1
|
Liu J, Liu J, Wang Y, Chen F, He Y, Xie X, Zhong Y, Yang C. Bioactive mesoporous silica materials-assisted cancer immunotherapy. Biomaterials 2024; 315:122919. [PMID: 39481339 DOI: 10.1016/j.biomaterials.2024.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Immunotherapy is initially envisioned as a powerful approach to train immune cells within the tumor microenvironment (TME) and lymphoid tissues to elicit strong anti-tumor responses. However, clinical cancer immunotherapy still faces challenges, such as limited immunogenicity and insufficient immune response. Leveraging the advantages of mesoporous silica (MS) materials in controllable drug and immunomodulator release, recent efforts have focused on engineering MS with intrinsic immunoregulatory functions to promote robust, systemic, and safe anti-tumor responses. This review discusses advances in bioactive MS materials that address the challenges of immunotherapy. Beyond their role in on-demand delivery and drug release in response to the TME, we highlight the intrinsic functions of bioactive MS in orchestrating localized immune responses by inducing immunogenic cell death in tumor cells, modulating immune cell activity, and facilitating tumor-immune cell interactions. Additionally, we emphasize the advantages of bioactive MS in recruiting and activating immune cells within lymphoid tissues to initiate anti-tumor vaccination. The review also covers the challenges of MS-assisted immunotherapy, potential solutions, and future outlooks. With a deeper understanding of material-bio interactions, the rational design of MS with sophisticated bioactivities and controllable responsiveness holds great promise for enhancing the outcomes of personalized immunotherapy.
Collapse
Affiliation(s)
- Jiali Liu
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China
| | - Jiying Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yaxin Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yan He
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Xiaochun Xie
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yiling Zhong
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China.
| | - Chao Yang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
2
|
Jha SK, Imran M, Jha LA, Hasan N, Panthi VK, Paudel KR, Almalki WH, Mohammed Y, Kesharwani P. A Comprehensive review on Pharmacokinetic Studies of Vaccines: Impact of delivery route, carrier-and its modulation on immune response. ENVIRONMENTAL RESEARCH 2023; 236:116823. [PMID: 37543130 DOI: 10.1016/j.envres.2023.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The lack of knowledge about the absorption, distribution, metabolism, and excretion (ADME) of vaccines makes former biopharmaceutical optimization difficult. This was shown during the COVID-19 immunization campaign, where gradual booster doses were introduced.. Thus, understanding vaccine ADME and its effects on immunization effectiveness could result in a more logical vaccine design in terms of formulation, method of administration, and dosing regimens. Herein, we will cover the information available on vaccine pharmacokinetics, impacts of delivery routes and carriers on ADME, utilization and efficiency of nanoparticulate delivery vehicles, impact of dose level and dosing schedule on the therapeutic efficacy of vaccines, intracellular and endosomal trafficking and in vivo fate, perspective on DNA and mRNA vaccines, new generation sequencing and mathematical models to improve cancer vaccination and pharmacology, and the reported toxicological study of COVID-19 vaccines. Altogether, this review will enhance the reader's understanding of the pharmacokinetics of vaccines and methods that can be implied in delivery vehicle design to improve the absorption and distribution of immunizing agents and estimate the appropriate dose to achieve better immunogenic responses and prevent toxicities.
Collapse
Affiliation(s)
- Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea; Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India.
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Laxmi Akhileshwar Jha
- H. K. College of Pharmacy, Mumbai University, Pratiksha Nagar, Jogeshwari, West Mumbai, 400102, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vijay Kumar Panthi
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney, 2007, Australia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
3
|
Filipić B, Pantelić I, Nikolić I, Majhen D, Stojić-Vukanić Z, Savić S, Krajišnik D. Nanoparticle-Based Adjuvants and Delivery Systems for Modern Vaccines. Vaccines (Basel) 2023; 11:1172. [PMID: 37514991 PMCID: PMC10385383 DOI: 10.3390/vaccines11071172] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Ever since the development of the first vaccine, vaccination has had the great impact on global health, leading to the decrease in the burden of numerous infectious diseases. However, there is a constant need to improve existing vaccines and develop new vaccination strategies and vaccine platforms that induce a broader immune response compared to traditional vaccines. Modern vaccines tend to rely on certain nanotechnology platforms but are still expected to be readily available and easy for large-scale manufacturing and to induce a durable immune response. In this review, we present an overview of the most promising nanoadjuvants and nanoparticulate delivery systems and discuss their benefits from tehchnological and immunological standpoints as well as their objective drawbacks and possible side effects. The presented nano alums, silica and clay nanoparticles, nanoemulsions, adenoviral-vectored systems, adeno-associated viral vectors, vesicular stomatitis viral vectors, lentiviral vectors, virus-like particles (including bacteriophage-based ones) and virosomes indicate that vaccine developers can now choose different adjuvants and/or delivery systems as per the requirement, specific to combatting different infectious diseases.
Collapse
Affiliation(s)
- Brankica Filipić
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Ivana Pantelić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Ines Nikolić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
- Section of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Snežana Savić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Danina Krajišnik
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Shahjin F, Patel M, Machhi J, Cohen JD, Nayan MU, Yeapuri P, Zhang C, Waight E, Hasan M, Abdelmoaty MM, Dash PK, Zhou Y, Andreu I, Gendelman HE, Kevadiya BD. Multipolymer microsphere delivery of SARS-CoV-2 antigens. Acta Biomater 2023; 158:493-509. [PMID: 36581007 PMCID: PMC9791794 DOI: 10.1016/j.actbio.2022.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Effective antigen delivery facilitates antiviral vaccine success defined by effective immune protective responses against viral exposures. To improve severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigen delivery, a controlled biodegradable, stable, biocompatible, and nontoxic polymeric microsphere system was developed for chemically inactivated viral proteins. SARS-CoV-2 proteins encapsulated in polymeric microspheres induced robust antiviral immunity. The viral antigen-loaded microsphere system can preclude the need for repeat administrations, highlighting its potential as an effective vaccine. STATEMENT OF SIGNIFICANCE: Successful SARS-CoV-2 vaccines were developed and quickly approved by the US Food and Drug Administration (FDA). However, each of the vaccines requires boosting as new variants arise. We posit that injectable biodegradable polymers represent a means for the sustained release of emerging viral antigens. The approach offers a means to reduce immunization frequency by predicting viral genomic variability. This strategy could lead to longer-lasting antiviral protective immunity. The current proof-of-concept multipolymer study for SARS-CoV-2 achieve these metrics.
Collapse
Affiliation(s)
- Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Jacob D Cohen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Chen Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Emiko Waight
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mai Mohamed Abdelmoaty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Prasanta K Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - You Zhou
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Irene Andreu
- RI Consortium of Nanoscience and Nanotechnology and Department of Chemical Engineering University of Rhode Island, RI, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| |
Collapse
|
5
|
Dave R, Patel R, Patel M. Hybrid Lipid-Polymer Nanoplatform: A Systematic Review for Targeted Colorectal Cancer Therapy. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
López-Gomez A, Real-Arévalo I, Martín-Palma R, Martínez-Naves E, Del Moral MG. Manufacture of Mesoporous Silicon Microparticles (MSMPs) as Adjuvants for Vaccine Delivery. Methods Mol Biol 2023; 2673:123-130. [PMID: 37258910 DOI: 10.1007/978-1-0716-3239-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The advent of computational approaches has accelerated the identification of vaccine candidates like epitope peptides. However, epitope peptides are usually very poorly immunogenic and adequate platforms are required with adjuvant capacity to verity immunogenicity and antigenicity of vaccine subunits in vivo. Silicon microparticles are being developed as potential new adjuvants for vaccine delivery due to their physicochemical properties. This chapter explains the methodology to fabricate and functionalize mesoporous silicon microparticles (MSMPs) which can be loaded with antigens of different nature, such as viral peptides, proteins, or carbohydrates, and this strategy is particularly suitable for delivery of epitopes identified by computer.
Collapse
Affiliation(s)
- Ana López-Gomez
- School of Medicine, Department of Cell Biology, Complutense University of Madrid, Madrid, Spain
- School of Medicine, Department of Immunology, Complutense University of Madrid, Madrid, Spain
| | - Irene Real-Arévalo
- School of Medicine, Department of Cell Biology, Complutense University of Madrid, Madrid, Spain
| | - Raúl Martín-Palma
- School of Science, Department of Applied Physics, Autonoma University of Madrid, Madrid, Spain
| | - Eduardo Martínez-Naves
- School of Medicine, Department of Immunology, Complutense University of Madrid, Madrid, Spain
| | - Manuel Gómez Del Moral
- School of Medicine, Department of Cell Biology, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
7
|
Abdel-moneum R, Abdel-Rashid RS. Bile salt stabilized nanovesicles as a promising drug delivery technology: A general overview and future perspectives. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Mucosal and systemic immune responses following mucosal immunisation of tetanus toxoid entrapped in lipid nanoparticles prepared by microwave reactor. Eur J Pharm Biopharm 2022; 171:11-18. [PMID: 34990784 DOI: 10.1016/j.ejpb.2021.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022]
Abstract
In this study, the use of a microwave reactor, which allowed high input of energy into a pressurised system in a short period of time, was investigated for preparation of lipid nanoparticles (LNPs). The aim was to optimise the formulation process by reducing manufacturing time. Two types of LNPs were prepared; non-ionic surfactant vesicles (NISV) and bilosomes (modified NISV incorporating bile salts), with a model antigen (tetanus toxoid, TT) and the immune response induced after mucosal (nasal and oral, respectively) administration was assessed. The TT loaded LNPs were characterised in terms of particle size, size distribution, morphology, and entrapment efficiency. Immunisation was evaluated by lethal challenge with tetanus toxin in an animal model. The efficiency of vaccination was evaluated by measuring the anti-TT IgG antibody levels in the vaccinated animals. Bilosomes formed by this method showed an immunogen entrapment efficiency of ∼ 30% which was significantly (p<0.05) higher than entrapment efficiency in the NISV. The percentage of animals that survived when challenged with tetanus toxin correlated with the level of IgG determined in the serum of mice immunised with LNPs by the mucosal route. Moreover, there were significant (p<0.05) differences between orally and nasally immunised groups. Animal groups immunised bilosomes via the oral route showed the highest level of IgG (1.2±0.13) compared to the positive control, LN+Xn, and no immunised group. Similarly, groups immunised via the nasal route showed significantly (p<0.0001) higher titres compared with the control group. Mucosal TT was capable of inducing systemic specific IgG anti-TT responses that were higher than the parenteral vaccine.
Collapse
|
9
|
Shende P, Gupta S. Role of lipopolysaccharides in potential applications of nanocarrier systems. Curr Pharm Des 2021; 28:1000-1010. [PMID: 34818999 DOI: 10.2174/1381612827666211124094302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lipopolysaccharides (LPS) are considered the main molecular component in the outer membrane of gram-negative bacteria. The LPS molecule in the bacterial cell wall acts as a primary physical barrier and protects gram-negative bacteria from the surrounding environment. LPS (endotoxins) show immunomodulatory therapeutic properties as well as toxicity to the host cell, whereas potential applications encompass. OBJECTIVE This review article aims to describe the recent developments of lipopolysaccharides in nanocarrier systems for various applications such as vaccination, cancer chemotherapy and immune stimulants action. Different nanocarriers like cubosomes, niosomes, dendrimers and metal nanoparticles used in the delivery of actives are employed to decorate lipopolysaccharide molecules superficially. METHODS A narrative review of all the relevant papers known to the author was conducted. CONCLUSION Commercially available lipid nanoparticles contribute to many advances as promising nanocarriers in cancer therapy and are used as a vaccine adjuvant by improving the immune response due to their properties such as size, shape, biocompatibility, and biodegradability. Whereas lipopolysaccharide-decorated nanoparticles change the host's tolerability and increase the effectiveness of molecule in cancer immunotherapy. These nanoconjugate systems enhance overall immunogenic response and effectiveness in vaccine immunotherapy and targeted therapy, not only limited to humans application but also for poultry and aquaculture. Newer opportunities using lipopolysaccharides for the treatment and management of diseases with unique characteristics like the presence of lipoprotein that act as an alternative for bacterial infections over conventional dosage forms.
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai. India
| | - Shubham Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai. India
| |
Collapse
|
10
|
|
11
|
Zhang Z, Lu Y, Qi J, Wu W. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharm Sin B 2021; 11:2449-2468. [PMID: 34522594 PMCID: PMC8424224 DOI: 10.1016/j.apsb.2020.12.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/14/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Orally administered drug entities have to survive the harsh gastrointestinal environment, penetrate the enteric epithelia and circumvent hepatic metabolism before reaching the systemic circulation. Whereas the gastrointestinal stability can be well maintained by taking proper measures, hepatic metabolism presents as a formidable barrier to drugs suffering from first-pass metabolism. The pharmaceutical academia and industries are seeking alternative pathways for drug transport to circumvent problems associated with the portal pathway. Intestinal lymphatic transport is emerging as a promising pathway to this end. In this review, we intend to provide an updated overview on the rationale, strategies, factors and applications involved in intestinal lymphatic transport. There are mainly two pathways for peroral lymphatic transport-the chylomicron and the microfold cell pathways. The underlying mechanisms are being unraveled gradually and nowadays witness increasing research input and applications.
Collapse
Key Words
- ACQ, aggregation-caused quenching
- ASRT, apical sodium-dependent bile acid transporter
- AUC, area under curve
- BCS, biopharmaceutics classification system
- CM, chylomicron
- Chylomicron
- DC, dendritic cell
- DDT, dichlorodiphenyltrichloroethane
- DTX, docetaxel
- Drug absorption
- Drug carriers
- Drug delivery
- FA, fatty acid
- FAE, follicle-associated epithelia
- FRET, Föster resonance energy transfer
- GIT, gastrointestinal tract
- HBsAg, hepatitis B surface antigen
- HIV, human immunodeficiency virus
- LDL, low-density lipoprotein
- LDV, Leu-Asp-Val
- LDVp, LDV peptidomimetic
- Lymphatic transport
- M cell, microfold cells
- MG, monoglyceride
- MPA, mycophenolic acid
- MPS, mononuclear phagocyte system
- Microfold cell
- Nanoparticles
- OA, oleate
- Oral
- PCL, polycaprolactone
- PEG-PLA, polyethylene glycol-poly(lactic acid)
- PEI, polyethyleneimine
- PLGA, poly(lactic-co-glycolic acid)
- PVA, poly(vinyl alcohol)
- RGD, Arg-Gly-Asp
- RGDp, RGD peptidomimetic
- SEDDS, self-emulsifying drug delivery system
- SLN, solid lipid nanoparticles
- SNEDDS, self-nanoemulsifying drug delivery system
- TEM, transmission electron microscopy
- TG, triglyceride
- TPGS, D-α-tocopherol polyethylene glycol 1000 succinate
- TU, testosterone undecanoate
- WGA, wheat germ agglutinin
- YCW, yeast cell wall
Collapse
Affiliation(s)
- Zichen Zhang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
12
|
Jazayeri SD, Lim HX, Shameli K, Yeap SK, Poh CL. Nano and Microparticles as Potential Oral Vaccine Carriers and Adjuvants Against Infectious Diseases. Front Pharmacol 2021; 12:682286. [PMID: 34149426 PMCID: PMC8206556 DOI: 10.3389/fphar.2021.682286] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal surfaces are the first site of infection for most infectious diseases and oral vaccination can provide protection as the first line of defense. Unlike systemic administration, oral immunization can stimulate cellular and humoral immune responses at both systemic and mucosal levels to induce broad-spectrum and long-lasting immunity. Therefore, to design a successful vaccine, it is essential to stimulate the mucosal as well as systemic immune responses. Successful oral vaccines need to overcome the harsh gastrointestinal environment such as the extremely low pH, proteolytic enzymes, bile salts as well as low permeability and the low immunogenicity of vaccines. In recent years, several delivery systems and adjuvants have been developed for improving oral vaccine delivery and immunogenicity. Formulation of vaccines with nanoparticles and microparticles have been shown to improve antigen stability, availability and adjuvanticity as well as immunostimulatory capacity, target delivery and specific release. This review discusses how nanoparticles (NPs) and microparticles (MPs) as oral carriers with adjuvant characteristics can be beneficial in oral vaccine development.
Collapse
Affiliation(s)
| | - Hui Xuan Lim
- Centre for Virus and Vaccine Research, Subang Jaya, Malaysia
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Swee Keong Yeap
- Department of Marine Biotechnology, China-Asean College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Subang Jaya, Malaysia
| |
Collapse
|
13
|
Zhang W, Zhu C, Xiao F, Liu X, Xie A, Chen F, Dong P, Lin P, Zheng C, Zhang H, Gong H, Wu Y. pH-Controlled Release of Antigens Using Mesoporous Silica Nanoparticles Delivery System for Developing a Fish Oral Vaccine. Front Immunol 2021; 12:644396. [PMID: 33953716 PMCID: PMC8089398 DOI: 10.3389/fimmu.2021.644396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/23/2021] [Indexed: 01/08/2023] Open
Abstract
The development of effective vaccines and delivery systems in aquaculture is a long-term challenge for controlling emerging and reemerging infections. Cost-efficient and advanced nanoparticle vaccines are of tremendous applicability in prevention of infectious diseases of fish. In this study, dihydrolipoamide dehydrogenase (DLDH) antigens of Vibrio alginolyticus were loaded into mesoporous silica nanoparticles (MSN) to compose the vaccine delivery system. Hydroxypropyl methylcellulose phthalate (HP55) was coated to provide protection of immunogen. The morphology, loading capacity, acid-base triggered release were characterized and the toxicity of nanoparticle vaccine was determined in vitro. Further, the vaccine immune effects were evaluated in large yellow croaker via oral administration. In vitro studies confirmed that the antigen could be stable in enzymes-rich artificial gastric fluid and released under artificial intestinal fluid environment. In vitro cytotoxicity assessment demonstrated the vaccines within 120 μg/ml have good biocompatibility for large yellow croaker kidney cells. Our data confirmed that the nanoparticle vaccine in vivo could elicit innate and adaptive immune response, and provide good protection against Vibrio alginolyticus challenge. The MSN delivery system prepared may be a potential candidate carrier for fish vaccine via oral administration feeding. Further, we provide theoretical basis for developing convenient, high-performance, and cost-efficient vaccine against infectious diseases in aquaculture.
Collapse
Affiliation(s)
- Weibin Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China.,Institute of Animal Husbandry and Veterinary Medicine, Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Chunhua Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Fangnan Xiao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xiaodong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Anhua Xie
- Institute of Animal Husbandry and Veterinary Medicine, Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Fangman Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Panpan Dong
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Pingdong Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Chenyang Zheng
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Hong Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Hui Gong
- Institute of Animal Husbandry and Veterinary Medicine, Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yunkun Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
14
|
Zhang QJ, Luan JC, Song LB, Cong R, Ji CJ, Zhou X, Xia JD, Song NH. Age-Related Differences in Molecular Profiles for Immune Checkpoint Blockade Therapy. Front Immunol 2021; 12:657575. [PMID: 33936087 PMCID: PMC8082107 DOI: 10.3389/fimmu.2021.657575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapies have significantly improved the prognosis and shown considerable promise for cancer therapy; however, differences in ICB treatment efficacy between the elderly and young are unknown. We analyzed the studies enrolled in the meta-analysis using the deft approach, and found no difference in efficacy except melanoma patients receiving anti–PD-1 therapy. Similarly, higher treatment response rate and more favorable prognosis were observed in elderly patients in some cancer types (e.g., melanoma) with data from published ICB treatment clinical trials. In addition, we comprehensively compared immunotherapy-related molecular profiles between elderly and young patients from public trials and The Cancer Genome Atlas (TCGA), and validated these findings in several independent datasets. We discovered a divergent age-biased immune profiling, including the properties of tumors (e.g., tumor mutation load) and immune features (e.g., immune cells), in a pancancer setting across 27 cancer types. We believe that ICB treatment efficacy might vary depending on specific cancer types and be determined by both the tumor internal features and external immune microenvironment. Considering the high mutational properties in elderly patients in many cancer types, modulating immune function could be beneficial to immunotherapy in the elderly, which requires further investigation.
Collapse
Affiliation(s)
- Qi-Jie Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiao-Chen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Le-Bin Song
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Cong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng-Jian Ji
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia-Dong Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning-Hong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The Affiliated Kezhou People's Hospital of Nanjing Medical University, Xinjiang, China
| |
Collapse
|
15
|
Early immune response in large yellow croaker (Larimichthys crocea) after immunization with oral vaccine. Mol Cell Probes 2021; 56:101708. [PMID: 33636281 DOI: 10.1016/j.mcp.2021.101708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 11/20/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have been used in the field of biomedicine as antigen carriers and adjuvants for protective antigens. In the present study, an oral nanovaccine against Vibrio alginolyticus was prepared employing MSNs as carriers. The uptake of the dihydrolipoamide dehydrogenase (DLDH) antigens in the intestine of large yellow croaker was evaluated using an immunohistochemistry assay. Additionally, the effects of the nanovaccine on the early immune response in large yellow croaker were investigated via oral vaccination. The presence of the antigens was detected in the mucosa and lamina propria of the foregut, midgut, and hindgut of large yellow croaker at 3 h following oral immunization. The expression levels of cytokines (i.e., lysozyme, IFN-γ, IFITM, TNF-α, IL-1β, IL-2, IL-4, IL-10, and IL-13) in the intestine, spleen, and head kidney tissues of large yellow croaker before and after the immune challenge were determined via RT-qPCR assay. The obtained results revealed that the expression levels of lysozyme, IFN-γ, IFITM, TNF-α, IL-1β, IL-2, IL-4, IL-10, and IL-13 in the intestine and head kidney of the vaccinated large yellow croaker, as well as the expression of lysozyme, IL-1β, and IL-10 in the spleen, exhibited time-dependent oscillation regulation patterns. Notably, the nanovaccine immunization could induce early (6 h) and high expression of IFN-γ in the spleen and kidney tissues after the bacterial infection. The current study supplements the available data on the early immune response to fish nanovaccines. It also provides a valuable theoretical basis for the future development of large yellow croaker oral vaccines.
Collapse
|
16
|
Abstract
Many options now exist for constructing oral vaccines which, in experimental systems, have shown themselves to be able to generate highly effective immunity against infectious diseases. Their suitability for implementation in clinical practice, however, for prevention of outbreaks, particularly in low- and middle-income countries (LMIC), is not always guaranteed, because of factors such as cost, logistics and cultural and environmental conditions. This brief overview provides a summary of the various approaches which can be adopted, and evaluates them from a pharmaceutical point, taking into account potential regulatory issues, expense, manufacturing complexity, etc., all of which can determine whether a vaccine approach will be successful in the late stages of development. Attention is also drawn to problems arising from inadequate diet, which impacts upon success in stimulating effective immunity, and identifies the use of lipid-based carriers as a way to counteract the problem of nutritional deficiencies in vaccination campaigns.
Collapse
Affiliation(s)
- R. R. C. New
- Middlesex UniversityHendon, LondonUK
- Vaxcine (UK) Limited, London Bioscience Innovation CentreLondonUK
| |
Collapse
|
17
|
Morales-Cruz M, Delgado Y, Castillo B, Figueroa CM, Molina AM, Torres A, Milián M, Griebenow K. Smart Targeting To Improve Cancer Therapeutics. Drug Des Devel Ther 2019; 13:3753-3772. [PMID: 31802849 PMCID: PMC6826196 DOI: 10.2147/dddt.s219489] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second largest cause of death worldwide with the number of new cancer cases predicted to grow significantly in the next decades. Biotechnology and medicine can and should work hand-in-hand to improve cancer diagnosis and treatment efficacy. However, success has been frequently limited, in particular when treating late-stage solid tumors. There still is the need to develop smart and synergistic therapeutic approaches to achieve the synthesis of strong and effective drugs and delivery systems. Much interest has been paid to the development of smart drug delivery systems (drug-loaded particles) that utilize passive targeting, active targeting, and/or stimulus responsiveness strategies. This review will summarize some main ideas about the effect of each strategy and how the combination of some or all of them has shown to be effective. After a brief introduction of current cancer therapies and their limitations, we describe the biological barriers that nanoparticles need to overcome, followed by presenting different types of drug delivery systems to improve drug accumulation in tumors. Then, we describe cancer cell membrane targets that increase cellular drug uptake through active targeting mechanisms. Stimulus-responsive targeting is also discussed by looking at the intra- and extracellular conditions for specific drug release. We include a significant amount of information summarized in tables and figures on nanoparticle-based therapeutics, PEGylated drugs, different ligands for the design of active-targeted systems, and targeting of different organs. We also discuss some still prevailing fundamental limitations of these approaches, eg, by occlusion of targeting ligands.
Collapse
Affiliation(s)
- Moraima Morales-Cruz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | - Yamixa Delgado
- Department of Biochemistry & Pharmacology, San Juan Bautista School of Medicine, Caguas, PR, USA
| | - Betzaida Castillo
- Department of Chemistry, University of Puerto Rico, Humacao Campus, Humacao, PR, USA
| | - Cindy M Figueroa
- Department of Math and Sciences, Polytechnic University of Puerto Rico, San Juan, PR, USA
| | - Anna M Molina
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | - Anamaris Torres
- Department of Biochemistry & Pharmacology, San Juan Bautista School of Medicine, Caguas, PR, USA
| | - Melissa Milián
- Department of Biochemistry & Pharmacology, San Juan Bautista School of Medicine, Caguas, PR, USA
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| |
Collapse
|
18
|
Miquel‐Clopés A, Bentley EG, Stewart JP, Carding SR. Mucosal vaccines and technology. Clin Exp Immunol 2019; 196:205-214. [PMID: 30963541 PMCID: PMC6468177 DOI: 10.1111/cei.13285] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2019] [Indexed: 12/28/2022] Open
Abstract
There is an urgent and unmet need to develop effective vaccines to reduce the global burden of infectious disease in both animals and humans, and in particular for the majority of pathogens that infect via mucosal sites. Here we summarise the impediments to developing mucosal vaccines and review the new and emerging technologies aimed at overcoming the lack of effective vaccine delivery systems that is the major obstacle to developing new mucosal vaccines.
Collapse
Affiliation(s)
- A. Miquel‐Clopés
- Gut Microbes and Health Research ProgrammeQuadram Institute BioscienceNorwichUK
| | - E. G. Bentley
- Department of Infection BiologyUniversity of LiverpoolLiverpoolUK
| | - J. P. Stewart
- Department of Infection BiologyUniversity of LiverpoolLiverpoolUK
| | - S. R. Carding
- Gut Microbes and Health Research ProgrammeQuadram Institute BioscienceNorwichUK
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
| |
Collapse
|
19
|
Hobernik D, Bros M. DNA Vaccines-How Far From Clinical Use? Int J Mol Sci 2018; 19:ijms19113605. [PMID: 30445702 PMCID: PMC6274812 DOI: 10.3390/ijms19113605] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Two decades ago successful transfection of antigen presenting cells (APC) in vivo was demonstrated which resulted in the induction of primary adaptive immune responses. Due to the good biocompatibility of plasmid DNA, their cost-efficient production and long shelf life, many researchers aimed to develop DNA vaccine-based immunotherapeutic strategies for treatment of infections and cancer, but also autoimmune diseases and allergies. This review aims to summarize our current knowledge on the course of action of DNA vaccines, and which factors are responsible for the poor immunogenicity in human so far. Important optimization steps that improve DNA transfection efficiency comprise the introduction of DNA-complexing nano-carriers aimed to prevent extracellular DNA degradation, enabling APC targeting, and enhanced endo/lysosomal escape of DNA. Attachment of virus-derived nuclear localization sequences facilitates nuclear entry of DNA. Improvements in DNA vaccine design include the use of APC-specific promotors for transcriptional targeting, the arrangement of multiple antigen sequences, the co-delivery of molecular adjuvants to prevent tolerance induction, and strategies to circumvent potential inhibitory effects of the vector backbone. Successful clinical use of DNA vaccines may require combined employment of all of these parameters, and combination treatment with additional drugs.
Collapse
Affiliation(s)
- Dominika Hobernik
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany.
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
20
|
Bernasconi V, Bernocchi B, Ye L, Lê MQ, Omokanye A, Carpentier R, Schön K, Saelens X, Staeheli P, Betbeder D, Lycke N. Porous Nanoparticles With Self-Adjuvanting M2e-Fusion Protein and Recombinant Hemagglutinin Provide Strong and Broadly Protective Immunity Against Influenza Virus Infections. Front Immunol 2018; 9:2060. [PMID: 30271406 PMCID: PMC6146233 DOI: 10.3389/fimmu.2018.02060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022] Open
Abstract
Due to the high risk of an outbreak of pandemic influenza, the development of a broadly protective universal influenza vaccine is highly warranted. The design of such a vaccine has attracted attention and much focus has been given to nanoparticle-based influenza vaccines which can be administered intranasally. This is particularly interesting since, contrary to injectable vaccines, mucosal vaccines elicit local IgA and lung resident T cell immunity, which have been found to correlate with stronger protection in experimental models of influenza virus infections. Also, studies in human volunteers have indicated that pre-existing CD4+ T cells correlate well to increased resistance against infection. We have previously developed a fusion protein with 3 copies of the ectodomain of matrix protein 2 (M2e), which is one of the most explored conserved influenza A virus antigens for a broadly protective vaccine known today. To improve the protective ability of the self-adjuvanting fusion protein, CTA1-3M2e-DD, we incorporated it into porous maltodextrin nanoparticles (NPLs). This proof-of-principle study demonstrates that the combined vaccine vector given intranasally enhanced immune protection against a live challenge infection and reduced the risk of virus transmission between immunized and unimmunized individuals. Most importantly, immune responses to NPLs that also contained recombinant hemagglutinin (HA) were strongly enhanced in a CTA1-enzyme dependent manner and we achieved broadly protective immunity against a lethal infection with heterosubtypic influenza virus. Immune protection was mediated by enhanced levels of lung resident CD4+ T cells as well as anti-HA and -M2e serum IgG and local IgA antibodies.
Collapse
Affiliation(s)
- Valentina Bernasconi
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Beatrice Bernocchi
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France
| | - Liang Ye
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Minh Quan Lê
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France
| | - Ajibola Omokanye
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rodolphe Carpentier
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France
| | - Karin Schön
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Staeheli
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Didier Betbeder
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France.,Faculté des Sciences du Sport, University of Artois, Arras, France
| | - Nils Lycke
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|