract, bitter melon fruit extract, and purified l-arabinose. The study design was composed of oral sucrose and starch tolerance tests in Wistar rats preceded by a single ingestion of the preparations or their mixtures. Then, a 20 week-long experiment was conducted on rats that were fed a high-fat diet and supplemented with the most effective mixture. Based on the results of the oral sucrose and starch tolerance tests, the mulberry leaf extract, l-arabinose, kidney bean extract, and coffee bean extract were selected for composing three mixtures. The most effective inhibition of postprandial glycemia in the oral tolerance tests was observed after the ingestion of a mixture of mulberry leaf, kidney bean, and coffee bean extract. The glucose-lowering effect of the mixture and its effective dosage was confirmed in the feeding experiment.
Collapse
Affiliation(s)
- Adam Jurgoński
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland.
| | | | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland.
| | - Marcin Krotkiewski
- Department of Research and Development at MarMar Investment Company, 10-195 Warsaw, Poland.
- Department of Neurological Rehabilitation, Gothenburg University Hospital, SE-405 30 Gothenburg, Sweden.
| |
Collapse
|
22
|
Thilavech T, Adisakwattana S. Cyanidin-3-rutinoside acts as a natural inhibitor of intestinal lipid digestion and absorption. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:242. [PMID: 31488210 PMCID: PMC6727418 DOI: 10.1186/s12906-019-2664-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/30/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cyanidin-3-rutinoside (C3R), a naturally occurring anthocyanin, possesses anti-oxidant, anti-hyperglycemic, anti-glycation and cardioprotective properties. However, its mechanisms responsible for anti-hyperlipidemic activity have not been fully identified. The aim of the study was to investigate the lipid-lowering mechanisms of C3R through inhibition of lipid digestion and absorption in vitro. METHODS The inhibitory activity of C3R against pancreatic lipase and cholesterol esterase was evaluated using enzymatic fluorometric and enzymatic colorimetric assays, respectively. An enzyme kinetic study using Michaelis-Menten and the derived Lineweaver-Burk plot was performed to understand the possible types of inhibition. The formation of cholesterol micelles was determined using the cholesterol assay kit. The bile acid binding was measured using the colorimetric assay. The NBD cholesterol uptake in Caco-2 cells was determined using fluorometric assay. The mRNA expression of cholesterol transporter (Niemann-Pick C1-like 1) was determined by RT-PCR. RESULTS The results showed that C3R was a mixed-type competitive inhibitor of pancreatic lipase with the IC50 value of 59.4 ± 1.41 μM. Furthermore, C3R (0.125-1 mM) inhibited pancreatic cholesterol esterase about 5-18%. In addition, C3R inhibited the formation of cholesterol micelles and bound to primary and secondary bile acid. In Caco-2 cells, C3R (12.5-100 μM) exhibited a significant reduction in cholesterol uptake in both free cholesterol (17-41%) and mixed micelles (20-30%). Finally, C3R (100 μM) was able to suppress mRNA expression of NPC1L1 in Caco-2 cells after 24 h incubation. CONCLUSIONS The present findings suggest that C3R acts as a lipid-lowering agent through inhibition of lipid digestion and absorption.
Collapse
|
23
|
Gabriele M, Sparvoli F, Bollini R, Lubrano V, Longo V, Pucci L. The Impact of Sourdough Fermentation on Non‐Nutritive Compounds and Antioxidant Activities of Flours from Different
Phaseolus Vulgaris
L. Genotypes. J Food Sci 2019; 84:1929-1936. [DOI: 10.1111/1750-3841.14672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/10/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Morena Gabriele
- Natl. Research CouncilInst. of Biology and Agricultural Biotechnology (IBBA) Pisa Unit, Research Area of Pisa, Via Moruzzi 1 56124 Pisa Italy
| | - Francesca Sparvoli
- Natl. Research CouncilInst. of Biology and Agricultural Biotechnology (IBBA) Via Bassini 15 20133 Milan Italy
| | - Roberto Bollini
- Natl. Research CouncilInst. of Biology and Agricultural Biotechnology (IBBA) Via Bassini 15 20133 Milan Italy
| | - Valter Lubrano
- Fondazione CNR/Regione Toscana G. Monasterio Via Moruzzi 1 56124 Pisa Italy
| | - Vincenzo Longo
- Natl. Research CouncilInst. of Biology and Agricultural Biotechnology (IBBA) Pisa Unit, Research Area of Pisa, Via Moruzzi 1 56124 Pisa Italy
| | - Laura Pucci
- Natl. Research CouncilInst. of Biology and Agricultural Biotechnology (IBBA) Pisa Unit, Research Area of Pisa, Via Moruzzi 1 56124 Pisa Italy
| |
Collapse
|
24
|
Wang W, Li J, Zhang H, Wang X, Fan J, Zhang X. Phenolic compounds and bioactivity evaluation of aqueous and methanol extracts of Allium mongolicum Regel. Food Sci Nutr 2019; 7:779-787. [PMID: 30847157 PMCID: PMC6392871 DOI: 10.1002/fsn3.926] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/22/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022] Open
Abstract
Allium mongolicum Regel (AM), widely distributed in western China, is a traditional Mongolian medicine herb. Two different solvents as water and methanol were used to extract AM, and their antioxidant capacity and inhibitory effects against key enzymes related to metabolic syndrome were assessed. The antioxidant capacity was evaluated through the assay of radical scavenging ability on DPPH and ABTS and reducing power assays. In addition, the total phenolic content and total flavonoids content were quantificated and analyzed. Aqueous extract, having higher phenolic content (10.20 mg GAE/g DW) and flavonoid content (4.02 mg QE/g DW), showed better antioxidant and inhibitory effects against lipase and angiotensin-converting enzyme (ACE); as for α-glucosidase, the extract made by methanol showed better ability. In general, the aqueous extract of A. mongolicum Regel has the potential to be used as a functional food or nutraceutical in prevention and treatment of obesity and hypertension due to the high antioxidant and sound inhibitory potential against vital enzymes relevant to obesity and hypertension.
Collapse
Affiliation(s)
- Wanyu Wang
- Department of Nutrition and Food HygieneCollege of Public HealthZhengzhou UniversityZhengzhouChina
| | - Jiao Li
- Department of Nutrition and Food HygieneCollege of Public HealthZhengzhou UniversityZhengzhouChina
| | - Huizhen Zhang
- Department of Nutrition and Food HygieneCollege of Public HealthZhengzhou UniversityZhengzhouChina
| | - Xiaokai Wang
- Department of Nutrition and Food HygieneCollege of Public HealthZhengzhou UniversityZhengzhouChina
| | - Jianming Fan
- Department of Nutrition and Food HygieneCollege of Public HealthZhengzhou UniversityZhengzhouChina
| | - Xiaofeng Zhang
- Department of Nutrition and Food HygieneCollege of Public HealthZhengzhou UniversityZhengzhouChina
| |
Collapse
|
25
|
Kawaguchi N, Date K, Suzuki Y, Tomita C, Naradate R, Higami T, Nakamura K, Aikawa K, Ogawa H. A novel protocol for the preparation of active recombinant human pancreatic lipase from Escherichia coli. J Biochem 2018; 164:407-414. [PMID: 30101295 PMCID: PMC6267337 DOI: 10.1093/jb/mvy067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/06/2018] [Indexed: 01/12/2023] Open
Abstract
An active recombinant human pancreatic lipase (recHPL) was successfully prepared for the first time from the Escherichia coli expression system using short Strep-tag II (ST II). The recHPL-ST II was solubilized using 8 M urea from E.coli lysate and purified on a Strep-Tactin-Sepharose column. After refolding by stepwise dialyses in the presence of glycerol and Ca2+ for 2 days followed by gel filtration, 1.8-6 mg of active recHPL-ST II was obtained from 1 L of culture. The recHPL was non-glycosylated, but showed almost equal specific activity, pH-dependency and time-dependent stability compared to those of native porcine pancreatic lipase (PPL) at 37°C. However, the recHPL lost its lipolytic activity above 50°C, showing a lower heat-stability than that of native PPL, which retained half its activity at this temperature.
Collapse
Affiliation(s)
- Nanami Kawaguchi
- Chemistry and Biochemistry, Division of Advanced Sciences, Graduate School of Humanities and Sciences
| | - Kimie Date
- Glycoscience Division, Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-5-1 Kanda Surugadai, Chiyoda-ku, Tokyo, Japan
| | - Chihiro Tomita
- Chemistry and Biochemistry, Division of Advanced Sciences, Graduate School of Humanities and Sciences
| | - Rina Naradate
- Chemistry and Biochemistry, Division of Advanced Sciences, Graduate School of Humanities and Sciences
| | - Tomoko Higami
- Chemistry and Biochemistry, Division of Advanced Sciences, Graduate School of Humanities and Sciences
| | - Kosuke Nakamura
- Chemistry and Biochemistry, Division of Advanced Sciences, Graduate School of Humanities and Sciences
| | - Kyoko Aikawa
- Chemistry and Biochemistry, Division of Advanced Sciences, Graduate School of Humanities and Sciences.,Glycoscience Division, Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Haruko Ogawa
- Chemistry and Biochemistry, Division of Advanced Sciences, Graduate School of Humanities and Sciences.,Glycoscience Division, Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
26
|
The Postprandial Anti-Hyperglycemic Effect of Pyridoxine and Its Derivatives Using In Vitro and In Vivo Animal Models. Nutrients 2018; 10:nu10030285. [PMID: 29495635 PMCID: PMC5872703 DOI: 10.3390/nu10030285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 12/30/2022] Open
Abstract
In the current study, we investigated the inhibitory activity of pyridoxine, pyridoxal, and pyridoxamine, against various digestive enzymes such as α-glucosidases, sucrase, maltase, and glucoamylase. Inhibition of these enzymes involved in the absorption of disaccharide can improve post-prandial hyperglycemia due to a carbohydrate-based diet. Pyridoxal (4.14 mg/mL of IC50) had the highest rat intestinal α-glucosidase inhibitory activity, followed by pyridoxamine and pyridoxine (4.85 and 5.02 mg/mL of IC50, respectively). Pyridoxal demonstrated superior inhibition against maltase (0.38 mg/mL IC50) and glucoamylase (0.27 mg/mLIC50). In addition, pyridoxal showed significant higher α-amylase inhibitory activity (10.87 mg/mL of IC50) than that of pyridoxine (23.18 mg/mL of IC50). This indicates that pyridoxal can also inhibit starch hydrolyzing by pancreatic α-amylase in small intestine. Based on these in vitro results, the deeper evaluation of the anti-hyperglycemic potential of pyridoxine and its derivatives using Sprague-Dawley (SD) rat models, was initiated. The post-prandial blood glucose levels were tested two hours after sucrose/starch administration, with and without pyridoxine and its derivatives. In the animal trial, pyridoxal (p < 0.05) had a significantly reduction to the postprandial glucose levels, when compared to the control. The maximum blood glucose levels (Cmax) of pyridoxal administration group were decreased by about 18% (from 199.52 ± 22.93 to 164.10 ± 10.27, p < 0.05) and 19% (from 216.92 ± 12.46 to 175.36 ± 10.84, p < 0.05) in sucrose and starch loading tests, respectively, when compared to the control in pharmacodynamics study. The pyridoxal administration significantly decreased the minimum, maximum, and mean level of post-prandial blood glucose at 0.5 h after meals. These results indicate that water-soluble vitamin pyridoxine and its derivatives can decrease blood glucose level via the inhibition of carbohydrate-hydrolyzing and absorption-linked enzymes. Therefore, pyridoxal may have the potential to be used as a food ingredient for the prevention of prediabetes progression to type 2 diabetes.
Collapse
|
27
|
Chiou S, Lai J, Liao J, Sung J, Lin S. In vitro inhibition of lipase, α‐amylase, α‐glucosidase, and angiotensin‐converting enzyme by defatted rice bran extracts of red‐pericarp rice mutant. Cereal Chem 2018. [DOI: 10.1002/cche.10025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shiow‐Ying Chiou
- Department of Food Science and Technology Hungkuang University Taichung Taiwan
| | - Jia‐Ying Lai
- Department of Food Science and Technology Hungkuang University Taichung Taiwan
| | - Jie‐Ann Liao
- Department of Food Science and Technology Hungkuang University Taichung Taiwan
| | - Jih‐Min Sung
- Department of Food Science and Technology Hungkuang University Taichung Taiwan
| | - Sheng‐Dun Lin
- Department of Food Science and Technology Hungkuang University Taichung Taiwan
| |
Collapse
|
28
|
Heianza Y, Sun D, Wang T, Huang T, Bray GA, Sacks FM, Qi L. Starch Digestion-Related Amylase Genetic Variant Affects 2-Year Changes in Adiposity in Response to Weight-Loss Diets: The POUNDS Lost Trial. Diabetes 2017; 66:2416-2423. [PMID: 28659346 PMCID: PMC5566300 DOI: 10.2337/db16-1482] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/17/2017] [Indexed: 01/05/2023]
Abstract
Salivary and pancreatic amylases (encoded by AMY1 and AMY2 genes, respectively) are responsible for digesting starchy foods. AMY1 and AMY2 show copy number variations that affect differences in amylase amount and activity, and AMY1 copies have been associated with adiposity. We investigated whether genetic variants determining amylase gene copies are associated with 2-year changes in adiposity among 692 overweight and obese individuals who were randomly assigned to diets varying in macronutrient content. We found that changes in body weight (BW) and waist circumference (WC) were significantly different according to the AMY1-AMY2 rs11185098 genotype. Individuals carrying the A allele (indicating higher amylase amount and activity) showed a greater reduction in BW and WC at 6, 12, 18, and 24 months than those without the A allele (P < 0.05 for all). The association was stronger for long-term changes compared with short-term changes of these outcomes. The genetic effects on these outcomes did not significantly differ across diet groups. In conclusion, the genetic variant determining starch metabolism influences the response to weight-loss dietary intervention. Overweight and obese individuals carrying the AMY1-AMY2 rs11185098 genotype associated with higher amylase activity may have greater loss of adiposity during low-calorie diet interventions.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Dianjianyi Sun
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Tiange Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Tao Huang
- Epidemiology Domain, Saw Swee Hock School of Public Health and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Ayurvedic anti-diabetic formulation Lodhrasavam inhibits alpha-amylase, alpha-glucosidase and suppresses adipogenic activity in vitro. J Ayurveda Integr Med 2017; 8:145-151. [PMID: 28668259 PMCID: PMC5607396 DOI: 10.1016/j.jaim.2017.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/21/2017] [Accepted: 03/28/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The patho-physiological cross-talk between diabetes and obesity is well established. However, the choices of drugs suitable for combined treatment of diabetes and obesity are limited. Integration of complementary and alternative medicines (CAMs), like Ayurveda, with modern medicine would be a promising strategy to fill this gap. The diagnostic principles of Ayurveda define obesity as one of the predisposing factors of Madhumeha (correlated as diabetes) and recommends specific formulations for managing obese-diabetes. Lodhrasavam is one such poly-herbal formulation prescribed for obese-diabetic patients. OBJECTIVES The present study is an attempt to demonstrate the possible modes of action of Lodhrasavam, built on the hypothesis that the formulation can exert both anti-diabetic and anti-obesity actions. MATERIALS AND METHODS Lodhrasavam, following simulated gastro-intestinal digestion, was monitored for inhibition of α-amylase, α-glucosidase (key digestive enzyme targets of anti-diabetic drugs) and adipogenesis using standard in vitro model systems. RESULTS Lodhrasavam digest inhibited α-amylase (90%) and α-glucosidase (78%) activity as well as reduced the differentiation of 3T3-L1 fibroblasts to adipocytes. Upon fractionation, the enzyme inhibitory activity and anti-adipogenic activity of the digest were found distributed in different solvent fractions. This partly indicates a potential pharmacological networking of chemically and functionally diverse bioactive molecules in Lodhrasavam. CONCLUSION The study provides a possible mode of action and an experimental support for the Ayurvedic use of Lodhrasavam for managing obese-diabetes. Generating scientific evidences and understanding the modes of action, in contemporary scientific language, would essentially help in expanding global acceptance of potentials of CAMs in the management of life style disorders.
Collapse
|
30
|
Muller CJF, Malherbe CJ, Chellan N, Yagasaki K, Miura Y, Joubert E. Potential of rooibos, its major C-glucosyl flavonoids, and Z-2-(β-D-glucopyranosyloxy)-3-phenylpropenoic acid in prevention of metabolic syndrome. Crit Rev Food Sci Nutr 2017; 58:227-246. [PMID: 27305453 DOI: 10.1080/10408398.2016.1157568] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Risk factors of type 2 diabetes mellitus (T2D) and cardiovascular disease (CVD) cluster together and are termed the metabolic syndrome. Key factors driving the metabolic syndrome are inflammation, oxidative stress, insulin resistance (IR), and obesity. IR is defined as the impairment of insulin to achieve its physiological effects, resulting in glucose and lipid metabolic dysfunction in tissues such as muscle, fat, kidney, liver, and pancreatic β-cells. The potential of rooibos extract and its major C-glucosyl flavonoids, in particular aspalathin, a C-glucoside dihydrochalcone, as well as the phenolic precursor, Z-2-(β-D-glucopyranosyloxy)-3-phenylpropenoic acid, to prevent the metabolic syndrome, will be highlighted. The mechanisms whereby these phenolic compounds elicit positive effects on inflammation, cellular oxidative stress and transcription factors that regulate the expression of genes involved in glucose and lipid metabolism will be discussed in terms of their potential in ameliorating features of the metabolic syndrome and the development of serious metabolic disease. An overview of the phenolic composition of rooibos and the changes during processing will provide relevant background on this herbal tea, while a discussion of the bioavailability of the major rooibos C-glucosyl flavonoids will give insight into a key aspect of the bioefficacy of rooibos.
Collapse
Affiliation(s)
- Christo J F Muller
- a Biomedical Research and Innovation Platform , South African Medical Research Council , Tygerberg , South Africa
| | - Christiaan J Malherbe
- b Post-Harvest and Wine Technology Division , Agricultural Research Council (ARC), Infruitec-Nietvoorbij , Stellenbosch , South Africa
| | - Nireshni Chellan
- a Biomedical Research and Innovation Platform , South African Medical Research Council , Tygerberg , South Africa
| | - Kazumi Yagasaki
- c Division of Applied Biological Chemistry , Institute of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan.,d Center for Bioscience Research and Education , Utsunomiya University , Utsunomiya , Tochigi , Japan
| | - Yutaka Miura
- c Division of Applied Biological Chemistry , Institute of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| | - Elizabeth Joubert
- b Post-Harvest and Wine Technology Division , Agricultural Research Council (ARC), Infruitec-Nietvoorbij , Stellenbosch , South Africa.,e Department of Food Science , Stellenbosch University, Private Bag X1, Matieland Stellenbosch , South Africa
| |
Collapse
|
31
|
Sompong W, Muangngam N, Kongpatpharnich A, Manacharoenlarp C, Amorworasin C, Suantawee T, Thilavech T, Adisakwattana S. The inhibitory activity of herbal medicines on the keys enzymes and steps related to carbohydrate and lipid digestion. Altern Ther Health Med 2016; 16:439. [PMID: 27814716 PMCID: PMC5097378 DOI: 10.1186/s12906-016-1424-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/18/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Obesity and overweight are consistently associated with metabolic disorders including hyperglycemia and hyperlipidemia. Herbal medicines have been currently suggested as an alternative source of potentially useful antihyperglycemic, antihyperlipidemic, antioxidant activities. The objective of this study was to assess the in vitro inhibitory effects of eleven herbal medicines on carbohydrate and lipid digestive enzymes and the key steps of lipid digestion including the inhibition of micelle formation and the ability to bind bile acid. In addition, antioxidant activity of herbal medicines was also investigated. METHODS α-Glucosidase, pancreatic α-amylase, pancreatic lipase, and pancreatic cholesterol esterase inhibitory activities of aqueous extract of herbal medicines were measured using the enzymatic colorimetric assay. The formation of cholesterol micelles was determined using the cholesterol assay kit. The bile acid binding was measured using the colorimetric assay. Antioxidant activities were assessed by using four methods including Trolox equivalent antioxidant capacity (TEAC), oxygen radical absorbance capacity ORAC), superoxide radical scavenging activity (SRSA), and hydroxyl radical scavenging activity (HRSA). RESULTS The extracts (1 mg/mL) markedly inhibited intestinal maltase (5.16 - 44.33 %), sucrase (1.25-45.86 %), pancreatic α-amylase (1.75-12.53 %), pancreatic lipase (21.42-85.93 %), and pancreatic cholesterol esterase (2.92-53.35 %). The results showed that all extracts exhibited the inhibitory activity against pancreatic lipase with the IC50 values ranging from 0.015 to 4.259 mg/mL. In addition, the incorporation of cholesterol into micelles was inhibited by the extracts (6.64-33.74 %). The extracts also bound glycodeoxycholic acid (9.9-15.08 %), taurodeoxycholic acid (12.55-18.18 %), and taurocholic acid (11.91 - 18.4 %). Furthermore, the extracts possessed various antioxidant activities including the TEAC values (0.50 - 4.70 μmol trolox/mg dried extract), the ORAC values (9.14-44.41 μmol trolox/mg dried extract), the SRSA (0.31 - 18.82 mg trolox/mg dried extract), and the HRSA (0.05-2.29 mg trolox/mg dried extract). The findings indicated that Syzygium aromaticum, Phyllanthus amarus, Thunbergia laurifolia were the effective promising antihyperglycemic and antihyperlipidemic agents. Statistical analysis demonstrated strong positive significant correlations between the contents of phenolic compounds and % inhibition of pancreatic lipase (r = 0.885, p < 0.001), % inhibition of pancreatic cholesterol esterase (r = 0.761, p < 0.001), and the TEAC value (r = 0.840, p < 0.001). Furthermore, there was a strongly positive correlation between the TEAC value and % inhibition of pancreatic cholesterol esterase (r = 0.851, p < 0.001) and % inhibition of pancreatic lipase (r = 0.755, p < 0.001). CONCLUSIONS Three herbal medicines including Syzygium aromaticum, Thunbergia laurifolia, and Phyllanthus amarus markedly inhibited the intestinal α-glucosidase, pancreatic α-amylase, pancreatic lipase, and pancreatic cholesterol esterase. They also reduced formation of cholesterol micelle and bound bile acid. The findings indicate that these herbal medicines might be a promising agent for antihyperglycemic, antihyperlipidemic, and antioxidant activities.
Collapse
|
32
|
Crone LB, Beatty E, Moran RG, Butawan M, Bloomer RJ. Impact of Meal Ingestion Rate and Caffeine Coingestion on Postprandial Lipemia and Oxidative Stress Following High-Fat Meal Consumption. JOURNAL OF CAFFEINE RESEARCH 2016. [DOI: 10.1089/jcr.2016.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Laura Brooks Crone
- Cardiorespiratory/Metabolic Laboratory, School of Health Studies, The University of Memphis, Memphis, Tennessee
| | - Emily Beatty
- Cardiorespiratory/Metabolic Laboratory, School of Health Studies, The University of Memphis, Memphis, Tennessee
| | - Ryan G. Moran
- Cardiorespiratory/Metabolic Laboratory, School of Health Studies, The University of Memphis, Memphis, Tennessee
| | - Matthew Butawan
- Cardiorespiratory/Metabolic Laboratory, School of Health Studies, The University of Memphis, Memphis, Tennessee
| | - Richard J. Bloomer
- Cardiorespiratory/Metabolic Laboratory, School of Health Studies, The University of Memphis, Memphis, Tennessee
| |
Collapse
|
33
|
Boue SM, Daigle KW, Chen MH, Cao H, Heiman ML. Antidiabetic Potential of Purple and Red Rice (Oryza sativa L.) Bran Extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5345-5353. [PMID: 27285791 DOI: 10.1021/acs.jafc.6b01909] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pigmented rice contains anthocyanins and proanthocyanidins that are concentrated in the bran layer. In this study, we determined the phenolic, flavonoid, anthocyanin, and proanthocyanidin content of five rice bran (1 brown, 2 red, and 2 purple) extracts. Each bran extract was evaluated for inhibitory effects on α-amylase and α-glucosidase activity, two key glucosidases required for starch digestion in humans. All purple and red bran extracts inhibited α-glucosidase activity, however only the red rice bran extracts inhibited α-amylase activity. Additionally, each bran extract was examined for their ability to stimulate glucose uptake in 3T3-L1 adipocytes, a key function in glucose homeostasis. Basal glucose uptake was increased between 2.3- and 2.7-fold by exposure to the red bran extracts, and between 1.9- and 3.1-fold by exposure to the purple bran extracts. In red rice bran, the highest enzyme inhibition and glucose uptake was observed with a proanthocyanidin-enriched fraction. Both IITA red bran and IAC purple bran increased expression of GLUT1 and GLUT4 mRNA, and genes encoding insulin-signaling pathway proteins.
Collapse
Affiliation(s)
- Stephen M Boue
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , New Orleans, Louisiana 70124, United States
| | - Kim W Daigle
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , New Orleans, Louisiana 70124, United States
| | - Ming-Hsuan Chen
- Dale Bumpers National Rice Research Center, Agricultural Research Service, U.S. Department of Agriculture , 2890 Highway 130 East, Stuttgart, Arkansas 72160, United States
| | - Heping Cao
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , New Orleans, Louisiana 70124, United States
| | - Mark L Heiman
- Microbiome Therapeutics , 11001 120th Avenue, Broomfield, Colorado 80021, United States
| |
Collapse
|
34
|
Nakajima K. Low serum amylase and obesity, diabetes and metabolic syndrome: A novel interpretation. World J Diabetes 2016; 7:112-121. [PMID: 27022442 PMCID: PMC4807301 DOI: 10.4239/wjd.v7.i6.112] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/13/2015] [Accepted: 01/29/2016] [Indexed: 02/05/2023] Open
Abstract
For the last decade, low serum amylase (hypoamylasemia) has been reported in certain common cardiometabolic conditions such as obesity, diabetes (regardless of type), and metabolic syndrome, all of which appear to have a common etiology of insufficient insulin action due to insulin resistance and/or diminished insulin secretion. Some clinical studies have shown that salivary amylase may be preferentially decreased in obese individuals, whereas others have revealed that pancreatic amylase may be preferentially decreased in diabetic subjects with insulin dependence. Despite this accumulated evidence, the clinical relevance of serum, salivary, and pancreatic amylase and the underlying mechanisms have not been fully elucidated. In recent years, copy number variations (CNVs) in the salivary amylase gene (AMY1), which range more broadly than the pancreatic amylase gene (AMY2A and AMY2B), have been shown to be well correlated with salivary and serum amylase levels. In addition, low CNV of AMY1, indicating low salivary amylase, was associated with insulin resistance, obesity, low taste perception/satiety, and postprandial hyperglycemia through impaired insulin secretion at early cephalic phase. In most populations, insulin-dependent diabetes is less prevalent (minor contribution) compared with insulin-independent diabetes, and obesity is highly prevalent compared with low body weight. Therefore, obesity as a condition that elicits cardiometabolic diseases relating to insulin resistance (major contribution) may be a common determinant for low serum amylase in a general population. In this review, the novel interpretation of low serum, salivary, and pancreas amylase is discussed in terms of major contributions of obesity, diabetes, and metabolic syndrome.
Collapse
|
35
|
Hernández-Saavedra D, Pérez-Ramírez IF, Ramos-Gómez M, Mendoza-Díaz S, Loarca-Piña G, Reynoso-Camacho R. Phytochemical characterization and effect of Calendula officinalis, Hypericum perforatum, and Salvia officinalis infusions on obesity-associated cardiovascular risk. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1454-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Shin HS, Kindleysides S, Yip W, Budgett SC, Ingram JR, Poppitt SD. Postprandial effects of a polyphenolic grape extract (PGE) supplement on appetite and food intake: a randomised dose-comparison trial. Nutr J 2015; 14:96. [PMID: 26370656 PMCID: PMC4568586 DOI: 10.1186/s12937-015-0085-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022] Open
Abstract
Background There is recent evidence that glucose delivered to the distal small intestine (SI) may stimulate the ileal brake and inhibit appetite. High polyphenolic grape extract (PGE) has been shown to inhibit α-amylase and α-glucosidase activity, two key enzymes required for starch digestion, in vitro. It is hypothesised to slow digestion and absorption of starch in the proximal SI such that glucose may be delivered distally into the ileum and suppress appetite. This study investigated the safety and efficacy of a PGE supplement, delivered within a capsule and consumed with a high-starch breakfast, on appetite ratings and ad libitum energy intake (EI) at a subsequent lunch meal. Methods Twenty healthy, non-obese (BMI 18–28 kg/m2) male volunteers participated in a randomised, double blind, placebo controlled, three arm, cross-over study. Participants were administered (i) low dose PGE500 (500 mg), (ii) high dose PGE1500 (1500 mg), and (iii) matched placebo with a 2MJ high-starch breakfast (white bread); followed 3 h later by a single item buffet-style lunch meal (pasta and meat sauce). Outcome variables were feelings of hunger, fullness, prospective thoughts of food (TOF) and satisfaction assessed using visual analogue scales (VAS); and ad lib energy and macronutrient intake at the lunch meal. Results There was no detectable effect of PGE500 or PGE1500 compared with placebo (all, time*supplement interaction, P > 0.05) on VAS-assessed hunger, fullness, TOF or satisfaction. There was also no evidence that PGE significantly altered ad lib energy or macronutrient intake at the lunch meal relative to placebo (P > 0.05). EI following PGE500 was +164 kJ higher than placebo (+5.3 %, P > 0.05); and EI following PGE1500was −51 kJ lower than placebo (−1.7 %, P > 0.05). Conclusions Whilst well tolerated, there was no evidence that encapsulated low dose PGE500 or high dose PGE1500 consumed with a high starch breakfast meal altered postprandial hunger, fullness, TOF or satisfaction relative to a matched placebo. Nor was there evidence that either dose altered ad lib energy or macronutrient intake at an outcome meal. Trial registration ACTRN12614000041651
Collapse
Affiliation(s)
- Hyun-San Shin
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Sophie Kindleysides
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Wilson Yip
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | | | - John R Ingram
- Plant and Food Research Ltd, Mt Albert, Auckland, New Zealand.
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
37
|
Wei K, Wang GQ, Bai X, Niu YF, Chen HP, Wen CN, Li ZH, Dong ZJ, Zuo ZL, Xiong WY, Liu JK. Structure-Based Optimization and Biological Evaluation of Pancreatic Lipase Inhibitors as Novel Potential Antiobesity Agents. NATURAL PRODUCTS AND BIOPROSPECTING 2015; 5:129-157. [PMID: 26085282 PMCID: PMC4488150 DOI: 10.1007/s13659-015-0062-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/20/2015] [Indexed: 05/06/2023]
Abstract
The unusual fused β-lactone vibralactone was isolated from cultures of the basidiomycete Boreostereum vibrans and has been shown to significantly inhibit pancreatic lipase. In this study, a structure-based lead optimization of vibralactone resulted in three series of 104 analogs, among which compound C1 exhibited the most potent inhibition of pancreatic lipase, with an IC50 value of 14 nM. This activity is more than 3000-fold higher than that of vibralactone. The effect of compound C1 on obesity was investigated using high-fat diet (HFD)-induced C57BL/6 J obese mice. Treatment with compound C1 at a dose of 100 mg/kg significantly decreased HFD-induced obesity, primarily through the improvement of metabolic parameters, such as triglyceride levels.
Collapse
Affiliation(s)
- Kun Wei
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Gang-Qiang Wang
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
- />School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100 China
| | - Xue Bai
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Yan-Fen Niu
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - He-Ping Chen
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Chun-Nan Wen
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Zheng-Hui Li
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Ze-Jun Dong
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Zhi-Li Zuo
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Wen-Yong Xiong
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Ji-Kai Liu
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| |
Collapse
|
38
|
Flores FP, Singh RK, Kong F. Anthocyanin extraction, microencapsulation, and release properties during in vitro digestion. FOOD REVIEWS INTERNATIONAL 2015. [DOI: 10.1080/87559129.2015.1041185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Shukla S, Anand Kumar D, Anusha SV, Tiwari AK. Antihyperglucolipidaemic and anticarbonyl stress properties in green, yellow and red sweet bell peppers (Capsicum annuumL.). Nat Prod Res 2015; 30:583-9. [DOI: 10.1080/14786419.2015.1026343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Ogawa A, Kobayashi T, Sakai F, Kadooka Y, Kawasaki Y. Lactobacillus gasseri SBT2055 suppresses fatty acid release through enlargement of fat emulsion size in vitro and promotes fecal fat excretion in healthy Japanese subjects. Lipids Health Dis 2015; 14:20. [PMID: 25884980 PMCID: PMC4391304 DOI: 10.1186/s12944-015-0019-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/05/2015] [Indexed: 01/11/2023] Open
Abstract
Background Lactobacillus gasseri SBT2055 (LG2055) has been shown to prevent abdominal adiposity, and suppression of lipid absorption is considered a possible mechanism, detail of which, however, are poorly understood. In the present study, we evaluated the effects of LG2055 on fat hydrolysis by determining pancreatic lipase activity and fat emulsion properties in vitro. We also examined whether LG2055 influences fecal fat excretion in humans. Methods Pancreatic lipase activity was investigated in vitro using an artificially prepared fat emulsion and 4-methylumbelliferyl oleate (4-MUO) as substrates. The concentrations of free fatty acids and 4-methylumbelliferone were quantified. Fat emulsion droplet size was measured using a particle size analyzer. The clinical study was performed as a double-blind, randomized, placebo-controlled trial. Subjects consumed 100 g of fermented milk (FM)/d, either with or without LG2055 supplementation, for seven days. Fecal samples were collected during three-day pre-observational and FM intake periods and fecal fat levels were determined. Results LG2055 dose-dependently suppressed lipase activity in the fat emulsion assay but not in the 4-MUO assay. LG2055 dose-dependently increased fat emulsion droplet size. The effects of LG2055 on lipase activity and fat emulsion properties were increased compared with four other tested strains (Lactobacillus gasseri SBT0317, Lactobacillus gasseri JCM1131T, Lactobacillus. delbrueckii subsp. bulgaricus JCM1002T and Streptococcus thermophilus ATCC19258T). In our clinical study, fecal fat level after FM intake was significantly increased compared with that observed before FM intake in the LG2055-containing active FM group but not the control FM group lacking LG2055. Conclusions LG2055 increased fat emulsion droplet size, resulting in the suppression of lipase-mediated fat hydrolysis. The influence of LG2055 on the physicochemical properties of fat emulsion provides a mechanism for the probiotic-mediated suppression of lipid absorption and promotion of fecal fat excretion in humans. Trial registration UMIN000015772
Collapse
Affiliation(s)
- Akihiro Ogawa
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., 1-1-2 Minamidai, Kawagoe, Saitama, 350-1165, Japan.
| | - Toshiya Kobayashi
- Public Relations Department, Megmilk Snow Brand Co. Ltd., 13 Honshiocho, Shinjuku-ku, Tokyo, 160-0003, Japan.
| | - Fumihiko Sakai
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., 1-1-2 Minamidai, Kawagoe, Saitama, 350-1165, Japan.
| | - Yukio Kadooka
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., 1-1-2 Minamidai, Kawagoe, Saitama, 350-1165, Japan.
| | - Yoshihiro Kawasaki
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., 1-1-2 Minamidai, Kawagoe, Saitama, 350-1165, Japan.
| |
Collapse
|
41
|
Mahapatra DK, Asati V, Bharti SK. Chalcones and their therapeutic targets for the management of diabetes: structural and pharmacological perspectives. Eur J Med Chem 2015; 92:839-65. [PMID: 25638569 DOI: 10.1016/j.ejmech.2015.01.051] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 12/25/2022]
Abstract
Diabetes Mellitus (DM) is the fastest growing metabolic disorder affecting about 387 million people across the globe and is estimated to affect 592 million people by year 2030. The search for newer anti-diabetic agents is the foremost need to control the accelerating diabetic population. Several natural and (semi) synthetic chalcones deserve the credit of being potential candidates that act by modulating the therapeutic targets PPAR-γ, DPP-4, α-glucosidase, PTP1B, aldose reductase, and stimulate insulin secretion and tissue sensitivity. In this review, a comprehensive study (from January 1977 to October 2014) of anti-diabetic chalcones, their molecular targets, structure activity relationships (SARs), mechanism of actions (MOAs) and patents have been described. The compounds which showed promising activity and have a well-defined MOAs, SARs must be considered as prototype for the design and development of potential anti-diabetic agents. They should be evaluated critically at all clinical stages to ensure their therapeutic and toxicological profile to meet the demand of diabetics.
Collapse
Affiliation(s)
- Debarshi Kar Mahapatra
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Vivek Asati
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India.
| |
Collapse
|
42
|
Bellesia A, Tagliazucchi D. Cocoa brew inhibits in vitro α-glucosidase activity: The role of polyphenols and high molecular weight compounds. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.03.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Chaudhary S, Garg T, Murthy RSR, Rath G, Goyal AK. Recent approaches of lipid-based delivery system for lymphatic targeting via oral route. J Drug Target 2014; 22:871-82. [PMID: 25148607 DOI: 10.3109/1061186x.2014.950664] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lymphatic system is a key target in research field due to its distinctive makeup and huge contributing functions within the body. Intestinal lymphatic drug transport (chylomicron pathway) is intensely described in research field till date because it is considered to be the best for improving oral drug delivery by avoiding first pass metabolism. The lymphatic imaging techniques and potential therapeutic candidates are engaged for evaluating disease states and overcoming these conditions. The novel drug delivery systems such as self-microemulsifying drug delivery system, nanoparticles, liposomes, nano-lipid carriers, solid lipid carriers are employed for delivering drugs through lymphatic system via various routes such as subcutaneous route, intraperitoneal route, pulmonary route, gastric sub-mucosal injection, intrapleural and intradermal. Among these colloidal particles, lipid-based delivery system is considered to be the best for lymphatic delivery. From the last few decades, mesenteric lymph duct cannulation and thoracic lymph duct cannulation are followed to assess lymphatic uptake of drugs. Due to their limitations, chylomicrons inhibitors and in-vitro models are employed, i.e. lipolysis model and permeability model. Currently, research on this topic still continues and drainage system used to deliver the drugs against lymphatic disease as well as targeting other organs by modulating the chylomicron pathway.
Collapse
Affiliation(s)
- Shilpa Chaudhary
- Department of Pharmaceutics, ISF College of Pharmacy , Moga, Punjab , India
| | | | | | | | | |
Collapse
|
44
|
Effects of Passiflora nitida Kunth leaf extract on digestive enzymes and high caloric diet in rats. J Nat Med 2014; 68:316-25. [PMID: 24078292 DOI: 10.1007/s11418-013-0800-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 08/28/2013] [Indexed: 01/04/2023]
Abstract
The present study investigated inhibition of pancreatic lipase and metabolic effects of high caloric diet in rats. The Passiflora nitida hydroethanol leaf extract (PNE) was used in in vitro assays or administered to rats to study dyslipidemia. Inhibition of lipase in vitro was studied by a spectrophotometric assay using orlistat as the positive control. The effects of PNE on reduction of postprandial triglyceride were studied by oral fat-overloading in rats. Metabolic alterations were induced using the cafeteria diet and 4 weeks post-treatment with PNE or orlistat and blood samples were collected and biochemical analyses were performed. Liver and retroperitoneal fat tissues were obtained to analyze weight and steatosis. IC50 (lg/mL) values for pancreatic lipase inhibition were 21.2 ± 0.8 and 0.1 ± 0.01 for PNE and orlistat, respectively. Oral administration of lipid emulsion resulted in postprandial hypertriglyceridemia at 3 h postadministration and when rats were then administered PNE and orlistat there was decreased of triglyceride levels by 15 % compared to control. Although the energy consumption by the cafeteria diet had been higher, there was no significant weight gain observed in the study groups. The cafeteria diet resulted in a significant increase of weight in the retroperitoneal fat and hypertriglyceridemia levels that could be significantly reduced by PNE and orlistat treatment. We hypothesized that PNE administration prevented the hypertriglyceridemia in rats with a high caloric diet, possibly owing to reduction of lipid absorption and pancreatic lipase inhibition.
Collapse
|
45
|
Li Y, Chen Y, Xiao C, Chen D, Xiao Y, Mei Z. Rapid screening and identification of α-amylase inhibitors from Garcinia xanthochymus using enzyme-immobilized magnetic nanoparticles coupled with HPLC and MS. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 960:166-73. [PMID: 24814002 DOI: 10.1016/j.jchromb.2014.04.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 12/30/2022]
Abstract
α-Amylase inhibitors play an important role in management of diabetes and obesity. In order to rapidly discover potent α-amylase inhibitors from medicinal plants, a ligands-screening method based on enzyme-immobilized magnetic nanoparticles integrated with HPLC was developed. Amine-terminated magnetic nanoparticles were prepared for the immobilization of α-amylase. Based on the affinity theory, the α-amylase-coated magnetic nanoparticles were employed to fish out the ligands from the extracts of Garcinia xanthochymus, and the elutes were examined by HPLC. As a result, three ligands were screened out. Isolation and identification were carried out subsequently. By analyzing the UV, MS and NMR spectra, they were identified as three biflavonoids including GB2a glucoside (2), GB2a (3) and fukugetin (4). The IC50 values of the three compounds were also determined. The results suggest the proposed approach is efficient and accurate, and has great potential in rapid discovery of drug candidates from medical plants.
Collapse
Affiliation(s)
- Yunfang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; College of Pharmacy, South Central University for Nationalities, Wuhan 430074, China
| | - Yu Chen
- College of Chemistry and Material Sciences, South Central University for Nationalities, Wuhan 430074, China
| | - Chuying Xiao
- College of Pharmacy, South Central University for Nationalities, Wuhan 430074, China
| | - Dan Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuxiu Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Zhinan Mei
- College of Pharmacy, South Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
46
|
Jayaraj S, Suresh S, Kadeppagari RK. Amylase inhibitors and their biomedical applications. STARCH-STARKE 2013. [DOI: 10.1002/star.201200194] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
47
|
Handa M, Murata T, Kobayashi K, Selenge E, Miyase T, Batkhuu J, Yoshizaki F. Lipase inhibitory and LDL anti-oxidative triterpenes from Abies sibirica. PHYTOCHEMISTRY 2013; 86:168-175. [PMID: 23261031 DOI: 10.1016/j.phytochem.2012.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 08/31/2012] [Accepted: 10/15/2012] [Indexed: 06/01/2023]
Abstract
A methanol extract of Abies sibirica Ladeb, a Mongolian medicinal plant, had an inhibitory effect on both lipase activity in mouse plasma and LDL anti-oxidative activity, which are preventative factors for arteriosclerosis. The extract was fractionated by silica gel column chromatography and its active constituents were sought. From lipid soluble fractions, 20 terpenoids including seven hitherto unknown triterpenes were isolated. The latter triterpenes had either a γ-lactone ring with a lactol or a derivative thereof. Their chemical structures were determined by spectroscopic methods. The lipase inhibitory activity and LDL anti-oxidative activity of these compounds were evaluated. Some constituents (either lipase inhibitory or LDL anti-oxidative activities) had moderate inhibitory activities.
Collapse
Affiliation(s)
- Mizuho Handa
- Department of Pharmacognosy, Tohoku Pharmaceutical University, Aoba-ku, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhao W, Iyer V, Flores FP, Donhowe E, Kong F. Microencapsulation of tannic acid for oral administration to inhibit carbohydrate digestion in the gastrointestinal tract. Food Funct 2013; 4:899-905. [DOI: 10.1039/c3fo30374h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
49
|
Bae YJ, Bak YK, Kim B, Kim MS, Lee JH, Sung MK. Coconut-derived D-xylose affects postprandial glucose and insulin responses in healthy individuals. Nutr Res Pract 2011; 5:533-9. [PMID: 22259678 PMCID: PMC3259296 DOI: 10.4162/nrp.2011.5.6.533] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/25/2011] [Accepted: 12/05/2011] [Indexed: 01/10/2023] Open
Abstract
Metabolic alterations including postprandial hyperglycemia have been implicated in the development of obesity-related diseases. Xylose is a sucrase inhibitor suggested to suppress the postprandial glucose surge. The objectives of this study were to assess the inhibitory effects of two different concentrations of xylose on postprandial glucose and insulin responses and to evaluate its efficacy in the presence of other macronutrients. Randomized double-blind cross-over studies were conducted to examine the effect of D-xylose on postprandial glucose and insulin response following the oral glucose tolerance test (OGTT). In study 1, the overnight-fasted study subjects (n = 49) consumed a test sucrose solution (50 g sucrose in 130 ml water) containing 0, 5, or 7.5 g D-xylose powder. In study 2, the overnight-fasted study subjects (n = 50) consumed a test meal (50 g sucrose in a 60 g muffin and 200 ml sucrose-containing solution). The control meal provided 64.5 g of carbohydrates, 4.5 g of fat, and 10 g of protein. The xylose meal was identical to the control meal except 5 g of xylose was added to the muffin mix. In study 1, the 5 g xylose-containing solutions exhibited significantly lower area under the glucose curve (AUCg) and area under the insulin curve (AUCi) values for 0-15 min (P < 0.0001, P < 0.0001), 0-30 min (P < 0.0001, P < 0.0001), 0-45 min (P < 0.0001, P < 0.0001), 0-60 min (P < 0.0001, P < 0.0001), 0-90 min (P < 0.0001, P < 0.0001) and 0-120 min (P = 0.0071, P = 0.0016). In study 2, the test meal exhibited significantly lower AUCg and AUCi values for 0-15 min (P < 0.0001, P < 0.0001), 0-30 min (P < 0.0001, P < 0.0001), 0-45 min (P < 0.0001, P = 0.0005), 0-60 min (P = 0.0002, P = 0.0025), and 0-90 min (P = 0.0396, P = 0.0246). In conclusion, xylose showed an acute suppressive effect on the postprandial glucose and insulin surges.
Collapse
Affiliation(s)
- Yun Jung Bae
- Department of Food and Nutritional Sciences, Hanbuk University, Gyeonggi 483-777, Korea
| | | | | | | | | | | |
Collapse
|
50
|
Nehir El S, Simsek S. Food Technological Applications for Optimal Nutrition: An Overview of Opportunities for the Food Industry. Compr Rev Food Sci Food Saf 2011. [DOI: 10.1111/j.1541-4337.2011.00167.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|