1
|
Popovic I, Soares Magalhaes R, Yang S, Yang Y, Yang BY, Dong GH, Wei X, Van Buskirk J, Fox G, Ge E, Marks G, Knibbs L. Long-term exposure to ambient fine particulate matter (PM 2.5) and attributable pulmonary tuberculosis notifications in Ningxia Hui Autonomous Region, China: a health impact assessment. BMJ Open 2024; 14:e082312. [PMID: 38834325 PMCID: PMC11163650 DOI: 10.1136/bmjopen-2023-082312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
INTRODUCTION Long-term exposure to fine particulate matter (≤2.5 µm (PM2.5)) has been associated with pulmonary tuberculosis (TB) notifications or incidence in recent publications. Studies quantifying the relative contribution of long-term PM2.5 on TB notifications have not been documented. We sought to perform a health impact assessment to estimate the PM2.5- attributable TB notifications during 2007-2017 in Ningxia Hui Autonomous Region (NHAR), China. METHODS PM2.5 attributable TB notifications were estimated at township level (n=358), stratified by age group and summed across NHAR. PM2.5-associated TB-notifications were estimated for total and anthropogenic PM2.5 mass and expressed as population attributable fractions (PAFs). The main analysis used effect and uncertainty estimates from our previous study in NHAR, defining a counterfactual of the lowest annual PM2.5 (30 µg/m3) level, above which we assumed excess TB notifications. Sensitivity analyses included counterfactuals based on the 5th (31 µg/m3) and 25th percentiles (38 µg/m3), and substituting effect estimates from a recent meta-analysis. We estimated the influence of PM2.5 concentrations, population growth and baseline TB-notification rates on PM2.5 attributable TB notifications. RESULTS Over 2007-2017, annual PM2.5 had an estimated average PAF of 31.2% (95% CI 22.4% to 38.7%) of TB notifications while the anthropogenic PAF was 12.2% (95% CI 9.2% to 14.5%). With 31 and 38 µg/m3 as counterfactuals, the PAFs were 29.2% (95% CI 20.9% to 36.3%) and 15.4% (95% CI 10.9% to 19.6%), respectively. PAF estimates under other assumptions ranged between 6.5% (95% CI 2.9% to 9.6%) and 13.7% (95% CI 6.2% to 19.9%) for total PM2.5, and 2.6% (95% CI 1.2% to 3.8%) to 5.8% (95% CI 2.7% to 8.2%) for anthropogenic PM2.5. Relative to 2007, overall changes in PM2.5 attributable TB notifications were due to reduced TB-notification rates (-23.8%), followed by decreasing PM2.5 (-6.2%), and population growth (+4.9%). CONCLUSION We have demonstrated how the potential impact of historical or hypothetical air pollution reduction scenarios on TB notifications can be estimated, using public domain, PM2.5 and population data. The method may be transferrable to other settings where comparable TB-notification data are available.
Collapse
Affiliation(s)
- Igor Popovic
- Faculty of Medicine, School of Public Health, The University of Queensland, Herston, Queensland, Australia
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Ricardo Soares Magalhaes
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
- Children's Health and Environment Program, UQ Children's Health Research Center, The University of Queensland, South Brisbane, Queensland, Australia
| | - Shukun Yang
- Department of Radiology, The First People's Hospital in Yinchuan, The Second Affiliated Hospital of Ningxia Medical University, Yinchuan, Ningsia, China
| | - Yurong Yang
- Department of Pathogenic Biology & Medical Immunology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Bo-Yi Yang
- Environmental Epidemiology, Sun Yat-Sen University, Guangzhou, China
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaolin Wei
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Van Buskirk
- Public Health Unit, Sydney Local Health District, Camperdown, New South Wales, Australia
- School of Public Health, The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Gregory Fox
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Erjia Ge
- University of Toronto Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Guy Marks
- South Western Sydney Clinical School, University of New South Wales, The University of Sydney, Liverpool, New South Wales, Australia
- Woolcock Institute of Medical Research, Glebe, New South Wales, Australia
| | - Luke Knibbs
- Public Health Research Analytics and Methods for Evidence, Public Health Unit, Sydney Local Health District, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, School of Public Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Zheng C, Shi Y, Tang B, Zhang J. Black Phosphorus-Tungsten Oxide Sandwich-like Nanostructures for Highly Selective NO 2 Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:1376. [PMID: 38474912 DOI: 10.3390/s24051376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Modern chemical production processes often emit complex mixtures of gases, including hazardous pollutants such as NO2. Although widely used, gas sensors based on metal oxide semiconductors such as WO3 respond to a wide range of interfering gases other than NO2. Consequently, developing WO3 gas sensors with high NO2 selectivity is challenging. In this study, a simple one-step hydrothermal method was used to prepare WO3 nanorods modified with black phosphorus (BP) flakes as sensitive materials for NO2 sensing, and BP-WO3-based micro-electromechanical system gas sensors were fabricated. The characterization of the as-prepared BP-WO3 composite through X-ray diffraction scanning electron microscopy and X-ray photoelectron spectroscopy confirmed the successful formation of the sandwich-like nanostructures. The result of gas-sensing tests with 2-14 ppm NO2 indicated that the sensor response was 1.25-2.21 with response-recovery times of 36 and 36 s, respectively, at 190 °C. In contrast to pure WO3, which exhibited a response of 1.07-2.2 to 0.3-5 ppm H2S at 160 °C, BP-WO3 showed almost no response to H2S. Thus, compared with pure WO3, BP-WO3 exhibited significantly improved NO2 selectivity. Overall, the BP-WO3 composite with sandwich-like nanostructures is a promising material for developing highly selective NO2 sensors for practical applications.
Collapse
Affiliation(s)
- Canda Zheng
- Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080, China
| | - Yunbo Shi
- Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080, China
| | - Bolun Tang
- Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080, China
| | - Jianhua Zhang
- Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080, China
| |
Collapse
|
3
|
Biewer AM, Tzelios C, Tintaya K, Roman B, Hurwitz S, Yuen CM, Mitnick CD, Nardell E, Lecca L, Tierney DB, Nathavitharana RR. Accuracy of digital chest x-ray analysis with artificial intelligence software as a triage and screening tool in hospitalized patients being evaluated for tuberculosis in Lima, Peru. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002031. [PMID: 38324610 PMCID: PMC10849246 DOI: 10.1371/journal.pgph.0002031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Tuberculosis (TB) transmission in healthcare facilities is common in high-incidence countries. Yet, the optimal approach for identifying inpatients who may have TB is unclear. We evaluated the diagnostic accuracy of qXR (Qure.ai, India) computer-aided detection (CAD) software versions 3.0 and 4.0 (v3 and v4) as a triage and screening tool within the FAST (Find cases Actively, Separate safely, and Treat effectively) transmission control strategy. We prospectively enrolled two cohorts of patients admitted to a tertiary hospital in Lima, Peru: one group had cough or TB risk factors (triage) and the other did not report cough or TB risk factors (screening). We evaluated the sensitivity and specificity of qXR for the diagnosis of pulmonary TB using culture and Xpert as primary and secondary reference standards, including stratified analyses based on risk factors. In the triage cohort (n = 387), qXR v4 sensitivity was 0.91 (59/65, 95% CI 0.81-0.97) and specificity was 0.32 (103/322, 95% CI 0.27-0.37) using culture as reference standard. There was no difference in the area under the receiver-operating-characteristic curve (AUC) between qXR v3 and qXR v4 with either a culture or Xpert reference standard. In the screening cohort (n = 191), only one patient had a positive Xpert result, but specificity in this cohort was high (>90%). A high prevalence of radiographic lung abnormalities, most notably opacities (81%), consolidation (62%), or nodules (58%), was detected by qXR on digital CXR images from the triage cohort. qXR had high sensitivity but low specificity as a triage in hospitalized patients with cough or TB risk factors. Screening patients without cough or risk factors in this setting had a low diagnostic yield. These findings further support the need for population and setting-specific thresholds for CAD programs.
Collapse
Affiliation(s)
- Amanda M. Biewer
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christine Tzelios
- Harvard Medical School, Boston, Massachusetts, United States of America
| | | | | | - Shelley Hurwitz
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Courtney M. Yuen
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carole D. Mitnick
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Edward Nardell
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Dylan B. Tierney
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Massachusetts Department of Public Health, Boston, Massachusetts, United States of America
| | - Ruvandhi R. Nathavitharana
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Rodríguez-Fernández P, Romero-Andrada I, Molina-Moya B, Latorre I, Lacoma A, Prat-Aymerich C, Tabernero L, Domínguez J. Impact of diesel exhaust particles on infections with Mycobacterium bovis BCG in in vitro human macrophages and an in vivo Galleria mellonella model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122597. [PMID: 37741543 PMCID: PMC10804993 DOI: 10.1016/j.envpol.2023.122597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
There are strong suggestions for a link between pulmonary tuberculosis (TB) and air quality. Diesel exhaust is one of the main contributors to pollution and it is reported to be able to modify susceptibility to lung infections. In this study we exposed THP-1 human macrophages and Mycobacterium bovis BCG to diesel exhaust particles (DEPs). High cytotoxicity and activation of apoptosis was found in THP-1 cells at 3 and 6 days, but no effect was found on the growth of M. bovis BCG. Infection of THP-1 cells exposed to a non-cytotoxic DEP concentration showed a limited capacity to engulf latex beads. However, M. bovis BCG infection of macrophages did not result in an increase in the bacterial burden, but it did result in an increase in the bacteria recovered from the extracellular media, suggesting a poor contention of M. bovis BCG. We also observed that DEP exposure limited the production of cytokines. Using the Galleria mellonella model of infection, we observed that larvae exposed to low levels of DEPs were less able to survive after infection with M. bovis BCG and had a higher internal bacterial load after 4 days of infection. Unraveling the links between air pollution and impairment of human antimycobacterial immunity is vital, because pollution is rapidly increasing in areas where TB incidence is extremely high.
Collapse
Affiliation(s)
- Pablo Rodríguez-Fernández
- Germans Trias i Pujol Research Institute (IGTP), CIBER Enfermedades Respiratorias (CIBERES), Universitat Autònoma de Barcelona, Barcelona, Badalona, Spain; Core Technology Facility, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.
| | - Iris Romero-Andrada
- Germans Trias i Pujol Research Institute (IGTP), CIBER Enfermedades Respiratorias (CIBERES), Universitat Autònoma de Barcelona, Barcelona, Badalona, Spain
| | - Bárbara Molina-Moya
- Germans Trias i Pujol Research Institute (IGTP), CIBER Enfermedades Respiratorias (CIBERES), Universitat Autònoma de Barcelona, Barcelona, Badalona, Spain
| | - Irene Latorre
- Germans Trias i Pujol Research Institute (IGTP), CIBER Enfermedades Respiratorias (CIBERES), Universitat Autònoma de Barcelona, Barcelona, Badalona, Spain
| | - Alícia Lacoma
- Germans Trias i Pujol Research Institute (IGTP), CIBER Enfermedades Respiratorias (CIBERES), Universitat Autònoma de Barcelona, Barcelona, Badalona, Spain
| | - Cristina Prat-Aymerich
- Germans Trias i Pujol Research Institute (IGTP), CIBER Enfermedades Respiratorias (CIBERES), Universitat Autònoma de Barcelona, Barcelona, Badalona, Spain
| | - Lydia Tabernero
- Core Technology Facility, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK; Lydia Becker Institute for Immunology and Inflammation, University of Manchester, Manchester, UK
| | - José Domínguez
- Germans Trias i Pujol Research Institute (IGTP), CIBER Enfermedades Respiratorias (CIBERES), Universitat Autònoma de Barcelona, Barcelona, Badalona, Spain.
| |
Collapse
|
5
|
Biewer A, Tzelios C, Tintaya K, Roman B, Hurwitz S, Yuen CM, Mitnick CD, Nardell E, Lecca L, Tierney DB, Nathavitharana RR. Accuracy of digital chest x-ray analysis with artificial intelligence software as a triage and screening tool in hospitalized patients being evaluated for tuberculosis in Lima, Peru. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.17.23290110. [PMID: 37292955 PMCID: PMC10246158 DOI: 10.1101/2023.05.17.23290110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Introduction Tuberculosis (TB) transmission in healthcare facilities is common in high-incidence countries. Yet, the optimal approach for identifying inpatients who may have TB is unclear. We evaluated the diagnostic accuracy of qXR (Qure.ai, India) computer-aided detection (CAD) software versions 3.0 and 4.0 (v3 and v4) as a triage and screening tool within the FAST (Find cases Actively, Separate safely, and Treat effectively) transmission control strategy. Methods We prospectively enrolled two cohorts of patients admitted to a tertiary hospital in Lima, Peru: one group had cough or TB risk factors (triage) and the other did not report cough or TB risk factors (screening). We evaluated the sensitivity and specificity of qXR for the diagnosis of pulmonary TB using culture and Xpert as primary and secondary reference standards, including stratified analyses based on risk factors. Results In the triage cohort (n=387), qXR v4 sensitivity was 0.91 (59/65, 95% CI 0.81-0.97) and specificity was 0.32 (103/322, 95% CI 0.27-0.37) using culture as reference standard. There was no difference in the area under the receiver-operating-characteristic curve (AUC) between qXR v3 and qXR v4 with either a culture or Xpert reference standard. In the screening cohort (n=191), only one patient had a positive Xpert result, but specificity in this cohort was high (>90%). A high prevalence of radiographic lung abnormalities, most notably opacities (81%), consolidation (62%), or nodules (58%), was detected by qXR on digital CXR images from the triage cohort. Conclusions qXR had high sensitivity but low specificity as a triage in hospitalized patients with cough or TB risk factors. Screening patients without cough or risk factors in this setting had a low diagnostic yield. These findings further support the need for population and setting-specific thresholds for CAD programs.
Collapse
Affiliation(s)
- Amanda Biewer
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | | | | | | | | | - Courtney M Yuen
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Carole D Mitnick
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Edward Nardell
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | - Dylan B Tierney
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Massachusetts Department of Public Health, Boston, MA
| | | |
Collapse
|
6
|
Kewcharoenwong C, Khongmee A, Nithichanon A, Palaga T, Prueksasit T, Mudway IS, Hawrylowicz CM, Lertmemongkolchai G. Vitamin D3 regulates PM-driven primary human neutrophil inflammatory responses. Sci Rep 2023; 13:15850. [PMID: 37740033 PMCID: PMC10516903 DOI: 10.1038/s41598-023-43252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
Recent evidence has demonstrated that both acute and chronic exposure to particulate air pollution are risk factors for respiratory tract infections and increased mortality from sepsis. There is therefore an urgent need to establish the impact of ambient particulate matter (PM) on innate immune cells and to establish potential strategies to mitigate against adverse effects. PM has previously been reported to have potential adverse effects on neutrophil function. In the present study, we investigated the impact of standard urban PM (SRM1648a, NIST) and PM2.5 collected from Chiang Mai, Thailand, on human peripheral blood neutrophil functions, including LPS-induced migration, IL-8 production, and bacterial killing. Both NIST and the PM2.5, being collected in Chiang Mai, Thailand, increased IL-8 production, but reduced CXCR2 expression and migration of human primary neutrophils stimulated with Escherichia coli LPS. Moreover, PM-pretreated neutrophils from vitamin D-insufficient participants showed reduced E. coli-killing activity. Furthermore, in vitro vitamin D3 supplementation attenuated IL-8 production and improved bacterial killing by cells from vitamin D-insufficient participants. Our findings suggest that provision of vitamin D to individuals with insufficiency may attenuate adverse acute neutrophilic responses to ambient PM.
Collapse
Affiliation(s)
- Chidchamai Kewcharoenwong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Aranya Khongmee
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arnone Nithichanon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tassanee Prueksasit
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ian S Mudway
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute of Health Research, Health Protection Research Unit in Environmental Exposures and Health, Imperial College London and King's College London, London, W12 OBZ, UK
| | - Catherine M Hawrylowicz
- King's Centre for Lung Health, School of Immunology and Microbial Sciences, King's College London, London, W2 1PG, UK
- National Institute of Health Research, Health Protection Research Unit in Environmental Exposures and Health, Imperial College London and King's College London, London, W12 OBZ, UK
| | - Ganjana Lertmemongkolchai
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
7
|
Zhao JW, Wang XQ, Li ZH, Mao YC, Zhang S, Huang K, Hu CY, Zhang XJ, Kan XH. Effect of gaseous pollutant and greenness exposure on mortality during treatment of newly treated tuberculosis patients: a provincial population-based cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98195-98210. [PMID: 37608175 DOI: 10.1007/s11356-023-29256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/05/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Previous studies addressing the impact of environmental factors on TB prognosis are scarce, with only some studies examining the effect of particulate pollutants on TB mortality. Moreover, few studies have evaluated the effects of multiple gaseous pollutants and greenness exposures on newly treated TB patients on a large population scale. METHODS Through the Centers for Disease Control and Prevention, data were collected from January 1, 2015 to December 31, 2020 for newly treated TB patients in Anhui Province, China. Data on gaseous pollutants sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone were collected through the National Earth System Science Data Center of China. Normalized vegetation index data were obtained through NASA. The Cox proportional risk model was also applied to calculate the hazard ratios of SO2, NO2, CO, O3, and NDVI with 95% confidence intervals for mortality among newly treated TB patients. RESULTS Multifactorial Cox regression analysis showed that for every 0.10 μg/m3 increase in SO2, the risk of death among newly treated TB patients increased by 13.2% (HR = 1.132, 95% CI: 1.045-1.1.225), for every 10 μg/m3 increase in NO2, the risk of death among newly treated TB patients increased by 11.4%, and for each 0.1 mg/m3 increase in CO, the risk of death among newly treated TB patients increased by 5.8%. For each 0.1 increase in NDVI 250m-buffer and 500m-buffer, the risk of death among newly treated TB patients decreased by 8.5% and 6.4%, respectively. The effect of gaseous pollutants on mortality decreased progressively with elevated greenness exposure when greenness exposure was grouped from low to high. CONCLUSION Gaseous pollutants are a risk factor during the treatment of newly treated TB patients and greenness exposure is a protective factor. Higher greenness exposure reduces the risk of death due to exposure to gaseous pollutants.
Collapse
Affiliation(s)
- Jia-Wen Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xin-Qiang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhen-Hua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yi-Cheng Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Sun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kai Huang
- The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiao-Hong Kan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Anhui Chest Hospital, 397 Jixi Road, Hefei, 230022, China.
| |
Collapse
|
8
|
Makrufardi F, Bai KJ, Suk CW, Rusmawatiningtyas D, Chung KF, Chuang HC. Alveolar deposition of inhaled fine particulate matter increased risk of severity of pulmonary tuberculosis in the upper and middle lobes. ERJ Open Res 2023; 9:00064-2023. [PMID: 37404847 PMCID: PMC10316043 DOI: 10.1183/23120541.00064-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/04/2023] [Indexed: 07/06/2023] Open
Abstract
Inhaled PM2.5 associated with pulmonary tuberculosis https://bit.ly/3VXAKfq.
Collapse
Affiliation(s)
- Firdian Makrufardi
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Child Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada – Dr. Sardjito Hospital, Yogyakarta, Indonesia
- These authors contributed equally
| | - Kuan-Jen Bai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- These authors contributed equally
| | - Chi-Won Suk
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Desy Rusmawatiningtyas
- Department of Child Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada – Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- National Heart and Lung Institute, Imperial College London, London, UK
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Ye X, Wang Y, Zou Y, Tu J, Tang W, Yu R, Yang S, Huang P. Associations of socioeconomic status with infectious diseases mediated by lifestyle, environmental pollution and chronic comorbidities: a comprehensive evaluation based on UK Biobank. Infect Dis Poverty 2023; 12:5. [PMID: 36717939 PMCID: PMC9885698 DOI: 10.1186/s40249-023-01056-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Socioeconomic status (SES) inequity was recognized as a driver of some certain infectious diseases. However, few studies evaluated the association between SES and the burden of overall infections, and even fewer identified preventable mediators. This study aimed to assess the association between SES and overall infectious diseases burden, and the potential roles of factors including lifestyle, environmental pollution, chronic disease history. METHODS We included 401,009 participants from the UK Biobank (UKB) and defined the infection status for each participant according to their diagnosis records. Latent class analysis (LCA) was used to define SES for each participant. We further defined healthy lifestyle score, environment pollution score (EPS) and four types of chronic comorbidities. We used multivariate logistic regression to test the associations between the four above covariates and infectious diseases. Then, we performed the mediation and interaction analysis to explain the relationships between SES and other variables on infectious diseases. Finally, we employed seven types of sensitivity analyses, including considering the Townsend deprivation index as an area level SES variable, repeating our main analysis for some individual or composite factors and in some subgroups, as well as in an external data from the US National Health and Nutrition Examination Survey, to verify the main results. RESULTS In UKB, 60,771 (15.2%) participants were diagnosed with infectious diseases during follow-up. Lower SES [odds ratio (OR) = 1.5570] were associated with higher risk of overall infections. Lifestyle score mediated 2.9% of effects from SES, which ranged from 2.9 to 4.0% in different infection subtypes, while cardiovascular disease (CVD) mediated a proportion of 6.2% with a range from 2.1 to 6.8%. In addition, SES showed significant negative interaction with lifestyle score (OR = 0.8650) and a history of cancer (OR = 0.9096), while a significant synergy interaction was observed between SES and EPS (OR = 1.0024). In subgroup analysis, we found that males and African (AFR) with lower SES showed much higher infection risk. Results from sensitivity and validation analyses showed relative consistent with the main analysis. CONCLUSIONS Low SES is shown to be an important risk factor for infectious disease, part of which may be mediated by poor lifestyle and chronic comorbidities. Efforts to enhance health education and improve the quality of living environment may help reduce burden of infectious disease, especially for people with low SES.
Collapse
Affiliation(s)
- Xiangyu Ye
- grid.89957.3a0000 0000 9255 8984Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yidi Wang
- grid.89957.3a0000 0000 9255 8984Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yixin Zou
- grid.89957.3a0000 0000 9255 8984Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junlan Tu
- grid.89957.3a0000 0000 9255 8984Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weiming Tang
- grid.89957.3a0000 0000 9255 8984Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China ,grid.410711.20000 0001 1034 1720Institute of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, CA USA
| | - Rongbin Yu
- grid.89957.3a0000 0000 9255 8984Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sheng Yang
- grid.89957.3a0000 0000 9255 8984Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Huang
- grid.89957.3a0000 0000 9255 8984Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Sun S, Chang Q, He J, Wei X, Sun H, Xu Y, Soares Magalhaes RJ, Guo Y, Cui Z, Zhang W. The association between air pollutants, meteorological factors and tuberculosis cases in Beijing, China: A seven-year time series study. ENVIRONMENTAL RESEARCH 2023; 216:114581. [PMID: 36244443 DOI: 10.1016/j.envres.2022.114581] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Tuberculosis (TB) is a severe public health problem globally. Previous studies have revealed insufficient and inconsistent associations between air pollutants, meteorological factors and TB cases. Yet few studies have examined the associations between air pollutants, meteorological factors and TB cases in Beijing. OBJECTIVE The purpose of this study was to explore the impact of air pollutants and meteorological factors on TB in Beijing, and to provide novel insights into public health managers to formulate control strategies of TB. METHODS Data on the daily case of TB in Beijing during 2014-2020 were obtained from Chinese tuberculosis information management system. Concurrent data on the daily PM10, PM2.5, SO2, NO2, CO and O3, were obtained from the online publication platform of the Chinese National Environmental Monitoring Center. Daily average temperature, average wind speed, relative humidity, sunshine duration and total precipitation were collected from the China Meteorological Science Data Sharing Service System. A distributed lag non-linear model was fitted to identify the non-linear exposure-response relationship and the lag effects between air pollutions, meteorological factors and TB cases in Beijing. RESULTS In the single-factor model, the excess risk (ER) of TB was significantly positively associated with every 10 μg/m3 increase in NO2 in lag 1 week (ER: 1.3%; 95% confidence interval [CI]: 0.4%, 2.3%) and every 0.1 m/s increase in average wind speed in lag 5 weeks (ER: 0.3%; 95% CI: 0.1%, 0.5%), and was negatively associated with every 10 μg/m3 increase in O3 in lag 1 week (ER: -1.2%; 95% CI: -1.8%, -0.5%), every 5 °C increase in average temperature (ER: -1.7%; 95% CI: -2.9%, -0.4%) and every 10% increase in average relative humidity (ER: -0.4%; 95% CI: -0.8%, -0.1%) in lag 10 weeks, respectively. In the multi-factor model, the lag effects between TB cases and air pollutants, meteorological factors were similar. The subgroup analysis suggests that the effects of NO2, O3, average wind speed and relative humidity on TB were greater in male or labor age subgroup, while the effect of CO was greater in the elderly. In addition, no significant associations were found between PM2.5, SO2, sunshine duration and TB cases. CONCLUSION Our findings provide a better understanding of air pollutants and meteorological factors driving tuberculosis occurrence in Beijing, which enhances the capacity of public health manager to target early warning and disease control policy-making.
Collapse
Affiliation(s)
- Shanhua Sun
- Beijing Institute of Tuberculosis Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Qinxue Chang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Junyu He
- Ocean College, Zhejiang University, Zhoushan, China; Ocean Academy, Zhejiang University, Zhoushan, China
| | - Xianyu Wei
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hailong Sun
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yuanyong Xu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ricardo J Soares Magalhaes
- Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Brisbane, Australia; Child Health Research Center, The University of Queensland, Brisbane, Australia
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Zhuang Cui
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.
| | - Wenyi Zhang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
11
|
Mannebach K, Dressel A, Eason L. Pediatric tuberculosis in India: Justice and human rights. Public Health Nurs 2022; 39:1058-1064. [PMID: 35152480 DOI: 10.1111/phn.13061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 11/27/2022]
Abstract
Tuberculosis (TB) is the deadliest infectious disease across the world, with the greatest burden occurring in India. Pregnant women and children are especially vulnerable to adverse effects from infection, and they tend to have diminished ability to protect themselves. Malnutrition, HIV, and other causes of immune suppression such as exposure to air pollution make one more prone to serious illness or death from TB infection. Risk factors are influenced by maternal education, access to health care, poverty, nutrition, healthcare stigma, and sanitation, among others. Current literature is heavily clinical, lacking focus on upstream factors, with a skew toward secondary and tertiary prevention strategies (i.e., case finding and treatment), and less emphasis on primary prevention (e.g., wealth equity and environmental regulation). Given concerns with extremely drug resistant TB and because infectious diseases can permeate National borders, public health nurses, and other healthcare professionals must educate themselves and advocate on behalf of vulnerable populations such as children in India. Improved sanitation, air quality monitoring, women's education, and increased access to health care are cost-effective and evidence-based strategies to address pediatric TB in India, a challenge which is grounded in human rights and justice.
Collapse
Affiliation(s)
- Kinsey Mannebach
- Joseph J Zilber School of Public Health, University of Wisconsin-Milwaukee, Minneapolis, Minnesota, USA
| | - Anne Dressel
- College of Nursing, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Leighann Eason
- College of Nursing, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
12
|
Wu DW, Cheng YC, Wang CW, Hung CH, Chen PS, Chu-Sung Hu S, Richard Lin CH, Chen SC, Kuo CH. Impact of the synergistic effect of pneumonia and air pollutants on newly diagnosed pulmonary tuberculosis in southern Taiwan. ENVIRONMENTAL RESEARCH 2022; 212:113215. [PMID: 35367429 DOI: 10.1016/j.envres.2022.113215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND An increased incidence of pulmonary tuberculosis (PTB) among patients with pulmonary diseases exposed to air pollution has been reported. OBJECTIVE To comprehensively investigate the association between pneumonia (PN) and air pollution with PTB through a large-scale follow-up study. METHODS We conducted a retrospective study using data from the Kaohsiung Medical University Hospital Research Database and the Taiwan Air Quality Monitoring Database. We included adult patients with PN, PTB and other comorbidities according to ICD-9 codes. Control subjects without PN were matched by age, sex and ten comorbidities to each PN patient at a ratio of 4:1. RESULTS A total of 82,590 subjects were included. The PTB incidence rate was significantly higher in the PN group (2,391/100,000) than in the control group (1,388/100,000). The crude hazard ratio (HR) of PN-associated PTB incidence decreased with time, and the overall 7 years the HR (95% confidence interval; CI) was 1.74 (1.55-1.96). The overall adjusted HR and 95% CI of PN-related PTB in the multivariate Cox regression analysis was 3.38 (2.98-3.84). In addition, there was a cumulative lag effect of all air pollutants within 30 days of exposure. The peak adjusted HRs for PTB were noted on the 3rd, 8th, 12th and 12th days of PM2.5, O3, SO2 and NO exposure, respectively. The overall peak HRs (95% CI) of PM2.5, O3, SO2 and NO were 1.145 (1.139-1.152), 1.153 (1.145-1.161), 1.909 (1.839-1.982) and 1.312 (1.259-1.367), respectively, and there was a synergistic effect with pneumonia on the risk of PTB. CONCLUSIONS A strong association was found between past episodes of PN and the future risk of PTB. In addition, air pollutants including PM2.5, SO2, O3 and NO, together with previous episodes of PN, had both long-term and short-term impact on the incidence of PTB.
Collapse
Affiliation(s)
- Da-Wei Wu
- Doctoral Degree Program, Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, 812, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yu-Cheng Cheng
- Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chih-Wen Wang
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, 812, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chih-Hsing Hung
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Pei-Shih Chen
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Institute of Environmental Engineering, College of Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Stephen Chu-Sung Hu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan; Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Department of Dermatology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, 807, Taiwan
| | - Chun-Hung Richard Lin
- Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, 812, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, 812, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| |
Collapse
|
13
|
Investigating Spatial Patterns of Pulmonary Tuberculosis and Main Related Factors in Bandar Lampung, Indonesia Using Geographically Weighted Poisson Regression. Trop Med Infect Dis 2022; 7:tropicalmed7090212. [PMID: 36136622 PMCID: PMC9502094 DOI: 10.3390/tropicalmed7090212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) is a highly infectious disease, representing one of the major causes of death worldwide. Sustainable Development Goal 3.3 implies a serious decrease in the incidence of TB cases. Hence, this study applied a spatial analysis approach to investigate patterns of pulmonary TB cases and its drivers in Bandar Lampung (Indonesia). Our study examined seven variables: the growth rate of pulmonary TB, population, distance to the city center, industrial area, green open space, built area, and slum area using geographically weighted Poisson regression (GWPR). The GWPR model demonstrated excellent results with an R2 and adjusted R2 of 0.96 and 0.94, respectively. In this case, the growth rate of pulmonary TB and population were statistically significant variables. Spatial pattern analysis of sub-districts revealed that those of Panjang and Kedaton were driven by high pulmonary TB growth rate and population, whereas that of Sukabumi was driven by the accumulation of high levels of industrial area, built area, and slums. For these reasons, we suggest that local policymakers implement a variety of infectious disease prevention and control strategies based on the spatial variation of pulmonary TB rate and its influencing factors in each sub-district.
Collapse
|
14
|
Association of Single Nucleotide Polymorphism rs17580 with Smoking and Pulmonary Tuberculosis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6984403. [PMID: 35437467 PMCID: PMC9013310 DOI: 10.1155/2022/6984403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to investigate the correlation between SERPINA1 single nucleotide polymorphism (SNP) rs17580, smoking, and pulmonary tuberculosis (TB). A total of 420 TB patients (observation group) and 640 patients without pulmonary disease (control group) were randomly included. The frequencies of different genotypes were counted in both groups, and the correlation between SNP genotypes and the occurrence of TB was analyzed. Statistical models were performed to analyze the correlation between rs17580 and TB and the correlation between rs17580. The frequencies of genotypes TT, TA, and AA at the rs17580 locus in patients with TB were not statistically different from those in the control group (
), and the distributions of the two groups were in accordance with the Hardy–Weinberg equilibrium law. rs17580 was analyzed in dominant, recessive, and codominant models, exhibiting no statistical difference (
). There was no significant difference among the three genotypes in the 1–5 typing (χ2 = 1.034,
), and the difference between T and C was not statistically significant (χ2 = 0.012,
). There was a significant difference between the three genotypes between the smoking group and the nonsmoking group in TB patients (
). There was no significant difference among three genotypes in the alcoholic group and the nonalcoholic group in TB patients (
). There was no statistical difference in the time to cure among the 3 genotypes in TB patients (
). A type mutation of rs17580 in the SERPINA1 gene was strongly associated with a higher risk of development of TB in smoking patients.
Collapse
|
15
|
Wang XQ, Li YQ, Hu CY, Huang K, Ding K, Yang XJ, Cheng X, Zhang KD, Yu WJ, Wang J, Zhang YZ, Ding ZT, Zhang XJ, Kan XH. Short-term effect of ambient air pollutant change on the risk of tuberculosis outpatient visits: a time-series study in Fuyang, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30656-30672. [PMID: 34993790 DOI: 10.1007/s11356-021-17323-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
There is growing evidence that air pollution plays a role in TB, and most studies have been conducted in the core countries with inconsistent results. Few studies have comprehensively included the six common air pollutants, so they cannot consider whether various pollutants interact with each other. Our objectives were to investigate the association between short-term exposure to six common air pollutants and the risk of tuberculosis outpatient visits in Fuyang, China, 2015-2020. We combined the two models to explore the effects of exposure to six air pollutants on the risk of tuberculosis outpatient visits, including the Poisson generalized linear regression model and distributed lag non-linear model (DLNM). We performed stratified analyses for the season, type of cases, gender, and age. We used the lag-specific relative risks and cumulative relative risk obtained by increasing pollutant concentration by per 10 units to evaluate the connection between six air pollutants and TB; PM2.5 (RR = 1.0018, 95% CI: 1.0004-1.0032, delay of 12 days) and SO2 (RR = 1.0169, 95% CI: 1.0007-1.0333, lag 0-16 days) were 0.9549 (95% CI: 0.9389-0.9712, lag 0 day) and 0.8212 (95% CI: 0.7351-0.9173, 0-20-day lag). Stratified analyses showed that seasonal differences had a greater impact on TB, males were more likely to develop TB than females, older people were more likely to develop TB than younger people, and air pollution had a great impact on new cases. Exposure to O3, CO, PM10, PM2.5, and NO2 increases the risk of TB outpatient visits, except SO2 which reduces the risk. The incidence of TB has seasonal fluctuations. It is necessary for the government to establish a sound environmental monitoring and early warning system to strengthen the monitoring and emission management of pollutants in the atmosphere. Management, prevention, and treatment measures should be developed for high-risk groups (males and older people), reducing the risk of TB by reducing their specific behaviors and changing their lifestyle. We need to pay more attention to the impact of seasonal effects on TB to protect TB patients and avoid a shortage of medical resources, and it is necessary for the government to develop some seasonal preventive measures in the future.
Collapse
Affiliation(s)
- Xin-Qiang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ying-Qing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kai Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kun Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiao-Jing Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xin Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kang-Di Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Wen-Jie Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jie Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yong-Zhong Zhang
- Anhui Institute of Tuberculosis Prevention and Control, 397 Jixi Road, Hefei, 230022, China
| | - Zhen-Tao Ding
- Fuyang Provincial Center for Disease Control and Prevention, 19 Zhongnan Avenue, Fuyang, 236030, China
| | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| | - Xiao-Hong Kan
- Anhui Medical University Clinical College of Chest, 397 Jixi Road, Hefei, 230022, China.
- Anhui Chest Hospital, 397 Jixi Road, Hefei, 230022, China.
| |
Collapse
|
16
|
LPS Response Is Impaired by Urban Fine Particulate Matter. Int J Mol Sci 2022; 23:ijms23073913. [PMID: 35409273 PMCID: PMC8998903 DOI: 10.3390/ijms23073913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Fine particulate matter (PM2.5) is a complex mixture of components with diverse chemical and physical characteristics associated with increased respiratory and cardiovascular diseases mortality. Our study aimed to investigate the effects of exposure to concentrated PM2.5 on LPS-induced lung injury onset. BALB/c male mice were exposed to either filtered air or ambient fine PM2.5 in an ambient particle concentrator for 5 weeks. Then, an acute lung injury was induced with nebulized LPS. The animals were euthanized 24 h after the nebulization to either LPS or saline. Inflammatory cells and cytokines (IL-1β, IL-4, IL-5, IL-6, IL-10, IL-17, TNF) were assessed in the blood, bronchoalveolar lavage fluid (BALF), and lung tissue. In addition, lung morphology was assessed by stereological methods. Our results showed that the PM+LPS group showed histological evidence of injury, leukocytosis with increased neutrophils and macrophages, and a mixed inflammatory response profile, with increased KC, IL-6, IL-1β, IL-4, and IL-17. Our analysis shows that there is an interaction between the LPS nebulization and PM2.5 exposure, differently modulating the inflammatory response, with a distinct response pattern as compared to LPS or PM2.5 exposure alone. Further studies are required to explain the mechanism of immune modulation caused by PM2.5 exposure.
Collapse
|
17
|
Xu M, Hu P, Chen R, Liu B, Chen H, Hou J, Ke L, Huang J, Ren H, Hu H. Association of long-term exposure to ambient air pollution with the number of tuberculosis cases notified: a time-series study in Hong Kong. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21621-21633. [PMID: 34767173 DOI: 10.1007/s11356-021-17082-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 10/13/2021] [Indexed: 05/25/2023]
Abstract
To analyze the association of long-term exposure to air pollution and its attributable risks with the number of tuberculosis (TB) cases notified, a quasi-Poisson regression model combined with a distributed lag nonlinear model (DLNM) was constructed using monthly data on air pollution and TB cases notified in Hong Kong from 1999 to 2018. Nonlinear relationships between PM10, PM2.5, and CO and TB cases notified were identified. The concentrations of PM10, PM2.5, and CO corresponding to the minimum numbers of TB cases notified (the minimum TB notification concentrations, MTNCs) were 58.3 μg/m3, 41.7 μg/m3, and 0.1 mg/m3, respectively. Compared with the MTNCs, the overall cumulative numbers of TB cases notified increased by 76.93% (95% CI: 13.08%, 176.83%), 88.81% (95% CI: 26.09%, 182.71%), and 233.43% (95% CI: 13.56%, 879.03%) for the 95th percentiles of PM10 and PM2.5 and for the 97.5th percentiles of CO, respectively. The TB notification rate attributed to concentration ranges above the 97.5th percentile of PM10, PM2.5, and CO was 3.38% (95% empirical confidence intervals [eCI]: 0.93%, 5.61%), 4.73% (95% eCI: 1.87%, 7.15%), and 3.34% (95% eCI: 0.29%, 5.83%), respectively. Long-term exposure to high concentrations of air pollution in Hong Kong may be associated with increases in the number of TB cases notified for this area.
Collapse
Affiliation(s)
- Man Xu
- School of Nursing, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, Wuhan City, 430065, Hubei Province, China
| | - Ping Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ruoling Chen
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Bing Liu
- Center of Health Administration and Development Studies, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Hongying Chen
- Biological Products Management Office, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Li Ke
- Center of Health Administration and Development Studies, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jiao Huang
- Center for Evidence-Based and Translational Medicine, Wuhan University Zhongnan Hospital, Wuhan, 430030, Hubei, China
| | - Hairong Ren
- School of Nursing, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, Wuhan City, 430065, Hubei Province, China.
| | - Hui Hu
- School of Nursing, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, Wuhan City, 430065, Hubei Province, China.
| |
Collapse
|
18
|
Bai KJ, Tung NT, Hsiao TC, Chen TL, Chung KF, Ho SC, Tsai CY, Chen JK, Lee CN, Lee KY, Chang CC, Chen TT, Feng PH, Chen KY, Su CL, Thao HNX, Dung HB, Thuy TPC, Lee YL, Chuang HC. Associations between lung-deposited dose of particulate matter and culture-positive pulmonary tuberculosis pleurisy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6140-6150. [PMID: 34448140 DOI: 10.1007/s11356-021-16008-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Epidemiological studies identified the relationship between air pollution and pulmonary tuberculosis. Effects of lung-deposited dose of particulate matter (PM) on culture-positive pulmonary tuberculosis remain unclear. This study investigates the association between lung-deposited dose of PM and pulmonary tuberculosis pleurisy. A case-control study of subjects undergoing pleural effusion drainage of pulmonary tuberculosis (case) and chronic heart failure (control) was conducted. Metals and biomarkers were quantified in the pleural effusion. The air pollution exposure was measured and PM deposition in the head, tracheobronchial, alveolar region, and total lung region was estimated by Multiple-path Particle Dosimetry (MPPD) Model. We performed multiple logistic regression to examine the associations of these factors with the risk of tuberculosis. We observed that 1-μg/m3 increase in PM10 was associated with 1.226-fold increased crude odds ratio (OR) of tuberculosis (95% confidence interval (CI): 1.023-1.469, p<0.05), 1-μg/m3 increase in PM2.5-10 was associated with 1.482-fold increased crude OR of tuberculosis (95% CI: 1.048-2.097, p < 0.05), 1-ppb increase in NO2 was associated with 1.218-fold increased crude OR of tuberculosis (95% CI: 1.025-1.447, p < 0.05), and 1-ppb increase in O3 was associated with 0.735-fold decreased crude OR of tuberculosis (95% CI: 0.542 0.995). We observed 1-μg/m3 increase in PM deposition in head and nasal region was associated with 1.699-fold increased crude OR of tuberculosis (95% CI: 1.065-2.711, p < 0.05), 1-μg/m3 increase in PM deposition in tracheobronchial region was associated with 1.592-fold increased crude OR of tuberculosis (95% CI: 1.095-2.313, p < 0.05), 1-μg/m3 increase in PM deposition in alveolar region was associated with 3.981-fold increased crude OR of tuberculosis (95% CI: 1.280-12.386, p < 0.05), and 1-μg/m3 increase in PM deposition in total lung was associated with 1.511-fold increased crude OR of tuberculosis (95% CI: 1.050-2.173, p < 0.05). The results indicate that particle deposition in alveolar region could cause higher risk of pulmonary tuberculosis pleurisy than deposition in other lung regions.
Collapse
Affiliation(s)
- Kuan-Jen Bai
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Nguyen Thanh Tung
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Otorhinolaryngology Department, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Tsai-Ling Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Kian Fan Chung
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, UK
| | - Shu-Chuan Ho
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yu Tsai
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Jen-Kun Chen
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Life Sciences and School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Nin Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Cheng Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Tao Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chien-Ling Su
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | | | - Hoang Ba Dung
- Otorhinolaryngology Department, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Tran Phan Chung Thuy
- Otorhinolaryngology Department, Faculty of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
19
|
Ge E, Gao J, Wei X, Ren Z, Wei J, Liu X, Wang X, Zhong J, Lu J, Tian X, Fei F, Chen B, Wang X, Peng Y, Luo M, Lei J. Effect modification of greenness on PM 2.5 associated all-cause mortality in a multidrug-resistant tuberculosis cohort. Thorax 2021; 77:1202-1209. [PMID: 34876501 DOI: 10.1136/thoraxjnl-2020-216819] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 11/06/2021] [Indexed: 11/04/2022]
Abstract
RATIONALE Evidence for the association between fine particulate matter (PM2.5) and mortality among patients with tuberculosis (TB) is limited. Whether greenness protects air pollution-related mortality among patients with multidrug-resistant tuberculosis (MDR-TB) is completely unknown. METHODS 2305 patients reported in Zhejiang and Ningxia were followed up from MDR-TB diagnosis until death, loss to follow-up or end of the study (31 December 2019), with an average follow-up of 1724 days per patient. 16-day averages of contemporaneous Normalised Difference Vegetation Index (NDVI) in the 500 m buffer of patient's residence, annual average PM2.5 and estimated oxidant capacity Ox were assigned to patients regarding their geocoded home addresses. Cox proportional hazards regression models were used to estimate HRs per 10 μg/m3 exposure to PM2.5 and all-cause mortality among the cohort and individuals across the three tertiles, adjusting for potential covariates. RESULTS HRs of 1.702 (95% CI 1.680 to 1.725) and 1.169 (1.162 to 1.175) were observed for PM2.5 associated with mortality for the full cohort and individuals with the greatest tertile of NDVI. Exposures to PM2.5 were stronger in association with mortality for younger patients (HR 2.434 (2.432 to 2.435)), female (2.209 (1.874 to 2.845)), patients in rural (1.780 (1.731 to 1.829)) and from Ningxia (1.221 (1.078 to 1.385)). Cumulative exposures increased the HRs of PM2.5-related mortality, while greater greenness flattened the risk with HRs reduced in 0.188-0.194 on average. CONCLUSIONS Individuals with MDR-TB could benefit from greenness by having attenuated associations between PM2.5 and mortality. Improving greener space and air quality may contribute to lower the risk of mortality from TB/MDR-TB and other diseases.
Collapse
Affiliation(s)
- Erjia Ge
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jianhui Gao
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Xiaolin Wei
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Zhoupeng Ren
- State Key Laboratory of Resources and Environmental Information System (LREIS), Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jing Wei
- Iowa Technology Institute, Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Xin Liu
- School of Geoscience and Technology, Southwest Petroleum University, Chengdu, Sichuan, China
| | - Xiaomeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jieming Zhong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jingru Lu
- Institute of Ningxia Tuberculosis Control, The Fourth People's Hospital of Ningxia, Yinchuan, Ningxia, China
| | - Xiaomei Tian
- Institute of Ningxia Tuberculosis Control, The Fourth People's Hospital of Ningxia, Yinchuan, Ningxia, China
| | - Fangrong Fei
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Bin Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xiaolin Wang
- Institute of Ningxia Tuberculosis Control, The Fourth People's Hospital of Ningxia, Yinchuan, Ningxia, China
| | - Ying Peng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Ming Luo
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Juan Lei
- Institute of Ningxia Tuberculosis Control, The Fourth People's Hospital of Ningxia, Yinchuan, Ningxia, China
| |
Collapse
|
20
|
Lu M, Sue YM, Hsu HL, Zhang JF, Liu YJ, Yen YC, Yu TY, Yu MC, Lee CH. Tuberculosis treatment delay and nosocomial exposure remain important risks for patients undergoing regular hemodialysis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:926-934. [PMID: 34535393 DOI: 10.1016/j.jmii.2021.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/07/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Studies have reported an increased tuberculosis (TB) incidence among patients with end-stage renal disease (ESRD). This nationwide nested Case-control study investigated the risk of active TB due to nosocomial exposure and its correlation with the delay in TB treatment in hemodialysis patients. METHODS Adult (aged ≥20 years) patients with incident ESRD over 2000-2010 were identified from Taiwan National Health Insurance Research Database; 2331 patients with incident active TB (Case) were matched with 11,655 patients without TB (control) by age, sex, year of ESRD onset, Charlson comorbidity index, chronic obstructive pulmonary disease, and diabetes mellitus, at a 1:5 case-to-control ratio. RESULTS Compared with the control group, the Case group had greater nosocomial exposure to index patients with pulmonary TB (2.36 vs. 0.11 month of exposure, p < 0.001). Nosocomial exposure increased active TB risk (adjusted odds ratio [OR; 95% confidence interval, CI]: 1.60 [1.55-1.66] per month of exposure), particularly when the exposure time was either within 6 months before the index case was diagnosed or 6-15 months before the ESRD patient became an incident active TB case. For patients with active TB, cough-related medication prescriptions (proxy for cough symptoms) exponentially increased over 6 months before TB treatment. CONCLUSION Nosocomial exposure attributed to delay in the diagnosis of index pulmonary TB is important in TB transmission among patients undergoing regular hemodialysis. Additional studies investigating how TB can be diagnosed and treated early are warranted. SUMMARY AT A GLANCE Our study revealed that nosocomial exposure, attributed to delay in pulmonary TB diagnosis, is important in TB transmission among patients undergoing regular hemodialysis. Strategies to diagnose and treat TB early are crucial to infection control, and they warrant further investigations.
Collapse
Affiliation(s)
- Michael Lu
- Pulmonary Research Center, Division of Pulmonary Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Neurology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yuh-Mou Sue
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan; Divisions of Nephrology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Han-Lin Hsu
- Pulmonary Research Center, Division of Pulmonary Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Jun-Fu Zhang
- Big Data Center, Lotung Poh-Ai Hospital, Lo-Hsu Medical Foundation, Yilan County, Taiwan.
| | - Yi-Jun Liu
- Pulmonary Research Center, Division of Pulmonary Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Chun Yen
- Biostatistics Center, Office of Data Science, Taipei Medical University, Taipei, Taiwan.
| | - Tzu-Yun Yu
- Biostatistics Center, Office of Data Science, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Chih Yu
- Pulmonary Research Center, Division of Pulmonary Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chih-Hsin Lee
- Pulmonary Research Center, Division of Pulmonary Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
21
|
Li J, Li Y, Ye M, Yao S, Yu C, Wang L, Wu W, Wang Y. Forecasting the Tuberculosis Incidence Using a Novel Ensemble Empirical Mode Decomposition-Based Data-Driven Hybrid Model in Tibet, China. Infect Drug Resist 2021; 14:1941-1955. [PMID: 34079304 PMCID: PMC8164697 DOI: 10.2147/idr.s299704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Objective The purpose of this study is to develop a novel data-driven hybrid model by fusing ensemble empirical mode decomposition (EEMD), seasonal autoregressive integrated moving average (SARIMA), with nonlinear autoregressive artificial neural network (NARNN), called EEMD-ARIMA-NARNN model, to assess and forecast the epidemic patterns of TB in Tibet. Methods The TB incidence from January 2006 to December 2017 was obtained, and then the time series was partitioned into training subsamples (from January 2006 to December 2016) and testing subsamples (from January to December 2017). Among them, the training set was used to develop the EEMD-SARIMA-NARNN combined model, whereas the testing set was used to validate the forecasting performance of the model. Whilst the forecasting accuracy level of this novel method was compared with the basic SARIMA model, basic NARNN model, error-trend-seasonal (ETS) model, and traditional SARIMA-NARNN mixture model. Results By comparing the accuracy level of the forecasting measurements including root-mean-square error, mean absolute deviation, mean error rate, mean absolute percentage error, and root-mean-square percentage error, it was shown that the EEMD-SARIMA-NARNN combined method produced lower error rates than the others. The descriptive statistics suggested that TB was a seasonal disease, peaking in late winter and early spring and a trough in autumn and early winter, and the TB epidemic indicated a drastic increase by a factor of 1.7 from 2006 to 2017 in Tibet, with average annual percentage change of 5.8 (95% confidence intervals: 3.5–8.1). Conclusion This novel data-driven hybrid method can better consider both linear and nonlinear components in the TB incidence than the others used in this study, which is of great help to estimate and forecast the future epidemic trends of TB in Tibet. Besides, under present trends, strict precautionary measures are required to reduce the spread of TB in Tibet.
Collapse
Affiliation(s)
- Jizhen Li
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Yuhong Li
- National Center for Tuberculosis Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Ming Ye
- Preventive Medicine Clinic, Xinxiang Center for Disease Control and Prevention, Xinxiang, Henan Province, People's Republic of China
| | - Sanqiao Yao
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Chongchong Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Lei Wang
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Weidong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Yongbin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| |
Collapse
|
22
|
Chanklom P, Kreetachat T, Chotigawin R, Suwannahong K. Photocatalytic Oxidation of PLA/TiO 2-Composite Films for Indoor Air Purification. ACS OMEGA 2021; 6:10629-10636. [PMID: 34056216 PMCID: PMC8153744 DOI: 10.1021/acsomega.0c06194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/06/2021] [Indexed: 05/21/2023]
Abstract
Non-decomposable plastic has been replaced with polylactic acid, which is a biodegradable aliphatic polyester stationary phase, in composite films embedded with a TiO2 photocatalyst for mitigation of indoor air pollution. PLA has superior properties relative to those of other biopolymers, such as a relatively high melting point, crystallinity, and rigidity. This study aimed to incorporate TiO2-anatase into PLA for use as a photocatalyst using the blown film method. Photocatalytic oxidation, an advanced oxidative process, has been recognized as an economical technique providing convenience and efficiency with indoor air treatment. Therefore, the use of new environmentally friendly biodegradable polymers provides an alternative way to address the severe environmental concerns caused by non-decomposable plastics. UV-vis spectrophotometry and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX) were used to observe the dispersibility and mixing capacity of the TiO2-anatase PLA matrix. TiO2 dosages were 5, 10, and 15% (wt/wt), and they were incorporated with a twin-screw extruder. SEM-EDX images demonstrated the homogeneity of TiO2 distribution in the PLA matrix. The energy band gaps of TiO2 in the PLA/TiO2-composite films were between 3.14 and 3.22 eV. The relationship between the photocatalytic oxidation rate and the TiO2 dosage in the PLA/TiO2-composite films was determined. A prototype reactor model is geared toward the development of air purifiers for indoor air conditioning. Rate constants for benzene degradation were obtained using first-order kinetics to find rate constants matching experimental findings. In the PLA/TiO2-composite film, the TiO2-anatase photocatalyst was able to degrade 5 ppm benzene. This work contributes to the use of ecoefficient photocatalytic oxidation.
Collapse
Affiliation(s)
- Pattamaphon Chanklom
- Department of Occupational
Medicine, Chonburi Hospital, Chonburi 20000, Thailand
| | - Torpong Kreetachat
- School of Energy and Environment, Phayao University, Phayao 56000, Thailand
| | - Rotruedee Chotigawin
- Department of Environmental Health, Faculty of Public
Health, Burapha University, Chonburi 20131, Thailand
| | - Kowit Suwannahong
- Department of Environmental Health, Faculty of Public
Health, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
23
|
Mir Alvarez C, Hourcade R, Lefebvre B, Pilot E. A Scoping Review on Air Quality Monitoring, Policy and Health in West African Cities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9151. [PMID: 33297562 PMCID: PMC7730241 DOI: 10.3390/ijerph17239151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022]
Abstract
Ambient air pollution is a global health threat that causes severe mortality and morbidity from respiratory, cardiovascular, and other diseases. Its impact is especially concerning in cities; as the urban population increases, especially in low- and middle-income countries, large populations risk suffering from these health effects. The Economic Community of West African States (ECOWAS) comprises 15 West African countries, in which many cities are currently experiencing fast growth and industrialization. However, government-led initiatives in air quality monitoring are scarce in ECOWAS countries, which makes it difficult to effectively control and regulate air quality and subsequent health issues. A scoping study was performed following the Arksey and O'Malley methodological framework in order to assess the precise status of air quality monitoring, related policy, and legislation in this region. Scientific databases and gray literature searches were conducted, and the results were contrasted through expert consultations. It was found that only two ECOWAS countries monitor air quality, and most countries have insufficient legislation in place. Public health surveillance data in relation to air quality data is largely unavailable. In order to address this, improved air quality surveillance, stricter and better-enforced regulations, regional cooperation, and further research are strongly suggested for ECOWAS.
Collapse
Affiliation(s)
- Celia Mir Alvarez
- Department of Health, Ethics and Society, Faculty of Health, Medicine and Life Sciences (FHML), Care and Public Health Research Institute (CAPHRI), Maastricht University, 6229 ER Maastricht, The Netherlands;
- University Rennes, EHESP, CNRS, ARENES–UMR 6051, F-35000 Rennes, France; (R.H.); (B.L.)
| | - Renaud Hourcade
- University Rennes, EHESP, CNRS, ARENES–UMR 6051, F-35000 Rennes, France; (R.H.); (B.L.)
| | - Bertrand Lefebvre
- University Rennes, EHESP, CNRS, ARENES–UMR 6051, F-35000 Rennes, France; (R.H.); (B.L.)
| | - Eva Pilot
- Department of Health, Ethics and Society, Faculty of Health, Medicine and Life Sciences (FHML), Care and Public Health Research Institute (CAPHRI), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
24
|
An Opportunity to END TB: Using the Sustainable Development Goals for Action on Socio-Economic Determinants of TB in High Burden Countries in WHO South-East Asia and the Western Pacific Regions. Trop Med Infect Dis 2020; 5:tropicalmed5020101. [PMID: 32570828 PMCID: PMC7345698 DOI: 10.3390/tropicalmed5020101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/17/2022] Open
Abstract
The progress towards ending tuberculosis (TB) by 2035 is less than expected in 11 high TB burden countries in the World Health Organization South-East Asia and Western Pacific regions. Along with enhancing measures aimed at achieving universal access to quality-assured diagnosis, treatment and prevention services, massive efforts are needed to mitigate the prevalence of health-related risk factors, preferably through broader actions on the determinants of the "exposure-infection-disease-adverse outcome" spectrum. The aim of this manuscript is to describe the major socio-economic determinants of TB and to discuss how there are opportunities to address these determinants in an englobing manner under the United Nations Sustainable Development Goals (SDGs) framework. The national TB programs must identify stakeholders working on the other SDGs, develop mechanisms to collaborate with them and facilitate action on social-economic determinants in high TB burden geographical areas. Research (to determine the optimal mechanisms and impact of such collaborations) must be an integral part of this effort. We call upon stakeholders involved in achieving the SDGs and End TB targets to recognize that all goals are highly interlinked, and they need to combine and complement each other's efforts to end TB and the determinants behind this disease.
Collapse
|