1
|
Zhang D, Kukkar D, Bhatt P, Kim KH, Kaur K, Wang J. Novel nanomaterials-based combating strategies against drug-resistant bacteria. Colloids Surf B Biointerfaces 2025; 248:114478. [PMID: 39778220 DOI: 10.1016/j.colsurfb.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Numerous types of contemporary antibiotic treatment regimens have become ineffective with the increasing incidence of drug tolerance. As a result, it is pertinent to seek novel and innovative solutions such as antibacterial nanomaterials (NMs) for the prohibition and treatment of hazardous microbial infections. Unlike traditional antibiotics (e.g., penicillin and tetracycline), the unique physicochemical characteristics (e.g., size dependency) of NMs endow them with bacteriostatic and bactericidal potential. However, it is yet difficult to mechanistically predict or decipher the networks of molecular interaction (e.g., between NMs and the biological systems) and the subsequent immune responses. In light of such research gap, this review outlines various mechanisms accountable for the inception of drug tolerance in bacteria. It also delineates the primary factors governing the NMs-induced molecular mechanisms against microbes, specifically drug-resistant bacteria along with the various NM-based mechanisms of antibacterial activity. The review also explores future directions and prospects for NMs in combating drug-resistant bacteria, while addressing challenges to their commercial viability within the healthcare industry.
Collapse
Affiliation(s)
- Daohong Zhang
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, College of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India.
| | - Poornima Bhatt
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| | - Kamalpreet Kaur
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab 140406, India
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Allahyari H, Shamsini L, Zamani H. Dual encapsulation of curcumin and ciprofloxacin in chitosan nanoparticles attenuates Pseudomonas aeruginosa virulence, elastinolytic potential and quorum sensing genes. Microb Pathog 2025; 202:107438. [PMID: 40032002 DOI: 10.1016/j.micpath.2025.107438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Pseudomonas aeruginosa is an important human pathogen that is responsible for various human infections and able to develop resistance to a variety of antibiotics. Drug encapsulation may provide sustained and more efficient drug delivery, particularly in case of the drugs with low bioavailability. This study aims to characterize the antivirulence and anti-quorum sensing (QS) properties of curcumin and ciprofloxacin dually encapsulated in chitosan NPs (Cur-Cip-CsNPs). The nanoparticles were synthesized and characterized by SEM, FT-IR, Zeta Potential, and DLS analyses. The antibacterial and antivirulence effects of the Cip-CsNPs, Cur-CsNPs, and Cur-Cip-CsNPs against P. aeruginosa strains were investigated by well diffusion, biofilm and pyocyanin quantification, swarming, swimming, twitching, and proteolytic and elastinolytic activity assays. The mRNA transcript levels of the lasIR and lasAB genes were also determined by real-time PCR. Cur-Cip-CsNPs were more potent antibacterial agents against P. aeruginosa compared with other NPs and inhibited bacterial planktonic growth at 160 mg/mL, reduced biofilm formation by 72.5-86.5 % and pyocyanin levels by 80.2-80.6 %, and significantly inhibited flagellar and fimbrial motility of P. aeruginosa. Furthermore, bacterial proteolysis and elastinolytic activity were reduced more efficiently by Cur-Cip-CsNPs compared with other nanoformulations. The expression of the lasI, lasR, lasA, and lasB was attenuated more efficiently by Cur-Cip-CsNPs compared with Cip-CsNPs and Cur-CsNPs. This study presents an innovative approach to overcome the challenges due to antibiotic resistance and provides a new therapeutic option against P. aeruginosa infections.
Collapse
Affiliation(s)
| | - Leila Shamsini
- Department of Biology, University of Guilan, Rasht, Iran
| | | |
Collapse
|
3
|
Pant I, Potnis AA, Shashidhar R. Gene knockout studies of Dps protein reveals a novel role for DNA-binding protein in maintaining outer membrane permeability. World J Microbiol Biotechnol 2025; 41:70. [PMID: 39939516 PMCID: PMC11821673 DOI: 10.1007/s11274-025-04269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/17/2025] [Indexed: 02/14/2025]
Abstract
DNA-binding proteins like Dps are crucial for bacterial stress physiology. This study investigated the unexpected role of Dps protein in maintaining outer membrane integrity of Salmonella Typhimurium. We observed that a Δdps mutant displayed increased sensitivity to glycopeptide antibiotics (vancomycin, nisin), which are ineffective against Gram-negative bacteria due to their thick outer membrane (OM). Furthermore, the Δdps mutant exhibited susceptibility to membrane-disrupting agents like detergents (deoxycholate, SDS) and phages. The perforation was observed in OM after the treatment of vancomycin using atomic force microscopy. Notably, this sensitivity was rescued by supplementing the media with calcium and magnesium cations. These findings suggest a novel function for Dps in maintaining outer membrane permeability. We propose two potential mechanisms: 1) Dps might directly localize to the outer membrane 2) Dps might regulate genes responsible for lipopolysaccharide synthesis or outer membrane proteins, key components of outer membrane. This study highlights a previously unknown role for Dps beyond DNA binding and warrants further investigation into the precise mechanism by which it influences outer membrane integrity in Salmonella.
Collapse
Affiliation(s)
- Indu Pant
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE-Deemed University), Trombay, Mumbai, 400094, India
| | - Akhilesh A Potnis
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE-Deemed University), Trombay, Mumbai, 400094, India
| | - Ravindranath Shashidhar
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India.
- Life Sciences, Homi Bhabha National Institute (DAE-Deemed University), Trombay, Mumbai, 400094, India.
| |
Collapse
|
4
|
Efrati Epchtien R, Temkin E, Lurie-Weinberger MN, Kastel O, Keren-Paz A, Schwartz D, Carmeli Y. Characterization of Enterobacterales growing on selective CPE screening plates with a focus on non-carbapenemase-producing strains. Microbiol Spectr 2025; 13:e0207924. [PMID: 39807863 PMCID: PMC11792496 DOI: 10.1128/spectrum.02079-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/01/2024] [Indexed: 01/16/2025] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) are divided into two distinct groups: carbapenemase-producing (CPE) and non-carbapenemase-producing (non-CPE). The population of non-CPE growing on CPE selective plates during routine screening is usually not reported and is not well defined. This study aimed to characterize non-CPE isolates growing on those plates. Isolates were collected from two medical institutions in Israel between May and November 2022. Species identification and antibiotic susceptibility testing were performed using VITEK systems. Further analyses focused on Klebsiella pneumoniae and Escherichia coli which were the most common isolates. Meropenem MIC was determined by E-test. Fourier-transform infrared spectroscopy (FTIR) was used to analyze phenotypic similarity, and whole genome sequencing was conducted on a subset of non-CPE isolates. Of 260 isolates growing on selective CPE screening plates, 60.4% were non-CPE. The most common non-CP isolates were K. pneumoniae (65.6%) followed by E. coli (20.4%). Of the non-CP K. pneumoniae and E. coli isolates, 78.2% were susceptible to meropenem. All non-CP K. pneumoniae and E. coli isolates were multidrug-resistant (MDR) and belonged to multiple FTIR clusters. The 21 sequenced non-CPE isolates carried multiple mechanisms of resistance. Isolates had multiple beta-lactamases and all had penicillin-binding protein modifications and porin mutations; in meropenem-resistant K. pneumoniae isolates, both Ompk35 and Ompk36 were mutated. The majority of isolates growing on selective CPE screening plates are non-CPE but are MDR. Laboratory reporting of these MDR bacteria might be useful for guiding treatment and prophylaxis when indicated, as well as for infection control. IMPORTANCE Selective screening plates for carbapenemase-producing Enterobacterales (CPE) are used to detect CPE carriers for infection control purposes. We characterized non-CPE isolates that grew on selective CPE screening plates, which are intended to filter them out. We found that 60% of isolates that grew on these plates were not CPE. They included both meropenem-susceptible and meropenem-resistant isolates and were multidrug-resistant with multiple resistance mechanisms. These test results, which are usually not reported by laboratories, may be clinically valuable.
Collapse
Affiliation(s)
- Reut Efrati Epchtien
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Elizabeth Temkin
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Mor N. Lurie-Weinberger
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Ophir Kastel
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Alona Keren-Paz
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - David Schwartz
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Yehuda Carmeli
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
5
|
Wei J, Zhang G, Xie S, Zhang Z, Gao T, Zhang M, Li X. Enhanced Interfacial Electric Field of an S-Scheme Heterojunction by an Ultrasonication-Triggered Piezoelectric Effect for Sonocatalytic Therapy of Bacterial Infections. Angew Chem Int Ed Engl 2025:e202500441. [PMID: 39905806 DOI: 10.1002/anie.202500441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Sonodynamic therapy indicates advantages in combating antibiotics-resistant bacteria and deep tissue infections, but challenges remain in the less efficient charge transfer and reactive oxygen species (ROS) generation of sonosensitizers. Herein, an effective bactericidal strategy is developed through enhancing the interfacial electric field (IEF) of S-scheme heterojunctions by an ultrasonication-triggered piezoelectric effect. Hollow barium titanate (hBT) nanoparticles (NPs) were prepared through template etching, followed by in situ assembly of tetrakis (4-carboxyphenyl)porphyrin (TCPP) with Zn2+ to obtain hBT@ZnTCPP. Both experimental and theoretical evidences support the notion that an IEF is generared from ZnTCPP to hBT. Compared to metalloporphyrins with Fe3+, Mn3+, Cu2+ and Ni2+, the stronger reduction of ZnTCPP induced by elevation of the orbital energy level of porphyrins after Zn2+ coordination leads to formation of S-scheme heterojunctions. The ultrasonication-activated polarization field enhances IEF and boosts energy band bending of hBT@ZnTCPP to promote electron-hole separations and ROS generations. Planktonic methicillin-resistant Staphylococcus aureus and their derived biofilms are completely destroyed within 5 min under ultrasonication through up-regulating genes of glucose catabolism and ion transportation and down-regulating genes of ribosomal synthesis and transmembrane transporter. Thus, this study demonstrates molecular-level modulation of energy levels for S-scheme heterojunction formation to achieve efficient sonocatalytic therapy of bacterial infections.
Collapse
Affiliation(s)
- Junwu Wei
- Institute of Biomedical Engineering, College of Medicine Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P.R. China
| | - Guiyuan Zhang
- Institute of Biomedical Engineering, College of Medicine Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P.R. China
| | - Shuang Xie
- Institute of Biomedical Engineering, College of Medicine Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P.R. China
| | - Zhanlin Zhang
- Institute of Biomedical Engineering, College of Medicine Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P.R. China
| | - Tianyu Gao
- Institute of Biomedical Engineering, College of Medicine Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P.R. China
| | - Mengxue Zhang
- Institute of Biomedical Engineering, College of Medicine Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P.R. China
| | - Xiaohong Li
- Institute of Biomedical Engineering, College of Medicine Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P.R. China
| |
Collapse
|
6
|
Pinamonti D, Manzano M, Maifreni M, Bianco S, Domi B, Ferrin A, Anba-Mondoloni J, Dechamps J, Briandet R, Vidic J. Prevalence and Characterization of Staphylococcus aureus Isolated from Meat and Milk in Northeastern Italy. J Food Prot 2025; 88:100442. [PMID: 39725327 DOI: 10.1016/j.jfp.2024.100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/28/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Staphylococcus aureus is a pathogenic microorganism often found in animal-derived foods and is known for its ability to readily develop resistance to antibiotic treatments. This study was designed to determine the prevalence of S. aureus strains in raw milk and meat in Italy and to evaluate their antibiotic resistance profiles and biofilm production. Among the meat isolates, 41.67% were resistant to ampicillin, and 25% were methicillin-resistant S. aureus (MRSA). In milk, 20% of the isolates were resistant to gentamycin, while 5.71% were MRSA. The prevalence of multidrug-resistant strains was higher in meat (16.67%) compared to milk (5.71%). The biofilm formation capability was assessed in most of the isolates (80% in milk and 100% in meat). Representative strains exhibiting different antibiotic resistance profiles were all negative for the enterotoxin genes sea, seb, sec, sed, and see, but harbored potential virulence factors such as hemolytic activity, high pigmentation, low cell envelop permeability, charged and hydrophobicity. Finally, the interaction of representative strains with human Caco-2 intestinal cell line showed that most strains had an adhesion capacity. Our findings reveal that foodborne isolates of S. aureus present a considerable threat to consumers due to their production of virulence factors, which enhance their pathogenicity and increase the likelihood of antibiotic treatment failures.
Collapse
Affiliation(s)
- Debora Pinamonti
- University of Udine, Department of Agricultural, Food, Environmental and Animal Science, 33100 Udine, Italy
| | - Marisa Manzano
- University of Udine, Department of Agricultural, Food, Environmental and Animal Science, 33100 Udine, Italy.
| | - Michela Maifreni
- University of Udine, Department of Agricultural, Food, Environmental and Animal Science, 33100 Udine, Italy
| | - Silvia Bianco
- University of Udine, Department of Agricultural, Food, Environmental and Animal Science, 33100 Udine, Italy
| | - Beki Domi
- University of Udine, Department of Agricultural, Food, Environmental and Animal Science, 33100 Udine, Italy
| | - Alessia Ferrin
- University of Udine, Department of Agricultural, Food, Environmental and Animal Science, 33100 Udine, Italy
| | - Jamila Anba-Mondoloni
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78352 Jouy en Josas, France
| | - Julien Dechamps
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78352 Jouy en Josas, France
| | - Roman Briandet
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78352 Jouy en Josas, France
| | - Jasmina Vidic
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78352 Jouy en Josas, France.
| |
Collapse
|
7
|
Codjoe FS, Kotey FCN, Donkor ES. Profile of outer membrane proteins of carbapenem-resistant Gram-negative bacilli in Ghana. BMC Res Notes 2025; 18:49. [PMID: 39893361 PMCID: PMC11786416 DOI: 10.1186/s13104-024-07070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
OBJECTIVE Carbapenem resistance is a major global health threat, but insights on its molecular determinants are scanty in sub-Saharan Africa, the predominant global antimicrobial resistance hotspot. This study aimed to profile outer membrane proteins (OMPs) of 111 carbapenem-resistant Gram-negative bacteria recovered from a broad spectrum of clinical specimens from Ghana. RESULTS The OMPs of Pseudomonas aeruginosa produced decreased amounts of OprD or the porin was completely lost, except in 5.9% (n = 3) of the isolates which had high-level porins. For Acinetobacter baumannii, 96.8% (n = 30) expressed loss of OprF. One carbapenemase non-PCR-positive isolate with high-level porin expression was observed. In A. baumannii, the major and significant band on SDS-PAGE was ~ 35 kDa. There were substantial numbers of unrelated porin expression among the isolates. Particularly, OmpC/F or OmpK35/37 expression was deficient. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis for Escherichia coli, Klebsiella aerogenes, Klebsiella pneumoniae, and other Enterobacterales had OmpC and OmpF absent or markedly reduced compared to the control strains. Overall, porin loss was a major mechanism underlying carbapenem resistance among the isolates, suggesting that in carbapenem-resistant organisms that seem to lack known carbapenem resistance genes, porin loss may be the underlying carbapenem resistance mechanism.
Collapse
Affiliation(s)
- Francis S Codjoe
- Department of Medical Laboratory Sciences, School of Biomedical & Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
- Biomolecular Science Research Centre, Sheffield Hallam University, Sheffield, England, UK
| | - Fleischer C N Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P. O. Box KB 4236, Accra, 00233, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P. O. Box KB 4236, Accra, 00233, Ghana.
| |
Collapse
|
8
|
Kharga K, Jha S, Vishwakarma T, Kumar L. Current developments and prospects of the antibiotic delivery systems. Crit Rev Microbiol 2025; 51:44-83. [PMID: 38425122 DOI: 10.1080/1040841x.2024.2321480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms via which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.
Collapse
Affiliation(s)
- Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Shubhang Jha
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Tanvi Vishwakarma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| |
Collapse
|
9
|
Carneiro RF, Tabosa PAS, Cândido JGS, Menezes VPP, Rocha Júnior PAV, Andrade AL, Vasconcelos MA, Teixeira EH, Nagano CS, Sampaio AH. Toward Enhanced Antibiotic Efficacy: Exploring the Synergistic Potential of Marine-Derived Lectins Against Human Pathogenic Bacteria. AN ACAD BRAS CIENC 2024; 96:e20240072. [PMID: 39661826 DOI: 10.1590/0001-3765202420240072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/15/2024] [Indexed: 12/13/2024] Open
Abstract
This study aimed to assess the combined antibacterial effect of lectins and antibiotics on S. aureus ATCC 25923, multidrug-resistant E. coli ATCC 11303 and S. aureus ATCC 700698. Using the checkerboard assay, we evaluated the antibacterial effects of eight lectins isolated from marine organisms combined with two common antibiotics, oxacillin and tetracycline, on three virulent bacterial strains. Initially, none of the tested lectins exhibited antibacterial effects when used individually. However, when combined with antibiotics, the lectins exhibited synergistic, additive, antagonistic, or no interaction. Overall, the tested lectins alone had no effect on the efficacy of oxacillin. On the other hand, different lectins in combination with tetracycline potentiated its antimicrobial effect. Lectins from red algae of the Bryothamnium genus, for example, exhibited the most significant synergistic effects, reducing the minimum inhibitory concentration (MIC) of tetracycline by up to 16 times. Lectins from the Hypnea genus also reduced the MIC of tetracycline. Our findings suggest that some lectins binding to complex carbohydrates containing fucosylated cores (α1-6) are excellent candidates to boost the efficacy of some antibiotics.
Collapse
Affiliation(s)
- Rômulo F Carneiro
- Universidade Federal do Ceará, Departamento de Engenharia de Pesca, Laboratório de Biotecnologia Marinha - BioMar-Lab, Campus do Pici, s/n, Bloco 871, 60440-970 Fortaleza, CE, Brazil
| | - Pedro Arthur S Tabosa
- Universidade Federal do Ceará, Departamento de Engenharia de Pesca, Laboratório de Biotecnologia Marinha - BioMar-Lab, Campus do Pici, s/n, Bloco 871, 60440-970 Fortaleza, CE, Brazil
| | - José Gabriel S Cândido
- Universidade Federal do Ceará, Departamento de Engenharia de Pesca, Laboratório de Biotecnologia Marinha - BioMar-Lab, Campus do Pici, s/n, Bloco 871, 60440-970 Fortaleza, CE, Brazil
| | - Vinícius Paulino P Menezes
- Universidade Federal do Ceará, Departamento de Engenharia de Pesca, Laboratório de Biotecnologia Marinha - BioMar-Lab, Campus do Pici, s/n, Bloco 871, 60440-970 Fortaleza, CE, Brazil
| | - Pedro Abilio V Rocha Júnior
- Universidade Federal do Ceará, Departamento de Engenharia de Pesca, Laboratório de Biotecnologia Marinha - BioMar-Lab, Campus do Pici, s/n, Bloco 871, 60440-970 Fortaleza, CE, Brazil
| | - Alexandre L Andrade
- Universidade Federal do Ceará, Departamento de Patologia e Medicina Legal, Laboratório Integrado de Biomoléculas - LIBS, Monsenhor Furtado, s/n, 60430-160 Fortaleza, CE, Brazil
| | - Mayron A Vasconcelos
- Universidade Federal do Ceará, Departamento de Patologia e Medicina Legal, Laboratório Integrado de Biomoléculas - LIBS, Monsenhor Furtado, s/n, 60430-160 Fortaleza, CE, Brazil
- Universidade Estadual do Ceará, Faculdade de Educação de Itapipoca (Facedi), Av. da Universidade, s/n, 62500-000 Itapipoca, CE, Brazil
| | - Edson H Teixeira
- Universidade Estadual do Ceará, Faculdade de Educação de Itapipoca (Facedi), Av. da Universidade, s/n, 62500-000 Itapipoca, CE, Brazil
| | - Celso S Nagano
- Universidade Federal do Ceará, Departamento de Engenharia de Pesca, Laboratório de Biotecnologia Marinha - BioMar-Lab, Campus do Pici, s/n, Bloco 871, 60440-970 Fortaleza, CE, Brazil
| | - Alexandre H Sampaio
- Universidade Federal do Ceará, Departamento de Engenharia de Pesca, Laboratório de Biotecnologia Marinha - BioMar-Lab, Campus do Pici, s/n, Bloco 871, 60440-970 Fortaleza, CE, Brazil
| |
Collapse
|
10
|
Guo J, Xu Q, Zhong Y, Su Y. N-acetylcysteine promotes doxycycline resistance in the bacterial pathogen Edwardsiella tarda. Virulence 2024; 15:2399983. [PMID: 39239906 PMCID: PMC11409502 DOI: 10.1080/21505594.2024.2399983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 09/07/2024] Open
Abstract
Bacterial resistance poses a significant threat to both human and animal health. N-acetylcysteine (NAC), which is used as an anti-inflammatory, has been shown to have distinct and contrasting impacts on bacterial resistance. However, the precise mechanism underlying the relationship between NAC and bacterial resistance remains unclear and requires further investigation. In this study, we study the effect of NAC on bacterial resistance and the underlying mechanisms. Specifically, we examine the effects of NAC on Edwardsiella tarda ATCC15947, a pathogen that exhibits resistance to many antibiotics. We find that NAC can promote resistance of E. tarda to many antibiotics, such as doxycycline, resulting in an increase in the bacterial survival rate. Through proteomic analysis, we demonstrate that NAC activates the amino acid metabolism pathway in E. tarda, leading to elevated intracellular glutathione (GSH) levels and reduced reactive oxygen species (ROS). Additionally, NAC reduces antibiotic influx while enhancing efflux, thus maintaining low intracellular antibiotic concentrations. We also propose that NAC promotes protein aggregation, thus contributing to antibiotic resistance. Our study describes the mechanism underlying E. tarda resistance to doxycycline and cautions against the indiscriminate use of metabolite adjuvants.
Collapse
Affiliation(s)
- Juan Guo
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Qingqiang Xu
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Yilin Zhong
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Do DT, Yang MR, Vo TNS, Le NQK, Wu YW. Unitig-centered pan-genome machine learning approach for predicting antibiotic resistance and discovering novel resistance genes in bacterial strains. Comput Struct Biotechnol J 2024; 23:1864-1876. [PMID: 38707536 PMCID: PMC11067008 DOI: 10.1016/j.csbj.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/13/2024] [Accepted: 04/13/2024] [Indexed: 05/07/2024] Open
Abstract
In current genomic research, the widely used methods for predicting antimicrobial resistance (AMR) often rely on prior knowledge of known AMR genes or reference genomes. However, these methods have limitations, potentially resulting in imprecise predictions owing to incomplete coverage of AMR mechanisms and genetic variations. To overcome these limitations, we propose a pan-genome-based machine learning approach to advance our understanding of AMR gene repertoires and uncover possible feature sets for precise AMR classification. By building compacted de Brujin graphs (cDBGs) from thousands of genomes and collecting the presence/absence patterns of unique sequences (unitigs) for Pseudomonas aeruginosa, we determined that using machine learning models on unitig-centered pan-genomes showed significant promise for accurately predicting the antibiotic resistance or susceptibility of microbial strains. Applying a feature-selection-based machine learning algorithm led to satisfactory predictive performance for the training dataset (with an area under the receiver operating characteristic curve (AUC) of > 0.929) and an independent validation dataset (AUC, approximately 0.77). Furthermore, the selected unitigs revealed previously unidentified resistance genes, allowing for the expansion of the resistance gene repertoire to those that have not previously been described in the literature on antibiotic resistance. These results demonstrate that our proposed unitig-based pan-genome feature set was effective in constructing machine learning predictors that could accurately identify AMR pathogens. Gene sets extracted using this approach may offer valuable insights into expanding known AMR genes and forming new hypotheses to uncover the underlying mechanisms of bacterial AMR.
Collapse
Affiliation(s)
- Duyen Thi Do
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Ren Yang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Tran Nam Son Vo
- Department of Business Administration, College of Management, Lunghwa University of Science and Technology, Taoyuan City, Taiwan
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
12
|
Bastos MLC, Adido HEF, Martins de Brito AK, Chagas CKS, Castro ALG, Ferreira GG, Nascimento PHC, Padilha WRDS, Sarmento RM, Garcia VV, Marinho AMDR, Marinho PSB, Rocha de Oliveira JA, Vale VV, Percário S, Dolabela MF. Eleutherin and Isoeleutherin Activity against Staphylococcus aureus and Escherichia coli Strain's: Molecular Docking and Antibacterial Evaluation. Int J Mol Sci 2024; 25:12583. [PMID: 39684295 DOI: 10.3390/ijms252312583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 12/18/2024] Open
Abstract
Naphthoquinones eleutherin and isoeleutherin have demonstrated promising antibacterial activity, probably due to their quinone structure, which can generate reactive oxygen species. The study examines the activities of pathogens, such as Staphylococcus aureus and Escherichia coli, associated with antimicrobial resistance and explores their potential mechanisms of action. The MIC, IC50, and MBC were determined. PharmMapper 2017 server and GOLD 2020.1 software were utilized for molecular docking to identify protein targets and interaction mechanisms. The docking predictions were verified by redocking, focusing on structures with RMSD below 2 Å. The molecular docking revealed a significant affinity of eleutherin for the peptide, transcriptional regulator QacR, and regulatory protein BlaR1 with better interactions with BlaR1 than the crystallographic ligand (benzylpenicillin). Isoeleutherin demonstrated specific interactions with methionine aminopeptidase, indicating specificity and affinity. In summary, the difference in naphthoquinones activities may be related to structural differences. Eleutherin exhibits potential as a therapeutic adjuvant to reverse bacterial resistance in S. aureus, suggesting this molecule interferes with the antibiotic resistance mechanism. The absence of homologous proteins or variations in the structure of the target proteins could be the cause of the inactivity against E. coli.
Collapse
Affiliation(s)
| | | | | | | | - Ana Laura Gadelha Castro
- Postgraduate Program in Pharmaceutical Innovation, Federal University of Para, Belém 66075-110, PA, Brazil
| | - Gleison Gonçalves Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Para, Belém 66075-110, PA, Brazil
| | | | | | | | | | | | | | | | - Valdicley Vieira Vale
- Postgraduate Program in Pharmaceutical Innovation, Federal University of Para, Belém 66075-110, PA, Brazil
| | - Sandro Percário
- Biodiversity and Biotechnology Bionorte Network, Federal University of Para, Belém 66075-110, PA, Brazil
| | - Maria Fâni Dolabela
- Biodiversity and Biotechnology Bionorte Network, Federal University of Para, Belém 66075-110, PA, Brazil
- Faculty of Pharmacy, Federal University of Para, Belém 66075-110, PA, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Para, Belém 66075-110, PA, Brazil
- Postgraduate Program in Pharmaceutical Innovation, Federal University of Para, Belém 66075-110, PA, Brazil
| |
Collapse
|
13
|
Li F, Xu T, Fang D, Wang Z, Liu Y. Inosine reverses multidrug resistance in Gram-negative bacteria carrying mobilized RND-type efflux pump gene cluster tmexCD-toprJ. mSystems 2024; 9:e0079724. [PMID: 39254032 PMCID: PMC11495011 DOI: 10.1128/msystems.00797-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Antimicrobial resistance is rapidly increasing worldwide, highlighting the urgent need for pharmaceutical and nonpharmaceutical interventions to tackle different-to-treat bacterial infections. Tigecycline, a semi-synthesis glycylcycline for parenteral administration, is widely recognized as one of the few effective therapies available against pan-drug resistant Gram-negative pathogens. Regrettably, the efficacy of multiple drugs, including tigecycline, is currently being undermined due to the emergence of a recently discovered mobilized resistance-nodulation-division-type efflux pump gene cluster tmexCD1-toprJ1. Herein, by employing untargeted metabolomic approaches, we reveal that the expression of tmexCD1-toprJ1 disrupts bacterial purine metabolism, with inosine being identified as a crucial biomarker. Notably, the supplementation of inosine effectively reverses tigecycline resistance in tmexCD1-toprJ1-positive bacteria. Mechanistically, exogenous inosine enhanced bacterial proton motive force, which promotes the uptake of tigecycline. Furthermore, inosine enhances succinate biosynthesis by stimulating the tricarboxylic acid cycle. Succinate interacts with the two-component system EnvZ/OmpR and upregulates OmpK 36, thereby promoting the influx of tigecycline. These actions collectively lead to the increased intracellular accumulation of tigecycline. Overall, our study offers a distinct combinational strategy to manage infections caused by tmexCD-toprJ-positive bacteria. IMPORTANCE TMexCD1-TOprJ1, a mobilized resistance-nodulation-division-type efflux pump, confers phenotypic resistance to multiple classes of antibiotics. Nowadays, tmexCD-toprJ has disseminated among diverse species of clinical pathogens, exacerbating the need for novel anti-infective strategies. In this study, we report that tmexCD1-toprJ1-negative and -positive bacteria exhibit significantly different metabolic flux and characteristics, especially in purine metabolism. Intriguingly, the addition of inosine, a purine metabolite, effectively restores the antibacterial activity of tigecycline by promoting antibiotic uptake. Our findings highlight the correlation between bacterial mechanism and antibiotic resistance, and offer a distinct approach to overcome tmexCD-toprJ-mediated multidrug resistance.
Collapse
Affiliation(s)
- Fulei Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tianqi Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dan Fang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Zhou X, Wang M, Wang Y, Liu J, Zhang C, Pan J, Peng Q. Albumin as a functional carrier solubilizing and facilitating fusidic acid transmembrane delivery into Gram-negative bacteria. Int J Biol Macromol 2024; 277:134019. [PMID: 39059524 DOI: 10.1016/j.ijbiomac.2024.134019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Reversing the bacterial resistance is of great significance and importance. Fusidic acid (FA) is commonly effective against Gram-positive bacterial infections, but most Gram-negative bacteria have intrinsic resistance to FA, primarily due to the strong cell membrane-FA interactions, which highly inhibit the intracellular transport of FA. Herein, we use albumin (bovine serum albumin, BSA) as a bifunctional carrier to solubilize FA and facilitate its transmembrane delivery into Gram-negative bacterial cells. The water solubility of FA is significantly enhanced from 11.87 to 442.20 μg/mL by 5 mg/mL BSA after forming FA-BSA complex. Furthermore, FA-BSA (200 μg/mL) causes 99.96 % viability loss to the model pathogen E. coli upon incubation for 3 h, while free FA or BSA alone shows little activity. Elongation of E. coli cells after treated by FA-BSA is demonstrated by SEM, and the transmembrane transport of FA-BSA is demonstrated by CLSM. Interestingly, increasing the BSA amount substantially reduce the antibacterial activity of FA-BSA, implying an albumin-based transmembrane delivery mechanism may exist. This is the first report regarding successfully reversing the intrinsic resistance of Gram-negative bacteria to FA in the form of FA-BSA. The ready availability of albumin and the simple preparation allows FA-BSA to have great potentials for clinical use.
Collapse
Affiliation(s)
- Xueer Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jianhong Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chaoliang Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
15
|
Oliveira M, Antunes W, Mota S, Madureira-Carvalho Á, Dinis-Oliveira RJ, Dias da Silva D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024; 12:1920. [PMID: 39338594 PMCID: PMC11434382 DOI: 10.3390/microorganisms12091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR), frequently considered a major global public health threat, requires a comprehensive understanding of its emergence, mechanisms, advances, and implications. AMR's epidemiological landscape is characterized by its widespread prevalence and constantly evolving patterns, with multidrug-resistant organisms (MDROs) creating new challenges every day. The most common mechanisms underlying AMR (i.e., genetic mutations, horizontal gene transfer, and selective pressure) contribute to the emergence and dissemination of new resistant strains. Therefore, mitigation strategies (e.g., antibiotic stewardship programs-ASPs-and infection prevention and control strategies-IPCs) emphasize the importance of responsible antimicrobial use and surveillance. A One Health approach (i.e., the interconnectedness of human, animal, and environmental health) highlights the necessity for interdisciplinary collaboration and holistic strategies in combating AMR. Advancements in novel therapeutics (e.g., alternative antimicrobial agents and vaccines) offer promising avenues in addressing AMR challenges. Policy interventions at the international and national levels also promote ASPs aiming to regulate antimicrobial use. Despite all of the observed progress, AMR remains a pressing concern, demanding sustained efforts to address emerging threats and promote antimicrobial sustainability. Future research must prioritize innovative approaches and address the complex socioecological dynamics underlying AMR. This manuscript is a comprehensive resource for researchers, policymakers, and healthcare professionals seeking to navigate the complex AMR landscape and develop effective strategies for its mitigation.
Collapse
Affiliation(s)
- Manuela Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Wilson Antunes
- Instituto Universitário Militar, CINAMIL, Unidade Militar Laboratorial de Defesa Biológica e Química, Avenida Doutor Alfredo Bensaúde, 4 piso, do LNM, 1849-012 Lisbon, Portugal
| | - Salete Mota
- ULSEDV—Unidade Local De Saúde De Entre Douro Vouga, Unidade de Santa Maria da Feira e Hospital S. Sebastião, Rua Dr. Cândido Pinho, 4520-211 Santa Maria da Feira, Portugal
| | - Áurea Madureira-Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Avenida Dr. Mário Moutinho 33-A, 1400-136 Lisbon, Portugal
| | - Diana Dias da Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- REQUIMTE/LAQV, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
16
|
Ibne Shoukani H, Nisa S, Bibi Y, Ishfaq A, Ali A, Alharthi S, Kubra KT, Zia M. Green synthesis of polyethylene glycol coated, ciprofloxacin loaded CuO nanoparticles and its antibacterial activity against Staphylococcus aureus. Sci Rep 2024; 14:21246. [PMID: 39261712 PMCID: PMC11390890 DOI: 10.1038/s41598-024-72322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Antibacterial resistance requires an advanced strategy to increase the efficacy of current therapeutics in addition to the synthesis of new generations of antibiotics. In this study, copper oxide nanoparticles (CuO-NPs) were green synthesized using Moringa oleifera root extract. CuO-NPs fabricated into a form of aspartic acid-ciprofloxacin-polyethylene glycol coated copper oxide-nanotherapeutics (CIP-PEG-CuO) to improve the antibacterial activity of NPs and the efficacy of the drug with controlled cytotoxicity. These NPs were charachterized by Fourier transform infrared spectroscopy (FTIR), x-rays diffraction spectroscopy (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). Antibacterial screening and bacterial chemotaxis investigations demonstrated that CIP-PEG-CuO NPs show enhanced antibacterial potential against Gram-positive and Gram-negative clinically isolated pathogenic bacterial strains as compared to CuO-NPs. In ex-vivo cytotoxicity CIP-PEG-CuO-nano-formulates revealed 88% viability of Baby Hamster Kidney 21 cell lines and 90% RBCs remained intact with nano-formulations during hemolysis assay. An in-vivo studies on animal models show that Staphylococcus aureus were eradicated by this newly developed formulate from the infected skin and showed wound-healing properties. By using specially designed nanoparticles that are engineered to precisely transport antimicrobial agents, these efficient nano-drug delivery systems can target localized infections, ensure targeted delivery, enhance efficacy through increased drug penetration through physical barriers, and reduce systemic side effects for more effective treatment.
Collapse
Affiliation(s)
| | - Sobia Nisa
- Department of Microbiology, The University of Haripur, Haripur, 22620, Pakistan.
| | - Yamin Bibi
- Department of Botany, Rawalpindi Women University, Rawalpindi, 4600, Pakistan
| | - Afsheen Ishfaq
- Department of Medicine, FRPMC/PAF Hospital Faisal, Karachi, 75350, Pakistan
| | - Ashraf Ali
- Department of Chemistry, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur, 22780, Pakistan.
- School of Chemistry & Chemical Engineering , Henan University of Technology, Zhengzhou, 450001, China.
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
- Research Center of Basic Sciences, Engineering and High Altitude, Taif University, 21944, Taif, Saudi Arabia
| | - Khudija Tul Kubra
- Department of Microbiology, The University of Haripur, Haripur, 22620, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
17
|
Paudel R, Shrestha E, Chapagain B, Tiwari BR. Carbapenemase producing Gram negative bacteria: Review of resistance and detection methods. Diagn Microbiol Infect Dis 2024; 110:116370. [PMID: 38924837 DOI: 10.1016/j.diagmicrobio.2024.116370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Gram negative bacilli that are carbapenem resistant have emerged and are spreading worldwide. Infections caused by carbapenem resistant isolates posses a significant threat due to their high morbidity and mortality rates. Carbapenemases production by multi-drug resistant pathogens severely restricts treatment choices for illnesses caused by bacteria that are resistant to both carbapenems and majority of β-lactam antibiotics. Various phenotypic and genotypic methods for identification can distinguish between different classes of carbapenemase and identify pathogens that are resistant to carbapenems. The establishment of a quick, accurate and reliable test for identifying the clinical strains that produce the carbapenemase enzyme is essential for optimum diagnosis of microbial pathogens and management of the global rise in the prevalence of carbapenemase producing bacterial strains. The aim of this review was to summarize the mechanisms of carbapenem resistance and to provide an overview of different carbapenemase detection methods for carbapenem resistant Gram negative bacilli.
Collapse
Affiliation(s)
- Rajan Paudel
- School of Health and Allied Sciences, Pokhara University, Pokhara, Nepal.
| | - Elina Shrestha
- School of Health and Allied Sciences, Pokhara University, Pokhara, Nepal
| | - Bipin Chapagain
- School of Health and Allied Sciences, Pokhara University, Pokhara, Nepal
| | - Bishnu Raj Tiwari
- School of Health and Allied Sciences, Pokhara University, Pokhara, Nepal
| |
Collapse
|
18
|
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, Abebe RB, Gedif AA, Fenta A, Yirdaw G, Tilahun A, Aschale Y. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Front Pharmacol 2024; 15:1444781. [PMID: 39221153 PMCID: PMC11362070 DOI: 10.3389/fphar.2024.1444781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Antibacterial drug resistance poses a significant challenge to modern healthcare systems, threatening our ability to effectively treat bacterial infections. This review aims to provide a comprehensive overview of the types and mechanisms of antibacterial drug resistance. To achieve this aim, a thorough literature search was conducted to identify key studies and reviews on antibacterial resistance mechanisms, strategies and next-generation antimicrobials to contain antimicrobial resistance. In this review, types of resistance and major mechanisms of antibacterial resistance with examples including target site modifications, decreased influx, increased efflux pumps, and enzymatic inactivation of antibacterials has been discussed. Moreover, biofilm formation, and horizontal gene transfer methods has also been included. Furthermore, measures (interventions) taken to control antimicrobial resistance and next-generation antimicrobials have been discussed in detail. Overall, this review provides valuable insights into the diverse mechanisms employed by bacteria to resist the effects of antibacterial drugs, with the aim of informing future research and guiding antimicrobial stewardship efforts.
Collapse
Affiliation(s)
- Wubetu Yihunie Belay
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of clinical pharmacy, College of medicine and health sciences, University of Gondar, Gondar, Ethiopia
| | - Abebaw Abie Gedif
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of environmental health science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Tilahun
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
19
|
Jung HS, Park YJ, Gu BH, Han G, Ji W, Hwang SM, Kim M. Coumarin derivatives ameliorate the intestinal inflammation and pathogenic gut microbiome changes in the model of infectious colitis through antibacterial activity. Front Cell Infect Microbiol 2024; 14:1362773. [PMID: 39081865 PMCID: PMC11287663 DOI: 10.3389/fcimb.2024.1362773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Coumarin, a phenolic compound, is a secondary metabolite produced by plants such as Tanga and Lime. Coumarin derivatives were prepared via Pechmann condensation. In this study, we performed in vitro and in vivo experiments to determine the antimicrobial and gut immune-regulatory functions of coumarin derivatives. For the in vitro antimicrobial activity assay, coumarin derivatives C1 and C2 were selected based on their pathogen-killing activity against various pathogenic microbes. We further demonstrated that the selected coumarin derivatives disrupted bacterial cell membranes. Next, we examined the regulatory function of the coumarin derivatives in gut inflammation using an infectious colitis model. In an in vivo infectious colitis model, administration of selected C1 coumarin derivatives reduced pathogen loads, the number of inflammatory immune cells (Th1 cells and Th17 cells), and inflammatory cytokine levels (IL-6 and IL-1b) in the intestinal tissue after pathogen infection. In addition, we found that the administration of C1 coumarin derivatives minimized abnormal gut microbiome shift-driven pathogen infection. Potential pathogenic gut microbes, such as Enterobacteriaceae and Staphylococcaceae, were increased by pathogen infection. However, this pathogenic microbial expansion was minimized and beneficial bacteria, such as Ligilactobacillus and Limosilactobacillus, increased with C1 coumarin derivative treatment. Functional gene enrichment assessment revealed that the relative abundance of genes associated with lipid and nucleotide metabolism was reduced by pathogen infection; however, this phenomenon was not observed in C1 coumarin derivative-treated animals. Collectively, our data suggest that C1 coumarin derivative is effective antibacterial agents that minimize pathogen-induced gut inflammation and abnormal gut microbiome modulation through their antibacterial activity.
Collapse
Affiliation(s)
- Hui-su Jung
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Yei Ju Park
- R & D Center, EyeGene, Goyang, Republic of Korea
| | - Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Goeun Han
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
- Future Earth Research Institute, PNU JYS Science Academy, Pusan National University, Busan, Republic of Korea
| | - Woonhak Ji
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Su mi Hwang
- Department of Biomedical Laboratory Science, College of Health and Medical Science, Sangji University, Wonju, Republic of Korea
| | - Myunghoo Kim
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
- Future Earth Research Institute, PNU JYS Science Academy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
20
|
Hazra M, Watts JEM, Williams JB, Joshi H. An evaluation of conventional and nature-based technologies for controlling antibiotic-resistant bacteria and antibiotic-resistant genes in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170433. [PMID: 38286289 DOI: 10.1016/j.scitotenv.2024.170433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Antibiotic resistance is a globally recognized health concern which leads to longer hospital stays, increased morbidity, increased mortality, and higher medical costs. Understanding how antibiotic resistance persists and exchanges in environmental systems like soil, water, and wastewater are critically important for understanding the emergence of pathogens with new resistance profiles and the subsequent exposure of people who indirectly/directly come in contact with these pathogens. There are concerns about the widespread application of prophylactic antibiotics in the clinical and agriculture sectors, as well as chemicals/detergents used in food and manufacturing industries, especially the quaternary ammonium compounds which have been found responsible for the generation of resistant genes in water and soil. The rates of horizontal gene transfer increase where there is a lack of proper water/wastewater infrastructure, high antibiotic manufacturing industries, or endpoint users - such as hospitals and intensive agriculture. Conventional wastewater treatment technologies are often inefficient in the reduction of ARB/ARGs and provide the perfect combination of conditions for the development of antibiotic resistance. The wastewater discharged from municipal facilities may therefore be enriched with bacterial communities/pathogens and provide a suitable environment (due to the presence of nutrients and other pollutants) to enhance the transfer of antibiotic resistance. However, facilities with tertiary treatment (either traditional/emerging technologies) provide higher rates of reduction. This review provides a synthesis of the current understanding of wastewater treatment and antibiotic resistance, examining the drivers that may accelerate their possible transmission to a different environment, and highlighting the need for tertiary technologies used in treatment plants for the reduction of resistant bacteria/genes.
Collapse
Affiliation(s)
- Moushumi Hazra
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India; International Water Management Institute, New Delhi, India; Civil and Environmental Engineering, University of Nebraska Lincoln, United States.
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, United Kingdom
| | - John B Williams
- School of Civil Engineering and Surveying, University of Portsmouth, United Kingdom
| | - Himanshu Joshi
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| |
Collapse
|
21
|
Baquero F, Beis K, Craik DJ, Li Y, Link AJ, Rebuffat S, Salomón R, Severinov K, Zirah S, Hegemann JD. The pearl jubilee of microcin J25: thirty years of research on an exceptional lasso peptide. Nat Prod Rep 2024; 41:469-511. [PMID: 38164764 DOI: 10.1039/d3np00046j] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Covering: 1992 up to 2023Since their discovery, lasso peptides went from peculiarities to be recognized as a major family of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products that were shown to be spread throughout the bacterial kingdom. Microcin J25 was first described in 1992, making it one of the earliest known lasso peptides. No other lasso peptide has since then been studied to such an extent as microcin J25, yet, previous review articles merely skimmed over all the research done on this exceptional lasso peptide. Therefore, to commemorate the 30th anniversary of its first report, we give a comprehensive overview of all literature related to microcin J25. This review article spans the early work towards the discovery of microcin J25, its biosynthetic gene cluster, and the elucidation of its three-dimensional, threaded lasso structure. Furthermore, the current knowledge about the biosynthesis of microcin J25 and lasso peptides in general is summarized and a detailed overview is given on the biological activities associated with microcin J25, including means of self-immunity, uptake into target bacteria, inhibition of the Gram-negative RNA polymerase, and the effects of microcin J25 on mitochondria. The in vitro and in vivo models used to study the potential utility of microcin J25 in a (veterinary) medicine context are discussed and the efforts that went into employing the microcin J25 scaffold in bioengineering contexts are summed up.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
- Network Center for Research in Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, UK
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, 4072 Brisbane, Queensland, Australia
| | - Yanyan Li
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - A James Link
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sylvie Rebuffat
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Raúl Salomón
- Instituto de Química Biológica "Dr Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán, Argentina
| | - Konstantin Severinov
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Séverine Zirah
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
22
|
Xu Y, Wang H, Ye S, Liang Z, Chen Z, Wang X, Zhou L, Yan B. Goethite adaptation prompts alterations in antibiotic susceptibility and suppresses development of antibiotic resistance in bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170248. [PMID: 38244632 DOI: 10.1016/j.scitotenv.2024.170248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Understanding the impact of environmental factors on antibiotic sensitivity and the emergence of antibiotic resistance in microorganism is crucial for antibiotics management and environmental risk assessment. Natural materials, like mineral particles, are prevalent in aquatic and terrestrial ecosystems. However, it remains unclear how microorganism adapt to the physical stress of mineral particles and whether this adaptation influences antibiotic sensitivity and the evolution of antibiotic resistance. In this study, the model bacterium Escherichia coli (E. coli) was exposed to the mineral particle goethite for 30 generations. Adaptive morphogenesis, including an increase in the fraction of spherical bacteria, variations in bacterial mobility, a slightly increased cell membrane thickness, and genome-wide changes in the transcriptomic profile, were observed in adapted E. coli samples to counteract the stress. Moreover, the goethite adapted E. coli showed increased susceptibility to antibiotics including amoxicillin and tetracycline, and decreased susceptibility to kanamycin compared to its ancestral counterparts. These alterations in antibiotic susceptibility in the adapted E. coli were not heritable, as evidenced by the gradual recovery of antibiotic tolerance in cells with the cessation of goethite exposure. Transcriptomic data and a series of experiments suggested that these changes may be associated with variations in cell membrane property and iron metabolism. In addition, the evolution of antibiotic resistance in adapted cells occurred at a slower rate compared to their ancestral counterparts. For instance, E. coli adapted to goethite at a concentration of 1 mg/mL did not acquire antibiotic resistance even after 13 generations, probably due to its poor biofilm-formation capacity. Our findings underscore the occurrence of microbial adaptation to goethite, which influenced antibiotic sensitivity and decelerated the development of resistance in microorganisms. This insight contributes to our comprehension of the natural dynamics surrounding the evolution of antibiotic resistance and opens new perspectives for addressing this issue through nanotechnology-based approaches.
Collapse
Affiliation(s)
- Yongtao Xu
- Institute of Environmental Research at Great Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, PR China
| | - Haiqing Wang
- College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, Shandong 256600, China
| | - Sheng Ye
- Institute of Environmental Research at Great Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, PR China
| | - Zhenda Liang
- Institute of Environmental Research at Great Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, PR China
| | - Zhiquan Chen
- Institute of Environmental Research at Great Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, PR China
| | - Xiaohong Wang
- Institute of Environmental Research at Great Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, PR China.
| | - Li Zhou
- Institute of Environmental Research at Great Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, PR China.
| | - Bing Yan
- Institute of Environmental Research at Great Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, PR China
| |
Collapse
|
23
|
Abdel-Halim MS, El-Ganiny AM, Mansour B, Yahya G, Latif HKAE, Askoura M. Phenotypic, molecular, and in silico characterization of coumarin as carbapenemase inhibitor to fight carbapenem-resistant Klebsiella pneumoniae. BMC Microbiol 2024; 24:67. [PMID: 38413891 PMCID: PMC10898048 DOI: 10.1186/s12866-024-03214-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Carbapenems represent the first line treatment of serious infections caused by drug-resistant Klebsiella pneumoniae. Carbapenem-resistant K. pneumoniae (CRKP) is one of the urgent threats to human health worldwide. The current study aims to evaluate the carbapenemase inhibitory potential of coumarin and to test its ability to restore meropenem activity against CRKP. Disk diffusion method was used to test the antimicrobial susceptibility of K. pneumoniae clinical isolates to various antibiotics. Carbapenemase genes (NDM-1, VIM-2, and OXA-9) were detected using PCR. The effect of sub-MIC of coumarin on CRKP isolates was performed using combined disk assay, enzyme inhibition assay, and checkerboard assay. In addition, qRT-PCR was used to estimate the coumarin effect on expression of carbapenemase genes. Molecular docking was used to confirm the interaction between coumarin and binding sites within three carbapenemases. RESULTS K. pneumoniae clinical isolates were found to be multi-drug resistant and showed high resistance to meropenem. All bacterial isolates harbor at least one carbapenemase-encoding gene. Coumarin significantly inhibited carbapenemases in the crude periplasmic extract of CRKP. The checkerboard assay indicated that coumarin-meropenem combination was synergistic exhibiting a fractional inhibitory concentration index ≤ 0.5. In addition, qRT-PCR results revealed that coumarin significantly decreased carbapenemase-genes expression. Molecular docking revealed that the binding energies of coumarin to NDM1, VIM-2, OXA-48 and OXA-9 showed a free binding energy of -7.8757, -7.1532, -6.2064 and - 7.4331 Kcal/mol, respectively. CONCLUSION Coumarin rendered CRKP sensitive to meropenem as evidenced by its inhibitory action on hydrolytic activity and expression of carbapenemases. The current findings suggest that coumarin could be a possible solution to overcome carbapenems resistance in CRKP.
Collapse
Affiliation(s)
- Mahmoud Saad Abdel-Halim
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Amira M El-Ganiny
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Basem Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Galal Yahya
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Hemat K Abd El Latif
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Momen Askoura
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
24
|
Wang C, Zhang T, Wang Y, Wang Y, Pan H, Dong X, Liu S, Cao M, Wang S, Wang M, Li Y, Zhang J, Hu W. Proguanil and chlorhexidine augment the antibacterial activities of clarithromycin and rifampicin against Acinetobacter baumannii. Int J Antimicrob Agents 2024; 63:107065. [PMID: 38122947 DOI: 10.1016/j.ijantimicag.2023.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The emergence of Acinetobacter baumannii infections as a significant healthcare concern in hospital settings, coupled with their association with poorer clinical outcomes, has prompted extensive investigation into novel therapeutic agents and innovative treatment strategies. Proguanil and chlorhexidine, both categorized as biguanide compounds, have displayed clinical efficacy as antimalarial and topical antibacterial agents, respectively. In this study, we conducted an investigation to assess the effectiveness of combining proguanil and chlorhexidine with clarithromycin or rifampicin against both laboratory strains and clinical isolates of A. baumannii. The combination therapy demonstrated rapid bactericidal activity against planktonic multidrug-resistant A. baumannii, exhibiting efficacy in eradicating mature biofilms and impeding the development of antibiotic resistance in vitro. Additionally, when administered in conjunction with clarithromycin or rifampicin, proguanil enhanced the survival rate of mice afflicted with intraperitoneal A. baumannii infections, and chlorhexidine expedited wound healing in mice with skin infections. These findings are likely attributable to the disruption of A. baumannii cell membrane integrity by proguanil and chlorhexidine, resulting in heightened membrane permeability and enhanced intracellular accumulation of clarithromycin and rifampicin. Overall, this study underscores the potential of employing proguanil and chlorhexidine in combination with specific antibiotics to effectively combat A. baumannii infections and improve treatment outcomes in clinically challenging scenarios.
Collapse
Affiliation(s)
- Chuandong Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Tingting Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Yan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Yipeng Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Hongwei Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinyu Dong
- School of Life Science, Shandong University, Qingdao, Shandong, China
| | - Siyu Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Meng Cao
- Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Shuhua Wang
- Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Jian Zhang
- School of Life Science, Shandong University, Qingdao, Shandong, China.
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
25
|
Xie J, Yang J, Zhu S, Hou X, Chen H, Bai X, Zhang Z. Study on seed-borne cultivable bacterial diversity and antibiotic resistance of Poa pratensis L. Front Microbiol 2024; 15:1347760. [PMID: 38351918 PMCID: PMC10864108 DOI: 10.3389/fmicb.2024.1347760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
In order to study the difference of cultivable seed-borne bacterial diversity between commercial varieties and wild species of Poa pratensis L., and their antibiotic resistance to sulfadiazine, tetracycline, oxytetracycline, ciprofloxacin, gentamicin, oxytetracycline and rifampin. In this study, 60 bacterium isolates were isolated by dilution-coated plate method. Through 16S rRNA sequence analysis, 40 representative isolates with different morphological characteristics were identified and phylogenetic tree was constructed. The results of diversity analysis showed that the seed-borne bacterial diversity of commercial varieties was richer than that of wild species. The antibiotic resistance of the isolated bacterial strains was studied by agar dilution method, and it was concluded that the antibiotic resistance of the seed-borne bacteria carried by commercial varieties was stronger than that of the wild species. Finally, the biofilm formation ability and swimming motility of the bacterial strain were measured, and the correlation between the two and the antibiotic resistance of the bacterial strain was analyzed. The analysis showed that the antibiotic resistance of bacterial strains in Poa pratensis L. was significantly correlated with their swimming motility. In addition, the swimming motility of the bacterial strains was significantly correlated with the biofilm formation ability. It is worth mentioning that this is the first time to study the drug-resistant bacteria distributed in the seed-borne bacteria of Poa pratensis L.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhenfen Zhang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Ministry of Science and Technology, Pratacultural College, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
26
|
Hamad M, Al-Marzooq F, Srinivasulu V, Sulaiman A, Menon V, Ramadan WS, El-Awady R, Al-Tel TH. Antimicrobial activity of nature-inspired molecules against multidrug-resistant bacteria. Front Microbiol 2024; 14:1336856. [PMID: 38318129 PMCID: PMC10838778 DOI: 10.3389/fmicb.2023.1336856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
Multidrug-resistant bacterial infections present a serious challenge to global health. In addition to the spread of antibiotic resistance, some bacteria can form persister cells which are tolerant to most antibiotics and can lead to treatment failure or relapse. In the present work, we report the discovery of a new class of small molecules with potent antimicrobial activity against Gram-positive bacteria and moderate activity against Gram-negative drug-resistant bacterial pathogens. The lead compound SIMR 2404 had a minimal inhibitory concentration (MIC) of 2 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-intermediate Staphylococcus aureus (VISA). The MIC values against Gram-negative bacteria such as Escherichia coli and Actinobacteria baumannii were between 8-32 μg/mL. Time-kill experiments show that compound SIMR 2404 can rapidly kill tested bacteria. Compound SIMR 2404 was also found to rapidly kill MRSA persisters which display high levels of tolerance to conventional antibiotics. In antibiotic evolution experiments, MRSA quickly developed resistance to ciprofloxacin but failed to develop resistance to compound SIMR 2404 even after 24 serial passages. Compound SIMR 2404 was not toxic to normal human fibroblast at a concentration of 4 μg/mL which is twice the MIC concentration against MRSA. However, at a concentration of 8 μg/mL or higher, it showed cytotoxic activity indicating that it is not ideal as a candidate against Gram-negative bacteria. The acceptable toxicity profile and rapid antibacterial activity against MRSA highlight the potential of these molecules for further studies as anti-MRSA agents.
Collapse
Affiliation(s)
- Mohamad Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Farah Al-Marzooq
- College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Ashna Sulaiman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Varsha Menon
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Wafaa S. Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Raafat El-Awady
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb H. Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
27
|
Amorim J, Vásquez V, Cabrera A, Martínez M, Carpio J. In Silico and In Vitro Identification of 1,8-Dihydroxy-4,5-dinitroanthraquinone as a New Antibacterial Agent against Staphylococcus aureus and Enterococcus faecalis. Molecules 2023; 29:203. [PMID: 38202786 PMCID: PMC10779913 DOI: 10.3390/molecules29010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Increasing rates of bacterial resistance to antibiotics are a growing concern worldwide. The search for potential new antibiotics has included several natural products such as anthraquinones. However, comparatively less attention has been given to anthraquinones that exhibit functional groups that are uncommon in nature. In this work, 114 anthraquinones were evaluated using in silico methods to identify inhibitors of the enzyme phosphopantetheine adenylyltransferase (PPAT) of Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli. Virtual screenings based on molecular docking and the pharmacophore model, molecular dynamics simulations, and free energy calculations pointed to 1,8-dihydroxy-4,5-dinitroanthraquinone (DHDNA) as the most promising inhibitor. In addition, these analyses highlighted the contribution of the nitro group to the affinity of this anthraquinone for the nucleotide-binding site of PPAT. Furthermore, DHDNA was active in vitro towards Gram-positive bacteria with minimum inhibitory concentration (MIC) values of 31.25 µg/mL for S. aureus and 62.5 µg/mL for E. faecalis against both antibiotic-resistant isolates and reference strains but was ineffective against E. coli. Experiments on kill-time kinetics indicated that, at the tested concentrations, DHDNA produced bacteriostatic effects on both Gram-positive bacteria. Overall, our results present DHDNA as a potential PPAT inhibitor, showing antibacterial activity against antibiotic-resistant isolates of S. aureus and E. faecalis, findings that point to nitro groups as key to explaining these results.
Collapse
Affiliation(s)
| | | | | | | | - Juan Carpio
- Unidad de Salud y Bienestar, Facultad de Bioquímica y Farmacia, Universidad Católica de Cuenca, Av. Las Américas, Cuenca 010105, Ecuador
| |
Collapse
|
28
|
Guo H, Geddes EJ, Opperman TJ, Heuck AP. Cell-Based Assay to Determine Type 3 Secretion System Translocon Assembly in Pseudomonas aeruginosa Using Split Luciferase. ACS Infect Dis 2023; 9:2652-2664. [PMID: 37978950 DOI: 10.1021/acsinfecdis.3c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Multi-drug-resistant Pseudomonas aeruginosa poses a serious threat to hospitalized patients. This organism expresses an arsenal of virulence factors that enables it to readily establish infections and disseminate in the host. The Type 3 secretion system (T3SS) and its associated effectors play a crucial role in the pathogenesis of P. aeruginosa, making them attractive targets for the development of novel therapeutic agents. The T3SS translocon, composed of PopD and PopB, is an essential component of the T3SS secretion apparatus. In the properly assembled translocon, the N-terminus of PopD protrudes into the cytoplasm of the target mammalian cell, which can be exploited as a molecular indicator of functional translocon assembly. In this article, we describe a novel whole-cell-based assay that employs the split NanoLuc luciferase detection system to provide a readout for translocon assembly. The assay demonstrates a favorable signal/noise ratio (13.6) and robustness (Z' = 0.67), making it highly suitable for high-throughput screening of small-molecule inhibitors targeting T3SS translocon assembly.
Collapse
Affiliation(s)
- Hanling Guo
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Emily J Geddes
- Microbiotix, Inc., Worcester, Massachusetts 01605, United States
| | | | - Alejandro P Heuck
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
29
|
Akshay SD, Deekshit VK, Mohan Raj J, Maiti B. Outer Membrane Proteins and Efflux Pumps Mediated Multi-Drug Resistance in Salmonella: Rising Threat to Antimicrobial Therapy. ACS Infect Dis 2023; 9:2072-2092. [PMID: 37910638 DOI: 10.1021/acsinfecdis.3c00408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Despite colossal achievements in antibiotic therapy in recent decades, drug-resistant pathogens have remained a leading cause of death and economic loss globally. One such WHO-critical group pathogen is Salmonella. The extensive and inappropriate treatments for Salmonella infections have led from multi-drug resistance (MDR) to extensive drug resistance (XDR). The synergy between efflux-mediated systems and outer membrane proteins (OMPs) may favor MDR in Salmonella. Differential expression of the efflux system and OMPs (influx) and positional mutations are the factors that can be correlated to the development of drug resistance. Insights into the mechanism of influx and efflux of antibiotics can aid in developing a structurally stable molecule that can be proficient at escaping from the resistance loops in Salmonella. Understanding the strategic responsibilities and developing policies to address the surge of drug resistance at the national, regional, and global levels are the needs of the hour. In this Review, we attempt to aggregate all the available research findings and delineate the resistance mechanisms by dissecting the involvement of OMPs and efflux systems. Integrating major OMPs and the efflux system's differential expression and positional mutation in Salmonella may provide insight into developing strategic therapies for one health application.
Collapse
Affiliation(s)
- Sadanand Dangari Akshay
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Juliet Mohan Raj
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore-575018, India
| |
Collapse
|
30
|
Sohail M, Rahman HMAU, Asghar MN. Drug-ionic surfactant interactions: density, sound speed, spectroscopic, and electrochemical studies. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:735-747. [PMID: 37943328 DOI: 10.1007/s00249-023-01689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023]
Abstract
The failure of antibiotics against infectious diseases has become a global health issue due to the incessant use of antibiotics in the community and a lack of entry of new antibacterial drugs onto the market. The limited knowledge of biophysical interactions of existing antibiotics with bio-membranes is one of the major hurdles to design and develop more effective antibiotics. Surfactant systems are the simplest biological membrane models that not only mimic the cell membrane functions but are also used to investigate the biophysical interactions between pharmaceutical drugs and bio-membranes at the molecular level. In this work, volumetric and acoustic studies were used to investigate the molecular interactions of moxifloxacin (MXF), a potential antibacterial drug, with ionic surfactants (dodecyl-tri-methyl-ammonium bromide (DTAB), a cationic surfactant and sodium dodecyl sulfate (SDS), an anionic surfactant) under physiological conditions (phosphate buffer, pH 7.4) at T = 298.15-313.15 K at an interval of 5 K. Various volumetric and acoustic parameters were computed from the density and sound speed data and interpreted in terms of MXF-ionic surfactant interaction using electrostriction effect and co-sphere overlap model. Absorption spectroscopy and cyclic voltammetry were further used to determine the binding, partitioning, and related free energies of MXF with ionic micelles.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| | | | - Muhammad Nadeem Asghar
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan.
| |
Collapse
|
31
|
Septama AW, Yuandani Y, Khairunnisa NA, Nasution HR, Utami DS, Kristiana R, Jantan I. Antibacterial, bacteriolytic, antibiofilm, and synergistic effects of the peel oils of Citrus microcarpa and Citrus x amblycarpa with tetracycline against foodborne Escherichia coli. Lett Appl Microbiol 2023; 76:ovad126. [PMID: 37898554 DOI: 10.1093/lambio/ovad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 10/30/2023]
Abstract
Citrus essential oils (EOs) have shown significant antibacterial activity. The present study was undertaken to evaluate the antibacterial activity of the peel oils of Citrus microcarpa and C. x amblycarpa against Escherichia coli. The minimum inhibition concentration (MIC) was determined by using the broth microdilution assay. The checkerboard method was used to identify synergistic effects of the EOs with tetracycline, while bacteriolysis was assessed by calculating the optical density of the bacterial supernatant, crystal violet assay was used to assess their antibiofilm. Ethidium bromide accumulation test was employed to assess efflux pump inhibition. Electron microscope analysis was performed to observe its morphological changes. The EOs of C. microcarpa and C. x amblycarpa were found to contain D-limonene major compound at 55.78% and 46.7%, respectively. Citrus microcarpa EOs exhibited moderate antibacterial against E. coli with a MIC value of 200 μg/mL. The combination of C. microcarpa oil (7.8 μg/mL) and tetracycline (62.5 μg/mL) exhibited a synergy with FICI of 0.5. This combination inhibited biofilm formation and disrupt bacterial cell membranes. Citrus microcarpa EOs blocked the efflux pumps in E. coli. Citrus microcarpa EOs demonstrated promising antibacterial activity, which can be further explored for the development of drugs to combat E. coli.
Collapse
Affiliation(s)
- Abdi W Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten 15314, Indonesia
| | - Yuandani Yuandani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nur A Khairunnisa
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Halimah R Nasution
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Dinda S Utami
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rhesi Kristiana
- Marine Education and Research Organisation (MERO) Foundation. Br. Dinas Muntig, Kara 80853ngasem, Bali , Indonesia
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
32
|
Wu S, Ji J, Carole NVD, Yang J, Yang Y, Sun J, Ye Y, Zhang Y, Sun X. Combined metabolomics and transcriptomics analysis reveals the mechanism of antibiotic resistance of Salmonella enterica serovar Typhimurium after acidic stress. Food Microbiol 2023; 115:104328. [PMID: 37567621 DOI: 10.1016/j.fm.2023.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 08/13/2023]
Abstract
Drug-resistant Salmonella is widely distributed in the meat production chain, endangering food safety and public health. Acidification of meat products during processing can induce acid stress, which may alter antibiotic resistance. Our study investigated the effects of acid stress on the antibiotic resistance and metabolic profile of Salmonella Typhimurium, and explored the underlying mechanisms using metabolomic and transcriptomic analysis. We found that acid-stressed 14028s was more sensitive to small molecule hydrophobic antibiotics (SMHA) while more resistant to meropenem (MERO). Metabolomic analysis revealed that enhanced sensitivity to SMHA was correlated with increased purine metabolism and tricarboxylic acid cycle. Transcriptomic analysis revealed the downregulation of chemotaxis-related genes, which are also associated with SMHA sensitivity. We also found a significant downregulation of the ompF gene, which encodes a major outer membrane protein OmpF of Salmonella. The decreased expression of OmpF porin hindered the influx of MERO, leading to enhanced resistance of the bacteria to the drug. Our findings contribute to greatly improve the understanding of the relationship between Salmonella metabolism, gene expression, and changes in drug resistance after acid stress, while providing a structural framework for exploring the relationship between bacterial stress responses and antibiotic resistance.
Collapse
Affiliation(s)
- Shang Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Nanfack V D Carole
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou, 225000, China
| | - Yang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
33
|
Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MAA. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare (Basel) 2023; 11:1946. [PMID: 37444780 DOI: 10.3390/healthcare11131946] [Citation(s) in RCA: 246] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Antibiotics are among the most important discoveries of the 20th century, having saved millions of lives from infectious diseases. Microbes have developed acquired antimicrobial resistance (AMR) to many drugs due to high selection pressure from increasing use and misuse of antibiotics over the years. The transmission and acquisition of AMR occur primarily via a human-human interface both within and outside of healthcare facilities. A huge number of interdependent factors related to healthcare and agriculture govern the development of AMR through various drug-resistance mechanisms. The emergence and spread of AMR from the unrestricted use of antimicrobials in livestock feed has been a major contributing factor. The prevalence of antimicrobial-resistant bacteria has attained an incongruous level worldwide and threatens global public health as a silent pandemic, necessitating urgent intervention. Therapeutic options of infections caused by antimicrobial-resistant bacteria are limited, resulting in significant morbidity and mortality with high financial impact. The paucity in discovery and supply of new novel antimicrobials to treat life-threatening infections by resistant pathogens stands in sharp contrast to demand. Immediate interventions to contain AMR include surveillance and monitoring, minimizing over-the-counter antibiotics and antibiotics in food animals, access to quality and affordable medicines, vaccines and diagnostics, and enforcement of legislation. An orchestrated collaborative action within and between multiple national and international organizations is required urgently, otherwise, a postantibiotic era can be a more real possibility than an apocalyptic fantasy for the 21st century. This narrative review highlights on this basis, mechanisms and factors in microbial resistance, and key strategies to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Md Abdus Salam
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Md Yusuf Al-Amin
- Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Jogendra Singh Pawar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
- The Ohio State University Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Naseem Akhter
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mohammed A A Alqumber
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Albaha University, Al Baha 65431, Saudi Arabia
| |
Collapse
|
34
|
Le VV, Tran QG, Ko SR, Lee SA, Oh HM, Kim HS, Ahn CY. How do freshwater microalgae and cyanobacteria respond to antibiotics? Crit Rev Biotechnol 2023; 43:191-211. [PMID: 35189751 DOI: 10.1080/07388551.2022.2026870] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Antibiotic pollution is an emerging environmental challenge. Residual antibiotics from various sources, including municipal and industrial wastewater, sewage discharges, and agricultural runoff, are continuously released into freshwater environments, turning them into reservoirs that contribute to the development and spread of antibiotic resistance. Thus, it is essential to understand the impacts of antibiotic residues on aquatic organisms, especially microalgae and cyanobacteria, due to their crucial roles as primary producers in the ecosystem. This review summarizes the effects of antibiotics on major biological processes in freshwater microalgae and cyanobacteria, including photosynthesis, oxidative stress, and the metabolism of macromolecules. Their adaptive mechanisms to antibiotics exposure, such as biodegradation, bioadsorption, and bioaccumulation, are also discussed. Moreover, this review highlights the important factors affecting the antibiotic removal pathways by these organisms, which will promote the use of microalgae-based technology for the removal of antibiotics. Finally, we offer some perspectives on the opportunities for further studies and applications.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Quynh-Giao Tran
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Sang-Ah Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
35
|
Makvandi P, Song H, Yiu CKY, Sartorius R, Zare EN, Rabiee N, Wu WX, Paiva-Santos AC, Wang XD, Yu CZ, Tay FR. Bioengineered materials with selective antimicrobial toxicity in biomedicine. Mil Med Res 2023; 10:8. [PMID: 36829246 PMCID: PMC9951506 DOI: 10.1186/s40779-023-00443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
Fungi and bacteria afflict humans with innumerous pathogen-related infections and ailments. Most of the commonly employed microbicidal agents target commensal and pathogenic microorganisms without discrimination. To distinguish and fight the pathogenic species out of the microflora, novel antimicrobials have been developed that selectively target specific bacteria and fungi. The cell wall features and antimicrobial mechanisms that these microorganisms involved in are highlighted in the present review. This is followed by reviewing the design of antimicrobials that selectively combat a specific community of microbes including Gram-positive and Gram-negative bacterial strains as well as fungi. Finally, recent advances in the antimicrobial immunomodulation strategy that enables treating microorganism infections with high specificity are reviewed. These basic tenets will enable the avid reader to design novel approaches and compounds for antibacterial and antifungal applications.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Pontedera, 56025, Italy. .,The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, China
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | | | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia
| | - Wei-Xi Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Xiang-Dong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Cheng-Zhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
36
|
Lin CH, Shyu CL, Wu ZY, Wang CM, Chiou SH, Chen JY, Tseng SY, Lin TE, Yuan YP, Ho SP, Tung KC, Mao FC, Lee HJ, Tu WC. Antimicrobial Peptide Mastoparan-AF Kills Multi-Antibiotic Resistant Escherichia coli O157:H7 via Multiple Membrane Disruption Patterns and Likely by Adopting 3-11 Amphipathic Helices to Favor Membrane Interaction. MEMBRANES 2023; 13:251. [PMID: 36837754 PMCID: PMC9961542 DOI: 10.3390/membranes13020251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
We investigated the antimicrobial activity and membrane disruption modes of the antimicrobial peptide mastoparan-AF against hemolytic Escherichia coli O157:H7. Based on the physicochemical properties, mastoparan-AF may potentially adopt a 3-11 amphipathic helix-type structure, with five to seven nonpolar or hydrophobic amino acid residues forming the hydrophobic face. E. coli O157:H7 and two diarrheagenic E. coli veterinary clinical isolates, which are highly resistant to multiple antibiotics, are sensitive to mastoparan-AF, with minimum inhibitory and bactericidal concentrations (MIC and MBC) ranging from 16 to 32 μg mL-1 for E. coli O157:H7 and four to eight μg mL-1 for the latter two isolates. Mastoparan-AF treatment, which correlates proportionally with membrane permeabilization of the bacteria, may lead to abnormal dents, large perforations or full opening at apical ends (hollow tubes), vesicle budding, and membrane corrugation and invagination forming irregular pits or pores on E. coli O157:H7 surface. In addition, mRNAs of prepromastoparan-AF and prepromastoparan-B share a 5'-poly(A) leader sequence at the 5'-UTR known for the advantage in cap-independent translation. This is the first report about the 3-11 amphipathic helix structure of mastoparans to facilitate membrane interaction. Mastoparan-AF could potentially be employed to combat multiple antibiotic-resistant hemolytic E. coli O157:H7 and other pathogenic E. coli.
Collapse
Affiliation(s)
- Chun-Hsien Lin
- Department of Entomology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ching-Lin Shyu
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Zong-Yen Wu
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, Chiayi 60054, Taiwan
| | - Shiow-Her Chiou
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan
| | - Jiann-Yeu Chen
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shu-Ying Tseng
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Veterinary Medical Teaching Hospital, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ting-Er Lin
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi-Po Yuan
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shu-Peng Ho
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Kwong-Chung Tung
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Veterinary Medical Teaching Hospital, National Chung Hsing University, Taichung 40227, Taiwan
| | - Frank Chiahung Mao
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Han-Jung Lee
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien 974301, Taiwan
| | - Wu-Chun Tu
- Department of Entomology, National Chung Hsing University, Taichung 40227, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Kaohsiung 801301, Taiwan
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, West Java, Indonesia
| |
Collapse
|
37
|
Dokla EME, Abutaleb NS, Milik SN, Kandil EAEA, Qassem OM, Elgammal Y, Nasr M, McPhillie MJ, Abouzid KAM, Seleem MN, Imming P, Adel M. SAR investigation and optimization of benzimidazole-based derivatives as antimicrobial agents against Gram-negative bacteria. Eur J Med Chem 2023; 247:115040. [PMID: 36584632 DOI: 10.1016/j.ejmech.2022.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Antibiotic-resistant bacteria represent a serious threat to modern medicine and human life. Only a minority of antibacterial agents are active against Gram-negative bacteria. Hence, the development of novel antimicrobial agents will always be a vital need. In an effort to discover new therapeutics against Gram-negative bacteria, we previously reported a structure-activity-relationship (SAR) study on 1,2-disubstituted benzimidazole derivatives. Compound III showed a potent activity against tolC-mutant Escherichia coli with an MIC value of 2 μg/mL, representing a promising lead for further optimization. Building upon this study, herein, 49 novel benzimidazole compounds were synthesized to investigate their antibacterial activity against Gram-negative bacteria. Our design focused on three main goals, to address the low permeability of our compounds and improve their cellular accumulation, to expand the SAR study to the unexplored ring C, and to optimize the lead compound (III) by modification of the methanesulfonamide moiety. Compounds (25a-d, 25f-h, 25k, 25l, 25p, 25r, 25s, and 26b) exhibited potent activity against tolC-mutant E. coli with MIC values ranging from 0.125 to 4 μg/mL, with compound 25d displaying the highest potency among the tested compounds with an MIC value of 0.125 μg/mL. As its predecessor, III, compound 25d exhibited an excellent safety profile without any significant cytotoxicity to mammalian cells. Time-kill kinetics assay indicated that 25d exhibited a bacteriostatic activity and significantly reduced E. coli JW55031 burden as compared to DMSO. Additionally, combination of 25d with colistin partially restored its antibacterial activity against Gram-negative bacterial strains (MIC values ranging from 4 to 16 μg/mL against E. coli BW25113, K. pneumoniae, A. baumannii, and P. aeruginosa). Furthermore, formulation of III and 25d as lipidic nanoparticles (nanocapsules) resulted in moderate enhancement of their antibacterial activity against Gram-negative bacterial strains (A. Baumannii, N. gonorrhoeae) and compound 25d demonstrated superior activity to the lead compound III. These findings establish compound 25d as a promising candidate for treatment of Gram-negative bacterial infections and emphasize the potential of nano-formulations in overcoming poor cellular accumulation in Gram-negative bacteria where further optimization and investigation are warranted to improve the potency and broaden the spectrum of our compounds.
Collapse
Affiliation(s)
- Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; Institute für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale), 06120, Germany.
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Department of Microbiology and Immunology, Zagazig University, Zagazig, 44519, Egypt
| | - Sandra N Milik
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Ezzat A E A Kandil
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Omar M Qassem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; Purdue University Institute of Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Martin J McPhillie
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Peter Imming
- Institute für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale), 06120, Germany
| | - Mai Adel
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
38
|
The Influence of Outer Membrane Protein on Ampicillin Resistance of Vibrio parahaemolyticus. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:8079091. [PMID: 36688009 PMCID: PMC9859689 DOI: 10.1155/2023/8079091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 01/15/2023]
Abstract
The antibiotic resistance of the food-borne pathogen Vibrio parahaemolyticus has attracted researchers' attention in recent years, but its molecular mechanism remains poorly understood. In this study, 7 genes encoding outer membrane proteins (OMPs) were individually deleted in V. parahaemolyticus ATCC33846, and the resistance of these 7 mutants to 14 antibiotics was investigated. The results revealed that the resistance of the 7 mutants to ampicillin was significantly increased. Further exploration of 20-gene transcription changes by real time-qPCR (RT-qPCR) demonstrated that the higher ampicillin resistance might be attributed to the expression of β-lactamase and reduced peptidoglycan (PG) synthesis activity through reduced transcription of penicillin-binding proteins (PBPs), increased transcription of l,d-transpeptidases, downregulated d,d-carboxypeptidase, and alanine deficiency. This study provides a new perspective on ampicillin resistance in OMP mutants with respect to PG synthesis.
Collapse
|
39
|
Mohamad F, Alzahrani RR, Alsaadi A, Alrfaei BM, Yassin AEB, Alkhulaifi MM, Halwani M. An Explorative Review on Advanced Approaches to Overcome Bacterial Resistance by Curbing Bacterial Biofilm Formation. Infect Drug Resist 2023; 16:19-49. [PMID: 36636380 PMCID: PMC9830422 DOI: 10.2147/idr.s380883] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
The continuous emergence of multidrug-resistant pathogens evoked the development of innovative approaches targeting virulence factors unique to their pathogenic cascade. These approaches aimed to explore anti-virulence or anti-infective therapies. There are evident concerns regarding the bacterial ability to create a superstructure, the biofilm. Biofilm formation is a crucial virulence factor causing difficult-to-treat, localized, and systemic infections. The microenvironments of bacterial biofilm reduce the efficacy of antibiotics and evade the host's immunity. Producing a biofilm is not limited to a specific group of bacteria; however, Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus biofilms are exemplary models. This review discusses biofilm formation as a virulence factor and the link to antimicrobial resistance. In addition, it explores insights into innovative multi-targeted approaches and their physiological mechanisms to combat biofilms, including natural compounds, phages, antimicrobial photodynamic therapy (aPDT), CRISPR-Cas gene editing, and nano-mediated techniques.
Collapse
Affiliation(s)
- F Mohamad
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Raghad R Alzahrani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahlam Alsaadi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Bahauddeen M Alrfaei
- Stem Cells and Regenerative Medicine, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alaa Eldeen B Yassin
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia,Manal M Alkhulaifi, P.O. Box 55670, Riyadh, 11544, Tel +966 (11) 805-1685, Email
| | - Majed Halwani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,Correspondence: Majed Halwani, P.O. Box 3660, Mail Code 1515 (KAIMRC), Riyadh, 11481, Tel +966 (11) 429-4433, Fax +966 (11) 429-4440, Email ;
| |
Collapse
|
40
|
Ye J, Chen X. Current Promising Strategies against Antibiotic-Resistant Bacterial Infections. Antibiotics (Basel) 2022; 12:antibiotics12010067. [PMID: 36671268 PMCID: PMC9854991 DOI: 10.3390/antibiotics12010067] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Infections caused by antibiotic-resistant bacteria (ARB) are one of the major global health challenges of our time. In addition to developing new antibiotics to combat ARB, sensitizing ARB, or pursuing alternatives to existing antibiotics are promising options to counter antibiotic resistance. This review compiles the most promising anti-ARB strategies currently under development. These strategies include the following: (i) discovery of novel antibiotics by modification of existing antibiotics, screening of small-molecule libraries, or exploration of peculiar places; (ii) improvement in the efficacy of existing antibiotics through metabolic stimulation or by loading a novel, more efficient delivery systems; (iii) development of alternatives to conventional antibiotics such as bacteriophages and their encoded endolysins, anti-biofilm drugs, probiotics, nanomaterials, vaccines, and antibody therapies. Clinical or preclinical studies show that these treatments possess great potential against ARB. Some anti-ARB products are expected to become commercially available in the near future.
Collapse
|
41
|
Zeczycki TN, Milton ME, Jung D, Thompson RJ, Jaimes FE, Hondros AD, Palethorpe S, Melander C, Cavanagh J. 2-Aminoimidazole Analogs Target PhoP Altering DNA Binding Activity and Affect Outer Membrane Stability in Gram-Negative Bacteria. Biochemistry 2022; 61:2948-2960. [DOI: 10.1021/acs.biochem.2c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Tonya N. Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Morgan E. Milton
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - David Jung
- Agile Sciences Inc., 617 Hutton Street, Raleigh, North Carolina27606, United States
| | - Richele J. Thompson
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Felicia E. Jaimes
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Alexander D. Hondros
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Samantha Palethorpe
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| |
Collapse
|
42
|
Ito R, Kawamura M, Sato T, Fujimura S. Cefmetazole Resistance Mechanism for Escherichia Coli Including ESBL-Producing Strains. Infect Drug Resist 2022; 15:5867-5878. [PMID: 36237294 PMCID: PMC9553235 DOI: 10.2147/idr.s382142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 12/19/2022] Open
Abstract
Purpose Cefmetazole (CMZ), a cephamycin antibiotic, is primarily used as a definitive therapy for Extended Spectrum β-Lactamase (ESBL)-producing Escherichia coli infections. However, the mechanism of CMZ resistance in E. coli is still unknown. To elucidate the resistance mechanism and to determine combined drugs for prevention of resistance acquisition. Methods Clinical isolates of 14 ESBL-producing E. coli and non-producing 12 isolates were used in in vitro testing of CMZ resistance acquisition. After 10-day of CMZ exposure (1st subculture), these strains were incubated in an antibacterial-free medium for 14-day. These strains were again exposed to CMZ for 10-day (2nd subculture) and confirmed for changes in MIC. For each strain detected after 1st subculture, each mRNA expression level of porin, chromosomal ampC, and drug-efflux pump was measured using real-time RT-PCR. Relebactam (REL) has the potency to recover antimicrobial activity against carbapenem-resistant Enterobacterales that has porin deficiency. REL was added to the CMZ dilution series, and MIC changes and those of porin were confirmed. Results Of these 26 strains, 15 strains (57.7%) acquired resistance after 1st subculture, but after passage culture on the antibacterial-free medium, 11 strains recovered susceptibility. These 11 strains showed resistance after 2nd subculture. The expression levels of ompF and ompC were significantly decreased in these strains (P<0.05). When REL was added, all strains suppressed resistance acquisition after 1st subculture. The mechanism was the activation of ompF. Conclusion Our results showed that the mRNA expression levels of genes encoding porin were decreased in the strains that acquired resistance due to CMZ exposure, and that ompF and ompC in particular were thought to be involved in the acquisition of resistance. The CMZ acquisition of resistance was also suppressed by the concomitant use of REL and actually suppressed the decrease in mRNA expression in ompF. It was confirmed that porin reactivated by REL.
Collapse
Affiliation(s)
- Ryota Ito
- Tohoku Medical and Pharmaceutical University, Division of Clinical Infectious Diseases & Chemotherapy, Sendai, Miyagi, Japan,Correspondence: Ryota Ito, Tohoku Medical and Pharmaceutical University, Division of Clinical Infectious Diseases & Chemotherapy, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan, Tel +81-22-727-0169, Fax +81-22-727-0176, Email
| | - Masato Kawamura
- Tohoku Medical and Pharmaceutical University, Division of Clinical Infectious Diseases & Chemotherapy, Sendai, Miyagi, Japan
| | - Takumi Sato
- Tohoku Medical and Pharmaceutical University, Division of Clinical Infectious Diseases & Chemotherapy, Sendai, Miyagi, Japan
| | - Shigeru Fujimura
- Tohoku Medical and Pharmaceutical University, Division of Clinical Infectious Diseases & Chemotherapy, Sendai, Miyagi, Japan
| |
Collapse
|
43
|
Protective effect of two new nanovaccines against Pseudomonas aeruginosa based on LPS and OPS: A comparison study. Immunobiology 2022; 227:152278. [PMID: 36115097 DOI: 10.1016/j.imbio.2022.152278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa is one of the most important infectious pathogens in medicine. This bacterium causes various infections, especially in patients with severe burns and people with defective immune systems. The purpose of this study was to develop a nanovaccine based on PLGA nanoparticles and lipopolysaccharide and oligopolysaccharide antigens for appropriate stimulation of the humoral and cellular immune systems against P. aeruginosa. LPS-PLGA and OPS-PLGA conjugates were synthesized using the carbodiimide reaction. The prepared conjugates of as well as the pure antigens of LPS and OPS were injected to BALB/c mice in three periods at 2 week intervals. The ELISA test showed that the IgM, IgA, IgG, IgG1, IgG2b, IgG2a and IgG3 antibodies produced against LPS-PLGA or OPS-PLGA conjugates were tens of times higher than the pure antigens. Also, the opsonophagocytosis test showed that the performance and the effect of produced anti-LPS-PLGA antibodies were higher than other groups. In addition, the mice treated with LPS-PLGA conjugate were more resistant to P. aeruginosa infection than other groups. These findings indicated that LPS and OPS antigens in conjugation with PLGA nanoparticles have the ability to create and effective immunity against P. aeruginosa and LPS-PLGA is more effective than OPS-PLGA.
Collapse
|
44
|
Wesseling CJ, Martin NI. Synergy by Perturbing the Gram-Negative Outer Membrane: Opening the Door for Gram-Positive Specific Antibiotics. ACS Infect Dis 2022; 8:1731-1757. [PMID: 35946799 PMCID: PMC9469101 DOI: 10.1021/acsinfecdis.2c00193] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
New approaches to target antibacterial agents toward Gram-negative bacteria are key, given the rise of antibiotic resistance. Since the discovery of polymyxin B nonapeptide as a potent Gram-negative outer membrane (OM)-permeabilizing synergist in the early 1980s, a vast amount of literature on such synergists has been published. This Review addresses a range of peptide-based and small organic compounds that disrupt the OM to elicit a synergistic effect with antibiotics that are otherwise inactive toward Gram-negative bacteria, with synergy defined as a fractional inhibitory concentration index (FICI) of <0.5. Another requirement for the inclusion of the synergists here covered is their potentiation of a specific set of clinically used antibiotics: erythromycin, rifampicin, novobiocin, or vancomycin. In addition, we have focused on those synergists with reported activity against Gram-negative members of the ESKAPE family of pathogens namely, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and/or Acinetobacter baumannii. In cases where the FICI values were not directly reported in the primary literature but could be calculated from the published data, we have done so, allowing for more direct comparison of potency with other synergists. We also address the hemolytic activity of the various OM-disrupting synergists reported in the literature, an effect that is often downplayed but is of key importance in assessing the selectivity of such compounds for Gram-negative bacteria.
Collapse
|
45
|
Monteiro KLC, Silva ON, Dos Santos Nascimento IJ, Mendonça Júnior FJB, Aquino PGV, da Silva-Júnior EF, de Aquino TM. Medicinal Chemistry of Inhibitors Targeting Resistant Bacteria. Curr Top Med Chem 2022; 22:1983-2028. [PMID: 35319372 DOI: 10.2174/1568026622666220321124452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
The discovery of antibiotics was a revolutionary feat that provided countless health benefits. The identification of penicillin by Alexander Fleming initiated the era of antibiotics, represented by constant discoveries that enabled effective treatments for the different classes of diseases caused by bacteria. However, the indiscriminate use of these drugs allowed the emergence of resistance mechanisms of these microorganisms against the available drugs. In addition, the constant discoveries in the 20th century generated a shortage of new molecules, worrying health agencies and professionals about the appearance of multidrug-resistant strains against available drugs. In this context, the advances of recent years in molecular biology and microbiology have allowed new perspectives in drug design and development, using the findings related to the mechanisms of bacterial resistance to generate new drugs that are not affected by such mechanisms and supply new molecules to be used to treat resistant bacterial infections. Besides, a promising strategy against bacterial resistance is the combination of drugs through adjuvants, providing new expectations in designing new antibiotics and new antimicrobial therapies. Thus, this manuscript will address the main mechanisms of bacterial resistance under the understanding of medicinal chemistry, showing the main active compounds against efflux mechanisms, and also the application of the use of drug delivery systems, and finally, the main potential natural products as adjuvants or with promising activity against resistant strains.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Osmar Nascimento Silva
- Faculty of Pharmacy, University Center of Anápolis, Unievangélica, 75083-515, Anápolis, Goiás, Brazil
| | - Igor José Dos Santos Nascimento
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | | | | | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| |
Collapse
|
46
|
Wearable adjunct ozone and antibiotic therapy system for treatment of Gram-negative dermal bacterial infection. Sci Rep 2022; 12:13927. [PMID: 35977975 PMCID: PMC9385669 DOI: 10.1038/s41598-022-17495-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
The problematic combination of a rising prevalence of skin and soft tissue infections and the growing rate of life-threatening antibiotic resistant infections presents an urgent, unmet need for the healthcare industry. These evolutionary resistances originate from mutations in the bacterial cell walls which prevent effective diffusion of antibiotics. Gram-negative bacteria are of special consideration due to the natural resistance to many common antibiotics due to the unique bilayer structure of the cell wall. The system developed here provides one solution to this problem through a wearable therapy that delivers and utilizes gaseous ozone as an adjunct therapy with topical antibiotics through a novel dressing with drug-eluting nanofibers (NFs). This technology drastically increases the sensitivity of Gram-negative bacteria to common antibiotics by using oxidative ozone to bypass resistances created by the bacterial cell wall. To enable simple and effective application of adjunct therapy, ozone delivery and topical antibiotics have been integrated into a single application patch. The drug delivery NFs are generated via electrospinning in a fast-dissolve PVA mat without inducing decreasing gas permeability of the dressing. A systematic study found ozone generation at 4 mg/h provided optimal ozone levels for high antimicrobial performance with minimal cytotoxicity. This ozone treatment was used with adjunct therapy delivered by the system in vitro. Results showed complete eradication of Gram-negative bacteria with ozone and antibiotics typically used only for Gram-positive bacteria, which showed the strength of ozone as an enabling adjunct treatment option to sensitize bacteria strains to otherwise ineffective antibiotics. Furthermore, the treatment is shown through biocompatibility testing to exhibit no cytotoxic effect on human fibroblast cells.
Collapse
|
47
|
Akshay SD, Anupama KP, Deekshit VK, Rohit A, Maiti B. Effect of sub-minimum inhibitory concentration of ceftriaxone on the expression of outer membrane proteins in Salmonella enterica serovar Typhi. World J Microbiol Biotechnol 2022; 38:190. [PMID: 35972699 DOI: 10.1007/s11274-022-03383-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/09/2022] [Indexed: 01/22/2023]
Abstract
Multi-drug resistance (MDR) in Salmonella is one of the major reasons for foodborne outbreaks worldwide. Decreased susceptibility of Salmonella Typhi to first-line drugs such as ceftriaxone, ciprofloxacin, and azithromycin has raised concern. Reduced outer membrane proteins (OMPs) permeability and increased efflux pump transportation are considered to be the main reasons for the emergence of antibiotic resistance in Salmonella. The present study aimed to assess the expression of OMPs at sub-lethal concentrations of ceftriaxone in S. Typhi (Sl5037/BC, and Sl05). The S. Typhi strains were exposed to sub-MIC and half of the sub-MIC concentrations of ceftriaxone at three different time intervals (0 min, 40 min, and 180 min) and analyzed for differential expression of OMPs. Further, the expression variation of OMP encoding genes (yaeT, ompX, lamb, ompA, and ybfM) in response to ceftriaxone was evaluated using real-time PCR. The genes like lamB, ompX, and yaeT showed significant downregulation (p < 0.05) compared to the control without antibiotic exposure, whereas ybfM and ompA showed a moderate downregulation. The expression of omp genes such as lamB, ompA, ompX, ybfM, and yaeT were found to be low in the presence of ceftriaxone, followed by time and dose-dependent. The study provides insights into the possible involvement of OMPs in drug resistance of S. Typhi, which could help develop a therapeutic strategy to combat MDR isolates of S. Typhi.
Collapse
Affiliation(s)
- Sadanand Dangari Akshay
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Karanth Padyana Anupama
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Vijaya Kumar Deekshit
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Anusha Rohit
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India.,Department of Microbiology, The Madras Medical Mission, 4-A, Dr, Mogappair, Chennai, Tamil Nadu, 600037, India
| | - Biswajit Maiti
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
48
|
Roy Chowdhury A, Sah S, Varshney U, Chakravortty D. Salmonella Typhimurium outer membrane protein A (OmpA) renders protection from nitrosative stress of macrophages by maintaining the stability of bacterial outer membrane. PLoS Pathog 2022; 18:e1010708. [PMID: 35969640 PMCID: PMC9410544 DOI: 10.1371/journal.ppat.1010708] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 08/25/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Bacterial porins are highly conserved outer membrane proteins used in the selective transport of charged molecules across the membrane. In addition to their significant contributions to the pathogenesis of Gram-negative bacteria, their role(s) in salmonellosis remains elusive. In this study, we investigated the role of outer membrane protein A (OmpA), one of the major outer membrane porins of Salmonella, in the pathogenesis of Salmonella Typhimurium (STM). Our study revealed that OmpA plays an important role in the intracellular virulence of Salmonella. An ompA deficient strain of Salmonella (STM ΔompA) showed compromised proliferation in macrophages. We found that the SPI-2 encoded virulence factors such as sifA and ssaV are downregulated in STM ΔompA. The poor colocalization of STM ΔompA with LAMP-1 showed that disruption of SCV facilitated its release into the cytosol of macrophages, where it was assaulted by reactive nitrogen intermediates (RNI). The enhanced recruitment of nitrotyrosine on the cytosolic population of STM ΔompAΔsifA and ΔompAΔssaV compared to STM ΔsifA and ΔssaV showed an additional role of OmpA in protecting the bacteria from host nitrosative stress. Further, we showed that the generation of greater redox burst could be responsible for enhanced sensitivity of STM ΔompA to the nitrosative stress. The expression of several other outer membrane porins such as ompC, ompD, and ompF was upregulated in STM ΔompA. We found that in the absence of ompA, the enhanced expression of ompF increased the outer membrane porosity of Salmonella and made it susceptible to in vitro and in vivo nitrosative stress. Our study illustrates a novel mechanism for the strategic utilization of OmpA by Salmonella to protect itself from the nitrosative stress of macrophages. Salmonella Typhimurium majorly uses SPI-1 and SPI-2 encoded T3SS and virulence factors for thriving in the host macrophages. But the role of non-SPI genes in Salmonella pathogenesis remains unknown. This article illustrates a novel mechanism of how a non-SPI virulent protein, OmpA, helps Salmonella Typhimurium to survive in murine macrophages. Our data revealed that Salmonella lacking OmpA (STM ΔompA) is deficient in producing SPI-2 effector proteins and has a severe defect in maintaining the stability of its outer membrane. It is released into the cytosol of macrophages during infection after disrupting the SCV membrane. STM ΔompA was severely challenged with reactive nitrogen intermediates in the cytosol, which reduced their proliferation in macrophages. We further showed that the deletion of OmpA increased the expression of other larger porins (ompC, ompD, and ompF) on the surface of Salmonella. It was observed that the enhanced expression of OmpF in STM ΔompA increased the outer membrane permeability and made the bacteria more susceptible to in vitro and in vivo nitrosative stress. Altogether our study proposes new insights into the role of Salmonella OmpA as an essential virulence factor.
Collapse
Affiliation(s)
- Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Shivjee Sah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
49
|
Riu F, Ruda A, Ibba R, Sestito S, Lupinu I, Piras S, Widmalm G, Carta A. Antibiotics and Carbohydrate-Containing Drugs Targeting Bacterial Cell Envelopes: An Overview. Pharmaceuticals (Basel) 2022; 15:942. [PMID: 36015090 PMCID: PMC9414505 DOI: 10.3390/ph15080942] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
Certain bacteria constitute a threat to humans due to their ability to escape host defenses as they easily develop drug resistance. Bacteria are classified into gram-positive and gram-negative according to the composition of the cell membrane structure. Gram-negative bacteria have an additional outer membrane (OM) that is not present in their gram-positive counterpart; the latter instead hold a thicker peptidoglycan (PG) layer. This review covers the main structural and functional properties of cell wall polysaccharides (CWPs) and PG. Drugs targeting CWPs are discussed, both noncarbohydrate-related (β-lactams, fosfomycin, and lipopeptides) and carbohydrate-related (glycopeptides and lipoglycopeptides). Bacterial resistance to these drugs continues to evolve, which calls for novel antibacterial approaches to be developed. The use of carbohydrate-based vaccines as a valid strategy to prevent bacterial infections is also addressed.
Collapse
Affiliation(s)
- Federico Riu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Alessandro Ruda
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (G.W.)
| | - Roberta Ibba
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Simona Sestito
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Ilenia Lupinu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Sandra Piras
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (G.W.)
| | - Antonio Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| |
Collapse
|
50
|
Asghar MN, Bisma I, Sohail M, Khan AM, Rahman HMAU, Nadeem I. Spectroscopic, conductivity and voltammetric investigations of interaction of sulfamethoxazole alone and in combination with trimethoprim with self-assembled structures. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2099415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Muhammad Nadeem Asghar
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Iqra Bisma
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Muhammad Sohail
- Department of Chemistry, Government Islamia College Civil Lines, Lahore, Pakistan
| | - Asad Muhammad Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad, Pakistan
| | | | - Iram Nadeem
- Department of Chemistry, COMSATS University Islamabad, Lahore, Pakistan
| |
Collapse
|