1
|
Dogra A, Narang RS, Kaur T, Narang JK. Mefenamic Acid Loaded and TPGS Stabilized Mucoadhesive Nanoemulsion for the Treatment of Alzheimer's Disease: Development, Optimization, and Brain-Targeted Delivery via Olfactory Pathway. AAPS PharmSciTech 2024; 25:16. [PMID: 38200387 DOI: 10.1208/s12249-023-02727-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is a very common disorder that affects the elderly. There are relatively few medications that can be used orally or as a suspension to treat AD. A mucoadhesive (o/w) nano emulsion of mefenamic acid was made by adding Carbopol 940P to the optimised drug nanoemulsion using distilled water as the aqueous phase (6%); Solutol HS: tween 20 (3.6%) as the surfactant and co-surfactant; and clove oil: TPGS (0.4%) as the oil phase and mefenamic acid as the drug (2.8 mg/ml). The mucoadhesive nanoemulsion (S40.5%w/v) had a particle size of 91.20 nm, polydispersity index of 0.270, and surface charge of - 12.4 mV. Significantly higher (p < 0.001) drug release (89.37%) was observed for mucoadhesive drug formulation in comparison to mucoadhesive drug suspension (25.64%) at 8 h. The ex vivo nasal permeation of 83.03% in simulated nasal fluid and 85.71% in artificial cerebrospinal fluid was observed. The percent inhibition and inhibitory concentration (IC50) of mucoadhesive drug nanoemulsion were found to be 91.57 ± 2.69 and 6.76 respectively. Higher cell viability on glioblastoma cells (85-80%) was researched for mucoadhesive nanoemulsion as compared to drug suspension (80-70%). Significantly higher (p < 0.001) drug absorption and Cmax (491.94 ± 24.13 ng/ml) of mucoadhesive drug nanoemulsion were observed than mucoadhesive drug suspension (107.46 ± 11.46 ng/ml) at 8 h. The stability studies confirmed that the formulation was stable at 40°C ± 2°C and 75 ± 5% RH. The authors concluded that the mucoadhesive mefenamic acid-loaded nanoemulsion may be an effective technique for treating Alzheimer's disease by intranasal route.
Collapse
Affiliation(s)
- Anmol Dogra
- I.K.G Punjab Technical University, Kapurthala, Punjab, India
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, India
| | - Ramandeep Singh Narang
- Department of Oral and Maxillofacial Pathology, Sri Guru Ram Das Institute of Dental Sciences and Research, Amritsar, Punjab, India
| | - Tajpreet Kaur
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, Punjab, India
| | - Jasjeet Kaur Narang
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, India.
| |
Collapse
|
2
|
Sharma R, Malviya R, Srivastava S, Ahmad I, Rab SO, Uniyal P. Targeted Treatment Strategies for Mitochondria Dysfunction: Correlation with Neurological Disorders. Curr Drug Targets 2024; 25:683-699. [PMID: 38910425 DOI: 10.2174/0113894501303824240604103732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024]
Abstract
Mitochondria are an essential intracellular organelle for medication targeting and delivery since they seem to create energy and conduct many other cellular tasks, and mitochondrial dysfunctions and malfunctions lead to many illnesses. Many initiatives have been taken to detect, diagnose, and image mitochondrial abnormalities, and to transport and accumulate medicines precisely to mitochondria, all because of special mitochondrial aspects of the pathophysiology of cancer. In addition to the negative membrane potential and paradoxical mitochondrial dynamics, they include high temperatures, high levels of reactive oxygen species, high levels of glutathione, and high temperatures. Neurodegenerative diseases represent a broad spectrum of debilitating illnesses. They are linked to the loss of certain groups of neurons based on an individual's physiology or anatomy. The mitochondria in a cell are generally accepted as the authority with respect to ATP production. Disruption of this system is linked to several cellular physiological issues. The development of neurodegenerative disorders has been linked to mitochondrial malfunction, according to pathophysiological studies. There seems to be substantial evidence connecting mitochondrial dysfunction and oxidative stress to the development of neurodegenerative disorders. It has been extensively observed that mitochondrial malfunction triggers autophagy, which plays a role in neurodegenerative disorders. In addition, excitotoxicity and mitochondrial dysfunction have been linked to the development of neurodegenerative disorders. The pathophysiology of neurodegenerative illnesses has been linked to increased apoptosis and necrosis, as well as mitochondrial malfunction. A variety of synthetic and natural treatments have shown efficacy in treating neurodegenerative illnesses caused by mitochondrial failure. Neurodegenerative illnesses can be effectively treated with existing drugs that target mitochondria, although their precise formulations are poorly understood. Therefore, there is an immediate need to focus on creating drug delivery methods specifically targeted at mitochondria in the treatment and diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai, Malaysia
- Era College of Pharmacy, Era University, Lucknow, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
3
|
Jing Z, Li Y, Song J, Zang X. Efficient TNBC immunotherapy by dual reprogramming tumor-infiltrating dendritic cells and tumor-associated macrophages with stimulus-responsive miR155 nanocomplexes. Int J Biol Macromol 2023; 253:126912. [PMID: 37722648 DOI: 10.1016/j.ijbiomac.2023.126912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Triple negative breast cancer (TNBC) remains to be a formidable adversary with high mortality and unfavorable prognosis. Tumor microenvironment comprises of various constituents, among them, tumor infiltrating dendritic cells (TIDCs) and tumor-associated macrophages (TAMs) which have been recognized as pivotal factors responsible for mediating immune responses. Overcoming the refractory properties of TIDCs and TAMs is critical for inducing a robust and sustained immune response against cancer cells. In this study, pH/ROS-responsive microRNA-155 (miR155) nanocomplexes (MiR@PCPmP NPs) were developed to reprogram TIDCs and TAMs for efficient TNBC immunotherapy. This nanoplatform was based on a pH/ROS cleavable copolymer of poly(ethylene glycol)-carboxydimethyl maleate-poly(ethyleneimine)-peroxalate ester-poly(ε-caprolactone) grafted with mannose moieties (PEG-CDM-PEI[Man]-ox-PCL) which self-assembled with miRNA to form nanocomplexes. In the tumor microenvironment, the nanocomplexes showed selective cellular uptake by TIDCs and TAMs through PEG detachment and mannose exposure, followed by efficient endosomal escape, cytosolic miR155 release, and the dual-reprogramming of TIDCs and TAMs. Our results showed that MiR@PCPmP NPs significantly improved antitumor immune responses with highly infiltrating CD8+ T cells while restraining immunosuppressive components in 4T1 tumor-bearing mice. Furthermore, the nanoparticles effectively suppressed both primary tumors and pulmonary metastatic nodules without obvious systemic toxicity. This research highlights the potential of dual-reprogramming of TIDCs and TAMs with the miR155 nanocomplexes as a promising strategy for TNBC immunotherapy, with potential for translation to other cancers with a similar microenvironment.
Collapse
Affiliation(s)
- Zhenghui Jing
- School of Basic Medicine, Qingdao Medical College, Qingdao University, PR China
| | - Yanfeng Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, PR China
| | - Jinxiao Song
- School of Basic Medicine, Qingdao Medical College, Qingdao University, PR China
| | - Xinlong Zang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, PR China.
| |
Collapse
|
4
|
Wu DD, Salah YA, Ngowi EE, Zhang YX, Khattak S, Khan NH, Wang Y, Li T, Guo ZH, Wang YM, Ji XY. Nanotechnology prospects in brain therapeutics concerning gene-targeting and nose-to-brain administration. iScience 2023; 26:107321. [PMID: 37554468 PMCID: PMC10405259 DOI: 10.1016/j.isci.2023.107321] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Neurological diseases are one of the most pressing issues in modern times worldwide. It thus possesses explicit attention from researchers and medical health providers to guard public health against such an expanding threat. Various treatment modalities have been developed in a remarkably short time but, unfortunately, have yet to lead to the wished-for efficacy or the sought-after clinical improvement. The main hurdle in delivering therapeutics to the brain has always been the blood-brain barrier which still represents an elusive area with lots of mysteries yet to be solved. Meanwhile, nanotechnology has emerged as an optimistic platform that is potentially holding the answer to many of our questions on how to deliver drugs and treat CNS disorders using novel technologies rather than the unsatisfying conventional old methods. Nanocarriers can be engineered in a way that is capable of delivering a certain therapeutic cargo to a specific target tissue. Adding to this mind-blowing nanotechnology, the revolutionizing gene-altering biologics can have the best of both worlds, and pave the way for the long-awaited cure to many diseases, among those diseases thus far are Alzheimer's disease (AD), brain tumors (glioma and glioblastoma), Down syndrome, stroke, and even cases with HIV. The review herein collects the studies that tested the mixture of both sciences, nanotechnology, and epigenetics, in the context of brain therapeutics using three main categories of gene-altering molecules (siRNA, miRNA, and CRISPR) with a special focus on the advancements regarding the new favorite, intranasal route of administration.
Collapse
Affiliation(s)
- Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yasmine Ahmed Salah
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo 11517, Egypt
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zi-Hua Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Neurology, Kaifeng Hospital of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475000, China
| | - Yan-Mei Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Nursing and Health, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
5
|
Hemmingsen LM, Panzacchi V, Kangu LM, Giordani B, Luppi B, Škalko-Basnet N. Lecithin and Chitosan as Building Blocks in Anti- Candida Clotrimazole Nanoparticles. Pharmaceuticals (Basel) 2023; 16:790. [PMID: 37375738 DOI: 10.3390/ph16060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
The main focus when considering treatment of non-healing and infected wounds is tied to the microbial, particularly bacterial, burden within the wound bed. However, as fungal contributions in these microbial communities become more recognized, the focus needs to be broadened, and the remaining participants in the complex wound microbiome need to be addressed in the development of new treatment strategies. In this study, lecithin/chitosan nanoparticles loaded with clotrimazole were tailored to eradicate one of the most abundant fungi in the wound environment, namely C. albicans. Moreover, this investigation was extended to the building blocks and their organization within the delivery system. In the evaluation of the novel nanoparticles, their compatibility with keratinocytes was confirmed. Furthermore, these biocompatible, biodegradable, and non-toxic carriers comprising clotrimazole (~189 nm, 24 mV) were evaluated for their antifungal activity through both disk diffusion and microdilution methods. It was found that the activity of clotrimazole was fully preserved upon its incorporation into this smart delivery system. These results indicate both that the novel carriers for clotrimazole could serve as a therapeutic alternative in the treatment of fungi-infected wounds and that the building blocks and their organization affect the performance of nanoparticles.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Department of Pharmacy, University of Tromsø-The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway
| | - Virginia Panzacchi
- Department of Pharmacy, University of Tromsø-The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Lloyd Mbugua Kangu
- Department of Pharmacy, University of Tromsø-The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Nataša Škalko-Basnet
- Department of Pharmacy, University of Tromsø-The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway
| |
Collapse
|
6
|
Hyperoside alleviates toxicity of β-amyloid via endoplasmic reticulum-mitochondrial calcium signal transduction cascade in APP/PS1 double transgenic Alzheimer's disease mice. Redox Biol 2023; 61:102637. [PMID: 36821955 PMCID: PMC9975698 DOI: 10.1016/j.redox.2023.102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by a decline in cognitive function. The β-amyloid (Aβ) hypothesis suggests that Aβ peptides can spontaneously aggregate into β-fragment-containing oligomers and protofibrils, and this activation of the amyloid pathway alters Ca2+ signaling in neurons, leading to neurotoxicity and thus apoptosis of neuronal cells. In our study, a blood-brain barrier crossing flavonol glycoside hyperoside was identified with anti-Aβ aggregation, BACE inhibitory, and neuroprotective effect in cellular or APP/PSEN1 double transgenic Alzheimer's disease mice model. While our pharmacokinetic data confirmed that intranasal administration of hyperoside resulted in a higher bio-availability in mice brain, further in vivo studies revealed that it improved motor deficit, spatial memory and learning ability of APP/PSEN1 mice with reducing level of Aβ plaques and GFAP in the cortex and hippocampus. Bioinformatics, computational docking and in vitro assay results suggested that hyperoside bind to Aβ and interacted with ryanodine receptors, then regulated cellular apoptosis via endoplasmic reticulum-mitochondrial calcium (Ca2+) signaling pathway. Consistently, it was confirmed that hyperoside increased Bcl2, decreased Bax and cyto-c protein levels, and ameliorated neuronal cell death in both in vitro and in vivo model. By regulating Aβ-induced cell death via regulation on Ca2+ signaling cascade and mitochondrial membrane potential, our study suggested that hyperoside may work as a potential therapeutic agent or preventive remedy for Alzheimer's disease.
Collapse
|
7
|
Gagliardi M, Chiarugi S, De Cesari C, Di Gregorio G, Diodati A, Baroncelli L, Cecchini M, Tonazzini I. Crosslinked Chitosan Nanoparticles with Muco-Adhesive Potential for Intranasal Delivery Applications. Int J Mol Sci 2023; 24:6590. [PMID: 37047562 PMCID: PMC10094788 DOI: 10.3390/ijms24076590] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Intranasal drug delivery is convenient and provides a high bioavailability but requires the use of mucoadhesive nanocarriers. Chitosan is a well-established polymer for mucoadhesive applications but can suffer from poor cytocompatibility and stability upon administration. In this work, we present a method to obtain stable and cytocompatible crosslinked chitosan nanoparticles. We used 2,6-pyridinedicarboxylic acid as a biocompatible crosslinker and compared the obtained particles with those prepared by ionotropic gelation using sodium tripolyphosphate. Nanoparticles were tested to evaluate the size and the surface charge, as well as their stability in storage conditions (4 °C), at the nasal cavity temperature (32 °C), and at the body temperature (37 °C). The crosslinked chitosan nanoparticles showed a size around 150 nm and a surface charge of 10.3 mV ± 0.9 mV, both compatible with the intranasal drug administration. Size and surface charge parameters did not significantly vary over time, indicating the good stability of these nanoparticles. We finally tested their cytocompatibility in vitro using SHSY5Y human neuroblastoma and RPMI 2650 human nasal epithelial cells, with positive results. In conclusion, the proposed synthetic system shows an interesting potential as a drug carrier for intranasal delivery.
Collapse
Affiliation(s)
- Mariacristina Gagliardi
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute—National Research Council (CNR) and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Sara Chiarugi
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute—National Research Council (CNR) and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Chiara De Cesari
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute—National Research Council (CNR) and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Giulia Di Gregorio
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute—National Research Council (CNR) and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Alessandra Diodati
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute—National Research Council (CNR) and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
- Department of Developmental Neuroscience, Scientific Institute Stella Maris Foundation, Viale del Tirreno 331, Calambrone, 56128 Pisa, Italy
| | - Marco Cecchini
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute—National Research Council (CNR) and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Ilaria Tonazzini
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute—National Research Council (CNR) and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
8
|
Bseiso EA, AbdEl-Aal SA, Nasr M, Sammour OA, El Gawad NAA. Nose to brain delivery of melatonin lipidic nanocapsules as a promising post-ischemic neuroprotective therapeutic modality. Drug Deliv 2022; 29:2469-2480. [PMID: 35892291 PMCID: PMC9341381 DOI: 10.1080/10717544.2022.2104405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ischemic stroke accounts for about 87% of all strokes, causing long-term disability in adults, and is the second leading cause of death worldwide. In search of new therapeutic modalities, the use of neuroprotective agents loaded in nanocarriers to be delivered by noninvasive means (i.e. via intranasal route) became a popular approach. In the current study, melatonin (MEL) was loaded in lipidic nanocapsules (LNCs) prepared using the phase inversion method, and characterized in terms of size, polydispersity, zeta potential, in vitro drug release, viscosity, storage stability, and ex vivo permeation across sheep nasal mucosa. Moreover, MEL-LNCs were tested for efficacy in cerebral ischemia/reperfusion (I/R/) injury model through histopathological assessment, and analysis of oxidative stress markers, pro-inflammatory cytokines, and apoptotic markers. Results showed that LNCs exhibited particle size ranging from 18.26 to 109.8 nm, negative zeta potential, good storage stability, spherical morphology, and a burst release followed by a sustained release pattern. LNCs exhibited 10.35 folds higher permeation of MEL than the drug solution across sheep nasal mucosa. Post-ischemic intranasal administration of MEL-LNCs revealed lowering of oxidative stress manifested by a decrease in malondialdehyde levels, and elevation of glutathione and superoxide dismutase levels, lowering of the inflammatory markers tumor necrosis factor-α, NO, myeloperoxidase, and significant inhibition of Caspase-3 activity as an apoptotic marker. Western blot analysis delineated a recovery of protein expression Nrf-2 and HO-1 with downregulation in the parent inflammatory markers nuclear factor kappa B p65, inducible nitric oxide synthase, Bax, and Cytochrome C expressions, and upregulation of B-cell lymphoma-2 Bcl-2, hence promoting neuronal survival. This was supported by histological evidence, revealing significant restoration of hippocampal neurons. In light of the above, it can be concluded that MEL-LNCs could be a promising delivery system for nose to brain delivery for treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Eman A Bseiso
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza Governorate, Egypt
| | - Sarah A AbdEl-Aal
- Pharmacology and Toxicology Division, Department of Pharmacy, KUT University College, Al Kut, Wasit52001, Iraq
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Nabaweya A Abd El Gawad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza Governorate, Egypt.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
9
|
The effect of simvastatin-loaded methoxy poly(ethylene glycol)-polylactic acid nanoparticles on osteoblasts. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Espinoza LC, Guaya D, Calpena AC, Perotti RM, Halbaut L, Sosa L, Brito-Llera A, Mallandrich M. Comparative Study of Donepezil-Loaded Formulations for the Treatment of Alzheimer's Disease by Nasal Administration. Gels 2022; 8:715. [PMID: 36354623 PMCID: PMC9689763 DOI: 10.3390/gels8110715] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 08/30/2023] Open
Abstract
Alzheimer's disease is characterized by a progressive deterioration of neurons resulting in a steady loss of cognitive functions and memory. Many treatments encounter the challenge of overcoming the blood-brain barrier, thus the intranasal route is a non-invasive effective alternative that enhances the drug delivery in the target organ-the brain-and reduces the side effects associated with systemic administration. This study aimed at developing intranasal gels of donepezil as an approach to Alzheimer's disease. Three different gels were elaborated and characterized in terms of pH, morphology, gelation temperature, rheology, and swelling. An in vitro release study and an ex vivo permeation in porcine nasal mucosa were conducted on Franz diffusion cells. The tolerability of the formulations was determined by the cytotoxicity in human nasal cells RPMI 2650. Results showed that pluronic gels exhibit the higher release rate and enhanced permeation compared to chitosan gel. Moreover, the combination of Pluronic F-127 and Transcutol® P exerted a synergic effect on the permeation of donepezil through the nasal mucosa. The resulting gels showed suitable tolerance in the RPMI 2650 cell line and physicochemical characteristics for intranasal delivery, and thus gel formulations administered by nasal mucosa could be an alternative strategy to improve the bioavailability of donepezil.
Collapse
Affiliation(s)
- Lupe Carolina Espinoza
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Diana Guaya
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
| | - Ana Cristina Calpena
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Rodolfo Miguel Perotti
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Lilian Sosa
- Pharmaceutical Technology Research Group, Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
| | - Adriel Brito-Llera
- Dirección de Ciencia, Tecnología e Innovación, Universidad de la Habana, Calle M entre 19 y 21 #255, Vedado, La Habana 10400, Cuba
| | - Mireia Mallandrich
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Montegiove N, Calzoni E, Emiliani C, Cesaretti A. Biopolymer Nanoparticles for Nose-to-Brain Drug Delivery: A New Promising Approach for the Treatment of Neurological Diseases. J Funct Biomater 2022; 13:125. [PMID: 36135560 PMCID: PMC9504125 DOI: 10.3390/jfb13030125] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 12/12/2022] Open
Abstract
Diseases affecting the central nervous system (CNS) are among the most disabling and the most difficult to cure due to the presence of the blood-brain barrier (BBB) which represents an impediment from a therapeutic and diagnostic point of view as it limits the entry of most drugs. The use of biocompatible polymer nanoparticles (NPs) as vehicles for targeted drug delivery to the brain arouses increasing interest. However, the route of administration of these vectors remains critical as the drug must be delivered without being degraded to achieve a therapeutic effect. An innovative approach for the administration of drugs to the brain using polymeric carriers is represented by the nose-to-brain (NtB) route which involves the administration of the therapeutic molecule through the neuro-olfactory epithelium of the nasal mucosa. Nasal administration is a non-invasive approach that allows the rapid transport of the drug directly to the brain and minimizes its systemic exposure. To date, many studies involve the use of polymer NPs for the NtB transport of drugs to the brain for the treatment of a whole series of disabling neurological diseases for which, as of today, there is no cure. In this review, various types of biodegradable polymer NPs for drug delivery to the brain through the NtB route are discussed and particular attention is devoted to the treatment of neurological diseases such as Glioblastoma and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
12
|
Li Y, Zang X, Song J, Xie Y, Chen X. pH/ROS dual-responsive nanoparticles with curcumin entrapment to promote antitumor efficiency in triple negative breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Nguyen TT, Nguyen TTD, Tran NMA, Van Vo G. Lipid-Based Nanocarriers via Nose-to-Brain Pathway for Central Nervous System Disorders. Neurochem Res 2022; 47:552-573. [PMID: 34800247 DOI: 10.1007/s11064-021-03488-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022]
Abstract
Neurodegenerative disorders are distinguished by the gradual deterioration of the nervous system's structure and function due to oxidative stress, mitochondrial dysfunction, protein misfolding, excitotoxicity, and neuroinflammation. Among these NDs, Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis characterized an increasing dysfunction and loss of neuronal structure leading to neuronal cell death. Although there is currently no drug to totally reverse the effects of NDs, such novel formulations and administration routes are developed for better management and nose-to-brain delivery is one of delivery for treating NDs. This review aimed to highlight advances in research on various lipid based nanocarriers such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and cubosomes which are reported to treat and alleviate the symptoms of NDs via nose-to-brain route. The challenges during clinical translation of lipid nanocarriers from bench to bed side is also discussed.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, 700000, Vietnam
| | - Thi Thuy Dung Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Nguyen-Minh-An Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
14
|
How nano-engineered delivery systems can help marketed and repurposed drugs in Alzheimer’s disease treatment? Drug Discov Today 2022; 27:1575-1589. [DOI: 10.1016/j.drudis.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022]
|
15
|
Vaz G, Clementino A, Mitsou E, Ferrari E, Buttini F, Sissa C, Xenakis A, Sonvico F, Dora CL. In Vitro Evaluation of Curcumin- and Quercetin-Loaded Nanoemulsions for Intranasal Administration: Effect of Surface Charge and Viscosity. Pharmaceutics 2022; 14:pharmaceutics14010194. [PMID: 35057089 PMCID: PMC8779979 DOI: 10.3390/pharmaceutics14010194] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
The nose-to-brain delivery of neuroprotective natural compounds is an appealing approach for the treatment of neurodegenerative diseases. Nanoemulsions containing curcumin (CUR) and quercetin (QU) were prepared by high-pressure homogenization and characterized physicochemically and structurally. A negative (CQ_NE−), a positive (CQ_NE+), and a gel (CQ_NEgel) formulation were developed. The mean particle size of the CQ_NE− and CQ_NE+ was below 120 nm, while this increased to 240 nm for the CQ_NEgel. The formulations showed high encapsulation efficiency and protected the CUR/QU from biological/chemical degradation. Electron paramagnetic resonance spectroscopy showed that the CUR/QU were located at the interface of the oil phase in the proximity of the surfactant layer. The cytotoxicity studies showed that the formulations containing CUR/QU protected human nasal cells from the toxicity evidenced for blank NEs. No permeation across an in vitro model nasal epithelium was evidenced for CUR/QU, probably due to their poor water-solubility and instability in physiological buffers. However, the nasal cells’ drug uptake showed that the total amount of CUR/QU in the cells was related to the NE characteristics (CQ_NE− > CQ_NE+ > CQ_NEgel). The method used allowed the obtainment of nanocarriers of an appropriate size for nasal administration. The treatment of the cells showed the protection of cellular viability, holding promise as an anti-inflammatory treatment able to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Gustavo Vaz
- Laboratório de Nanotecnologia Aplicada à Saúde, Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande 96210-900, RS, Brazil; (G.V.); (C.L.D.)
- Food and Drug Department, University of Parma, 43124 Parma, PR, Italy; (A.C.); (F.B.)
| | - Adryana Clementino
- Food and Drug Department, University of Parma, 43124 Parma, PR, Italy; (A.C.); (F.B.)
| | - Evgenia Mitsou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (E.M.); (A.X.)
| | - Elena Ferrari
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, PR, Italy; (E.F.); (C.S.)
| | - Francesca Buttini
- Food and Drug Department, University of Parma, 43124 Parma, PR, Italy; (A.C.); (F.B.)
| | - Cristina Sissa
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, PR, Italy; (E.F.); (C.S.)
| | - Aristotelis Xenakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (E.M.); (A.X.)
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, 43124 Parma, PR, Italy; (A.C.); (F.B.)
- Correspondence: ; Tel.: +39-0521-906282
| | - Cristiana Lima Dora
- Laboratório de Nanotecnologia Aplicada à Saúde, Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande 96210-900, RS, Brazil; (G.V.); (C.L.D.)
| |
Collapse
|
16
|
Yang F, Cabe M, Nowak HA, Langert KA. Chitosan/poly(lactic-co-glycolic)acid Nanoparticle Formulations with Finely-Tuned Size Distributions for Enhanced Mucoadhesion. Pharmaceutics 2022; 14:95. [PMID: 35056991 PMCID: PMC8778482 DOI: 10.3390/pharmaceutics14010095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Non-parenteral drug delivery systems using biomaterials have advantages over traditional parenteral strategies. For ocular and intranasal delivery, nanoparticulate systems must bind to and permeate through mucosal epithelium and other biological barriers. The incorporation of mucoadhesive and permeation-enhancing biomaterials such as chitosan facilitate this, but tend to increase the size and polydispersity of the nanoparticles, making practical optimization and implementation of mucoadhesive nanoparticle formulations a challenge. In this study, we adjusted key poly(lactic-co-glycolic) acid (PLGA) nanoparticle formulation parameters including the organic solvent and co-solvent, the concentration of polymer in the organic phase, the composition of the aqueous phase, the sonication amplitude, and the inclusion of chitosan in the aqueous phase. By doing so, we prepared four statistically unique size groups of PLGA NPs and equally-sized chitosan-PLGA NP counterparts. We loaded simvastatin, a candidate for novel ocular and intranasal delivery systems, into the nanoparticles to investigate the effects of size and surface modification on drug loading and release, and we quantified size- and surface-dependent changes in mucoadhesion in vitro. These methods and findings will contribute to the advancement of mucoadhesive nanoformulations for ocular and nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Feipeng Yang
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| | - Maleen Cabe
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| | - Hope A Nowak
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| | - Kelly A Langert
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| |
Collapse
|
17
|
Yoo SH, Kim HW, Lee JH. Restoration of olfactory dysfunctions by nanomaterials and stem cells-based therapies: Current status and future perspectives. J Tissue Eng 2022; 13:20417314221083414. [PMID: 35340424 PMCID: PMC8949739 DOI: 10.1177/20417314221083414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Dysfunction in the olfactory system of a person can have adverse effects on their health and quality of life. It can even increase mortality among individuals. Olfactory dysfunction is related to many factors, including post-viral upper respiratory infection, head trauma, and neurodegenerative disorders. Although some clinical therapies such as steroids and olfactory training are already available, their effectiveness is limited and controversial. Recent research in the field of therapeutic nanoparticles and stem cells has shown the regeneration of dysfunctional olfactory systems. Thus, we are motivated to highlight these regenerative approaches. For this, we first introduce the anatomical characteristics of the olfactory pathway, then detail various pathological factors related to olfactory dysfunctions and current treatments, and then finally discuss the recent regenerative endeavors, with particular focus on nanoparticle-based drug delivery systems and stem cells. This review offers insights into the development of future therapeutic approaches to restore and regenerate dysfunctional olfactory systems.
Collapse
Affiliation(s)
- Shin Hyuk Yoo
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Center, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Cell and Matter Institute, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
18
|
Using the Intranasal Route to Administer Drugs to Treat Neurological and Psychiatric Illnesses: Rationale, Successes, and Future Needs. CNS Drugs 2022; 36:739-770. [PMID: 35759210 PMCID: PMC9243954 DOI: 10.1007/s40263-022-00930-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
While the intranasal administration of drugs to the brain has been gaining both research attention and regulatory success over the past several years, key fundamental and translational challenges remain to fully leveraging the promise of this drug delivery pathway for improving the treatment of various neurological and psychiatric illnesses. In response, this review highlights the current state of understanding of the nose-to-brain drug delivery pathway and how both biological and clinical barriers to drug transport using the pathway can been addressed, as illustrated by demonstrations of how currently approved intranasal sprays leverage these pathways to enable the design of successful therapies. Moving forward, aiming to better exploit the understanding of this fundamental pathway, we also outline the development of nanoparticle systems that show improvement in delivering approved drugs to the brain and how engineered nanoparticle formulations could aid in breakthroughs in terms of delivering emerging drugs and therapeutics while avoiding systemic adverse effects.
Collapse
|
19
|
Som Chaudhury S, Sinha K, Das Mukhopadhyay C. Intranasal route: The green corridor for Alzheimer's disease therapeutics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Yousfan A, Rubio N, Al-Ali M, Nattouf AH, Kafa H. Intranasal delivery of phenytoin-loaded nanoparticles to the brain suppresses pentylenetetrazol-induced generalized tonic clonic seizures in an epilepsy mouse model. Biomater Sci 2021; 9:7547-7564. [PMID: 34652351 DOI: 10.1039/d1bm01251g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we describe the preparation and characterization of lecithin-chitosan nanoparticles (L10Ci+), and investigate their ability to deliver the anti-epileptic drug phenytoin (PHT) to mouse brain following intranasal (IN) administration. L10Ci+ were retained in the nasal cavity compared to PHT in PEG200 solution (PHT/PEG), which suffered immediate nasal drainage. PHT was detected in the brain after 5 min of IN administration reaching a maximum of 11.84 ± 2.31 %ID g-1 after 48 hours. L10Ci+ were associated with a higher brain/plasma ratio (Cb/p) compared to the experimental control comprising free PHT injected via the intraperitoneal route (PHT-IP) across all tested time points. Additionally, L10Ci+ led to lower PHT accumulation in the liver and spleen compared to PHT-IP, which is vital for lowering the systemic side effects of PHT. The relatively high drug targeting efficiency (DTE%) of 315.46% and the drug targeting percentage (DTP%) of 68.29%, combined with the increasing anterior-to-posterior gradient of PHT in the brain confirmed the direct nose-to-brain transport of PHT from L10Ci+. Electroencephalogram (EEG) analysis was used to monitor seizure progression. L10Ci+ resulted in a complete seizure suppression after 4 hours of administration, and this inhibition persisted even with an 8-fold reduction of the encapsulated dose compared to the required PHT-IP dose to achieve a similar inhibitory effect due to systemic loss. The presented findings confirm the possibility of using L10Ci+ as a non-invasive delivery system of PHT for the management of epilepsy using reduced doses of PHT.
Collapse
Affiliation(s)
- Amal Yousfan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Syria
| | - Noelia Rubio
- Department of Chemistry and Materials, Imperial College London, SW7 2AZ, UK
| | - Mohammad Al-Ali
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria.
| | - Abdul Hakim Nattouf
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Syria
| | - Houmam Kafa
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria.
| |
Collapse
|
21
|
Clementino AR, Marchi C, Pozzoli M, Bernini F, Zimetti F, Sonvico F. Anti-Inflammatory Properties of Statin-Loaded Biodegradable Lecithin/Chitosan Nanoparticles: A Step Toward Nose-to-Brain Treatment of Neurodegenerative Diseases. Front Pharmacol 2021; 12:716380. [PMID: 34630094 PMCID: PMC8498028 DOI: 10.3389/fphar.2021.716380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/09/2021] [Indexed: 01/16/2023] Open
Abstract
Nasal delivery has been indicated as one of the most interesting alternative routes for the brain delivery of neuroprotective drugs. Nanocarriers have emerged as a promising strategy for the delivery of neurotherapeutics across the nasal epithelia. In this work, hybrid lecithin/chitosan nanoparticles (LCNs) were proposed as a drug delivery platform for the nasal administration of simvastatin (SVT) for the treatment of neuroinflammatory diseases. The impact of SVT nanoencapsulation on its transport across the nasal epithelium was investigated, as well as the efficacy of SVT-LCNs in suppressing cytokines release in a cellular model of neuroinflammation. Drug release studies were performed in simulated nasal fluids to investigate SVT release from the nanoparticles under conditions mimicking the physiological environment present in the nasal cavity. It was observed that interaction of nanoparticles with a simulated nasal mucus decreased nanoparticle drug release and/or slowed drug diffusion. On the other hand, it was demonstrated that two antibacterial enzymes commonly present in the nasal secretions, lysozyme and phospholipase A2, promoted drug release from the nanocarrier. Indeed, an enzyme-triggered drug release was observed even in the presence of mucus, with a 5-fold increase in drug release from LCNs. Moreover, chitosan-coated nanoparticles enhanced SVT permeation across a human cell model of the nasal epithelium (×11). The nanoformulation pharmacological activity was assessed using an accepted model of microglia, obtained by activating the human macrophage cell line THP-1 with the Escherichia coli–derived lipopolysaccharide (LPS) as the pro-inflammatory stimulus. SVT-LCNs were demonstrated to suppress the pro-inflammatory signaling more efficiently than the simple drug solution (−75% for IL-6 and −27% for TNF-α vs. −47% and −15% at 10 µM concentration for SVT-LCNs and SVT solution, respectively). Moreover, neither cellular toxicity nor pro-inflammatory responses were evidenced for the treatment with the blank nanoparticles even after 36 h of incubation, indicating a good biocompatibility of the nanomedicine components in vitro. Due to their biocompatibility and ability to promote drug release and absorption at the biointerface, hybrid LCNs appear to be an ideal carrier for achieving nose-to-brain delivery of poorly water-soluble drugs such as SVT.
Collapse
Affiliation(s)
- Adryana Rocha Clementino
- Department of Food and Drug, University of Parma, Parma, Italy.,Conselho Nacional do Desenvolvimento Científico e Tecnológico-CNPq, Brasilia, Brazil
| | - Cinzia Marchi
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Michele Pozzoli
- The Woolcock Institute for Medical Research, Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Franco Bernini
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Fabio Sonvico
- Department of Food and Drug, University of Parma, Parma, Italy.,University Research Centre for the Innovation of Health Products (Biopharmanet-TEC), University of Parma, Parma, Italy
| |
Collapse
|
22
|
Clementino A, Velasco-Estevez M, Buttini F, Sonvico F, Dev KK. Hybrid Nanoparticles as a Novel Tool for Regulating Psychosine-Induced Neuroinflammation and Demyelination In Vitro and Ex vivo. Neurotherapeutics 2021; 18:2608-2622. [PMID: 34480290 PMCID: PMC8804066 DOI: 10.1007/s13311-021-01109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 10/27/2022] Open
Abstract
Polymeric nanoparticles are being extensively investigated as an approach for brain delivery of drugs, especially for their controlled release and targeting capacity. Nose-to-brain administration of nanoparticles, bypassing the blood brain barrier, offers a promising strategy to deliver drugs to the central nervous system. Here, we investigated the potential of hybrid nanoparticles as a therapeutic approach for demyelinating diseases, more specifically for Krabbe's disease. This rare leukodystrophy is characterized by the lack of enzyme galactosylceramidase, leading to the accumulation of toxic psychosine in glial cells causing neuroinflammation, extensive demyelination and death. We present evidence that lecithin/chitosan nanoparticles prevent damage associated with psychosine by sequestering the neurotoxic sphingolipid via physicochemical hydrophobic interactions. We showed how nanoparticles prevented the cytotoxicity caused by psychosine in cultured human astrocytes in vitro, and how the nanoparticle size and PDI augmented while the electrostatic charges of the surface decreased, suggesting a direct interaction between psychosine and the nanoparticles. Moreover, we studied the effects of nanoparticles ex vivo using mouse cerebellar organotypic cultures, observing that nanoparticles prevented the demyelination and axonal damage caused by psychosine, as well as a moderate prevention of the astrocytic death. Taken together, these results suggest that lecithin-chitosan nanoparticles are a potential novel delivery system for drugs for certain demyelinating conditions such as Krabbe's disease, due to their dual effect: not only are they an efficient platform for drug delivery, but they exert a protective effect themselves in tampering the levels of psychosine accumulation.
Collapse
Affiliation(s)
- Adryana Clementino
- Drug Development Group, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Department of Food and Drug, Università Degli Studi Di Parma, Parma, Italy
- National Council for Scientific and Technological Development-CNPq, Brasilia, Brazil
| | - Maria Velasco-Estevez
- Drug Development Group, School of Medicine, Trinity College Dublin, Dublin, Ireland
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Francesca Buttini
- Department of Food and Drug, Università Degli Studi Di Parma, Parma, Italy
| | - Fabio Sonvico
- Department of Food and Drug, Università Degli Studi Di Parma, Parma, Italy.
| | - Kumlesh K Dev
- Drug Development Group, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
23
|
Lombardo R, Musumeci T, Carbone C, Pignatello R. Nanotechnologies for intranasal drug delivery: an update of literature. Pharm Dev Technol 2021; 26:824-845. [PMID: 34218736 DOI: 10.1080/10837450.2021.1950186] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Scientific research has focused its attention on finding an alternative route to systemic oral and parenteral administration, to overcome their usual drawbacks, such as hepatic first-pass which decreases drug bioavailability after oral administration, off-target effects, low patient compliance and low speed of onset of the pharmacological action in first-aid cases. Innovative drug delivery systems (DDS), mainly based on polymer and lipid biocompatible materials, have given a great prompt in this direction in the last years. The intranasal (IN) route of administration is a valid non-invasive alternative. It is highly suitable for self-administration, the drug quickly reaches the bloodstream, largely avoiding the first pass effect, and can also reach directly the brain bypassing BBB. Association of IN route with DDS can thus become a winning strategy for the controlled delivery of drugs, especially when a very quick effect is desired or needed. This review aims at analyzing the scientific literature regarding IN-DDS and their different ways of administration (systemic, topical, pulmonary, nose-to-brain). In particular, attention was devoted to polymer- and lipid-based micro- and nanocarriers, being the topic of most published articles in the last decade, but the whole plethora of colloidal DDS investigated in recent years for IN administration was presented.
Collapse
Affiliation(s)
- Rosamaria Lombardo
- Department of Drug Sciences, University of Catania, Catania, Italy.,Neurosciences, University of Catania, Catania, Italy
| | - Teresa Musumeci
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| | - Claudia Carbone
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| | - Rosario Pignatello
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| |
Collapse
|
24
|
Clementino AR, Pellegrini G, Banella S, Colombo G, Cantù L, Sonvico F, Del Favero E. Structure and Fate of Nanoparticles Designed for the Nasal Delivery of Poorly Soluble Drugs. Mol Pharm 2021; 18:3132-3146. [PMID: 34259534 PMCID: PMC8335725 DOI: 10.1021/acs.molpharmaceut.1c00366] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanoparticles are promising mediators to enable nasal systemic and brain delivery of active compounds. However, the possibility of reaching therapeutically relevant levels of exogenous molecules in the body is strongly reliant on the ability of the nanoparticles to overcome biological barriers. In this work, three paradigmatic nanoformulations vehiculating the poorly soluble model drug simvastatin were addressed: (i) hybrid lecithin/chitosan nanoparticles (LCNs), (ii) polymeric poly-ε-caprolactone nanocapsules stabilized with the nonionic surfactant polysorbate 80 (PCL_P80), and (iii) polymeric poly-ε-caprolactone nanocapsules stabilized with a polysaccharide-based surfactant, i.e., sodium caproyl hyaluronate (PCL_SCH). The three nanosystems were investigated for their physicochemical and structural properties and for their impact on the biopharmaceutical aspects critical for nasal and nose-to-brain delivery: biocompatibility, drug release, mucoadhesion, and permeation across the nasal mucosa. All three nanoformulations were highly reproducible, with small particle size (∼200 nm), narrow size distribution (polydispersity index (PI) < 0.2), and high drug encapsulation efficiency (>97%). Nanoparticle composition, surface charge, and internal structure (multilayered, core-shell or raspberry-like, as assessed by small-angle neutron scattering, SANS) were demonstrated to have an impact on both the drug-release profile and, strikingly, its behavior at the biological interface. The interaction with the mucus layer and the kinetics and extent of transport of the drug across the excised animal nasal epithelium were modulated by nanoparticle structure and surface. In fact, all of the produced nanoparticles improved simvastatin transport across the epithelial barrier of the nasal cavity as compared to a traditional formulation. Interestingly, however, the permeation enhancement was achieved via two distinct pathways: (a) enhanced mucoadhesion for hybrid LCN accompanied by fast mucosal permeation of the model drug, or (b) mucopenetration and an improved uptake and potential transport of whole PCL_P80 and PCL_SCH nanocapsules with delayed boost of permeation across the nasal mucosa. The correlation between nanoparticle structure and its biopharmaceutical properties appears to be a pivotal point for the development of novel platforms suitable for systemic and brain delivery of pharmaceutical compounds via intranasal administration.
Collapse
Affiliation(s)
- Adryana Rocha Clementino
- National Council for Scientific and Technological Development-CNPq, Brazilian Government, Brasília DF, 70311-000, Brazil.,Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 20090 Parma, Italy
| | - Giulia Pellegrini
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Via Fratelli Cervi 93, Segrate, 20122 Milan, Italy
| | - Sabrina Banella
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Laura Cantù
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Via Fratelli Cervi 93, Segrate, 20122 Milan, Italy
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 20090 Parma, Italy.,Biopharmanet-TEC, University of Parma, Parco Area delle Scienze 27/A, 20090 Parma, Italy
| | - Elena Del Favero
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Via Fratelli Cervi 93, Segrate, 20122 Milan, Italy
| |
Collapse
|
25
|
Trapani A, Corbo F, Agrimi G, Ditaranto N, Cioffi N, Perna F, Quivelli A, Stefàno E, Lunetti P, Muscella A, Marsigliante S, Cricenti A, Luce M, Mormile C, Cataldo A, Bellucci S. Oxidized Alginate Dopamine Conjugate: In Vitro Characterization for Nose-to-Brain Delivery Application. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3495. [PMID: 34201634 PMCID: PMC8269503 DOI: 10.3390/ma14133495] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The blood-brain barrier (BBB) bypass of dopamine (DA) is still a challenge for supplying it to the neurons of Substantia Nigra mainly affected by Parkinson disease. DA prodrugs have been studied to cross the BBB, overcoming the limitations of DA hydrophilicity. Therefore, the aim of this work is the synthesis and preliminary characterization of an oxidized alginate-dopamine (AlgOX-DA) conjugate conceived for DA nose-to-brain delivery. METHODS A Schiff base was designed to connect oxidized polymeric backbone to DA and both AlgOX and AlgOX-DA were characterized in terms of Raman, XPS, FT-IR, and 1H- NMR spectroscopies, as well as in vitro mucoadhesive and release tests. RESULTS Data demonstrated that AlgOX-DA was the most mucoadhesive material among the tested ones and it released the neurotransmitter in simulated nasal fluid and in low amounts in phosphate buffer saline. Results also demonstrated the capability of scanning near-field optical microscopy to study the structural and fluorescence properties of AlgOX, fluorescently labeled with fluorescein isothiocyanate microstructures. Interestingly, in SH-SY5Y neuroblastoma cell line up to 100 μg/mL, no toxic effect was derived from AlgOX and AlgOX-DA in 24 h. CONCLUSIONS Overall, the in vitro performances of AlgOX and AlgOX-DA conjugates seem to encourage further ex vivo and in vivo studies in view of nose-to-brain administration.
Collapse
Affiliation(s)
- Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, I-70125 Bari, Italy; (F.C.); (F.P.); (A.Q.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, I-70125 Bari, Italy; (F.C.); (F.P.); (A.Q.)
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, I-70125 Bari, Italy;
| | - Nicoletta Ditaranto
- Dipartimento di Chimica and CSGI-Bari Unit, Università degli Studi di Bari Aldo Moro, I-70125 Bari, Italy; (N.D.); (N.C.)
| | - Nicola Cioffi
- Dipartimento di Chimica and CSGI-Bari Unit, Università degli Studi di Bari Aldo Moro, I-70125 Bari, Italy; (N.D.); (N.C.)
| | - Filippo Perna
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, I-70125 Bari, Italy; (F.C.); (F.P.); (A.Q.)
| | - Andrea Quivelli
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, I-70125 Bari, Italy; (F.C.); (F.P.); (A.Q.)
- Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy
| | - Erika Stefàno
- Dipartimento Scienze e Tecnologie Biologiche e Ambientali, University of Salento, I-73100 Lecce, Italy; (E.S.); (P.L.); (A.M.); (S.M.)
| | - Paola Lunetti
- Dipartimento Scienze e Tecnologie Biologiche e Ambientali, University of Salento, I-73100 Lecce, Italy; (E.S.); (P.L.); (A.M.); (S.M.)
| | - Antonella Muscella
- Dipartimento Scienze e Tecnologie Biologiche e Ambientali, University of Salento, I-73100 Lecce, Italy; (E.S.); (P.L.); (A.M.); (S.M.)
| | - Santo Marsigliante
- Dipartimento Scienze e Tecnologie Biologiche e Ambientali, University of Salento, I-73100 Lecce, Italy; (E.S.); (P.L.); (A.M.); (S.M.)
| | - Antonio Cricenti
- ISM-CNR, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy; (A.C.); (M.L.)
| | - Marco Luce
- ISM-CNR, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy; (A.C.); (M.L.)
| | - Cristina Mormile
- Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Via Enrico Fermi 54, Frascati, I-00044 Rome, Italy; (C.M.); (A.C.)
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Antonino Cataldo
- Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Via Enrico Fermi 54, Frascati, I-00044 Rome, Italy; (C.M.); (A.C.)
| | - Stefano Bellucci
- Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Via Enrico Fermi 54, Frascati, I-00044 Rome, Italy; (C.M.); (A.C.)
| |
Collapse
|
26
|
Pescina S, Sonvico F, Clementino A, Padula C, Santi P, Nicoli S. Preliminary Investigation on Simvastatin-Loaded Polymeric Micelles in View of the Treatment of the Back of the Eye. Pharmaceutics 2021; 13:pharmaceutics13060855. [PMID: 34207544 PMCID: PMC8230077 DOI: 10.3390/pharmaceutics13060855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 06/05/2021] [Indexed: 12/16/2022] Open
Abstract
There is increasing consensus in considering statins beneficial for age-related macular degeneration and in general, for immune and inflammatory mediated diseases affecting the posterior segment of the eye. However, all available data relate to oral administration, and safety and effectiveness of statins directly administered to the eye are not yet known, despite their ophthalmic administration could be beneficial. The aim was the development and the characterization of polymeric micelles based on TPGS or TPGS/poloxamer 407 to increase simvastatin solubility and stability and to enhance the delivery of the drug to the posterior segment of the eye via trans-scleral permeation. Simvastatin was chosen as a model statin and its active hydroxy acid metabolite was investigated as well. Results demonstrated that polymeric micelles increased simvastatin solubility at least 30-fold and particularly TPGS/poloxamer 407 mixed micelles, successfully stabilized simvastatin over time, preventing the hydrolysis when stored for 1 month at 4 °C. Furthermore, both TPGS (1.3 mPas) and mixed micelles (33.2 mPas) showed low viscosity, suitable for periocular administration. TPGS micelles resulted the best performing in delivery simvastatin either across conjunctiva or sclera in ex vivo porcine models. The data pave the way for a future viable ocular administration of statins.
Collapse
|
27
|
Rahmanian-Devin P, Baradaran Rahimi V, Askari VR. Thermosensitive Chitosan- β-Glycerophosphate Hydrogels as Targeted Drug Delivery Systems: An Overview on Preparation and Their Applications. Adv Pharmacol Pharm Sci 2021; 2021:6640893. [PMID: 34036263 PMCID: PMC8116164 DOI: 10.1155/2021/6640893] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Today, with the advances in technology and science, more advanced drug delivery formulations are required. One of these new systems is an intelligent hydrogel. These systems are affected by the environment or conditions that become a gel, stay in the circumstance for a certain period, and slowly release the drug. As an advantage, only a lower dose of the drug is required, and it provides less toxicity and minor damage to other tissues. Hydrogels are of different types, including temperature-sensitive, pH-sensitive, ion change-sensitive, and magnetic field-sensitive. In this study, we investigated a kind of temperature-sensitive smart hydrogel, which has a liquid form at room temperature and becomes gel with increasing temperature. Chitosan-β-glycerophosphate hydrogels have been researched and used in many studies. This study investigates the various factors that influence the gelation mechanism, such as gel formation rates, temperature, pH, time, and gel specificity. Hydrogels are used in many drug delivery systems and diseases, including nasal drug delivery, vaginal drug delivery, wound healing, peritoneal adhesion, ophthalmic drug delivery, tissue engineering, and peptide and protein delivery. Overall, the chitosan-β-glycerophosphate hydrogel is a suitable drug carrier for a wide range of drugs. It shows little toxicity to the body, is biodegradable, and is compatible with other organs. This system can be used in different conditions and different medication ways, such as oral, nasal, and injection.
Collapse
Affiliation(s)
- Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332:312-336. [PMID: 33652113 DOI: 10.1016/j.jconrel.2021.02.031] [Citation(s) in RCA: 388] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Polymeric micelles, i.e. aggregation colloids formed in solution by self-assembling of amphiphilic polymers, represent an innovative tool to overcome several issues related to drug administration, from the low water-solubility to the poor drug permeability across biological barriers. With respect to other nanocarriers, polymeric micelles generally display smaller size, easier preparation and sterilization processes, and good solubilization properties, unfortunately associated with a lower stability in biological fluids and a more complicated characterization. Particularly challenging is the study of their interaction with the biological environment, essential to predict the real in vivo behavior after administration. In this review, after a general presentation on micelles features and properties, different characterization techniques are discussed, from the ones used for the determination of micelles basic characteristics (critical micellar concentration, size, surface charge, morphology) to the more complex approaches used to figure out micelles kinetic stability, drug release and behavior in the presence of biological substrates (fluids, cells and tissues). The techniques presented (such as dynamic light scattering, AFM, cryo-TEM, X-ray scattering, FRET, symmetrical flow field-flow fractionation (AF4) and density ultracentrifugation), each one with their own advantages and limitations, can be combined to achieve a deeper comprehension of polymeric micelles in vivo behavior. The set-up and validation of adequate methods for micelles description represent the essential starting point for their development and clinical success.
Collapse
Affiliation(s)
- M Ghezzi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - S Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - C Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - P Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - E Del Favero
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - L Cantù
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - S Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
29
|
Perrelli A, Fatehbasharzad P, Benedetti V, Ferraris C, Fontanella M, De Luca E, Moglianetti M, Battaglia L, Retta SF. Towards precision nanomedicine for cerebrovascular diseases with emphasis on Cerebral Cavernous Malformation (CCM). Expert Opin Drug Deliv 2021; 18:849-876. [PMID: 33406376 DOI: 10.1080/17425247.2021.1873273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Cerebrovascular diseases encompass various disorders of the brain vasculature, such as ischemic/hemorrhagic strokes, aneurysms, and vascular malformations, also affecting the central nervous system leading to a large variety of transient or permanent neurological disorders. They represent major causes of mortality and long-term disability worldwide, and some of them can be inherited, including Cerebral Cavernous Malformation (CCM), an autosomal dominant cerebrovascular disease linked to mutations in CCM1/KRIT1, CCM2, or CCM3/PDCD10 genes.Areas covered: Besides marked clinical and etiological heterogeneity, some commonalities are emerging among distinct cerebrovascular diseases, including key pathogenetic roles of oxidative stress and inflammation, which are increasingly recognized as major disease hallmarks and therapeutic targets. This review provides a comprehensive overview of the different clinical features and common pathogenetic determinants of cerebrovascular diseases, highlighting major challenges, including the pressing need for new diagnostic and therapeutic strategies, and focusing on emerging innovative features and promising benefits of nanomedicine strategies for early detection and targeted treatment of such diseases.Expert opinion: Specifically, we describe and discuss the multiple physico-chemical features and unique biological advantages of nanosystems, including nanodiagnostics, nanotherapeutics, and nanotheranostics, that may help improving diagnosis and treatment of cerebrovascular diseases and neurological comorbidities, with an emphasis on CCM disease.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Parisa Fatehbasharzad
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Valerio Benedetti
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, Torino, Italy
| | - Marco Fontanella
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Elisa De Luca
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Institute for Microelectronics and Microsystems (IMM), CNR, Lecce, Italy
| | - Mauro Moglianetti
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Istituto Italiano Di Tecnologia, Nanobiointeractions & Nanodiagnostics, Genova, Italy
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, Torino, Italy
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| |
Collapse
|
30
|
Ma Q, Gao Y, Sun W, Cao J, Liang Y, Han S, Wang X, Sun Y. Self-Assembled chitosan/phospholipid nanoparticles: from fundamentals to preparation for advanced drug delivery. Drug Deliv 2020; 27:200-215. [PMID: 31983258 PMCID: PMC7034086 DOI: 10.1080/10717544.2020.1716878] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
With the development of nanotechnology, self-assembled chitosan/phospholipid nanoparticles (SACPNs) show great promise in a broad range of applications, including therapy, diagnosis, in suit imaging and on-demand drug delivery. Here, a brief review of the SACPNs is presented, and its critical underlying formation mechanisms are interpreted with an emphasis on the intrinsic physicochemical properties. The state-of-art preparation methods of SACPNs are summarized, with particular descriptions about the classic solvent injection method. Then SACPNs microstructures are characterized, revealing the unique spherical core-shell structure and the drug release mechanisms. Afterwards, a comprehensive and in-depth depiction of their emerging applications, with special attention to drug delivery areas, are categorized and reviewed. Finally, conclusions and outlooks on further advancing the SACPNs toward a more powerful and versatile platform for investigations covering from fundamental understanding to developing multi-functional drug delivery systems are discussed.
Collapse
Affiliation(s)
- Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yang Gao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Wentao Sun
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xinyu Wang
- Institute of Thermal Science and Technology, Shandong University, Jinan, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
31
|
Karabasz A, Bzowska M, Szczepanowicz K. Biomedical Applications of Multifunctional Polymeric Nanocarriers: A Review of Current Literature. Int J Nanomedicine 2020; 15:8673-8696. [PMID: 33192061 PMCID: PMC7654520 DOI: 10.2147/ijn.s231477] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric nanomaterials have become a prominent area of research in the field of drug delivery. Their application in nanomedicine can improve bioavailability, pharmacokinetics, and, therefore, the effectiveness of various therapeutics or contrast agents. There are many studies for developing new polymeric nanocarriers; however, their clinical application is somewhat limited. In this review, we present new complex and multifunctional polymeric nanocarriers as promising and innovative diagnostic or therapeutic systems. Their multifunctionality, resulting from the unique chemical and biological properties of the polymers used, ensures better delivery, and a controlled, sequential release of many different therapeutics to the diseased tissue. We present a brief introduction of the classical formulation techniques and describe examples of multifunctional nanocarriers, whose biological assessment has been carried out at least in vitro. Most of them, however, also underwent evaluation in vivo on animal models. Selected polymeric nanocarriers were grouped depending on their medical application: anti-cancer drug nanocarriers, nanomaterials delivering compounds for cancer immunotherapy or regenerative medicine, components of vaccines nanomaterials used for topical application, and lifestyle diseases, ie, diabetes.
Collapse
Affiliation(s)
- Alicja Karabasz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
32
|
Liquid Crystalline Nanoparticles for Nasal Delivery of Rosuvastatin: Implications on Therapeutic Efficacy in Management of Epilepsy. Pharmaceuticals (Basel) 2020; 13:ph13110356. [PMID: 33143084 PMCID: PMC7693896 DOI: 10.3390/ph13110356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022] Open
Abstract
In the present study we investigated the protective role of intranasal rosuvastatin liquid crystalline nanoparticles (Ros-LCNPs) against pentylenetetrazole (PTZ) induced seizures, increasing current electroshock (ICES) induced seizures, and PTZ-induced status epilepticus. From the dose titration study, it was evident that intranasal rosuvastatin (ROS), at lower dose, was more effective than oral and intraperitoneal ROS. The Ros-LCNPs equivalent to 5 mg/kg ROS were developed by hydrotrope method using glyceryl monooleate (GMO) as lipid phase. The high resolution TEM revealed that the formed Ros-LCNPs were cubic shaped and multivesicular with mean size of 219.15 ± 8.14 nm. The Ros-LCNPs showed entrapment efficiency of 70.30 ± 1.84% and release was found to be biphasic following Korsmeyer–Peppas kinetics. Intranasal Ros-LCNPs (5 mg/kg) showed significant increase in latency to PTZ-induced seizures and ICES seizure threshold compared to control and intranasal ROS solution. Additionally, intranasal Ros-LCNPs provided effective protection against PTZ-induced status epilepticus. No impairment in cognitive functions was observed following intranasal Ros-LCNPs. The results suggested that Ros-LCNPs could be an effective and promising therapeutics for the epilepsy management.
Collapse
|
33
|
Gieszinger P, Stefania Csaba N, Garcia-Fuentes M, Prasanna M, Gáspár R, Sztojkov-Ivanov A, Ducza E, Márki Á, Janáky T, Kecskeméti G, Katona G, Szabó-Révész P, Ambrus R. Preparation and characterization of lamotrigine containing nanocapsules for nasal administration. Eur J Pharm Biopharm 2020; 153:177-186. [PMID: 32531424 DOI: 10.1016/j.ejpb.2020.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/12/2020] [Accepted: 06/07/2020] [Indexed: 10/24/2022]
Abstract
Nanocapsules (NCs) have become one of the most researched nanostructured drug delivery systems due to their advantageous properties and versatility. NCs can enhance the bioavailabiliy of hydrophobic drugs by impoving their solubility and permeability. Also, they can protect these active pharmaceutical agents (APIs) from the physiological environment with preventing e.g. the enzymatic degradation. NCs can be used for many administration routes: e.g. oral, dermal, nasal and ocular formulations are exisiting in liquid and solid forms. The nose is one of the most interesting alternative drug administration route, because local, systemic and direct central nervous system (CNS) delivery can be achived; this could be utilized in the therapy of CNS diseases. Therefore, the goal of this study was to design, prepare and investigate a novel, lamotrigin containing NC formulation for nasal administration. The determination of micrometric parameters (particle size, polydispersity index, surface charge), in vitro (drug loading capacity, release and permeability investigations) and in vivo characterization of the formulations were performed in the study. The results indicate that the formulation could be a promising alternative of lamotrigine (LAM) as the NCs were around 305 nm size with high encapsulation efficiency (58.44%). Moreover, the LAM showed rapid and high release from the NCs in vitro and considerable penetration to the brain tissues was observed during the in vivo study.
Collapse
Affiliation(s)
- Péter Gieszinger
- University of Szeged, Inderdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, Eötvös u. 6., H-6720 Szeged, Hungary
| | - Noemi Stefania Csaba
- University of Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), 15782 Campus Vida, Santiago de Compostela, Spain.
| | - Marcos Garcia-Fuentes
- University of Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), 15782 Campus Vida, Santiago de Compostela, Spain.
| | - Maruthi Prasanna
- University of Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), 15782 Campus Vida, Santiago de Compostela, Spain
| | - Róbert Gáspár
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary.
| | - Anita Sztojkov-Ivanov
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Árpád Márki
- Department of Medical Physics and Informatics, University of Szeged, Faculty of Medicine, H-6720 Szeged, Korányi fasor 9., Hungary.
| | - Tamás Janáky
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Gábor Kecskeméti
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Gábor Katona
- University of Szeged, Inderdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, Eötvös u. 6., H-6720 Szeged, Hungary.
| | - Piroska Szabó-Révész
- University of Szeged, Inderdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, Eötvös u. 6., H-6720 Szeged, Hungary.
| | - Rita Ambrus
- University of Szeged, Inderdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, Eötvös u. 6., H-6720 Szeged, Hungary.
| |
Collapse
|
34
|
Zhang L, Pang L, Zhu S, Ma J, Li R, Liu Y, Zhu L, Zhuang X, Zhi W, Yu X, Du L, Zuo H, Jin Y. Intranasal tetrandrine temperature-sensitive in situ hydrogels for the treatment of microwave-induced brain injury. Int J Pharm 2020; 583:119384. [PMID: 32371003 DOI: 10.1016/j.ijpharm.2020.119384] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/13/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
The brain is the most sensitive organ to microwave radiation. However, few effective drugs are available for the treatment of microwave-induced brain injury due to the poor drug permeation into the brain. Here, intranasal tetrandrine (TET) temperature-sensitive in situ hydrogels (ISGs) were prepared with poloxamers 407 and 188. Its characteristics were evaluated, including rheological properties, drug release in vitro, and mucosal irritation. The pharmacodynamics and brain-targeting effects were also studied. The highly viscous ISGs remained in the nasal cavity for a long time with the sustained release of TET and no obvious ciliary toxicity. Intranasal temperature-sensitive TET ISGs markedly improved the spatial memory and spontaneous exploratory behavior induced by microwave with the Morris water maze (MWM) and the open field test (OFT) compared to the model. The ISGs alleviated the microwave-induced brain damage and inhibited the certain mRNA expressions of calcium channels in the brain. Intranasal temperature-sensitive TET ISGs was rapidly absorbed with a shorter Tmax (4.8 h) compared to that of oral TET (8.4 h). The brain targeting index of intranasal temperature-sensitive TET ISGs was as 2.26 times as that of the oral TET. Intranasal temperature-sensitive TET ISGs are a promising brain-targeted medication for the treatment of microwave-induced brain injury.
Collapse
Affiliation(s)
- Lihua Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lulu Pang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Siqing Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Anhui Medical University, Hefei 230032, China
| | - Jinqiu Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ruiteng Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yijing Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaomei Zhuang
- Beijing Institute of Toxicology and Pharmacology, No. 27, Taiping Road, Beijing 100850, China
| | - Weijia Zhi
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiang Yu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Anhui Medical University, Hefei 230032, China.
| | - Hongyan Zuo
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Anhui Medical University, Hefei 230032, China; Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
35
|
Long Y, Yang Q, Xiang Y, Zhang Y, Wan J, Liu S, Li N, Peng W. Nose to brain drug delivery - A promising strategy for active components from herbal medicine for treating cerebral ischemia reperfusion. Pharmacol Res 2020; 159:104795. [PMID: 32278035 DOI: 10.1016/j.phrs.2020.104795] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023]
Abstract
Cerebral ischemia reperfusion injury (CIRI), one of the major causes of death from stroke in the world, not only causes tremendous damage to human health, but also brings heavy economic burden to society. Current available treatments for CIRI, including mechanical therapies and drug therapies, are often accompanied by significant side-effects. Therefore, it is necessary to discovery new strategies for treating CIRI. Many studies have confirmed that the herbal medicine has the advantages of abundant resources, good curative effect and little side effects, which can be used as potential drug for treatment of CIRI through multiple targets. It's known that oral administration commonly has low bioavailability, and injection administration is inconvenient and unsafe. Many drugs can't delivery to brain through routine pathways due to the blood-brain-barrier (BBB). Interestingly, increasing evidences have suggested the nasal administration is a potential direct route to transport drug into brain avoiding the BBB and has the characteristics of high bioavailability for treating brain diseases. Therefore, intranasal administration can be treated as an alternative way to treat brain diseases. In the present review, effective methods to treat CIRI by using active ingredients derived from herbal medicine through nose to brain drug delivery (NBDD) are updated and discussed, and some related pharmacological mechanisms have also been emphasized. Our present study would be beneficial for the further drug development of natural agents from herbal medicines via NBDD.
Collapse
Affiliation(s)
- Yu Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Qiyue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, PR China
| | - Yan Xiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Yulu Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Jinyan Wan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Songyu Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Nan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China.
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China.
| |
Collapse
|
36
|
Yousfan A, Rubio N, Natouf AH, Daher A, Al-Kafry N, Venner K, Kafa H. Preparation and characterisation of PHT-loaded chitosan lecithin nanoparticles for intranasal drug delivery to the brain. RSC Adv 2020; 10:28992-29009. [PMID: 35520085 PMCID: PMC9055806 DOI: 10.1039/d0ra04890a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
The use of nanoparticles (NPs) for intranasal (IN) drug delivery to the brain represents a hopeful strategy to enhance brain targeting of anti-epileptic drugs.
Collapse
Affiliation(s)
- Amal Yousfan
- Department of Pharmaceutics and Pharmaceutical Technology
- Pharmacy Collage
- Damascus University
- Syria
| | - Noelia Rubio
- Department of Chemistry and Materials
- Imperial College London
- London
- UK
| | - Abdul Hakim Natouf
- Department of Pharmaceutics and Pharmaceutical Technology
- Pharmacy Collage
- Damascus University
- Syria
| | - Aamal Daher
- Department of Molecular Biology and Biotechnology
- Atomic Energy Commission of Syria
- Damascus
- Syria
| | - Nedal Al-Kafry
- Department of Molecular Biology and Biotechnology
- Atomic Energy Commission of Syria
- Damascus
- Syria
| | - Kerrie Venner
- Institute of Neurology
- University College London
- London
- UK
| | - Houmam Kafa
- Department of Molecular Biology and Biotechnology
- Atomic Energy Commission of Syria
- Damascus
- Syria
| |
Collapse
|
37
|
Sarma A, Das MK. Nose to brain delivery of antiretroviral drugs in the treatment of neuroAIDS. MOLECULAR BIOMEDICINE 2020; 1:15. [PMID: 34765998 PMCID: PMC7725542 DOI: 10.1186/s43556-020-00019-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
NeuroAIDS (Neuro Acquired Immunodeficiency Syndrome) or HIV (Human Immunodeficiency Virus) associated neuronal abnormality is continuing to be a significant health issue among AIDS patients even under the treatment of combined antiretroviral therapy (cART). Injury and damage to neurons of the brain are the prime causes of neuroAIDS, which happens due to the ingress of HIV by direct permeation across the blood-brain barrier (BBB) or else via peripherally infected macrophage into the central nervous system (CNS). The BBB performs as a stringent barricade for the delivery of therapeutics drugs. The intranasal route of drug administration exhibits as a non-invasive technique to bypass the BBB for the delivery of antiretroviral drugs and other active pharmaceutical ingredients inside the brain and CNS. This method is fruitful for the drugs that are unable to invade the BBB to show its action in the CNS and thus erase the demand of systemic delivery and thereby shrink systemic side effects. Drug delivery from the nose to the brain/CNS takes very less time through both olfactory and trigeminal nerves. Intranasal delivery does not require the involvement of any receptor as it occurs by an extracellular route. Nose to brain delivery also involves nasal associated lymphatic tissues (NALT) and deep cervical lymph nodes. However, very little research has been done to explore the utility of nose to brain delivery of antiretroviral drugs in the treatment of neuroAIDS. This review focuses on the potential of nasal route for the effective delivery of antiretroviral nanoformulations directly from nose to the brain.
Collapse
Affiliation(s)
- Anupam Sarma
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India.,Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026 India
| | - Malay K Das
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
38
|
Alshweiat A, Ambrus R, Csoka II. Intranasal Nanoparticulate Systems as Alternative Route of Drug Delivery. Curr Med Chem 2019; 26:6459-6492. [PMID: 31453778 DOI: 10.2174/0929867326666190827151741] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/25/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022]
Abstract
There is always a need for alternative and efficient methods of drug delivery. The nasal cavity can be considered as a non-invasive and efficient route of administration. It has been used for local, systemic, brain targeting, and vaccination delivery. Although many intranasal products are currently available on the market, the majority is used for local delivery with fewer products available for the other targets. As nanotechnology utilization in drug delivery has rapidly spread out, the nasal delivery has become attractive as a promising approach. Nanoparticulate systems facilitate drug transportation across the mucosal barrier, protect the drug from nasal enzyme degradation, enhance the delivery of vaccines to the lymphoid tissue of the nasal cavity with an adjuvant activity, and offer a way for peptide delivery into the brain and the systemic circulation, in addition to their potential for brain tumor treatment. This review article aims at discussing the potential benefit of the intranasal nanoparticulate systems, including nanosuspensions, lipid and surfactant, and polymer-based nanoparticles as regards productive intranasal delivery. The aim of this review is to focus on the topicalities of nanotechnology applications for intranasal delivery of local, systemic, brain, and vaccination purposes during the last decade, referring to the factors affecting delivery, regulatory aspects, and patient expectations. This review further identifies the benefits of applying the Quality by Design approaches (QbD) in product development. According to the reported studies on nanotechnology-based intranasal delivery, potential attention has been focused on brain targeting and vaccine delivery with promising outcomes. Despite the significant research effort in this field, nanoparticle-based products for intranasal delivery are not available. Thus, further efforts are required to promote the introduction of intranasal nanoparticulate products that can meet the requirements of regulatory affairs with high patient acceptance.
Collapse
Affiliation(s)
- Areen Alshweiat
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary.,Faculty of Pharmaceutical Science, The Hashemite University, Zarqa, Jordan
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - IIdikó Csoka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| |
Collapse
|
39
|
Nose-to-brain co-delivery of repurposed simvastatin and BDNF synergistically attenuates LPS-induced neuroinflammation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 23:102107. [PMID: 31655202 DOI: 10.1016/j.nano.2019.102107] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 12/29/2022]
Abstract
A therapeutic strategy that can combat the multifaceted nature of neuroinflammation pathology was investigated. Thus, we fabricated PEG-PdLLA polymersomes and evaluated the efficacy in co-delivery of simvastatin (Sim, as a repurposed anti-inflammatory agent) with brain derived neurotrophic factor (BDNF, as an exogeneous trophic factor supplementation). Using LPS model of neuroinflammation, intranasal administration of combination drug-loaded polymersomes (containing both Sim and BDNF; Sim-BDNF-Ps) markedly down-regulated brain levels of cytokines compared to free drug and single-drug-loaded polymersomes. Further, Sim-BDNF-Ps effectively replenished brain level of BDNF that was depleted following neuroinflammation, resulting in a 2-fold BDNF increase versus untreated LPS control group. We found out that the efficiency of the combination drug-loaded polymersomes to suppress microglia activation in brain regions followed the order: frontal cortex > striatum > hippocampus. Our findings indicated that Sim-BDNF-Ps could effectively inhibit microglial-mediated inflammation as well as potentially resolve the neurotoxic microenvironment that is often associated with neuroinflammation.
Collapse
|
40
|
Di Cola E, Cantu' L, Brocca P, Rondelli V, Fadda GC, Canelli E, Martelli P, Clementino A, Sonvico F, Bettini R, Del Favero E. Novel O/W nanoemulsions for nasal administration: Structural hints in the selection of performing vehicles with enhanced mucopenetration. Colloids Surf B Biointerfaces 2019; 183:110439. [PMID: 31473410 DOI: 10.1016/j.colsurfb.2019.110439] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/30/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022]
Abstract
We propose novel oil-in-water nanoemulsions (O/W NEs) including PEGylated surfactants and chitosan, showing good biocompatibility and optimization for nasal administration of drugs or vaccines. The transmucosal route has been shown to be ideal for a fast and efficient absorption and represents a viable alternative when the oral administration is problematic. The critical structural features in view of optimal encapsulation and transmucosal delivery were assessed by characterizing the NEs with complementary scattering techniques, i.e. dynamic light scattering (DLS), small angle X-ray (SAXS) and neutron scattering (SANS). Combined results allowed for selecting the formulations with the best suited structural properties and in addition establishing their propensity to enter the mucus barrier. To this scope, mucin was used as a model system and the effect of adding chitosan to the NEs, as adjuvant, was investigated. Remarkably, the presence of chitosan had a positive impact on the diffusion of the NE particles through the mucin matrix. We can infer that chitosan-mucin interaction induces density inhomogeneity and an increase in the pore size within the gel matrix that enhances the PEGylated NEs mobility. The coupling of mucoadhesive and mucopenetrating agents is shown to be a promising strategy for innovative transmucosal delivery systems.
Collapse
Affiliation(s)
- Emanuela Di Cola
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via fratelli Cervi 93, 20900 Segrate (Mi), Italy; Institute Laue-Langevin (ILL), 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France.
| | - Laura Cantu'
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via fratelli Cervi 93, 20900 Segrate (Mi), Italy
| | - Paola Brocca
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via fratelli Cervi 93, 20900 Segrate (Mi), Italy
| | - Valeria Rondelli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via fratelli Cervi 93, 20900 Segrate (Mi), Italy
| | - Giulia C Fadda
- Université Paris 13, UFR SMBH, 74 rue Marcel Cauchin, 93017 Bobigny, France; Laboratoire Leon Brillouin, CEA Saclay, F-91191 Gif sur Yvette Cedex, France
| | - Elena Canelli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Paolo Martelli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Adryana Clementino
- Dipartimento di Scienze degli Alimenti e del Farmaco, Parco Area delle Scienze 27/A, 43124 Parma, Italy; Biopharmanet TEC - Centro Interdipartimentale di Ricerca per l'Innovazione dei Prodotti per la Salute, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Fabio Sonvico
- Dipartimento di Scienze degli Alimenti e del Farmaco, Parco Area delle Scienze 27/A, 43124 Parma, Italy; Biopharmanet TEC - Centro Interdipartimentale di Ricerca per l'Innovazione dei Prodotti per la Salute, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ruggero Bettini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Parco Area delle Scienze 27/A, 43124 Parma, Italy; Biopharmanet TEC - Centro Interdipartimentale di Ricerca per l'Innovazione dei Prodotti per la Salute, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Elena Del Favero
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via fratelli Cervi 93, 20900 Segrate (Mi), Italy.
| |
Collapse
|
41
|
dos Santos Silva AM, de Caland LB, de Melo Doro PN, de S. L. Oliveira ALC, de Araújo-Júnior RF, Fernandes-Pedrosa MF, do Egito EST, da Silva-Junior AA. Hydrophilic and hydrophobic polymeric benznidazole-loaded nanoparticles: Physicochemical properties and in vitro antitumor efficacy. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Self-Assembled Benznidazole-Loaded Cationic Nanoparticles Containing Cholesterol/Sialic Acid: Physicochemical Properties, In Vitro Drug Release and In Vitro Anticancer Efficacy. Int J Mol Sci 2019; 20:ijms20092350. [PMID: 31083590 PMCID: PMC6539689 DOI: 10.3390/ijms20092350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cationic polymeric nanoparticles (NPs) have the ability to overcome biological membranes, leading to improved efficacy of anticancer drugs. The modulation of the particle-cell interaction is desired to control this effect and avoid toxicity to normal cells. In this study, we explored the surface functionalization of cationic polymethylmethacrylate (PMMA) NPs with two natural compounds, sialic acid (SA) and cholesterol (Chol). The performance of benznidazole (BNZ) was assessed in vitro in the normal renal cell line (HEK-293) and three human cancer cell lines, as follows: human colorectal cancer (HT-29), human cervical carcinoma (HeLa), and human hepatocyte carcinoma (HepG2). The structural properties and feasibility of NPs were evaluated and the changes induced by SA and Chol were determined by using multiple analytical approaches. Small (<200 nm) spherical NPs, with a narrow size distribution and high drug-loading efficiency were prepared by using a simple and reproducible emulsification solvent evaporation method. The drug interactions in the different self-assembled NPs were assessed by using Fourier transform-infrared spectroscopy. All formulations exhibited a slow drug-release profile and physical stability for more than 6 weeks. Both SA and Chol changed the kinetic properties of NPs and the anticancer efficacy. The feasibility and potential of SA/Chol-functionalized NPs has been demonstrated in vitro in the HEK-293, HepG2, HeLa, and HT-29 cell lines as a promising system for the delivery of BNZ.
Collapse
|
43
|
Gholizadeh H, Cheng S, Pozzoli M, Messerotti E, Traini D, Young P, Kourmatzis A, Ong HX. Smart thermosensitive chitosan hydrogel for nasal delivery of ibuprofen to treat neurological disorders. Expert Opin Drug Deliv 2019; 16:453-466. [PMID: 30884987 DOI: 10.1080/17425247.2019.1597051] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The in-situ gelation of thermosensitive nasal formulations with desirable spray characteristics at room temperature and ability to undergo a phase change to a semi-solid state with mucoadhesive behavior at physiological temperature has the potential to efficiently deliver therapeutics to brain. However, their application in nasal spray generation with favorable characteristics has not been investigated. METHODS Thermosensitive chitosan (CS)-based formulations with different viscosities were prepared for intranasal delivery of ibuprofen using CS of various molecular weights. The formulation developed was optimized with regards to its physicochemical, rheological, biological properties and the generated aerosol characteristics. RESULTS The formulations showed rapid gelation (4-7 min) at 30-35°C, which lies in the human nasal cavity temperature spectrum. The decrease in CS molecular weight to 110-150 kDa led to generation of optimum spray with lower Dv50, wider spray area, and higher surface area coverage. This formulation also showed improved ibuprofen solubility that is approximately 100× higher than its intrinsic aqueous solubility, accelerated ibuprofen transport across human nasal epithelial cells and transient modulation of tight junctions. CONCLUSIONS A thermosensitive CS-based formulation has been successfully developed with suitable rheological properties, aerosol performance and biological properties that is beneficial for nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Hanieh Gholizadeh
- a School of Engineering , Macquarie University , Sydney , Australia.,b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| | - Shaokoon Cheng
- a School of Engineering , Macquarie University , Sydney , Australia
| | - Michele Pozzoli
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| | - Elisa Messerotti
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia.,c Department of Drug Sciences , University of Pavia , Pavia , Italy
| | - Daniela Traini
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| | - Paul Young
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| | - Agisilaos Kourmatzis
- d School of Aerospace, Mechanical and Mechatronic Engineering , The University of Sydney , Sydney , Australia
| | - Hui Xin Ong
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| |
Collapse
|
44
|
Bruinsmann FA, Pigana S, Aguirre T, Dadalt Souto G, Garrastazu Pereira G, Bianchera A, Tiozzo Fasiolo L, Colombo G, Marques M, Raffin Pohlmann A, Stanisçuaski Guterres S, Sonvico F. Chitosan-Coated Nanoparticles: Effect of Chitosan Molecular Weight on Nasal Transmucosal Delivery. Pharmaceutics 2019; 11:E86. [PMID: 30781722 PMCID: PMC6409859 DOI: 10.3390/pharmaceutics11020086] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022] Open
Abstract
Drug delivery to the brain represents a challenge, especially in the therapy of central nervous system malignancies. Simvastatin (SVT), as with other statins, has shown potential anticancer properties that are difficult to exploit in the central nervous system (CNS). In the present work the physico⁻chemical, mucoadhesive, and permeability-enhancing properties of simvastatin-loaded poly-ε-caprolactone nanocapsules coated with chitosan for nose-to-brain administration were investigated. Lipid-core nanocapsules coated with chitosan (LNCchit) of different molecular weight (MW) were prepared by a novel one-pot technique, and characterized for particle size, surface charge, particle number density, morphology, drug encapsulation efficiency, interaction between surface nanocapsules with mucin, drug release, and permeability across two nasal mucosa models. Results show that all formulations presented adequate particle sizes (below 220 nm), positive surface charge, narrow droplet size distribution (PDI < 0.2), and high encapsulation efficiency. Nanocapsules presented controlled drug release and mucoadhesive properties that are dependent on the MW of the coating chitosan. The results of permeation across the RPMI 2650 human nasal cell line evidenced that LNCchit increased the permeation of SVT. In particular, the amount of SVT that permeated after 4 hr for nanocapsules coated with low-MW chitosan, high-MW chitosan, and control SVT was 13.9 ± 0.8 μg, 9.2 ± 1.2 µg, and 1.4 ± 0.2 µg, respectively. These results were confirmed by SVT ex vivo permeation across rabbit nasal mucosa. This study highlighted the suitability of LNCchit as a promising strategy for the administration of simvastatin for a nose-to-brain approach for the therapy of brain tumors.
Collapse
Affiliation(s)
- Franciele Aline Bruinsmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil.
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Stefania Pigana
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Tanira Aguirre
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 900500-170, Brazil.
| | - Gabriele Dadalt Souto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil.
| | - Gabriela Garrastazu Pereira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil.
| | - Annalisa Bianchera
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Laura Tiozzo Fasiolo
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy.
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy.
| | - Magno Marques
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Rio Grande, RS 96203-000, Brazil.
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil.
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil.
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil.
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| |
Collapse
|
45
|
Espinoza LC, Silva-Abreu M, Clares B, Rodríguez-Lagunas MJ, Halbaut L, Cañas MA, Calpena AC. Formulation Strategies to Improve Nose-to-Brain Delivery of Donepezil. Pharmaceutics 2019; 11:E64. [PMID: 30717264 PMCID: PMC6410084 DOI: 10.3390/pharmaceutics11020064] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
Donepezil (DPZ) is widely used in the treatment of Alzheimer's disease in tablet form for oral administration. The pharmacological efficacy of this drug can be enhanced by the use of intranasal administration because this route makes bypassing the blood⁻brain barrier (BBB) possible. The aim of this study was to develop a nanoemulsion (NE) as well as a nanoemulsion with a combination of bioadhesion and penetration enhancing properties (PNE) in order to facilitate the transport of DPZ from nose-to-brain. Composition of NE was established using three pseudo-ternary diagrams and PNE was developed by incorporating Pluronic F-127 to the aqueous phase. Parameters such as physical properties, stability, in vitro release profile, and ex vivo permeation were determined for both formulations. The tolerability was evaluated by in vitro and in vivo models. DPZ-NE and DPZ-PNE were transparent, monophasic, homogeneous, and physically stable with droplets of nanometric size and spherical shape. DPZ-NE showed Newtonian behavior whereas a shear thinning (pseudoplastic) behavior was observed for DPZ-PNE. The release profile of both formulations followed a hyperbolic kinetic. The permeation and prediction parameters were significantly higher for DPZ-PNE, suggesting the use of polymers to be an effective strategy to improve the bioadhesion and penetration of the drug through nasal mucosa, which consequently increase its bioavailability.
Collapse
Affiliation(s)
- Lupe Carolina Espinoza
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador.
| | - Marcelle Silva-Abreu
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
| | - Beatriz Clares
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
- Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Granada, Granada 18071, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, 18012 Granada, Spain.
| | - María José Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), 08028 Barcelona, Spain.
| | - Lyda Halbaut
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| | - María-Alexandra Cañas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
46
|
Lorza‐Gil E, de Souza JC, García‐Arévalo M, Vettorazzi JF, Marques AC, Salerno AG, Trigo JR, Oliveira HCF. Coenzyme Q
10
protects against β‐cell toxicity induced by pravastatin treatment of hypercholesterolemia. J Cell Physiol 2018; 234:11047-11059. [DOI: 10.1002/jcp.27932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/25/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Estela Lorza‐Gil
- Department of Structural and Functional Biology Biology Institute, State University of Campinas Campinas SP Brazil
| | - Jane C. de Souza
- Department of Structural and Functional Biology Biology Institute, State University of Campinas Campinas SP Brazil
| | - Marta García‐Arévalo
- Department of Structural and Functional Biology Biology Institute, State University of Campinas Campinas SP Brazil
| | - Jean F. Vettorazzi
- Department of Structural and Functional Biology Biology Institute, State University of Campinas Campinas SP Brazil
| | - Ana Carolina Marques
- Department of Structural and Functional Biology Biology Institute, State University of Campinas Campinas SP Brazil
| | - Alessandro G. Salerno
- Department of Structural and Functional Biology Biology Institute, State University of Campinas Campinas SP Brazil
| | - Jose Roberto Trigo
- Department of Animal Biology Biology Institute, State University of Campinas Campinas SP Brazil
| | - Helena C. F. Oliveira
- Department of Structural and Functional Biology Biology Institute, State University of Campinas Campinas SP Brazil
| |
Collapse
|
47
|
Rinaldi F, Seguella L, Gigli S, Hanieh PN, Del Favero E, Cantù L, Pesce M, Sarnelli G, Marianecci C, Esposito G, Carafa M. inPentasomes: An innovative nose-to-brain pentamidine delivery blunts MPTP parkinsonism in mice. J Control Release 2018; 294:17-26. [PMID: 30529726 DOI: 10.1016/j.jconrel.2018.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/19/2022]
Abstract
Preclinical and clinical evidences have demonstrated that astroglial-derived S100B protein is a key element in neuroinflammation underlying the pathogenesis of Parkinson's disease (PD), so much as that S100B inhibitors have been proposed as promising candidates for PD targeted therapy. Pentamidine, an old-developed antiprotozoal drug, currently used for pneumocystis carinii is one of the most potent inhibitors of S100B activity, but despite this effect, is limited by its low capability to cross blood brain barrier (BBB). To overcome this problem, we developed a non-invasive intranasal delivery system, chitosan coated niosomes with entrapped pentamidine (inPentasomes), in the attempt to provide a novel pharmacological approach to ameliorate parkinsonism induced by subchronic MPTP administration in C57BL-6 J mice. inPentasomes, prepared by evaporation method was administered daily by intranasal route in subchronic MPTP-intoxicated rodents and resulted in a dose-dependent manner (0.001-0.004 mg/kg) capable for a significant Tyrosine Hydroxylase (TH) positive neuronal density rescue in both striatum and substantia nigra of parkinsonian mice. In parallel, inPentasomes significantly decreased the extent of glial-related neuroinflammation through the reduction of specific gliotic markers (Iba-1, GFAP, COX-2, iNOS) with consequent PGE2 and NO2- release reduction, in nigrostriatal system. inPentasomes-mediated S100B inhibition resulted in a RAGE/NF-κB pathway downstream inhibition in the nigrostriatal circuit, causing a marked amelioration of motor performances in intoxicated mice. On the basis of our results, chitosan coated niosomes loaded with pentamidine, the inPentasome system, self-candidates as a promising new intranasal approach to mitigate parkinsonism in humans and possibly paves the way for a possible clinical repositioning of pentamidine as anti-PD drug.
Collapse
Affiliation(s)
- F Rinaldi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia (ITT), Rome, Italy
| | - L Seguella
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - S Gigli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - P N Hanieh
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy
| | - E Del Favero
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Italy
| | - L Cantù
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Italy
| | - M Pesce
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', Naples, Italy
| | - G Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', Naples, Italy
| | - C Marianecci
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy.
| | - G Esposito
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - M Carafa
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
48
|
Development and validation of a RP-HPLC method for the simultaneous detection and quantification of simvastatin’s isoforms and coenzyme Q10 in lecithin/chitosan nanoparticles. J Pharm Biomed Anal 2018; 155:33-41. [DOI: 10.1016/j.jpba.2018.03.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 01/31/2023]
|
49
|
Abstract
Statins are used for the primary and secondary prevention of cardiovascular disease by inhibiting cholesterol synthesis in the liver. Statins have also noncholesterol-related effects, called pleiotropic effects, which arise from statins' anti-inflammatory, immunomodulatory and antioxidant properties. These effects are especially attractive for the treatment of various brain diseases ranging from stroke to neurodegenerative diseases. Still, low brain concentrations after oral drug administration hinder the clinical application of statins in these pathologies. Pharmaceutical nanotechnologies may offer a solution to this problem, as local or targeted delivery of nanoencapsulated statins may increase brain availability. This special report rapidly summarizes the potential of statins in the treatment of brain diseases and the pharmaceutical nanotechnologies that could provide a viable approach to enable these indications.
Collapse
|
50
|
Surface-Modified Nanocarriers for Nose-to-Brain Delivery: From Bioadhesion to Targeting. Pharmaceutics 2018; 10:pharmaceutics10010034. [PMID: 29543755 PMCID: PMC5874847 DOI: 10.3390/pharmaceutics10010034] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023] Open
Abstract
In the field of nasal drug delivery, nose-to-brain delivery is among the most fascinating applications, directly targeting the central nervous system, bypassing the blood brain barrier. Its benefits include dose lowering and direct brain distribution of potent drugs, ultimately reducing systemic side effects. Recently, nasal administration of insulin showed promising results in clinical trials for the treatment of Alzheimer’s disease. Nanomedicines could further contribute to making nose-to-brain delivery a reality. While not disregarding the need for devices enabling a formulation deposition in the nose’s upper part, surface modification of nanomedicines appears the key strategy to optimize drug delivery from the nasal cavity to the brain. In this review, nanomedicine delivery based on particle engineering exploiting surface electrostatic charges, mucoadhesive polymers, or chemical moieties targeting the nasal epithelium will be discussed and critically evaluated in relation to nose-to-brain delivery.
Collapse
|