1
|
Ishtiaq A, Mushtaq I, Rehman H, Mushtaq I, Mushtaq I, Abbasi SW, Liaqat F, Rasheed A, Ahmad S, Akhtar Z, Murtaza I. Tetra aniline-based polymers ameliorate BPA-induced cardiotoxicity in Sprague Dawley rats, in silico and in vivo analysis. Life Sci 2024; 358:123104. [PMID: 39366552 DOI: 10.1016/j.lfs.2024.123104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
AIMS Bisphenol A (BPA), xenoestrogen, is an environmental toxicant, that generates oxidative stress leading to cardiotoxicity. The oxidative stress can be neutralized by natural and synthetic antioxidants. The present study elucidates the highly selective antioxidative potential of synthetic tetra aniline polymers Es-37 and L-37 against Bisphenol A-induced cardiac cellular impairments and the role of miRNA-15a-5p in the regulation of different apoptotic proteins. MATERIALS AND METHODS The molecular docking of L-37 and Es-37 with three proteins (p53, Cytochrome c, and Bcl-2) were performed. The dose of 1 mg/kg BW of BPA, 1 mg/kg BW Es-37 and L-37 and 50 mg/kg BW N-acetyl cysteine (NAC) was administered to Sprague Dawley rats. The miRNA and target gene expression were confirmed by qRt-PCR and Immunoblotting. KEY FINDINGS In our results, BPA administration significantly elevated the reactive oxygen species (ROS), p53, cytochrome c, and particularly miRNA-15a-5p expression; however: these changes were notably reversed by Es-37 and L-37 treatment. Additionally, molecular docking of synthetic polymers validated that L-37 has a greater binding affinity with the target proteins compared to Es-37, with the highest binding values reported for the enzymatic protein cytochrome c. SIGNIFICANCE These results suggest that both synthetic polymers Es-37 and L-37 have the potential to scavenge free radicals, boost-up antioxidant enzyme activities, and avert (BPA-induced) toxicity, thus, may serve as cardioprotective agents. Moreover, this study first time proposes that miRNA-15a-5p overexpression is associated with oxidative stress and coincides with BPA induced cardiotoxicity, thus may serve as potential therapeutic target in future.
Collapse
Affiliation(s)
- Ayesha Ishtiaq
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Irrum Mushtaq
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Hina Rehman
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Iqra Mushtaq
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Iram Mushtaq
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, 46000 Rawalpindi, Pakistan
| | - Faroha Liaqat
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Ammarah Rasheed
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Zareen Akhtar
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Iram Murtaza
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| |
Collapse
|
2
|
Li Y, Ma Y, Li J, Lu Y, Liu H, Gao M, Cao J. Enhanced glioma cell death with ZnO nanorod flowers and temozolomide combination therapy through autophagy and mitophagy pathways. Biomed Pharmacother 2024; 178:117149. [PMID: 39047423 DOI: 10.1016/j.biopha.2024.117149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
In recent years, the application of engineered NMts has significantly contributed to various biomedical fields. ZnO NMts (ZnO NMts) are widely utilized due to their biocompatibility, unique physical and chemical properties, stability, and cost-effectiveness for large-scale production. They have emerged as potential materials for anti-cancer applications. This study aims to study the impact of ZnO Nanorod flowers (ZnO NRfs) and their combination with temozolomide (TMZ) on glioma cells. Normal mouse microglia (BV2) will be used as a control to assess the effects on mouse glioma cells (G422) and human glioma cells (LN229). The effects of these substances were evaluated on G422 and LN229 cells through various parameters such as IC50 value, Zn2+ accumulation, ROS production, apoptosis, mitochondrial membrane potential (MMP) depolarization, and examination of organelles like mitochondria and lysosomes. Additionally, hypoxia-inducible factor-1α (HIF-1α), endothelial cell PAS domain protein 1 (EPAS1), autophagy markers (LC3), mitophagy and phagocytosis marker (BNIP3) were assessed. The results demonstrated that the combination of ZnO NRfs and TMZ could influence the expression of HIF-1α, EPAS1, LC3, and BNIP3 proteins, leading to mitophagy in glioma cells. This combination treatment has the potential to effectively eliminate glioma cells by activating the mitophagy pathway, which provides a good prospect for the clinical treatment of glioma.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Veterinary Medicine, Gansu Agricultural University, 730070, China.
| | - Yonghua Ma
- College of Veterinary Medicine, Gansu Agricultural University, 730070, China.
| | - Jingjing Li
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, 730000, China
| | - Yan Lu
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Haiying Liu
- College of Veterinary Medicine, Gansu Agricultural University, 730070, China
| | - Min Gao
- College of Veterinary Medicine, Gansu Agricultural University, 730070, China
| | - Junqin Cao
- College of Veterinary Medicine, Gansu Agricultural University, 730070, China
| |
Collapse
|
3
|
Liu G, Lv J, Wang Y, Sun K, Gao H, Li Y, Yao Q, Ma L, Kochshugulova G, Jiang Z. ZnO NPs induce miR-342-5p mediated ferroptosis of spermatocytes through the NF-κB pathway in mice. J Nanobiotechnology 2024; 22:390. [PMID: 38961442 PMCID: PMC11223436 DOI: 10.1186/s12951-024-02672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Zinc oxide nanoparticle (ZnO NP) is one of the metal nanomaterials with extensive use in many fields such as feed additive and textile, which is an emerging threat to human health due to widely distributed in the environment. Thus, there is an urgent need to understand the toxic effects associated with ZnO NPs. Although previous studies have found accumulation of ZnO NPs in testis, the molecular mechanism of ZnO NPs dominated a decline in male fertility have not been elucidated. RESULTS We reported that ZnO NPs exposure caused testicular dysfunction and identified spermatocytes as the primary damaged site induced by ZnO NPs. ZnO NPs led to the dysfunction of spermatocytes, including impaired cell proliferation and mitochondrial damage. In addition, we found that ZnO NPs induced ferroptosis of spermatocytes through the increase of intracellular chelatable iron content and lipid peroxidation level. Moreover, the transcriptome analysis of testis indicated that ZnO NPs weakened the expression of miR-342-5p, which can target Erc1 to block the NF-κB pathway. Eventually, ferroptosis of spermatocytes was ameliorated by suppressing the expression of Erc1. CONCLUSIONS The present study reveals a novel mechanism in that miR-342-5p targeted Erc1 to activate NF-κB signaling pathway is required for ZnO NPs-induced ferroptosis, and provide potential targets for further research on the prevention and treatment of male reproductive disorders related to ZnO NPs.
Collapse
Affiliation(s)
- Guangyu Liu
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Jing Lv
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Yifan Wang
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Kaikai Sun
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Huimin Gao
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Yuanyou Li
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Qichun Yao
- Animal Husbandry and Veterinary Station of Zhenba County, Hanzhong, 723600, Shaanxi, China
| | - Lizhu Ma
- College of Animal Science and Technology, China Agricultural University, Beijing, 100080, China
| | - Gulzat Kochshugulova
- Department of Food Security, Agrotechnological Faculty, Kozybayev University, 86, Pushkin Street, Petropavlovsk, 150000, Kazakhstan
| | - Zhongliang Jiang
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Li Y, Li J, Lu Y, Ma Y. ZnO nanomaterials target mitochondrial apoptosis and mitochondrial autophagy pathways in cancer cells. Cell Biochem Funct 2024; 42:e3909. [PMID: 38269499 DOI: 10.1002/cbf.3909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
In recent years, the application of engineering nanomaterials has significantly contributed to the development of various biomedical fields. Zinc oxide nanomaterials (ZnO NMts) have gained wide popularity due to their biocompatibility, unique physical and chemical properties, stability, and cost-effectiveness for large-scale production. They have emerged as potential materials for anticancer applications. This article provides a comprehensive review of the synthesis methods of ZnO NMts and highlights the advantages of combining ZnO NMts with anticancer drugs as a nano platform for cancer treatment. Additionally, the article briefly explains the mechanism of action of ZnO NMts in tumor cells, focusing on the mitochondrial pathways that target cell apoptosis and autophagy. It is observed that these pathways are primarily influenced by reactive oxygen species generated through oxidative stress. The article discusses the promising prospects of ZnO NMts combined with anticancer drugs in the field of cancer medicine and emphasizes the need for further in-depth research on the mitochondrial apoptosis and mitochondrial autophagy pathways.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Jingjing Li
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yan Lu
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, China
| | - Yonghua Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
5
|
Althagafi HA. The Potential Anticancer Potency of Kolaviron on Colorectal Adenocarcinoma (Caco-2) Cells. Anticancer Agents Med Chem 2024; 24:1097-1108. [PMID: 38835121 DOI: 10.2174/0118715206288807240527165444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Globally, colorectal cancer (CRC) is categorized as the third type of cancer associated with mortalities. Chemotherapeutic drugs such as cisplatin can be used to treat cancer-affected patients. However, several adverse effects are associated with its application. This motivated the researchers to search for alternatives that are more efficient and have fewer undesirable effects. Kolaviron is a bioflavonoid that has been reported to have antioxidant and anti-inflammatory properties. AIM This study aimed to compare the anticancer effects of kolaviron and cisplatin on Caco-2 cells. The IC50 of kolaviron and cisplatin were calculated, and redox status, apoptotic-related proteins and the cell cycle were also examined. METHODS Caco-2 cells were treated with kolaviron ( ⅓, and ½ of IC50 dose) and cisplatin (IC50 dose) for 24 h and 48 h. Cell viability was assessed using the MTT protocol. Redox status and apoptotic-related proteins, in addition to the cell cycle, were examined. RESULTS The MTT assay showed the IC50 of kolaviron is 9.49 μg/mL, and that of cisplatin is 2.71 μg/ml against Caco-2 cells. Further, both doses of kolaviron significantly increased the leakage of lactate dehydrogenase (LDH), the production of reactive oxygen species (ROS), and lipoperoxidation (LPO), besides decreasing the antioxidant potency of tumor cells as revealed by the diminished reduced glutathione (GSH). At the molecular level, a significant increase in the levels of p53, cytochrome c, Bax, and caspase 3 was recorded, coupled with a decrease in the level of Bcl2, after treating the Caco-2 cells with kolaviron and cisplatin. Furthermore, kolaviron demonstrated asserted more effects on apoptosis and increased cell percentage in the subG1 phase. In addition, a notable decrease in the expression of proliferating cell nuclear antigen (PCNA) and cyclin D1 is associated with an increase in the expression of tumor protein P53 (TP53) in kolaviron-treated Caco-2 cells cancerous cells. CONCLUSION Conclusively, these data suggest that kolaviron has a potential antitumor capacity against colorectal cancer via multiple pathways, including enhancement of ROS production, redox status, p53 pathway, and apoptosis. Therefore, this study authenticated the capability of kolaviron as a valuable chemotherapeutic agent.
Collapse
Affiliation(s)
- Hussam A Althagafi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| |
Collapse
|
6
|
Al-Azhary DB, Sawy SA, Fawzy Hassan H, Meligi NM. Potential effects of spirulina and date palm pollens on zinc oxide nanoparticles -induced hepatoxicity, oxidative stress, and inflammation in male albino rats. Toxicol Res (Camb) 2023; 12:1051-1062. [PMID: 38145102 PMCID: PMC10734569 DOI: 10.1093/toxres/tfad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 12/26/2023] Open
Abstract
INTRODUCTION The application of Zinc oxide nanoparticles (ZnO NPs) is substantially growing in industrial products. Therefore, humans are increasingly exposed to ZnO NPs daily due to their extensive range of applications, raising worries about their possible toxicity. AIM In this study, the ameliorative effects of raw Phoenix dactylifera L. (date palm) pollens (DPP) and Spirulina platensis (SP) independently against ZnO NPS-induced hepatoxicity in male albino rats were examined. METHODS Six groups (6/group) of adult male albino rats received oral treatment using distilled water (control), SP (1000 mg/kg b. wt.), DPP (100 mg/kg b. wt.), ZnO NPs (100 mg/kg b. wt.), ZnO NPs +SP, and ZnO NPs + DPP respectively for 15 days. RESULTS The results of the biochemical investigation indicated that the administration of ZnO NPs substantially upregulated (p < 0.05) transaminases, alkaline phosphatase, and bilirubin serum levels. Malondialdehyde and pro-inflammatory cytokine serum levels were also elevated after ZnO NPs administration. Simultaneously, the downregulated catalase and glutathione peroxidase serum activities were significantly suppressed in ZnO NPs treated rats. Moreover, exposure to ZnO NPs induced liver histopathological alterations. The administration of SP and DPP ameliorated the aforementioned effects caused by ZnO NPs. This result can be attributable to the downregulation of hepatic transaminases, alkaline phosphatase, and bilirubin in the serum and the antioxidation system's equilibration, thus alleviating the accumulation of reactive oxygen species. CONCLUSION SP and DPP are natural antioxidants with the potential to eliminate inflammation as well as oxidative damage caused by ZnO NPs in hepatic tissue.
Collapse
Affiliation(s)
- Diaa B Al-Azhary
- Zoology Department, Faculty of Science, Minia University, Cairo-Aswan Road, Minia 61519, Egypt
| | - Samar A Sawy
- Zoology Department, Faculty of Science, Minia University, Cairo-Aswan Road, Minia 61519, Egypt
| | - Hanaa Fawzy Hassan
- Zoology Department, Faculty of Science, Minia University, Cairo-Aswan Road, Minia 61519, Egypt
| | - Noha M Meligi
- Zoology Department, Faculty of Science, Minia University, Cairo-Aswan Road, Minia 61519, Egypt
| |
Collapse
|
7
|
Kadry MO, Ali HM. Impact of HIF1-α/TGF-β/Smad-2/Bax/Bcl2 pathways on cobalt chloride-induced cardiac and hepatorenal dysfunction. Future Sci OA 2023; 9:FSO874. [PMID: 37621844 PMCID: PMC10445593 DOI: 10.2144/fsoa-2023-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 08/26/2023] Open
Abstract
Background Cobalt chloride (CoCl2) is a ferromagnetic ubiquitous trace element extensively dispersed in the environment. Nevertheless, it may merit human hazard. Aim Excess cobalt can harm vital organs this paves the way to elucidate the toxic impact of CoCl2 on the liver, kidney and heart. Method CoCl2 was injected in a dose of (60 mg/kg, S.C.) proceeded via Carnosine (200 mg/kg) and/or Arginine (200 mg/kg) treatment 1 month, 24 and 1 h, prior to CoCl2-intoxication. Results CoCl2 significantly alleviated hemoglobin concentration and BCl2; meanwhile, protein expression of transforming growth factor (TGF-β), hypoxia-inducible factor (HIF-1α), Mothers against decapentaplegic (Smad-2), AKT protein expression and Bax/Bcl2 ratio was noticeably elevated. Conclusion The combination of the aforementioned antioxidants exerted a synergistic anti-apoptotic impact in all target tissues.
Collapse
Affiliation(s)
- Mai O Kadry
- Therapeutic Chemistry Department, National Research Centre, El Buhouth St., Dokki, 12622, Egypt
| | - Hanaa Mahmoud Ali
- Department of Genetics & Cytology, National Research Centre, El Buhouth St., Dokki, 12622, Egypt
| |
Collapse
|
8
|
Mohamed HRH, Tulbah FSA, El-Ghor AA, Eissa SM. Suppression of tumor growth and apoptosis induction by pomegranate seed nano-emulsion in mice bearing solid Ehrlich carcinoma cells. Sci Rep 2023; 13:5525. [PMID: 37016062 PMCID: PMC10073096 DOI: 10.1038/s41598-023-32488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/28/2023] [Indexed: 04/06/2023] Open
Abstract
Despite the high antioxidant and penetration ability of pomegranate seed oil (PSO), the in vivo antitumor activity of PSO nano-emulsion has not been well investigated. Therefore, this study was undertaken to estimate the antitumor activity and safety of PSO nano-emulsion in mice bearing Ehrlich solid carcinoma cells. For tumor inoculation, about 2 × 106 viable Ehrlich tumor cells (200 µl) were implanted intramuscularly in the left thigh of hind leg. Once a solid tumor appears on the 10th day of transplantation; the mice were randomly divided into five groups (5 animals/group). Characterization of the PSO nano-emulsion using a Zeta sizer Malvern instrument and transmission electron microscope (TEM) revealed that the PSO nano-droplets were well dispersed with an average particle size of 8.95 nm and a spherical shape. Treatment with PSO nano-emulsions caused a significant reduction in the tumor size and weight, in a dose dependent manner, compared to tumor control group. Marked dose dependent elevations in the DNA damage level together with significant increases in the tumor suppressor p53, Bax and Caspase genes and reductions in the anti-apoptotic Bcl2 gene were also observed in the tumor tissue of mice given PSO nano-emulsions. Histological examination also revealed apoptosis and necrosis of tumor cells and tumor infiltration with inflammatory cells after PSO nano-emulsion treatment. However, high DNA damage was noticed in the liver and kidney tissues of mice given the highest dose of PSO nano-emulsion (400 mg/kg). Therefore, we concluded that PSO nano-emulsion exhibited a potent antitumor activity through induction of DNA breaks that triggers apoptosis of tumor cells but the highest dose caused genotoxicity to liver and kidney tissues, thus it is recommended to use doses lower than 400 mg/kg of PSO nano-emulsion as an alternative drugs for chemotherapy.
Collapse
Affiliation(s)
- Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Fadi S A Tulbah
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Akmal A El-Ghor
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Shaymaa M Eissa
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Pei X, Liu D, Li J, Li L, Ding X, Zhang W, Li Z, Xu G, Li C, Li D. TFEB coordinates autophagy and pyroptosis as hepatotoxicity responses to ZnO nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161242. [PMID: 36587696 DOI: 10.1016/j.scitotenv.2022.161242] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have drawn serious concerns about their biotoxicity due to their extensive applications in biological medicine, clinical therapeutic, daily chemical production, food and agricultural additives. In our present study, we clarified hepatotoxic mechanism of ZnO NPs through investigating the crosstalk between autophagy and pyroptosis, a remaining enigma in hepatocyte stimulated by ZnO NPs. Based on the effects of autophagy intervention by Rapamycin (Rap) and 3-Methyladenine (3-MA), and the observation of pyroptosis morphology and related indexes, the autophagy and pyroptosis simultaneously initiated by ZnO NPs were interrelated and the autophagy characterized by autophagosome production and increased expression of autophagy proteins was identified as a protective response of ZnO NPs against pyroptosis. According to the analysis of protein expression and fluorescence localization, the NLRP3 inflammasome assemble and the classical Caspase-1/GSDMD-dependent pyroptosis induced by ZnO NPs was modulated by autophagy. In this process, the adjustment of TFEB expression and nuclear translocation by gene knockout and gene overexpression, further altered the tendency of ZnO NPs-induced pyroptosis via the regulation of autophagy and lysosomal biogenesis. The knockout of TFEB gene exacerbated the pyroptosis via autophagy elimination and lysosome inhibition. While the alleviation of NLRP3 generation and pyroptosis activation was observed after treatment of TFEB gene overexpression. Additionally, the siRNA interference confirmed that TRAF-6 was involved in the TFEB-mediated global regulation of autophagy-lysosome-pyroptosis in response to ZnO NPs. Accordingly, pyroptosis induced by ZnO NPs in hepatocyte could be significantly avoided by TFEB-regulated autophagy and lysosome, further providing new insights for the risk assessment and therapeutic strategy.
Collapse
Affiliation(s)
- Xingyao Pei
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Dingkuo Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China
| | - Jianjun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Liuan Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Zibin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Gang Xu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Cun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Daowen Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China; State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin 300353, China.
| |
Collapse
|
10
|
Ziamajidi N, Daei S, Khajvand-Abedini M, Abbasalipourkabir R, Nourian A. Vitamins A, C, and E Exert Anti-apoptotic Function in the Testis of Rats After Exposure to Zinc Oxide Nanoparticles. Chonnam Med J 2023; 59:48-53. [PMID: 36794239 PMCID: PMC9900230 DOI: 10.4068/cmj.2023.59.1.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 02/03/2023] Open
Abstract
Some reports emphasize that zinc oxide nanoparticles (ZnO NPs) are detrimental to the reproductive organs of animals. As such, this research aimed at exploring the apoptotic potential of ZnO NPs on testis along with the beneficial role of Vitamins (V) A, C, and E against ZnO NP-induced damage. To this aim, a population of 54 healthy, male Wistar rats were used in this work and then assigned into nine groups of 6 rats as G1: Control 1 (Water); G2: Control 2 (Olive oil); G3: VA (1000 IU/kg), G4: VC (200 mg/kg), G5: VE (100 IU/kg), G6: ZnO NPs exposed animals (200 mg/kg); and G7, 8 and 9: ZnO NPs-exposed animals that were pre-treated with either VA, C, or E. Apoptosis rates were estimated by measuring the level of apoptotic regulatory markers including Bcl-2-associated X (Bax) and B-cell lymphoma protein 2 (Bcl-2) using western blotting and qRT-PCR assays. The data indicated that ZnO NPs exposure elevates the level of Bax protein and gene expression, whereas the protein and gene expression of Bcl-2 was reduced. Further, the activation of caspase-3,7 occurred after exposure to ZnO NPs, while the above alterations were significantly alleviated in the rats that were co-treated with VA, C, or E and ZnO NPs relative to the rats in the ZnO NPs group. In summary, VA, C, and E exerted anti-apoptotic functions in the testis of rats following administration of ZnO NPs.
Collapse
Affiliation(s)
- Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran.,Molecular Medicine Research Center, Hamadan University of Medical Science, Hamedan, Iran
| | - Sajedeh Daei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Maryam Khajvand-Abedini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Alireza Nourian
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
11
|
George BP, Rajendran NK, Houreld NN, Abrahamse H. Rubus Capped Zinc Oxide Nanoparticles Induce Apoptosis in MCF-7 Breast Cancer Cells. Molecules 2022; 27:molecules27206862. [PMID: 36296460 PMCID: PMC9611499 DOI: 10.3390/molecules27206862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Rubus fairholmianus (RF) has widely been used to treat various ailments, including pain, diabetes, and cancer. Zinc oxide nanoparticles (ZnO NPs) have drawn attention in modern healthcare applications. Hence, we designed this study to synthesize zinc oxide (ZnO) nanoparticles using R. fairholmianus root extract to investigate its synergistic cytotoxic effect on MCF-7 cells and explore the possible cell death mechanism. ZnO NPs were synthesized via green synthesis using R. fairholmianus root extract, and the effect on MCF-7 cells was determined by looking at cellular morphology, proliferation, cytotoxicity, apoptosis, and reactive oxygen species (ROS). The results showed that cellular proliferation was reduced following treatment with R. fairholmianus capped zinc oxide nanoparticles (RFZnO NPs), while cytotoxicity and ROS were increased. There was also an increase in apoptosis as indicated by the significant increase in cytoplasmic cytochrome c and caspase 3/7 (markers of apoptosis), as well as increased levels of pro-apoptotic proteins (p53, Bax) and decreased levels of anti-apoptotic protein (Bcl-2). In conclusion, these results showed that RFZnO NPs induce apoptosis in breast cancer cells via a mitochondria-mediated caspase-dependent apoptotic pathway and suggest the use of acetone root extract of R. fairholmianus for the treatment of cancer-related ailments.
Collapse
|
12
|
WalyEldeen AA, El-Shorbagy HM, Hassaneen HM, Abdelhamid IA, Sabet S, Ibrahim SA. [1,2,4] Triazolo [3,4-a]isoquinoline chalcone derivative exhibits anticancer activity via induction of oxidative stress, DNA damage, and apoptosis in Ehrlich solid carcinoma-bearing mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1225-1238. [PMID: 35881165 PMCID: PMC9467967 DOI: 10.1007/s00210-022-02269-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/03/2022] [Indexed: 12/30/2022]
Abstract
Despite the advances made in cancer therapeutics, their adverse effects remain a major concern, putting safer therapeutic options in high demand. Since chalcones, a group of flavonoids and isoflavonoids, act as promising anticancer agents, we aimed to evaluate the in vivo anticancer activity of a synthetic isoquinoline chalcone (CHE) in a mice model with Ehrlich solid carcinoma. Our in vivo pilot experiments revealed that the maximum tolerated body weight-adjusted CHE dose was 428 mg/kg. Female BALB/c mice were inoculated with Ehrlich ascites carcinoma cells and randomly assigned to three different CHE doses administered intraperitoneally (IP; 107, 214, and 321 mg/kg) twice a week for two consecutive weeks. A group injected with doxorubicin (DOX; 4 mg/kg IP) was used as a positive control. We found that in CHE-treated groups: (1) tumor weight was significantly decreased; (2) the total antioxidant concentration was substantially depleted in tumor tissues, resulting in elevated oxidative stress and DNA damage evidenced through DNA fragmentation and comet assays; (3) pro-apoptotic genes p53 and Bax, assessed via qPCR, were significantly upregulated. Interestingly, CHE treatment reduced immunohistochemical staining of the proliferative marker ki67, whereas BAX was increased. Notably, histopathological examination indicated that unlike DOX, CHE treatment had minimal toxicity on the liver and kidney. In conclusion, CHE exerts antitumor activity via induction of oxidative stress and DNA damage that lead to apoptosis, making CHE a promising candidate for solid tumor therapy.
Collapse
Affiliation(s)
| | - Haidan M El-Shorbagy
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Faculty of Biotechnology, October University for Modern Science and Art (MSA), 6th October, Cairo, Egypt
| | - Hamdi M Hassaneen
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ismail A Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Salwa Sabet
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | |
Collapse
|
13
|
Hong X, Shao N, Yin L, Li C, Tao G, Sun Y, Qian K, Yang J, Xiao P, Yu X, Zhou Z. Exposure to zinc oxide nanoparticles affects testicular structure, reproductive development and spermatogenesis in parental and offspring male rats. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:751. [PMID: 35957732 PMCID: PMC9358518 DOI: 10.21037/atm-22-3047] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022]
Abstract
Background This study aimed to comprehensively evaluate the toxicity exerted by zinc oxide nanoparticles (ZnO NPs) on rat testis and its effects on fertility and progeny development. Methods Different concentrations of ZnO NPs were administered by gavage to Sprague Dawley (SD) rats to examine the adverse effects resulting from pre- and post-natal exposure. Systemic distribution of ZnO NPs, developmental performance, sperm parameters, reproductive performance, histopathological examination, and sex hormone levels were determined scheduled in the experimental rats and their male offspring. The comparative in vitro cytotoxicity of the ZnO NPs was determined among C18-4, TM3, and TM4 cells. The toxicity exerted by ZnO NPs on germ cells in vitro and the effects on the expression of cytoskeleton and blood-testis barrier (BTB)-related proteins were also determined. Results After oral gavage, ZnO NPs mainly accumulated in the liver and testes of rats; 350 mg/kg ZnO NPs adversely affected the epididymal weight, sperm motility, and hormone levels but did not affect the fertility of rats. In addition, 350 mg/kg ZnO NPs significantly reduced the reproductive and developmental performance of offspring male rats. Testicular histopathological and electron microscopic ultrastructure examinations showed more significant abnormal structural changes than those observed in parental rats. The results of in vitro cell experiments further showed that ZnO NPs exerted cytotoxic effects on germ cells, and led to DNA damage, nucleoskeleton and cytoskeleton alterations, and could regulate actin changes through changes in LC3B. Conclusions It is possible that ZnO NPs act directly on TM4 cells by penetrating the BTB, causing damage to the cytoskeleton and disrupting the dynamic balance of the BTB, thereby destroying the microenvironment necessary for spermatogenesis, which may lead to poor reproduction in rats.
Collapse
Affiliation(s)
- Xinyu Hong
- School of Public Health, Fudan University, Shanghai, China
| | - Naimin Shao
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, China
| | - Lei Yin
- Reprotox Biotech LLC, Albuquerque, New Mexico, USA
| | - Chen Li
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, China
| | - Gonghua Tao
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, China
| | - Yuli Sun
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, China
| | - Kelei Qian
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, China
| | - Jun Yang
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, China
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, China
| | - Xiaozhong Yu
- College of Nursing, University of New Mexico, Albuquerque, New Mexico, USA
| | - Zhijun Zhou
- School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Pei X, Jiang H, Xu G, Li C, Li D, Tang S. Lethality of Zinc Oxide Nanoparticles Surpasses Conventional Zinc Oxide via Oxidative Stress, Mitochondrial Damage and Calcium Overload: A Comparative Hepatotoxicity Study. Int J Mol Sci 2022; 23:ijms23126724. [PMID: 35743165 PMCID: PMC9223789 DOI: 10.3390/ijms23126724] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/12/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) with high bioavailability and excellent physicochemical properties are gradually becoming commonplace as a substitute for conventional ZnO materials. The present study aimed to investigate the hepatotoxicity mechanism of ZnO NPs and traditional non-nano ZnO particles, both in vivo and in vitro, and identify the differences in their toxic effects. The results showed that the extent and conditions of zinc ion release from ZnO NPs were inconsistent with those of ZnO. The RNA-seq results revealed that the expression quantity of differentially expressed genes (DEGs) and differentially expressed transcripts (DETs) affected by ZnO NPs was more than in ZnO, and the overall differences in genes or transcripts in the ZnO NPs group were more pronounced than in the ZnO group. Furthermore, the cell inactivation, oxidative stress, mitochondrial damage, and intracellular calcium overload induced by ZnO NPs were more serious than ZnO in HepG2 cells. Moreover, compared with traditional ZnO, the rat liver damage induced by ZnO NPs was more significant, with evidence of higher AST and ALT levels, weaker antioxidant capacity, and more serious histopathological damage (p < 0.05). In summary, the hepatotoxicity of ZnO NPs was more serious than that of conventional ZnO, which is helpful to understand the hepatotoxicity mechanism of Zn compounds in different states and improve the risk assessment of novel nano ZnO products in a variety of applications.
Collapse
Affiliation(s)
- Xingyao Pei
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China; (X.P.); (H.J.)
| | - Haiyang Jiang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China; (X.P.); (H.J.)
| | - Gang Xu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Department of Animal Pharmacy, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300384, China; (G.X.); (C.L.)
| | - Cun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Department of Animal Pharmacy, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300384, China; (G.X.); (C.L.)
| | - Daowen Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Department of Animal Pharmacy, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300384, China; (G.X.); (C.L.)
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd., Tianjin 300383, China
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin 300353, China
- Correspondence: (D.L.); (S.T.)
| | - Shusheng Tang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China; (X.P.); (H.J.)
- Correspondence: (D.L.); (S.T.)
| |
Collapse
|
15
|
Wu F, Sokolov EP, Khomich A, Fettkenhauer C, Schnell G, Seitz H, Sokolova IM. Interactive effects of ZnO nanoparticles and temperature on molecular and cellular stress responses of the blue mussel Mytilus edulis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151785. [PMID: 34808156 DOI: 10.1016/j.scitotenv.2021.151785] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/04/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Temperature is an important abiotic factor that modulates all aspects of ectotherm physiology, including sensitivity to pollutants. Nanoparticles are emerging pollutants in coastal environments, and their potential to cause toxicity in marine organisms is a cause for concern. Here we studied the interactive effects of temperature (including seasonal and experimental warming) on sublethal toxicity of ZnO nanoparticles (nano-ZnO) in a model marine bivalve, the blue mussel Mytilus edulis. Molecular markers were used to assess the pollutant-induced cellular stress responses in the gills and the digestive gland of mussels exposed for 21 days to 10 μg l-1 and 100 μg l-1 of nano-ZnO or dissolved Zn under different temperature regimes including ambient temperature (10 °C and 15 °C in winter and summer, respectively) or experimental warming (+5 °C). Exposure to high concentration (100 μg l-1) of nano-ZnO caused oxidative injury to proteins and lipids and induced a marked apoptotic response indicated by increased transcript levels of apoptosis-related genes p53, caspase 3 and the MAPK pathway (JNK and p38) and decreased mRNA expression of anti-apoptotic Bcl-2. No significant induction of inflammatory cytokine-related response (TGF-β and NF-κB) of tissues was observed in nano-ZnO exposed-mussels. Furthermore, the oxidative injury and apoptotic response could differentiate the effects of nano-ZnO from those of dissolved Zn in the mussels. This study revealed that oxidative stress and stress-related transcriptional responses to nano-ZnO were strongly modified by warming and season in the mussels. No single biomarker could be shown to consistently respond to nano-ZnO in all experimental groups, which implies that multiple biomarkers are needed to assess nano-ZnO toxicity to marine organisms under the variable environmental conditions of coastal habitats.
Collapse
Affiliation(s)
- Fangli Wu
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz Science Campus Phosphorus Research Rostock, Warnemünde, Germany
| | - Andrei Khomich
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; International Sakharov Environmental Institute of Belarusian State University, Minsk, Belarus
| | | | - Georg Schnell
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Hermann Seitz
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany; Department Life, Light & Matter, University of Rostock, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
16
|
d'Amora M, Schmidt TJN, Konstantinidou S, Raffa V, De Angelis F, Tantussi F. Effects of Metal Oxide Nanoparticles in Zebrafish. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3313016. [PMID: 35154565 PMCID: PMC8837465 DOI: 10.1155/2022/3313016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Metal oxide nanoparticles (MO NPs) are increasingly employed in many fields with a wide range of applications from industries to drug delivery. Due to their semiconducting properties, metal oxide nanoparticles are commonly used in the manufacturing of several commercial products available in the market, including cosmetics, food additives, textile, paint, and antibacterial ointments. The use of metallic oxide nanoparticles for medical and cosmetic purposes leads to unavoidable human exposure, requiring a proper knowledge of their potentially harmful effects. This review offers a comprehensive overview of the possible toxicity of metallic oxide nanoparticles in zebrafish during both adulthood and growth stages, with an emphasis on the role of oxidative stress.
Collapse
Affiliation(s)
- Marta d'Amora
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, 56127 Pisa, Italy
| | | | | | - Vittoria Raffa
- Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, 56127 Pisa, Italy
| | | | | |
Collapse
|
17
|
Othman MS, Al-Bagawi AH, Obeidat ST, Fareid MA, Habotta OA, Moneim AEA. Antitumor activity of zinc nanoparticles synthesized with berberine on human epithelial colorectal adenocarcinoma (Caco-2) cells through acting on Cox-2/NF-kB and p53 pathways. Anticancer Agents Med Chem 2021; 22:2002-2010. [PMID: 34607550 DOI: 10.2174/1871520621666211004115839] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/11/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drawbacks and side effects of currently available therapies to colorectal cancer (CRC) devoted the researchers to search for new therapeutic strategies. OBJECTIVE This study was designed to investigate the effects of zinc nanoparticles biosynthesized with berberine (ZnNPs-BER) on Caco-2 cells compared to 5-Fluorouracil (5-FU) and explore the possible underlying pathways. METHODS Caco-2 and Vero cells were treated with 5-FU, BER, or ZnNPs-BER for 24 h. Cell viability was measured by MTT assay. Oxidative stress and apoptotic markers and cell cycle were determined. Additionally, Cox-2 and NF-kB levels were also measured. RESULTS The IC50 of 5-FU, BER, and ZnNPs-BER on Caco-2 cells were 34.65 µM, 19.86 µg/ml and 10.49 µg/ml, respectively by MTT assay. The IC50 value for 5-FU in Vero cells was 21.7 μg/ml, however, BER and BER-ZnNPs treatment showed non-toxic effects to the Vero cells. Further, ZnNPs-BER exerted significant induction of ROS besides exhaustion of the antioxidant capacity of tumor cells indicated by declined GSH and elevated NO and MDA contents. Marked increments in levels of Bax and caspase-3 were detected together with declines in Bcl-2 levels in Caco-2 cells submitted to BER-ZnNPs therapy. On the molecular basis, upregulation in mRNA levels of pro-apoptotic genes (Bax, caspase-3, and tumor suppressor gene p53) with downregulation in the antiapoptotic gene (Bcl-2) were observed in ZnNPs-BER treated Caco-2 cells. Furthermore, ZnNPs-BER showed more pronounced effects on apoptosis increased cell percentage in the S and subG1 phases. In addition, green synthesis of ZnNPs with BER showed notable induction of Cox2 and NF-kB in Caco-2 cells. CONCLUSION Therefore, the antitumor potential of ZnNPs-BER in colon cancer cells may be endorsed for induction of oxidative stress, inflammation, and apoptotic changes in tumor cells. Our study documents the new therapeutic potential of Zn nanoparticles conjugated with BER, as a new option for combined chemotherapy.
Collapse
Affiliation(s)
- Mohamed S Othman
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail. Saudi Arabia
| | - Amal H Al-Bagawi
- Chemistry Department, Faculty of Science, University of Ha'il, Hail. Saudi Arabia
| | - Sofian T Obeidat
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail. Saudi Arabia
| | - Mohamed A Fareid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail. Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura. Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo. Egypt
| |
Collapse
|
18
|
Yan M, Majd MH. Evaluation of Induced Apoptosis by Biosynthesized Zinc Oxide Nanoparticles in MCF-7 Breast Cancer Cells Using Bak1 and Bclx Expression. DOKL BIOCHEM BIOPHYS 2021; 500:360-367. [PMID: 34697744 DOI: 10.1134/s1607672921050148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 11/23/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have peaked interests in many researches in these recent years due to their advantageous application in modern health care applications. Therefore, we successfully synthesized ZnO NPs by Acacia luciana flower extract as stabilizing, reducing and capping agent, to investigate the antiproliferative potential and apoptosis induction in breast cancer cell lines. The involvements of Acacia luciana bioactive compounds in the stabilization of the ZnO NPs were confirmed by FTIR analysis. FESEM and EDS instruments confirmed that biosynthesized nanoparticles have an irregular morphology and mostly composed of Zn, C, and O respectively. The TEM and zeta potential instruments confirmed that biosynthesized nanoparticles have slight negative charges with particle size of 40 nm. The survivorship of MCF-7 cells were examined by MTT assay and revealed that ZnO NPs inhibited cell viability in a dose- and time-dependent effect with IC50 value of 3.1 µg/mL after 72 h exposure. Also, as a novel work onto ZnO NPs obtained by Acacia extracts, the Bak1/Bclx expression ratio was elucidated utilizing RT-PCR technique. The results demonstrated that ZnO NPs could enhance the expression ratio; therefore they have the potential to induce apoptosis in breast cancer cells via mitochondria-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Man Yan
- Department of Hepatobiliary, Xi'an no. 3 Hospital, the Affiliated Hospital of Northwest University, 710018, Xi'an, Shaanxi, China
| | - Mostafa Heidari Majd
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.
| |
Collapse
|
19
|
Kiss LV, Sávoly Z, Ács A, Seres A, Nagy PI. Toxicity mitigation by N-acetylcysteine and synergistic toxic effect of nano and bulk ZnO to Panagrellus redivivus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34436-34449. [PMID: 33651295 PMCID: PMC8275494 DOI: 10.1007/s11356-021-12674-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
To better understand the nanosize-relevant toxic effects and underlying mechanisms, N-acetylcysteine (NAC), as a mitigation agent, an ionic form of Zn (ZnCl2), and the binary mixture of ZnO with different particle sizes (15 nm and 140 nm), was used in toxicity assays with the nematode Panagrellus redivivus. The ZnCl2 concentrations were applied to show the amount of dissolved Zn ions present in the test system. Reactive oxygen species (ROS) measuring method was developed to fit the used test system. Our studies have shown that NAC can mitigate the toxic effects of both studied particle sizes. In the applied concentrations, ZnCl2 was less toxic than both of the ZnO particles. This finding indicates that not only ions and ROS produced by the dissolution are behind the toxic effects of the ZnO NPs, but also other particle size-dependent toxic effects, like the spontaneous ROS generation, are also relevant. When the two materials were applied in binary mixtures, the toxic effects increased significantly, and the dissolved zinc content and the ROS generation also increased. It is assumed that the chemical and physical properties of the materials have been mutually reinforcing to form a more reactive mixture that is more toxic to the P. redivivus test organism. Our findings demonstrate the importance of using mitigation agent and mixtures to evaluate the size-dependent toxicity of the ZnO.
Collapse
Affiliation(s)
- Lola Virág Kiss
- Department of Zoology and Animal Ecology, Szent István University, Gödöllő, Hungary.
| | | | - András Ács
- Department of Aquaculture, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Anikó Seres
- Department of Zoology and Animal Ecology, Szent István University, Gödöllő, Hungary
| | - Péter István Nagy
- Department of Zoology and Animal Ecology, Szent István University, Gödöllő, Hungary
| |
Collapse
|
20
|
Optimization delivery of 5-fluorouracil onto different morphologies of ZnO NPs: release and functional effects against colorectal cancer cell lines. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01625-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Green Synthesis and Biomedical Applications of ZnO Nanoparticles: Role of PEGylated-ZnO Nanoparticles as Doxorubicin Drug Carrier against MDA-MB-231(TNBC) Cells Line. CRYSTALS 2021. [DOI: 10.3390/cryst11040344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study aimed to develop the synthesis of zinc oxide nanoparticles (ZnO-NPs) using the green method, with Aloe barbadensis leaf extract as a stabilizing and capping agent. In vitro antitumor cytotoxic activity, as well as the surface-functionalization of ZnO-NPs and their drug loading capacity against doxorubicin (DOX) and gemcitabine (GEM) drugs, were also studied. Morphological and structural properties of the produced ZnO-NPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersion X-ray diffraction (EDX), UV-Vis spectrophotometry, Fourier-transform infrared analysis (FTIR), and X-ray diffraction (XRD). The prepared ZnO-NPs had a hexagonal shape and average particle size of 20–40 nm, with an absorption peak at 325 nm. The weight and atomic percentages of zinc (50.58% and 28.13%) and oxygen (26.71% and 60.71%) were also determined by EDAX (energy dispersive x-ray analysis) compositional analysis. The appearance of the FTIR peak at 3420 m–1 confirmed the synthesis of ZnO-NPs. The drug loading efficiency (LE) and loading capacity (LC) of unstabilized and PEGylated ZnO-NPs were determined by doxorubicin (DOX) and gemcitabine (GEM) drugs. DOX had superior LE 65% (650 mg/g) and higher LC 32% (320 mg/g) than GEM LE 30.5% (30 mg/g) and LC 16.25% (162 mg/g) on ZnO-NPs. Similar observation was observed in the case of PEG-ZnO-NPs, where DOX had enhanced LE 68% (680 mg/g) and LC 35% (350) mg/g in contrast to GEM, which had LE and LC values of 35% (350 mg/g) and 19% (190 mg/g), respectively. Therefore, DOX was chosen to encapsulate nanoparticles, along with the untreated nanoparticles, to check their in vitro antiproliferative potential against the triple-negative breast cancer (TNBC) cell line (MDA-MB-231) through the MTT (3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide) assay. This drug delivery strategy implies that the PEGylated biogenically synthesized ZnO-NPs occupy an important position in chemotherapeutic drug loading efficiency and can improve the therapeutic techniques of triple breast cancer.
Collapse
|
22
|
Ghanem HB. Impact of zinc oxide nanoparticles and thymoquinone in Ehrlich ascites carcinoma induced in mice. J Biochem Mol Toxicol 2021; 35:e22736. [PMID: 33512746 DOI: 10.1002/jbt.22736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/29/2020] [Accepted: 01/20/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND The field of nanotechnology offers great opportunities for cancer therapy. OBJECTIVE This study aimed to compare the therapeutic impact of Zn oxide nanoparticles (ZnO NPs) and thymoquinone (TQ) alone or as cotherapy in Ehrlich ascites carcinoma (EAC) induced in mice. MATERIALS AND METHODS This study was performed on 75 female albino mice divided into Group I: EAC-bearing control group, Group II: EAC treated with TQ, Group III: EAC treated with low-dose ZnO NPs, Group IV: EAC treated with high-dose ZnO NPs, Group V: EAC treated with TQ and low-dose ZnO NPs. All groups were subjected to measurement of cell viability, ascites fluid volume, Bcl2 protein expression by Western blot analysis, cyclooxygenase 2 (COX2) gene expression by a real-time polymerase chain reaction, enzyme-linked immunosorbent assay levels of Beclin 1, interferon γ (INFγ), interleukin 13 (IL-13), and estimation of Zn concentrations in EAC cells and liver homogenate to evaluate its toxicity. RESULTS Cotherapy has an efficient anticancer effect by enhancing apoptosis and autophagy, resulting in reducing tumor cell viability and ascites fluid volume together with downregulation of Bcl2 protein expression. This cotherapy increases Beclin 1 and INFγ and decreases IL-13. ZnO NPs upregulate COX2 expression, whereas TQ downregulates its expression. High-dose ZnO NPs have more toxic effects on liver enzymes. Using TQ together with ZnO NPs can eliminate ZnO NPs liver toxicity. CONCLUSION The cotherapy has an efficient anticancer effect by enhancing apoptosis and autophagy. High-dose ZnO NPs have more toxic effects on liver enzymes. Using TQ together with ZnO NPs can eliminate ZnO NP liver toxicity.
Collapse
Affiliation(s)
- Heba B Ghanem
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.,Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
23
|
ZnO Q-Dots-Induced Apoptosis Was Coupled with the Induction of PPARγ in Acute Promyelocytic Leukemia Cells; Proposing a Novel Application of Nanoparticles in Combination with Pioglitazone. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-01992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Adv Colloid Interface Sci 2020; 286:102317. [PMID: 33212389 DOI: 10.1016/j.cis.2020.102317] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022]
Abstract
In recent years, zinc oxide nanoparticles (ZnONPs) emerged as an excellent candidate in the field of optical, electrical, food packaging and particularly in biomedical research. ZnONPs show cancer cell specific toxicity via the pH-dependent (low pH) dissolution into Zn2+ ions, which generate reactive oxygen species and induce cytotoxicity in cancer cells. Further, ZnONPs have also been used as an effective carrier for the targeted delivery of several anticancer drugs into tumor cells. The increasing focus on ZnONPs resulted in the development of various synthesis approaches including chemical, pHysical, and green or biological for the manufacturing of ZnONPs. In this article, at first we have discussed the various synthesis methods of ZnONPs and secondly its biomedical applications. We have extensively reviewed the anticancer mechanism of ZnONPs on different types of cancers considering its size, shape and surface charge dependent cytotoxicity. Photoirradiation with UV light or NIR laser further increase its anticancer activity via synergistic chemo-photodynamic effect. The drug delivery applications of ZnONPs with special emphasis on drug loading mechanism, stimuli-responsive controlled release and therapeutic effects have also been discussed in this review. Finally, its side effects to vital body organs with mechanism via different exposure routes, the future direction of the ZnONPs research and application are also discussed.
Collapse
|
25
|
Maksoudian C, Saffarzadeh N, Hesemans E, Dekoning N, Buttiens K, Soenen SJ. Role of inorganic nanoparticle degradation in cancer therapy. NANOSCALE ADVANCES 2020; 2:3734-3763. [PMID: 36132767 PMCID: PMC9417516 DOI: 10.1039/d0na00286k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/25/2020] [Indexed: 05/10/2023]
Abstract
Nanomaterials are currently widely exploited for their potential in the development of novel cancer therapies, and so far, mainly nanoparticles (NPs) consisting of liposomes and polymers have made their way into the clinic. However, major bottlenecks for the clinical translation of other types of NPs (i.e. inorganic) are the lack of knowledge concerning their long-term distribution in vivo and their potential toxicity. To counter this, various research groups have worked on soluble NPs, such as zinc oxide (ZnO), copper oxide (CuO), and silver (Ag), which tend to dissolve spontaneously into their ionic form, releasing toxic metal ions and leading to reactive oxygen species (ROS) generation when exposed to cellular environments. By fine-tuning the dissolution kinetics of these NPs, it is possible to control the level of ROS production and thus cytotoxicity to selectively destroy tumor tissue. Specifically, cancer cells tend to exhibit a higher basal level of oxidative stress compared to normal cells due to their higher metabolic rates, and therefore, by engineering NPs that generate sufficient ROS that barely exceed toxic thresholds in cancer cells, normal cells will only experience reversible transient damage. This review focuses on the use of these soluble inorganic NPs for selective cancer therapy and on the various in vitro and in vivo studies that have aimed to control the dissolution kinetics of these NPs, either through particle doping or surface modifications.
Collapse
Affiliation(s)
- Christy Maksoudian
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Neshat Saffarzadeh
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Evelien Hesemans
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Nora Dekoning
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Kiana Buttiens
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Stefaan J Soenen
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| |
Collapse
|
26
|
Mishra S, Divakar A, Srivastava S, Dewangan J, Sharma D, Asthana S, Chaturvedi S, Wahajuddin M, Kumar S, Rath SK. N-acetyl-cysteine in combination with celecoxib inhibits Deoxynivalenol induced skin tumor initiation via induction of autophagic pathways in swiss mice. Free Radic Biol Med 2020; 156:70-82. [PMID: 32561319 DOI: 10.1016/j.freeradbiomed.2020.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Deoxynivalenol is a trichothecene mycotoxin which naturally contaminates small grain, cereals intended for human and animal consumption. Investigations for dermal toxicity of DON has been needed and highlighted by WHO. Previous studies on dermal toxicity suggest that DON has DNA damaging potential leading to skin tumor initiation in mice skin. However, considering its toxicological manifestations arising after dermal exposure, strategies for its prevention/protection are barely available in literatute. Collectively, our study demonstrated that N-acetylcysteine (NAC), precursor of glutathione, significantly alters the genotoxic potential of DON. Further NAC in combination with Celecoxib (CXB) inhibits tumor growth by altering antioxidant status and increasing autophagy in DON initiated Swiss mice. Despite the broad spectrum use of CXB, its use is limited by the concerns about its adverse effects on the cardiovascular system. Serum parameters and histology analysis revealed that CXB (2 mg) when applied topically for 24 weeks did not impart any cardiovascular toxicity which could be because skin permeation potential of CXB was quite low when analyzed through HPLC analysis. Although the anticancer effects of CXB and NAC have been studied, however, the combination of NAC and CXB has yet not been explored for any cancer treatment. Therefore our observations provide additional insights into the therapeutic effects of combinatorial treatment of CXB and NAC against skin tumor prevention. This approach might form a novel alternative strategy for skin cancer treatment as well as skin associated toxicities caused by mycotoxins such as DON. This combinatorial approach can overcome the limitations associated with the use of CXB for long term as topical application of the same seems to be safe in comparison to the oral mode of administration.
Collapse
Affiliation(s)
- Sakshi Mishra
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Aman Divakar
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Sonal Srivastava
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Jayant Dewangan
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Divyansh Sharma
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Somya Asthana
- Food Drug and Chemical Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226 001, Uttar Pradesh, India
| | - Swati Chaturvedi
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Muhammad Wahajuddin
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Sadan Kumar
- Immunotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Srikanta Kumar Rath
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.
| |
Collapse
|
27
|
Javadi A, Mokhtari S, Moraveji SF, Sayahpour FA, Farzaneh M, Gourabi H, Esfandiari F. Short time exposure to low concentration of zinc oxide nanoparticles up-regulates self-renewal and spermatogenesis-related gene expression. Int J Biochem Cell Biol 2020; 127:105822. [PMID: 32771442 DOI: 10.1016/j.biocel.2020.105822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022]
Abstract
Extensive application of zinc oxide (ZnO) nanoparticles (NPs) in everyday life results in increased exposure to these NPs. Spermatogonial stem cells (SSCs) guarantee sperm production throughout the male reproductive life by providing a balance between self-renewal and differentiation. We used an in vitro platform to investigate the ZnO NPs effects on SSCs. We successfully synthesized ZnO NPs. In order to investigate these NPs, we isolated SSCs from mouse testes and cultured them in vitro. Our results confirmed the uptake of ZnO NPs by the cultured SSCs. We observed a dose- and time-dependent decrease in SSC viability. Both spherical and nanosheet ZnO NPs had the same cytotoxic effects on the SSCs, irrespective of their shapes. Moreover, we have shown that short time (one day) exposure of SSCs to a low concentration of ZnO NPs (10 μg/mL) promoted expressions of specific genes (Plzf, Gfr α1 and Bcl6b) for SSC self-renewal and differentiation genes (Vasa, Dazl, C-kit and Sycp3) expressed by spermatogonia during spermatogenesis. Our study provides the first insight into ZnO NPs function in SSCs and suggests a new function for ZnO NPs in the male reproductive system. We demonstrated that ZnO NPs might promote spermatogenesis via upregulation of gene expression related to SSC self-renewal and differentiation at low concentrations. Additional research should clarify the possible effect of ZnO NPs on the SSC genome and its effects on human SSCs.
Collapse
Affiliation(s)
- Azam Javadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Genetics, Faculty of Basic Science and Advanced Technologies, University of Science and Culture, Tehran, Iran
| | - Saadat Mokhtari
- Department of Physics, Shahid Beheshti University, Tehran, Iran
| | - Seyedeh-Faezeh Moraveji
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Forough-Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Molecular and Cellular Biology, Faculty of Basic Science and Advanced Technologies, University of Science and Culture, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
28
|
Zinc Oxide Nanoparticle Synergizes Sorafenib Anticancer Efficacy with Minimizing Its Cytotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1362104. [PMID: 32566073 PMCID: PMC7275957 DOI: 10.1155/2020/1362104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
Cancer, as a group, represents the most important cause of death worldwide. Unfortunately, the available therapeutic approaches of cancer including surgery, chemotherapy, radiotherapy, and immunotherapy are unsatisfactory and represent a great challenge as many patients have cancer recurrence and severe side effects. Methotrexate (MTX) is a well-established (antineoplastic or cytotoxic) chemotherapy and immunosuppressant drug used to treat different types of cancer, but its usage requires high doses causing severe side effects. Therefore, we need a novel drug with high antitumor efficacy in addition to safety. The aim of this study was the evaluation of the antitumor efficacy of zinc oxide nanoparticle (ZnO-NPs) and sorafenib alone or in combination on solid Ehrlich carcinoma (SEC) in mice. Sixty adult female Swiss-albino mice were divided equally into 6 groups as follows: control, SEC, MTX, ZnO-NPs, sorafenib, and ZnO-NPs+sorafenib; all treatments continued for 4 weeks. ZnO-NPs were characterized by TEM, zeta potential, and SEM mapping. Data showed that ZnO-NPs synergized with sorafenib as a combination therapy to execute more effective and safer anticancer activity compared to monotherapy as showed by a significant reduction (P < 0.001) in tumor weight, tumor cell viability, and cancer tissue glutathione amount as well as by significant increase (P < 0.001) in tumor growth inhibition rate, DNA fragmentation, reactive oxygen species generation, the release of cytochrome c, and expression of the apoptotic gene caspase-3 in the tumor tissues with minimal changes in the liver, renal, and hematological parameters. Therefore, we suggest that ZnO-NPs might be a safe candidate in combination with sorafenib as a more potent anticancer. The safety of this combined treatment may allow its use in clinical trials.
Collapse
|
29
|
Keerthana S, Kumar A. Potential risks and benefits of zinc oxide nanoparticles: a systematic review. Crit Rev Toxicol 2020; 50:47-71. [PMID: 32186437 DOI: 10.1080/10408444.2020.1726282] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- S. Keerthana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, Uttar Pradesh, India
| | - A. Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
30
|
Wang SW, Lee CH, Lin MS, Chi CW, Chen YJ, Wang GS, Liao KW, Chiu LP, Wu SH, Huang DM, Chen L, Shen YS. ZnO Nanoparticles Induced Caspase-Dependent Apoptosis in Gingival Squamous Cell Carcinoma through Mitochondrial Dysfunction and p70S6K Signaling Pathway. Int J Mol Sci 2020; 21:ijms21051612. [PMID: 32111101 PMCID: PMC7084801 DOI: 10.3390/ijms21051612] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/07/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are increasingly used in sunscreens, food additives, pigments, rubber manufacture, and electronic materials. Several studies have shown that ZnO-NPs inhibit cell growth and induce apoptosis by the production of oxidative stress in a variety of human cancer cells. However, the anti-cancer property and molecular mechanism of ZnO-NPs in human gingival squamous cell carcinoma (GSCC) are not fully understood. In this study, we found that ZnO-NPs induced growth inhibition of GSCC (Ca9-22 and OECM-1 cells), but no damage in human normal keratinocytes (HaCaT cells) and gingival fibroblasts (HGF-1 cells). ZnO-NPs caused apoptotic cell death of GSCC in a concentration-dependent manner by the quantitative assessment of oligonucleosomal DNA fragmentation. Flow cytometric analysis of cell cycle progression revealed that sub-G1 phase accumulation was dramatically induced by ZnO-NPs. In addition, ZnO-NPs increased the intracellular reactive oxygen species and specifically superoxide levels, and also decreased the mitochondrial membrane potential. ZnO-NPs further activated apoptotic cell death via the caspase cascades. Importantly, anti-oxidant and caspase inhibitor clearly prevented ZnO-NP-induced cell death, indicating the fact that superoxide-induced mitochondrial dysfunction is associated with the ZnO-NP-mediated caspase-dependent apoptosis in human GSCC. Moreover, ZnO-NPs significantly inhibited the phosphorylation of ribosomal protein S6 kinase (p70S6K kinase). In a corollary in vivo study, our results demonstrated that ZnO-NPs possessed an anti-cancer effect in a zebrafish xenograft model. Collectively, these results suggest that ZnO-NPs induce apoptosis through the mitochondrial oxidative damage and p70S6K signaling pathway in human GSCC. The present study may provide an experimental basis for ZnO-NPs to be considered as a promising novel anti-tumor agent for the treatment of gingival cancer.
Collapse
Affiliation(s)
- Shih-Wei Wang
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan;
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Hsing Lee
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ming-Shen Lin
- Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City 251, Taiwan;
| | - Chih-Wen Chi
- Department of Nursing, MacKay Medical College, New Taipei City 252, Taiwan;
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Yu-Jen Chen
- MacKay Junior College of Medicine, Nursing, and Management, Taipei 112, Taiwan;
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Guo-Shou Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan; (G.-S.W.); (K.-W.L.)
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan; (G.-S.W.); (K.-W.L.)
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Li-Pin Chiu
- General Education Center, University of Taipei, Taipei 100, Taiwan;
- Division of General Surgery, Taipei City Hospital, Taipei 103, Taiwan
| | - Shu-Hui Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 350, Taiwan;
| | - Dong-Ming Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 350, Taiwan;
- Correspondence: (D.-M.H.); (L.C.); (Y.-S.S.); Tel.: +886-37-246-166 (ext. 38105) (D.-M.H.); +886-2-2621-5656 (ext. 2682) (L.C.); +886-2-2636-0303 (ext. 1422) (Y.-S.S.)
| | - Luke Chen
- Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City 251, Taiwan;
- Correspondence: (D.-M.H.); (L.C.); (Y.-S.S.); Tel.: +886-37-246-166 (ext. 38105) (D.-M.H.); +886-2-2621-5656 (ext. 2682) (L.C.); +886-2-2636-0303 (ext. 1422) (Y.-S.S.)
| | - Yung-Shuen Shen
- Institute of Geriatric Welfare Technology and Science, MacKay Medical College, New Taipei City 252, Taiwan
- Correspondence: (D.-M.H.); (L.C.); (Y.-S.S.); Tel.: +886-37-246-166 (ext. 38105) (D.-M.H.); +886-2-2621-5656 (ext. 2682) (L.C.); +886-2-2636-0303 (ext. 1422) (Y.-S.S.)
| |
Collapse
|
31
|
Falfushynska HI, Wu F, Ye F, Kasianchuk N, Dutta J, Dobretsov S, Sokolova IM. The effects of ZnO nanostructures of different morphology on bioenergetics and stress response biomarkers of the blue mussels Mytilus edulis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133717. [PMID: 31400676 DOI: 10.1016/j.scitotenv.2019.133717] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Biofouling causes massive economical losses in the maritime sector creating an urgent need for effective and ecologically non-harmful antifouling materials. Zinc oxide (ZnO) nanorod coatings show promise as an antifouling material; however, the toxicity of ZnO nanorods to marine organisms is not known. We compared the toxicity of suspended ZnO nanorods (NR) with that of ZnO nanoparticles (NP) and ionic Zn2+ in a marine bivalve Mytilus edulis exposed for two weeks to 10 or 100 μg Zn L-1 of ZnO NPs, NRs or Zn2+, or to immobilized NRs. The multi-biomarker assessment included bioenergetics markers (tissue energy reserves, activity of mitochondrial electron transport system and autophagic enzymes), expression of apoptotic and inflammatory genes, and general stress biomarkers (oxidative lesions, lysosomal membrane stability and metallothionein expression). Exposure to ZnO NPs, NRs and Zn2+ caused accumulation of oxidative lesions in proteins and lipids, stimulated autophagy, and led to lysosomal membrane destabilization indicating toxicity. However, these responses were not specific for the form of Zn (NPs, NR or Zn2+) and showed no monotonous increase with increasing Zn concentrations in the experimental exposures. No major disturbance of the energy status was found in the mussels exposed to ZnO NPs, NRs, or Zn2+. Exposure to ZnO NPs and NRs led to a strong induction of apoptosis- and inflammation-related genes, which was not seen in Zn2+ exposures. Based on the integrated biomarker response, the overall toxicity as well as the pro-apoptotic and pro-inflammatory action was stronger in ZnO NPs compared with the NRs. Given the stability of ZnO NR coatings and the relatively low toxicity of suspended ZnO NR, ZnO NR coating might be considered a promising low-toxicity material for antifouling paints.
Collapse
Affiliation(s)
- Halina I Falfushynska
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Human Health, Physical Rehabilitation and Vital Activity, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Fangli Wu
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Fei Ye
- KTH Royal Institute of Technology, Material and Nanophysics Applied Physics Department, School of Science, Stockholm, Sweden
| | - Nadiia Kasianchuk
- Department of Human Health, Physical Rehabilitation and Vital Activity, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Joydeep Dutta
- KTH Royal Institute of Technology, Material and Nanophysics Applied Physics Department, School of Science, Stockholm, Sweden
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123, PO Box 34, Muscat, Oman; Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Al Khoud 123, PO Box 50, Muscat, Oman
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|