1
|
Hu M, Liang C, Wang D. Implantable bioelectrodes: challenges, strategies, and future directions. Biomater Sci 2024; 12:270-287. [PMID: 38175154 DOI: 10.1039/d3bm01204b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Implantable bioelectrodes for regulating and monitoring biological behaviors have become indispensable medical devices in modern healthcare, alleviating pathological symptoms such as epilepsy and arrhythmia, and assisting in reversing conditions such as deafness and blindness. In recent years, developments in the fields of materials science and biomedical engineering have contributed to advances in research on implantable bioelectrodes. However, the foreign body reaction (FBR) is still a major constraint for the long-term application of electrodes. In this paper, four types of commonly used implantable bioelectrodes are reviewed, concentrating on their background, development, and a series of complications caused by FBR after long-term implantation. Strategies for resisting FBRs are then devised in terms of physics, chemistry, and nanotechnology. We analyze the major trends in the future development of implantable bioelectrodes and outline some promising research to optimize the long-term operational stability of electrodes. Although current implantable bioelectrodes have been able to achieve good biocompatibility, low impedance, and low mechanical mismatch and trauma, these devices still face the challenge of FBR. Resistance to FBR is still the key for the long-term effectiveness of bioelectrodes, and a better understanding of the mechanisms of FBR, as well as miniaturization, long-term passivation, and coupling with gene therapy may be the way forward for the next generation of implantable bioelectrodes.
Collapse
Affiliation(s)
- Mengyuan Hu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chunyong Liang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Donghui Wang
- Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
2
|
Luu CH, Nguyen N, Ta HT. Unravelling Surface Modification Strategies for Preventing Medical Device-Induced Thrombosis. Adv Healthc Mater 2024; 13:e2301039. [PMID: 37725037 PMCID: PMC11468451 DOI: 10.1002/adhm.202301039] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/29/2023] [Indexed: 09/21/2023]
Abstract
The use of biomaterials in implanted medical devices remains hampered by platelet adhesion and blood coagulation. Thrombus formation is a prevalent cause of failure of these blood-contacting devices. Although systemic anticoagulant can be used to support materials and devices with poor blood compatibility, its negative effects such as an increased chance of bleeding, make materials with superior hemocompatibility extremely attractive, especially for long-term applications. This review examines blood-surface interactions, the pathogenesis of clotting on blood-contacting medical devices, popular surface modification techniques, mechanisms of action of anticoagulant coatings, and discusses future directions in biomaterial research for preventing thrombosis. In addition, this paper comprehensively reviews several novel methods that either entirely prevent interaction between material surfaces and blood components or regulate the reaction of the coagulation cascade, thrombocytes, and leukocytes.
Collapse
Affiliation(s)
- Cuong Hung Luu
- School of Environment and ScienceGriffith UniversityNathanQueensland4111Australia
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityNathanQueensland4111Australia
| | - Nam‐Trung Nguyen
- School of Environment and ScienceGriffith UniversityNathanQueensland4111Australia
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityNathanQueensland4111Australia
| | - Hang Thu Ta
- School of Environment and ScienceGriffith UniversityNathanQueensland4111Australia
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityNathanQueensland4111Australia
| |
Collapse
|
3
|
Arciola CR, Ravaioli S, Mirzaei R, Dolzani P, Montanaro L, Daglia M, Campoccia D. Biofilms in Periprosthetic Orthopedic Infections Seen through the Eyes of Neutrophils: How Can We Help Neutrophils? Int J Mol Sci 2023; 24:16669. [PMID: 38068991 PMCID: PMC10706149 DOI: 10.3390/ijms242316669] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Despite advancements in our knowledge of neutrophil responses to planktonic bacteria during acute inflammation, much remains to be elucidated on how neutrophils deal with bacterial biofilms in implant infections. Further complexity transpires from the emerging findings on the role that biomaterials play in conditioning bacterial adhesion, the variety of biofilm matrices, and the insidious measures that biofilm bacteria devise against neutrophils. Thus, grasping the entirety of neutrophil-biofilm interactions occurring in periprosthetic tissues is a difficult goal. The bactericidal weapons of neutrophils consist of the following: ready-to-use antibacterial proteins and enzymes stored in granules; NADPH oxidase-derived reactive oxygen species (ROS); and net-like structures of DNA, histones, and granule proteins, which neutrophils extrude to extracellularly trap pathogens (the so-called NETs: an allusive acronym for "neutrophil extracellular traps"). Neutrophils are bactericidal (and therefore defensive) cells endowed with a rich offensive armamentarium through which, if frustrated in their attempts to engulf and phagocytose biofilms, they can trigger the destruction of periprosthetic bone. This study speculates on how neutrophils interact with biofilms in the dramatic scenario of implant infections, also considering the implications of this interaction in view of the design of new therapeutic strategies and functionalized biomaterials, to help neutrophils in their arduous task of managing biofilms.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Stefano Ravaioli
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (S.R.); (D.C.)
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Paolo Dolzani
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Lucio Montanaro
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Davide Campoccia
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (S.R.); (D.C.)
| |
Collapse
|
4
|
Bashor CJ, Hilton IB, Bandukwala H, Smith DM, Veiseh O. Engineering the next generation of cell-based therapeutics. Nat Rev Drug Discov 2022; 21:655-675. [PMID: 35637318 PMCID: PMC9149674 DOI: 10.1038/s41573-022-00476-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 12/19/2022]
Abstract
Cell-based therapeutics are an emerging modality with the potential to treat many currently intractable diseases through uniquely powerful modes of action. Despite notable recent clinical and commercial successes, cell-based therapies continue to face numerous challenges that limit their widespread translation and commercialization, including identification of the appropriate cell source, generation of a sufficiently viable, potent and safe product that meets patient- and disease-specific needs, and the development of scalable manufacturing processes. These hurdles are being addressed through the use of cutting-edge basic research driven by next-generation engineering approaches, including genome and epigenome editing, synthetic biology and the use of biomaterials.
Collapse
Affiliation(s)
- Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| | - Hozefa Bandukwala
- Sigilon Therapeutics, Cambridge, MA, USA
- Flagship Pioneering, Cambridge, MA, USA
| | - Devyn M Smith
- Sigilon Therapeutics, Cambridge, MA, USA
- Arbor Biotechnologies, Cambridge, MA, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
5
|
Capuani S, Malgir G, Chua CYX, Grattoni A. Advanced strategies to thwart foreign body response to implantable devices. Bioeng Transl Med 2022; 7:e10300. [PMID: 36176611 PMCID: PMC9472022 DOI: 10.1002/btm2.10300] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Mitigating the foreign body response (FBR) to implantable medical devices (IMDs) is critical for successful long-term clinical deployment. The FBR is an inevitable immunological reaction to IMDs, resulting in inflammation and subsequent fibrotic encapsulation. Excessive fibrosis may impair IMDs function, eventually necessitating retrieval or replacement for continued therapy. Therefore, understanding the implant design parameters and their degree of influence on FBR is pivotal to effective and long lasting IMDs. This review gives an overview of FBR as well as anti-FBR strategies. Furthermore, we highlight recent advances in biomimetic approaches to resist FBR, focusing on their characteristics and potential biomedical applications.
Collapse
Affiliation(s)
- Simone Capuani
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- University of Chinese Academy of Science (UCAS)BeijingChina
| | - Gulsah Malgir
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of Biomedical EngineeringUniversity of HoustonHoustonTexasUSA
| | | | - Alessandro Grattoni
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of SurgeryHouston Methodist HospitalHoustonTexasUSA
- Department of Radiation OncologyHouston Methodist HospitalHoustonTexasUSA
| |
Collapse
|
6
|
Bandzerewicz A, Gadomska-Gajadhur A. Into the Tissues: Extracellular Matrix and Its Artificial Substitutes: Cell Signalling Mechanisms. Cells 2022; 11:914. [PMID: 35269536 PMCID: PMC8909573 DOI: 10.3390/cells11050914] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
The existence of orderly structures, such as tissues and organs is made possible by cell adhesion, i.e., the process by which cells attach to neighbouring cells and a supporting substance in the form of the extracellular matrix. The extracellular matrix is a three-dimensional structure composed of collagens, elastin, and various proteoglycans and glycoproteins. It is a storehouse for multiple signalling factors. Cells are informed of their correct connection to the matrix via receptors. Tissue disruption often prevents the natural reconstitution of the matrix. The use of appropriate implants is then required. This review is a compilation of crucial information on the structural and functional features of the extracellular matrix and the complex mechanisms of cell-cell connectivity. The possibilities of regenerating damaged tissues using an artificial matrix substitute are described, detailing the host response to the implant. An important issue is the surface properties of such an implant and the possibilities of their modification.
Collapse
|
7
|
Hofer S, Hofstätter N, Punz B, Hasenkopf I, Johnson L, Himly M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1804. [PMID: 36416020 PMCID: PMC9787548 DOI: 10.1002/wnan.1804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
Nanosafety assessment has experienced an intense era of research during the past decades driven by a vivid interest of regulators, industry, and society. Toxicological assays based on in vitro cellular models have undergone an evolution from experimentation using nanoparticulate systems on singular epithelial cell models to employing advanced complex models more realistically mimicking the respective body barriers for analyzing their capacity to alter the immune state of exposed individuals. During this phase, a number of lessons were learned. We have thus arrived at a state where the next chapters have to be opened, pursuing the following objectives: (1) to elucidate underlying mechanisms, (2) to address effects on vulnerable groups, (3) to test material mixtures, and (4) to use realistic doses on (5) sophisticated models. Moreover, data reproducibility has become a significant demand. In this context, we studied the emerging concept of adverse outcome pathways (AOPs) from the perspective of immune activation and modulation resulting in pro-inflammatory versus tolerogenic responses. When considering the interaction of nanomaterials with biological systems, protein corona formation represents the relevant molecular initiating event (e.g., by potential alterations of nanomaterial-adsorbed proteins). Using this as an example, we illustrate how integrated experimental-computational workflows combining in vitro assays with in silico models aid in data enrichment and upon comprehensive ontology-annotated (meta)data upload to online repositories assure FAIRness (Findability, Accessibility, Interoperability, Reusability). Such digital twinning may, in future, assist in early-stage decision-making during therapeutic development, and hence, promote safe-by-design innovation in nanomedicine. Moreover, it may, in combination with in silico-based exposure-relevant dose-finding, serve for risk monitoring in particularly loaded areas, for example, workplaces, taking into account pre-existing health conditions. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Sabine Hofer
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Norbert Hofstätter
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Benjamin Punz
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Ingrid Hasenkopf
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Litty Johnson
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| |
Collapse
|
8
|
Effectiveness of Biofunctionalization of Titanium Surfaces with Phosphonic Acid. Biomedicines 2021; 9:biomedicines9111663. [PMID: 34829894 PMCID: PMC8615956 DOI: 10.3390/biomedicines9111663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Surface functionalization of dental implant surfaces has been a developing field in biomaterial research. This study aimed to obtain self-assembled monolayers (SAMs) using carboxyethylphosphonic acid on the surface of titanium (Ti) screws, and assessed the surface characteristics, biomechanical, and cellular behavior on the obtained specimens. This study had three groups, i.e., a control (untreated screws), a test group treated with phosphonic acid, and a third group with treated acid and bone morphogenetic protein (BMP-2) for in vitro analysis of cell lines. The assessed parameters included surface wettability, surface characteristics using scanning electron microscopy (SEM), protein immobilization, and cellular behavior of fibroblasts and mesenchymal stem cells of adipose tissue (MSCat cells). For surface wettability, a Welch test was performed to compare the contact angles between control (67 ± 1.83) and test (18.84 ± 0.72) groups, and a difference was observed in the mean measurements, but was not statistically significant. The SEM analysis showed significant surface roughness on the test screws and the cellular behavior of fibroblasts, and MSCat cells were significantly improved in this group, with fibroblasts having a polygonal shape with numerous vesicles and MSCat cells stable and uniformly coating the test Ti surface. Surface biofunctionalization of Ti surfaces with phosphonic acid showed promising results in this study, but remains to be clinically validated for its applications.
Collapse
|
9
|
Importance of Surface Topography in Both Biological Activity and Catalysis of Nanomaterials: Can Catalysis by Design Guide Safe by Design? Int J Mol Sci 2021; 22:ijms22158347. [PMID: 34361117 PMCID: PMC8348784 DOI: 10.3390/ijms22158347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
It is acknowledged that the physicochemical properties of nanomaterials (NMs) have an impact on their toxicity and, eventually, their pathogenicity. These properties may include the NMs’ surface chemical composition, size, shape, surface charge, surface area, and surface coating with ligands (which can carry different functional groups as well as proteins). Nanotopography, defined as the specific surface features at the nanoscopic scale, is not widely acknowledged as an important physicochemical property. It is known that the size and shape of NMs determine their nanotopography which, in turn, determines their surface area and their active sites. Nanotopography may also influence the extent of dissolution of NMs and their ability to adsorb atoms and molecules such as proteins. Consequently, the surface atoms (due to their nanotopography) can influence the orientation of proteins as well as their denaturation. However, although it is of great importance, the role of surface topography (nanotopography) in nanotoxicity is not much considered. Many of the issues that relate to nanotopography have much in common with the fundamental principles underlying classic catalysis. Although these were developed over many decades, there have been recent important and remarkable improvements in the development and study of catalysts. These have been brought about by new techniques that have allowed for study at the nanoscopic scale. Furthermore, the issue of quantum confinement by nanosized particles is now seen as an important issue in studying nanoparticles (NPs). In catalysis, the manipulation of a surface to create active surface sites that enhance interactions with external molecules and atoms has much in common with the interaction of NP surfaces with proteins, viruses, and bacteria with the same active surface sites of NMs. By reviewing the role that surface nanotopography plays in defining many of the NMs’ surface properties, it reveals the need for its consideration as an important physicochemical property in descriptive and predictive toxicology. Through the manipulation of surface topography, and by using principles developed in catalysis, it may also be possible to make safe-by-design NMs with a reduction of the surface properties which contribute to their toxicity.
Collapse
|
10
|
Fetz AE, Radic MZ, Bowlin GL. Human neutrophil FcγRIIIb regulates neutrophil extracellular trap release in response to electrospun polydioxanone biomaterials. Acta Biomater 2021; 130:281-290. [PMID: 34116225 PMCID: PMC8316391 DOI: 10.1016/j.actbio.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
During the acute inflammatory response, the release of neutrophil extracellular traps (NETs) is a pro-inflammatory, preconditioning event on a biomaterial surface. Therefore, regulation of NET release through biomaterial design is one strategy to enhance biomaterial-guided in situ tissue regeneration. In this study, IgG adsorption on electrospun polydioxanone biomaterials with differing fiber sizes was explored as a regulator of in vitro human neutrophil NET release. The propensity to release NETs was increased and decreased by modulating adsorbed IgG, suggesting a functional link between IgG and NET formation. Fiber-size dependent NET release was reduced by blocking FcγRIIIb, but not FcγRI, FcγRIIa, or Mac-1 (CD11b/CD18), indicating a specific receptor mediated neutrophil response. Inhibition of transforming growth factor-β-activated kinase 1 (TAK1), which is activated downstream of FcγRIIIb, significantly reduced the release of NETs in a fiber size-independent manner. These results indicate that in vitro electrospun biomaterial-induced NET release is largely regulated by IgG adsorption, engagement of FcγRIIIb, and signaling through TAK1. Modulation of this pathway may have beneficial therapeutic effects for regulating neutrophil-mediated inflammation by avoiding the adverse effects of NETs and increasing the potential for in situ tissue regeneration. STATEMENT OF SIGNIFICANCE: Electrospun biomaterials have great potential for in situ tissue engineering because of their versatility and biomimetic properties. However, understanding how to design the biomaterial to regulate acute inflammation, dominated by neutrophils, remains a great challenge for successful tissue integration and regeneration. In this work, we demonstrate for the first time how protein adsorption on the biomaterial surface and engagement of a specific neutrophil receptor induces intracellular signals that regulate the pro-inflammatory release of neutrophil extracellular traps (NETs). Given the deleterious effects of NETs during the acute inflammatory response to a biomaterial, our work highlights the importance of considering biomaterial-neutrophil interactions on degradable and non-degradable biomaterials to achieve the desired biological outcome.
Collapse
Affiliation(s)
- Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, 3806 Norriswood Avenue, Memphis, TN, USA
| | - Marko Z Radic
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, 3806 Norriswood Avenue, Memphis, TN, USA.
| |
Collapse
|
11
|
Goswami D, Domingo‐Lopez DA, Ward NA, Millman JR, Duffy GP, Dolan EB, Roche ET. Design Considerations for Macroencapsulation Devices for Stem Cell Derived Islets for the Treatment of Type 1 Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100820. [PMID: 34155834 PMCID: PMC8373111 DOI: 10.1002/advs.202100820] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/24/2021] [Indexed: 05/08/2023]
Abstract
Stem cell derived insulin producing cells or islets have shown promise in reversing Type 1 Diabetes (T1D), yet successful transplantation currently necessitates long-term modulation with immunosuppressant drugs. An alternative approach to avoiding this immune response is to utilize an islet macroencapsulation device, where islets are incorporated into a selectively permeable membrane that can protect the transplanted cells from acute host response, whilst enabling delivery of insulin. These macroencapsulation systems have to meet a number of stringent and challenging design criteria in order to achieve the ultimate goal of reversing T1D. In this progress report, the design considerations and functional requirements of macroencapsulation systems are reviewed, specifically for stem-cell derived islets (SC-islets), highlighting distinct design parameters. Additionally, a perspective on the future for macroencapsulation systems is given, and how incorporating continuous sensing and closed-loop feedback can be transformative in advancing toward an autonomous biohybrid artificial pancreas.
Collapse
Affiliation(s)
- Debkalpa Goswami
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Daniel A. Domingo‐Lopez
- Department of AnatomyCollege of Medicine, Nursing, and Health SciencesNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Niamh A. Ward
- Department of Biomedical EngineeringSchool of EngineeringCollege of Science and EngineeringNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Jeffrey R. Millman
- Division of Endocrinology, Metabolism & Lipid ResearchWashington University School of MedicineSt. LouisMO63110USA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMO63110USA
| | - Garry P. Duffy
- Department of AnatomyCollege of Medicine, Nursing, and Health SciencesNational University of Ireland GalwayGalwayH91 TK33Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER)Trinity College DublinDublinD02 PN40Ireland
- CÚRAM, Centre for Research in Medical DevicesNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Eimear B. Dolan
- Department of Biomedical EngineeringSchool of EngineeringCollege of Science and EngineeringNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Ellen T. Roche
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
12
|
Bruschi A, Donati DM, Choong P, Lucarelli E, Wallace G. Dielectric Elastomer Actuators, Neuromuscular Interfaces, and Foreign Body Response in Artificial Neuromuscular Prostheses: A Review of the Literature for an In Vivo Application. Adv Healthc Mater 2021; 10:e2100041. [PMID: 34085772 PMCID: PMC11481036 DOI: 10.1002/adhm.202100041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/06/2021] [Indexed: 12/14/2022]
Abstract
The inability to replace human muscle in surgical practice is a significant challenge. An artificial muscle controlled by the nervous system is considered a potential solution for this. Here, this is defined as a neuromuscular prosthesis. Muscle loss and dysfunction related to musculoskeletal oncological impairments, neuromuscular diseases, trauma or spinal cord injuries can be treated through artificial muscle implantation. At present, the use of dielectric elastomer actuators working as capacitors appears a promising option. Acrylic or silicone elastomers with carbon nanotubes functioning as the electrode achieve mechanical performances similar to human muscle in vitro. However, mechanical, electrical, and biological issues have prevented clinical application to date. Here materials and mechatronic solutions are presented which can tackle current clinical problems associated with implanting an artificial muscle controlled by the nervous system. Progress depends on the improvement of the actuation properties of the elastomer, seamless or wireless integration between the nervous system and the artificial muscle, and on reducing the foreign body response. It is believed that by combining the mechanical, electrical, and biological solutions proposed here, an artificial neuromuscular prosthesis may be a reality in surgical practice in the near future.
Collapse
Affiliation(s)
- Alessandro Bruschi
- 3rd Orthopaedic and Traumatologic Clinic prevalently OncologicIRCCS Istituto Ortopedico RizzoliVia Pupilli 1Bologna40136Italy
| | - Davide Maria Donati
- 3rd Orthopaedic and Traumatologic Clinic prevalently OncologicIRCCS Istituto Ortopedico RizzoliVia Pupilli 1Bologna40136Italy
| | - Peter Choong
- University of Melbourne–Department of SurgerySt. Vincent's HospitalFitzroyMelbourneVictoria3065Australia
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration3rdOrthopaedic and Traumatologic Clinic Prevalently OncologicIRCCS Istituto Ortopedico RizzoliVia di Barbiano 1/10Bologna40136Italy
| | - Gordon Wallace
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityUniversity of WollongongWollongongNSW2522Australia
| |
Collapse
|
13
|
Abstract
Precise characterization of a monolayer of two different biomolecules in a gradient pattern on a glass surface puts high demand on the method used. Some techniques can detect protein monolayers but not on a glass surface. Others can distinguish between different proteins but not identify a gradient pattern. Here, we used ToF-SIMS to validate the complete surface composition, checking all the necessary boxes. As these types of surfaces can dictate sensitive cell behaviors, the precision on a nanolevel is crucial, and to visualize and determine the molecular distribution become essential. The dual monolayer consisted of laminin 521 and one of three other biomolecules of different sizes, epidermal growth factor, growth differentiation factor 5, or bovine serum albumin, creating opposing gradient patterns. The resulting ToF-SIMS imaging and line scan data provided detailed information on the distribution of the adsorbed proteins.
Collapse
|
14
|
Bachhuka A, Madathiparambil Visalakshan R, Law CS, Santos A, Ebendorff-Heidepriem H, Karnati S, Vasilev K. Modulation of Macrophages Differentiation by Nanoscale-Engineered Geometric and Chemical Features. ACS APPLIED BIO MATERIALS 2020; 3:1496-1505. [DOI: 10.1021/acsabm.9b01125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. Bachhuka
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - R. Madathiparambil Visalakshan
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia
| | - C. S. Law
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Chemical Engineering, University of Adelaide, Engineering North Building, Adelaide, South Australia 5005, Australia
| | - A. Santos
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Chemical Engineering, University of Adelaide, Engineering North Building, Adelaide, South Australia 5005, Australia
| | - H. Ebendorff-Heidepriem
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - S. Karnati
- Institute for Anatomy and Cell Biology, Julius Maximilians University, Koellikerstrasse 6, Wuerzburg 97070, Germany
| | - K. Vasilev
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia
- School of Engineering, University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia
| |
Collapse
|
15
|
Digiacomo L, Pozzi D, Palchetti S, Zingoni A, Caracciolo G. Impact of the protein corona on nanomaterial immune response and targeting ability. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1615. [DOI: 10.1002/wnan.1615] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Luca Digiacomo
- Department of Molecular Medicine Sapienza University of Rome Rome Italy
| | - Daniela Pozzi
- Department of Molecular Medicine Sapienza University of Rome Rome Italy
| | - Sara Palchetti
- Department of Molecular Medicine Sapienza University of Rome Rome Italy
| | | | - Giulio Caracciolo
- Department of Molecular Medicine Sapienza University of Rome Rome Italy
| |
Collapse
|
16
|
Shreffler JW, Pullan JE, Dailey KM, Mallik S, Brooks AE. Overcoming Hurdles in Nanoparticle Clinical Translation: The Influence of Experimental Design and Surface Modification. Int J Mol Sci 2019; 20:E6056. [PMID: 31801303 PMCID: PMC6928924 DOI: 10.3390/ijms20236056] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/23/2019] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles are becoming an increasingly popular tool for biomedical imaging and drug delivery. While the prevalence of nanoparticle drug-delivery systems reported in the literature increases yearly, relatively little translation from the bench to the bedside has occurred. It is crucial for the scientific community to recognize this shortcoming and re-evaluate standard practices in the field, to increase clinical translatability. Currently, nanoparticle drug-delivery systems are designed to increase circulation, target disease states, enhance retention in diseased tissues, and provide targeted payload release. To manage these demands, the surface of the particle is often modified with a variety of chemical and biological moieties, including PEG, tumor targeting peptides, and environmentally responsive linkers. Regardless of the surface modifications, the nano-bio interface, which is mediated by opsonization and the protein corona, often remains problematic. While fabrication and assessment techniques for nanoparticles have seen continued advances, a thorough evaluation of the particle's interaction with the immune system has lagged behind, seemingly taking a backseat to particle characterization. This review explores current limitations in the evaluation of surface-modified nanoparticle biocompatibility and in vivo model selection, suggesting a promising standardized pathway to clinical translation.
Collapse
Affiliation(s)
| | | | | | | | - Amanda E. Brooks
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA; (J.W.S.); (J.E.P.); (K.M.D.); (S.M.)
| |
Collapse
|
17
|
Gorbet M, Sperling C, Maitz MF, Siedlecki CA, Werner C, Sefton MV. The blood compatibility challenge. Part 3: Material associated activation of blood cascades and cells. Acta Biomater 2019; 94:25-32. [PMID: 31226478 DOI: 10.1016/j.actbio.2019.06.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/03/2019] [Accepted: 06/13/2019] [Indexed: 01/09/2023]
Abstract
Following protein adsorption/activation which is the first step after the contact of material surfaces and whole blood (part 2), fibrinogen is converted to fibrin and platelets become activated and assembled in the form of a thrombus. This thrombus formation is the key feature that needs to be minimized in the creation of materials with low thrombogenicity. Further aspects of blood compatibility that are important on their own are complement and leukocyte activation which are also important drivers of thrombus formation. Hence this review summarizes the state of knowledge on all of these cascades and cells and their interactions. For each cascade or cell type, the chapter distinguishes statements which are in widespread agreement from statements where there is less of a consensus. STATEMENT OF SIGNIFICANCE: This paper is part 3 of a series of 4 reviews discussing the problem of biomaterial associated thrombogenicity. The objective was to highlight features of broad agreement and provide commentary on those aspects of the problem that were subject to dispute. We hope that future investigators will update these reviews as new scholarship resolves the uncertainties of today.
Collapse
Affiliation(s)
- Maud Gorbet
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Claudia Sperling
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Manfred F Maitz
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Christopher A Siedlecki
- Departments of Surgery and Bioengineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Carsten Werner
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Michael V Sefton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Ekdahl KN, Fromell K, Mohlin C, Teramura Y, Nilsson B. A human whole-blood model to study the activation of innate immunity system triggered by nanoparticles as a demonstrator for toxicity. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:688-698. [PMID: 31275460 PMCID: PMC6598515 DOI: 10.1080/14686996.2019.1625721] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
In this review article, we focus on activation of the soluble components of the innate immune system triggered by nonbiological compounds and stress variances in activation due to the difference in size between nanoparticles (NPs) and larger particles or bulk material of the same chemical and physical composition. We then discuss the impact of the so-called protein corona which is formed on the surface of NPs when they come in contact with blood or other body fluids. For example, NPs which bind inert proteins, proteins which are prone to activate the contact system (e.g., factor XII), which may lead to clotting and fibrin formation or the complement system (e.g., IgG or C3), which may result in inflammation and vascular damage. Furthermore, we describe a whole blood model which we have developed to monitor activation and interaction between different components of innate immunity: blood protein cascade systems, platelets, leukocytes, cytokine generation, which are induced by NPs. Finally, we describe our own studies on innate immunity system activation induced by three fundamentally different species of NPs (two types of engineered NPs and diesel NPs) as demonstrator of the utility of an initial determination of the composition of the protein corona formed on NPs exposed to ethylenediaminetetraacetic acid (EDTA) plasma and subsequent analysis in our whole blood model.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Camilla Mohlin
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Yuji Teramura
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
- Department of Bioengineering, The University of Tokyo, Tokyo, Japan
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| |
Collapse
|
19
|
Chen L, Wang D, Peng F, Qiu J, Ouyang L, Qiao Y, Liu X. Nanostructural Surfaces with Different Elastic Moduli Regulate the Immune Response by Stretching Macrophages. NANO LETTERS 2019; 19:3480-3489. [PMID: 31091110 DOI: 10.1021/acs.nanolett.9b00237] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A proper immune response is key for the successful implantation of biomaterials, and designing and fabricating biomaterials to regulate immune responses is the future trend. In this work, three different nanostructures were constructed on the surface of titanium using a hydrothermal method, and through a series of in vitro and in vivo experiments, we found that the aspect ratio of nanostructures can affect the elastic modulus of a material surface and further regulate immune cell behaviors. This work demonstrates that nanostructures with a higher aspect ratio can endow a material surface with a lower elastic modulus, which was confirmed by experiments and theoretical analyses. The deflection of nanostructures under the cell adsorption force is a substantial factor in stretching macrophages to enhance cell adhesion and spreading, further inducing macrophage polarization toward the M1 phenotype and leading to intense immune responses. In contrast, a nanostructure with a lower aspect ratio on a material surface leads to a higher surface elastic modulus, making deflection of the material difficult and creating a surface that is not conducive to macrophage adhesion and spreading, thus reducing the immune response. Moreover, molecular biology experiments indicated that regulation of the immune response by the elastic modulus is primarily related to the NF-κB signaling pathway. These findings suggest that the immune response can be regulated by constructing nanostructural surfaces with the proper elastic modulus through their influence on cell adhesion and spreading, which provides new insights into the surface design of biomaterials.
Collapse
Affiliation(s)
- Lan Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Feng Peng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Liping Ouyang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
20
|
Jiang Z, Guan J, Qian J, Zhan C. Peptide ligand-mediated targeted drug delivery of nanomedicines. Biomater Sci 2019; 7:461-471. [PMID: 30656305 DOI: 10.1039/c8bm01340c] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Targeted drug delivery is emerging as a promising strategy to achieve better clinical outcomes. Actively targeted drug delivery that utilizes overexpressed receptors or antigens on diseased tissues is receiving increasing scrutiny, especially due to the uncertainty of existence of the enhanced permeability and retention (EPR) effect in cancer patients. Peptide ligands are advantageous over other classes of targeting ligands due to their accessibility of high-throughput screening, ease of synthesis, high specificity and affinity, etc. In this review, we briefly summarize the resources of peptide ligands and discuss the pitfalls and perspectives of peptide ligand-mediated targeted delivery of nanomedicines.
Collapse
Affiliation(s)
- Zhuxuan Jiang
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P.R. China.
| | | | | | | |
Collapse
|
21
|
Veiseh O, Vegas AJ. Domesticating the foreign body response: Recent advances and applications. Adv Drug Deliv Rev 2019; 144:148-161. [PMID: 31491445 PMCID: PMC6774350 DOI: 10.1016/j.addr.2019.08.010] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 01/03/2023]
Abstract
The foreign body response is an immunological process that leads to the rejection of implanted devices and presents a fundamental challenge to their performance, durability, and therapeutic utility. Recent advances in materials development and device design are now providing strategies to overcome this immune-mediated reaction. Here, we briefly review our current mechanistic understanding of the foreign body response and highlight new anti-FBR technologies from this decade that have been applied successfully in biomedical applications relevant to implants, devices, and cell-based therapies. Further development of these important technologies promises to enable new therapies, diagnostics, and revolutionize the management of patient care for many intractable diseases.
Collapse
Affiliation(s)
- Omid Veiseh
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77030, USA.
| | - Arturo J Vegas
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA.
| |
Collapse
|
22
|
Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 2019; 20:ijms20030636. [PMID: 30717232 PMCID: PMC6386828 DOI: 10.3390/ijms20030636] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
The perspectives of regenerative medicine are still severely hampered by the host response to biomaterial implantation, despite the robustness of technologies that hold the promise to recover the functionality of damaged organs and tissues. In this scenario, the cellular and molecular events that decide on implant success and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. To avoid adverse events, rather than the use of inert scaffolds, current state of the art points to the use of immunomodulatory biomaterials and their knowledge-based use to reduce neutrophil activation, and optimize M1 to M2 macrophage polarization, Th1 to Th2 lymphocyte switch, and Treg induction. Despite the fact that the field is still evolving and much remains to be accomplished, recent research breakthroughs have provided a broader insight on the correct choice of biomaterial physicochemical modifications to tune the reaction of the host immune system to implanted biomaterial and to favor integration and healing.
Collapse
|
23
|
Mödinger Y, Teixeira GQ, Neidlinger-Wilke C, Ignatius A. Role of the Complement System in the Response to Orthopedic Biomaterials. Int J Mol Sci 2018; 19:ijms19113367. [PMID: 30373272 PMCID: PMC6274916 DOI: 10.3390/ijms19113367] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022] Open
Abstract
Various synthetic biomaterials are used to replace lost or damaged bone tissue that, more or less successfully, osseointegrate into the bone environment. Almost all biomaterials used in orthopedic medicine activate the host-immune system to a certain degree. The complement system, which is a crucial arm of innate immunity, is rapidly activated by an implanted foreign material into the human body, and it is intensely studied regarding blood-contacting medical devices. In contrast, much less is known regarding the role of the complement system in response to implanted bone biomaterials. However, given the increasing knowledge of the complement regulation of bone homeostasis, regeneration, and inflammation, complement involvement in the immune response following biomaterial implantation into bone appears very likely. Moreover, bone cells can produce complement factors and are target cells of activated complement. Therefore, new bone formation or bone resorption around the implant area might be greatly influenced by the complement system. This review aims to summarize the current knowledge on biomaterial-mediated complement activation, with a focus on materials primarily used in orthopedic medicine. In addition, methods to modify the interactions between the complement system and bone biomaterials are discussed, which might favor osseointegration and improve the functionality of the device.
Collapse
Affiliation(s)
- Yvonne Mödinger
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm), University of Ulm, D-89081 Ulm, Germany.
| | - Graciosa Q Teixeira
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm), University of Ulm, D-89081 Ulm, Germany.
| | - Cornelia Neidlinger-Wilke
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm), University of Ulm, D-89081 Ulm, Germany.
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm), University of Ulm, D-89081 Ulm, Germany.
| |
Collapse
|
24
|
Curvature-dependent effects of nanotopography on classical immune complement activation. Acta Biomater 2018; 74:112-120. [PMID: 29723704 DOI: 10.1016/j.actbio.2018.04.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022]
Abstract
The aim of this study was to investigate how the size of nanosized surface features affect classical immune complement activation through adsorption of IgG and the following binding of C1q. By using model surfaces with immobilized SiO2 nanoparticles of different sizes (8, 32 and 68 nm in diameter), three different curvatures with the same chemistry was systematically studied and analyzed using the acoustic sensing technique; Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D). Circular Dichroism (CD) was employed to study any changes in the secondary structure of IgG using a methodology with stacked functionalized substrates. Our results show that the amount of IgG adsorption increased slightly with nanoparticle size, but also showed a strong size/curvature-dependent effect on the following C1q binding, with the highest binding to IgG adsorbed on the largest nanoparticles and a smooth control surface, indicating that classical immune complement activation possibly increase with decreasing curvature. We conclude that the difference in C1q binding was not due to changes in the secondary structure of IgG, suggesting that geometrical arrangement of adsorbed IgG is the determining factor. STATEMENT OF SIGNIFICANCE We have shown that small changes at the topographical nanoscale can give large effects on the initiation of the classical immune complement cascade, an important immunological reaction that take place when a foreign material is inserted in the body. By developing a methodology using silicon dioxide nanoparticles with three different sizes, to systematically study their impact on the secondary structure and binding of human immunoglobulin G (IgG) to the initiator protein C1q of the classical complement cascade, we have shown that the initiation of the classical immune complement is hampered by the sharp curvature of the smaller nanoparticles. We conclude that this is not mediated by changes in the secondary structure of the adsorbed proteins, but rather an effect of curvature-induced spatial mismatch. The results provide a possible mechanistic explanation on how nanotopography may effect protein adsorption and protein cascade events.
Collapse
|
25
|
Rifai A, Tran N, Lau DW, Elbourne A, Zhan H, Stacey AD, Mayes ELH, Sarker A, Ivanova EP, Crawford RJ, Tran PA, Gibson BC, Greentree AD, Pirogova E, Fox K. Polycrystalline Diamond Coating of Additively Manufactured Titanium for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8474-8484. [PMID: 29470044 DOI: 10.1021/acsami.7b18596] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Additive manufacturing using selective laser melted titanium (SLM-Ti) is used to create bespoke items across many diverse fields such as medicine, defense, and aerospace. Despite great progress in orthopedic implant applications, such as for "just in time" implants, significant challenges remain with regards to material osseointegration and the susceptibility to bacterial colonization on the implant. Here, we show that polycrystalline diamond coatings on these titanium samples can enhance biological scaffold interaction improving medical implant applicability. The highly conformable coating exhibited excellent bonding to the substrate. Relative to uncoated SLM-Ti, the diamond coated samples showed enhanced mammalian cell growth, enriched apatite deposition, and reduced microbial S. aureus activity. These results open new opportunities for novel coatings on SLM-Ti devices in general and especially show promise for improved biomedical implants.
Collapse
Affiliation(s)
| | | | | | | | - Hualin Zhan
- School of Physics , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Alastair D Stacey
- School of Physics , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Edwin L H Mayes
- RMIT Microscopy and Microanalysis Facility (RMMF) , RMIT University , Melbourne , Victoria 3001 , Australia
| | | | - Elena P Ivanova
- School of Science , Swinburne University of Technology , Hawthorn , Victoria 3122 , Australia
| | | | - Phong A Tran
- Institute of Health and Biomedical Innovation , Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia
| | | | | | | | | |
Collapse
|
26
|
Engin AB, Hayes AW. The impact of immunotoxicity in evaluation of the nanomaterials safety. TOXICOLOGY RESEARCH AND APPLICATION 2018. [DOI: 10.1177/2397847318755579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nanomedicinal products (NMPs), due to their unique properties, are extensively investigated for their biomedical and pharmaceutical applications. Apart from being carriers of certain drugs, nanoparticles can also interact with both the innate and adaptive immune systems, thus eliciting immune responses. Following administration, their discrete physicochemical properties make each NMP act differently in the organism. Actually, the toxic effects of NMPs, in terms of specific end points, do not necessarily depend on the specific group or structural type of the particle. Furthermore, the nanoformulation may change the pharmacokinetic/toxicokinetic profile of the drug. Unveiling the structure–activity relationship of NMPs would help to clarify their immunomodulatory effects. Therefore, in addition to the current regulatory immunotoxicity testing strategies, development and regulatory approval of nano-sized pharmaceuticals still need to be discussed in order to identify potential gaps in the safety assessment.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Hipodrom, Ankara, Turkey
| | - A Wallace Hayes
- Institute for IntegrativeToxicology, Michigan State University, East Lansing, MI, USA
- College of Public Health, University of South Florida, Tampa, FL, USA
| |
Collapse
|
27
|
Firkowska-Boden I, Zhang X, Jandt KD. Controlling Protein Adsorption through Nanostructured Polymeric Surfaces. Adv Healthc Mater 2018; 7. [PMID: 29193909 DOI: 10.1002/adhm.201700995] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/09/2017] [Indexed: 12/11/2022]
Abstract
The initial host response to healthcare materials' surfaces after implantation is the adsorption of proteins from blood and interstitial fluids. This adsorbed protein layer modulates the biological/cellular responses to healthcare materials. This stresses the significance of the surface protein assembly for the biocompatibility and functionality of biomaterials and necessitates a profound fundamental understanding of the capability to control protein-surface interactions. This review, therefore, addresses this by systematically analyzing and discussing strategies to control protein adsorption on polymeric healthcare materials through the introduction of specific surface nanostructures. Relevant proteins, healthcare materials' surface properties, clinical applications of polymer healthcare materials, fabrication methods for nanostructured polymer surfaces, amorphous, semicrystalline and block copolymers are considered with a special emphasis on the topographical control of protein adsorption. The review shows that nanostructured polymer surfaces are powerful tools to control the amount, orientation, and order of adsorbed protein layers. It also shows that the understanding of the biological responses to such ordered protein adsorption is still in its infancy, yet it has immense potential for future healthcare materials. The review, which is-as far as it is known-the first one discussing protein adsorption on nanostructured polymer surfaces, concludes with highlighting important current research questions.
Collapse
Affiliation(s)
- Izabela Firkowska-Boden
- Chair of Materials Science (CMS); Otto Schott Institute of Materials Research (OSIM); Friedrich Schiller University Jena; Löbdergraben 32 07743 Jena Germany
| | - Xiaoyuan Zhang
- Chair of Materials Science (CMS); Otto Schott Institute of Materials Research (OSIM); Friedrich Schiller University Jena; Löbdergraben 32 07743 Jena Germany
| | - Klaus D. Jandt
- Chair of Materials Science (CMS); Otto Schott Institute of Materials Research (OSIM); Friedrich Schiller University Jena; Löbdergraben 32 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Jena School for Microbial Communication (JSMC); Neugasse 23 07743 Jena Germany
| |
Collapse
|
28
|
In-vitro in-vivo correlation (IVIVC) in nanomedicine: Is protein corona the missing link? Biotechnol Adv 2017; 35:889-904. [DOI: 10.1016/j.biotechadv.2017.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/04/2017] [Accepted: 08/19/2017] [Indexed: 12/17/2022]
|
29
|
Malekian B, Maximov I, Timm R, Cedervall T, Hessman D. A Method for Investigation of Size-Dependent Protein Binding to Nanoholes Using Intrinsic Fluorescence of Proteins. ACS OMEGA 2017; 2:4772-4778. [PMID: 30023730 PMCID: PMC6044499 DOI: 10.1021/acsomega.7b00241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/03/2017] [Indexed: 06/08/2023]
Abstract
We have developed a novel method to study the influence of surface nanotopography on human fibrinogen adsorption at a given surface chemistry. Well-ordered arrays of nanoholes with different diameters down to 45 nm and a depth of 50 nm were fabricated in silicon by electron beam lithography and reactive ion etching. The nanostructured chip was used as a model system to understand the effect of size of the nanoholes on fibrinogen adsorption. Fluorescence imaging, using the intrinsic fluorescence of proteins, was used to characterize the effect of the nanoholes on fibrinogen adsorption. Atomic force microscopy was used as a complementary technique for further characterization of the interaction. The results demonstrate that as the size of the nanoholes is reduced to 45 nm, fibrinogen adsorption is significantly increased.
Collapse
Affiliation(s)
- Bita Malekian
- Solid
State Physics, Biochemistry and Structural Biology, Synchrotron Radiation Research, and NanoLund, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Ivan Maximov
- Solid
State Physics, Biochemistry and Structural Biology, Synchrotron Radiation Research, and NanoLund, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Rainer Timm
- Solid
State Physics, Biochemistry and Structural Biology, Synchrotron Radiation Research, and NanoLund, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Tommy Cedervall
- Solid
State Physics, Biochemistry and Structural Biology, Synchrotron Radiation Research, and NanoLund, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Dan Hessman
- Solid
State Physics, Biochemistry and Structural Biology, Synchrotron Radiation Research, and NanoLund, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| |
Collapse
|
30
|
Liu J, Peng Q. Protein-gold nanoparticle interactions and their possible impact on biomedical applications. Acta Biomater 2017; 55:13-27. [PMID: 28377307 DOI: 10.1016/j.actbio.2017.03.055] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/23/2022]
Abstract
In the past few years, concerns of protein-gold nanoparticles (AuNP) interaction have been continuously growing in numerous potential biomedical applications. Despite the advances in tunable size, shape and excellent biocompatibility, unpredictable adverse effects related with protein corona (PC) have critically affected physiological to therapeutic responses. The complexity and uncontrollability of AuNP-PC formation limited the clinical applications of AuNP, e.g. AuNP-based drug delivery systems or imaging agent. Thus, even intensive attempts have been made for in vitro characterizations of PC around AuNP, the extrapolation of these data into in vivo PC responses still lags far behind. However, with accumulated knowledge of corona formation and the unique properties of AuNP, we are now encouraged to move forward to seeking positive exploitations. Herein, we summarize recent researches on interaction of protein and AuNP, aiming at provide a comprehensive understanding of such interaction associated with subsequent biomedical impacts. Importantly, the emerging trends in exploiting of potential applications and opportunities based on protein-AuNP interaction were discussed as well. STATEMENT OF SIGNIFICANCE Gold nanoparticles (AuNPs) have shown great potentials in biomedical areas. However, its practical use is highly limited by protein corona, formed as a result of protein-AuNP interaction. This protein corona surrounding AuNPs is a new identity and the real substance that the organs and cells firstly encounter, and finally makes the behavior of AuNPs in vivo uncontrollable and unpredictable. Therefore, comprehensively understanding such interaction is of great significance for predicting the in vivo fate of AuNPs and for designing advanced AuNPs systems. In this review, we would provide a detailed description of protein-AuNP interaction and launch an interesting discussion on how to use such interaction for smart and controlled AuNPs delivery, which would be a topic of widespread interest.
Collapse
|
31
|
Chen Z, Bachhuka A, Han S, Wei F, Lu S, Visalakshan RM, Vasilev K, Xiao Y. Tuning Chemistry and Topography of Nanoengineered Surfaces to Manipulate Immune Response for Bone Regeneration Applications. ACS NANO 2017; 11:4494-4506. [PMID: 28414902 DOI: 10.1021/acsnano.6b07808] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Osteoimmunomodulation has informed the importance of modulating a favorable osteoimmune environment for successful materials-mediated bone regeneration. Nanotopography is regarded as a valuable strategy for developing advanced bone materials, due to its positive effects on enhancing osteogenic differentiation. In addition to this direct effect on osteoblastic lineage cells, nanotopography also plays a vital role in regulating immune responses, which makes it possible to utilize its immunomodulatory properties to create a favorable osteoimmune environment. Therefore, the aim of this study was to advance the applications of nanotopography with respect to its osteoimmunomodulatory properties, aiming to shed further light on this field. We found that tuning the surface chemistry (amine or acrylic acid) and scale of the nanotopography (16, 38, and 68 nm) significantly modulated the osteoimmune environment, including changes in the expression of inflammatory cytokines, osteoclastic activities, and osteogenic, angiogenic, and fibrogenic factors. The generated osteoimmune environment significantly affected the osteogenic differentiation of bone marrow stromal cells, with carboxyl acid-tailored 68 nm surface nanotopography offering the most promising outcome. This study demonstrated that the osteoimmunomodulation could be manipulated via tuning the chemistry and nanotopography, which implied a valuable strategy to apply a "nanoengineered surface" for the development of advanced bone biomaterials with favorable osteoimmunomodulatory properties.
Collapse
Affiliation(s)
- Zetao Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology , Guangzhou 510055, Guangdong, People's Republic of China
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology , Brisbane, Queensland 4059, Australia
| | - Akash Bachhuka
- ARC Center of Excellence for Nanoscale BioPhotonics, Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide , Adelaide, South Australia 5005, Australia
- Future Industries Institute & School of Engineering, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Shengwei Han
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology , Brisbane, Queensland 4059, Australia
| | - Fei Wei
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology , Brisbane, Queensland 4059, Australia
| | - Shifeier Lu
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology , Brisbane, Queensland 4059, Australia
| | | | - Krasimir Vasilev
- Future Industries Institute & School of Engineering, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Yin Xiao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology , Guangzhou 510055, Guangdong, People's Republic of China
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology , Brisbane, Queensland 4059, Australia
| |
Collapse
|
32
|
Giraud T, Rufas P, Chmilewsky F, Rombouts C, Dejou J, Jeanneau C, About I. Complement Activation by Pulp Capping Materials Plays a Significant Role in Both Inflammatory and Pulp Stem Cells' Recruitment. J Endod 2017; 43:1104-1110. [PMID: 28527850 DOI: 10.1016/j.joen.2017.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/27/2017] [Accepted: 02/15/2017] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The role of complement, especially through the C5a fragment, is well-known for the initiation of inflammation. Its involvement in regeneration has been shown more recently by the recruitment of mesenchymal stem cells. C5a can be produced locally by the pulp fibroblasts in response to injury or infection. This work aims to investigate the effect of different pulp capping biomaterials on complement activation and its possible influence on inflammatory and pulp stem cell recruitment. METHODS Conditioned media were prepared from 3 pulp capping biomaterials: Biodentine (Septodont, Saint-Maur-des-Fosses, France), TheraCal (BISCO, Lançon De Provence, France), and Xeno III (Dentsply Sirona, Versaille, France). Injured pulp fibroblasts were cultured with these conditioned media to analyze C5a secretion using an enzyme-linked immunosorbent assay. Dental pulp stem cells (DPSCs) were isolated from human third molar explants by magnetic cell sorting with STRO-1 antibodies. The expression of C5a receptor on DPSCs and inflammatory (THP-1) cells was investigated by immunofluorescence. The migration of both DPSCs and THP-1 cells was studied in Boyden chambers. RESULTS Pulp fibroblast production of C5a significantly increased when the cells were incubated with TheraCal- and Xeno III-conditioned media. The recruitment of cells involved in inflammation (THP-1 cells) was significantly reduced by Biodentine- and TheraCal-conditioned media, whereas the migration of DPSCs was reduced with TheraCal- and Xeno III-conditioned media but not with that of Biodentine. The involvement of C5a in cell recruitment is demonstrated with a C5a receptor-specific antagonist (W54011). CONCLUSIONS After pulp injury, the pulp capping material affects complement activation and the balance between inflammation and regeneration through a differential recruitment of DPSCs or inflammatory cells.
Collapse
Affiliation(s)
- Thomas Giraud
- Institute of Movement Science, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, Marseille, France; Assistance Publique - Hôpitaux de Marseille (APHM), Hôpital Timone, Service d'Odontologie, Marseille, France
| | - Pierre Rufas
- Institute of Movement Science, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, Marseille, France
| | - Fanny Chmilewsky
- Institute of Movement Science, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, Marseille, France
| | - Charlotte Rombouts
- Institute of Movement Science, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, Marseille, France
| | - Jacques Dejou
- Institute of Movement Science, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, Marseille, France; Assistance Publique - Hôpitaux de Marseille (APHM), Hôpital Timone, Service d'Odontologie, Marseille, France
| | - Charlotte Jeanneau
- Institute of Movement Science, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, Marseille, France
| | - Imad About
- Institute of Movement Science, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, Marseille, France.
| |
Collapse
|
33
|
The influence of controlled surface nanotopography on the early biological events of osseointegration. Acta Biomater 2017; 53:559-571. [PMID: 28232253 DOI: 10.1016/j.actbio.2017.02.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 01/09/2023]
Abstract
The early cell and tissue interactions with nanopatterned titanium implants are insufficiently described in vivo. A limitation has been to transfer a pre-determined, well-controlled nanotopography to 3D titanium implants, without affecting other surface parameters, including surface microtopography and chemistry. This in vivo study aimed to investigate the early cellular and molecular events at the bone interface with screw-shaped titanium implants superimposed with controlled nanotopography. Polished and machined titanium implants were firstly patterned with 75-nm semispherical protrusions. Polished and machined implants without nano-patterns were designated as controls. Thereafter, all nanopatterned and control implants were sputter-coated with a 30nm titanium layer to unify the surface chemistry. The implants were inserted in rat tibiae and samples were harvested after 12h, 1d and 3d. In one group, the implants were unscrewed and the implant-adherent cells were analyzed using quantitative polymerase chain reaction. In another group, implants with surrounding bone were harvested en bloc for histology and immunohistochemistry. The results showed that nanotopography downregulated the expression of monocyte chemoattractant protein-1 (MCP-1), at 1d, and triggered the expression of osteocalcin (OC) at 3d. This was in parallel with a relatively lower number of recruited CD68-positive macrophages in the tissue surrounding the nanopatterned implants. Moreover, a higher proportion of newly formed osteoid and woven bone was found at the nanopatterned implants at 3d. It is concluded that nanotopography, per se, attenuates the inflammatory process and enhances the osteogenic response during the early phase of osseointegration. This nanotopography-induced effect appeared to be independent of the underlying microscale topography. STATEMENT OF SIGNIFICANCE This study provides a first line of evidence that pre-determined nanopatterns on clinically relevant, screw-shaped, titanium implants can be recognized by cells in the complex in vivo environment. Until now, most of the knowledge relating to cell interactions with nanopatterned surfaces has been acquired from in vitro studies involving mostly two-dimensional nanopatterned surfaces of varying chemical composition. We have managed to superimpose pre-determined nanoscale topography on polished and micro-rough, screw-shaped, implants, without changes in the microscale topography or chemistry. This was achieved by colloidal lithography in combination with a thin titanium film coating on top of both nanopatterned and control implants. The early events of osseointegration were evaluated at the bone interface to these implants. The results revealed that nanotopography, as such, elicits downregulatory effects on the early recruitment and activity of inflammatory cells while enhancing osteogenic activity and woven bone formation.
Collapse
|
34
|
Quach QH, Kah JCY. Non-specific adsorption of complement proteins affects complement activation pathways of gold nanomaterials. Nanotoxicology 2017; 11:382-394. [DOI: 10.1080/17435390.2017.1306131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Quang Huy Quach
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - James Chen Yong Kah
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
35
|
Neagu M, Piperigkou Z, Karamanou K, Engin AB, Docea AO, Constantin C, Negrei C, Nikitovic D, Tsatsakis A. Protein bio-corona: critical issue in immune nanotoxicology. Arch Toxicol 2017; 91:1031-1048. [PMID: 27438349 PMCID: PMC5316397 DOI: 10.1007/s00204-016-1797-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 07/06/2016] [Indexed: 01/04/2023]
Abstract
With the expansion of the nanomedicine field, the knowledge focusing on the behavior of nanoparticles in the biological milieu has rapidly escalated. Upon introduction to a complex biological system, nanomaterials dynamically interact with all the encountered biomolecules and form the protein "bio-corona." The decoration with these surface biomolecules endows nanoparticles with new properties. The present review will address updates of the protein bio-corona characteristics as influenced by nanoparticle's physicochemical properties and by the particularities of the encountered biological milieu. Undeniably, bio-corona generation influences the efficacy of the nanodrug and guides the actions of innate and adaptive immunity. Exploiting the dynamic process of protein bio-corona development in combination with the new engineered horizons of drugs linked to nanoparticles could lead to innovative functional nanotherapies. Therefore, bio-medical nanotechnologies should focus on the interactions of nanoparticles with the immune system for both safety and efficacy reasons.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Zoi Piperigkou
- Laboratory of Biochemistry, Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Konstantina Karamanou
- Laboratory of Biochemistry, Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Department of Chemistry, University of Patras, Patras, Greece
- Laboratório de Bioquímica e Biologia Cellular de Glicoconjugados, Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo De Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Anca Oana Docea
- Department of Toxicology, Faculty of Pharmacy University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Carolina Negrei
- Department of Toxicology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Aristidis Tsatsakis
- Department of Toxicology and Forensic Sciences, Medical School, University of Crete, Heraklion, Greece.
| |
Collapse
|
36
|
Vafa Homann M, Johansson D, Wallen H, Sanchez J. Improved ex vivo blood compatibility of central venous catheter with noble metal alloy coating. J Biomed Mater Res B Appl Biomater 2016; 104:1359-65. [PMID: 26698606 PMCID: PMC5054833 DOI: 10.1002/jbm.b.33403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/22/2014] [Accepted: 02/16/2015] [Indexed: 01/09/2023]
Abstract
Central line associated bloodstream infections (CLABSIs) are a serious cause of morbidity and mortality induced by the use of central venous catheters (CVCs). Nobel metal alloy (NMA) coating is an advanced surface modification that prevents microbial adhesion and growth on catheters and thereby reduces the risk of infection. In vitro microbiological analyses have shown up to 90% reduction in microbial adhesion on coated CVC compared to uncoated ones. This study aimed to assess the blood compatibility of NMA-coated CVC according to ISO 10993-4. Hemolysis, thrombin-antithrombin (TAT) complex, platelet counts, fibrin deposition, and C3a and SC5b-9 complement activation were analyzed in human blood exposed to the NMA-coated and control CVCs using a Chandler-loop model. NMA-coated CVC did not induce hemolysis and fell in the "nonhemolytic" category according to ASTM F756-00. Significantly lower amounts of TAT were generated and less fibrin was deposited on NMA-coated CVC than on uncoated ones. Slightly higher platelet counts and lower complement markers were observed for NMA-coated CVC compared to uncoated ones. These data suggest that the NMA-coated CVC has better ex vivo blood compatibility compared to uncoated CVC. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1359-1365, 2016.
Collapse
Affiliation(s)
| | - Dorota Johansson
- Research and Development Department, Bactiguard AB, Stockholm, Sweden
| | - Håkan Wallen
- Division of internal and Cardiovascular Medicine, Department of Clinical Science Danderyd Hospital, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Javier Sanchez
- Research and Development Department, Bactiguard AB, Stockholm, Sweden.
- Division of internal and Cardiovascular Medicine, Department of Clinical Science Danderyd Hospital, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden.
| |
Collapse
|
37
|
Karazisis D, Ballo AM, Petronis S, Agheli H, Emanuelsson L, Thomsen P, Omar O. The role of well-defined nanotopography of titanium implants on osseointegration: cellular and molecular events in vivo. Int J Nanomedicine 2016; 11:1367-82. [PMID: 27099496 PMCID: PMC4824366 DOI: 10.2147/ijn.s101294] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Mechanisms governing the cellular interactions with well-defined nanotopography are not well described in vivo. This is partly due to the difficulty in isolating a particular effect of nanotopography from other surface properties. This study employed colloidal lithography for nanofabrication on titanium implants in combination with an in vivo sampling procedure and different analytical techniques. The aim was to elucidate the effect of well-defined nanotopography on the molecular, cellular, and structural events of osseointegration. Materials and methods Titanium implants were nanopatterned (Nano) with semispherical protrusions using colloidal lithography. Implants, with and without nanotopography, were implanted in rat tibia and retrieved after 3, 6, and 28 days. Retrieved implants were evaluated using quantitative polymerase chain reaction, histology, immunohistochemistry, and energy dispersive X-ray spectroscopy (EDS). Results Surface characterization showed that the nanotopography was well defined in terms of shape (semispherical), size (79±6 nm), and distribution (31±2 particles/µm2). EDS showed similar levels of titanium, oxygen, and carbon for test and control implants, confirming similar chemistry. The molecular analysis of the retrieved implants revealed that the expression levels of the inflammatory cytokine, TNF-α, and the osteoclastic marker, CatK, were reduced in cells adherent to the Nano implants. This was consistent with the observation of less CD163-positive macrophages in the tissue surrounding the Nano implant. Furthermore, periostin immunostaining was frequently detected around the Nano implant, indicating higher osteogenic activity. This was supported by the EDS analysis of the retrieved implants showing higher content of calcium and phosphate on the Nano implants. Conclusion The results show that Nano implants elicit less periimplant macrophage infiltration and downregulate the early expression of inflammatory (TNF-α) and osteoclastic (CatK) genes. Immunostaining and elemental analyses show higher osteogenic activity at the Nano implant. It is concluded that an implant with the present range of well-defined nanocues attenuates the inflammatory response while enhancing mineralization during osseointegration.
Collapse
Affiliation(s)
- Dimitrios Karazisis
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden; Department of Oral and Maxillofacial Surgery, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Ahmed M Ballo
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden; Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Sarunas Petronis
- BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden; Department of Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Borås, Sweden
| | - Hossein Agheli
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Lena Emanuelsson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| |
Collapse
|
38
|
Corbo C, Molinaro R, Parodi A, Toledano Furman NE, Salvatore F, Tasciotti E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (Lond) 2016; 11:81-100. [PMID: 26653875 PMCID: PMC4910943 DOI: 10.2217/nnm.15.188] [Citation(s) in RCA: 423] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
In a perfect sequence of events, nanoparticles (NPs) are injected into the bloodstream where they circulate until they reach the target tissue. The ligand on the NP surface recognizes its specific receptor expressed on the target tissue and the drug is released in a controlled manner. However, once injected in a physiological environment, NPs interact with biological components and are surrounded by a protein corona (PC). This can trigger an immune response and affect NP toxicity and targeting capabilities. In this review, we provide a survey of recent findings on the NP-PC interactions and discuss how the PC can be used to modulate both cytotoxicity and the immune response as well as to improve the efficacy of targeted delivery of nanocarriers.
Collapse
Affiliation(s)
- Claudia Corbo
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, 77030 Houston, TX, USA
- Fondazione SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Roberto Molinaro
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, 77030 Houston, TX, USA
| | - Alessandro Parodi
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, 77030 Houston, TX, USA
- Fondazione SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Naama E Toledano Furman
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, 77030 Houston, TX, USA
| | - Francesco Salvatore
- CEINGE, Advanced Biotechnology s.c.a.r.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Ennio Tasciotti
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, 77030 Houston, TX, USA
| |
Collapse
|
39
|
Innate Immunity and Biomaterials at the Nexus: Friends or Foes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:342304. [PMID: 26247017 PMCID: PMC4515263 DOI: 10.1155/2015/342304] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 01/04/2023]
Abstract
Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical “antigen.” In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a “combined” immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation.
Collapse
|
40
|
Westmeier D, Chen C, Stauber RH, Docter D. The bio-corona and its impact on nanomaterial toxicity. EUROPEAN JOURNAL OF NANOMEDICINE 2015. [DOI: 10.1515/ejnm-2015-0018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractThe rapidly growing application of nano-sized materials and nano-scaled processes will result in increased exposure of humans and the environment. The small size of nanomaterials (NM) comparable with molecular building blocks of cells raises concerns that their toxic potential cannot be extrapolated from studies of larger particles due to their unique physico-chemical properties. These properties are also responsible that NM rapidly adsorb various (bio)molecules when introduced into complex physiological or natural environments. As the thus formed protein/biomolecule ‘corona’ seems to affect the NM’ in situ identity, an understanding of its toxicological relevance and the biophysical forces regulating corona formation is needed but not yet achieved. This review introduces our current concept of corona formation and evolution and present analytical methods for corona profiling. We discuss toxicity mechanisms potentially affected by the biomolecule corona, including NM cellular uptake and impact on components of the blood system. Further, we comment on pending knowledge gaps and challenges, which need to be resolved by the field. We conclude by presenting a tiered systems biology-driven approach recommended to mechanistically understand the coronas’ nanotoxicological relevance and predictive potential.
Collapse
|
41
|
Lee YK, Choi EJ, Webster TJ, Kim SH, Khang D. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int J Nanomedicine 2014; 10:97-113. [PMID: 25565807 PMCID: PMC4275058 DOI: 10.2147/ijn.s72998] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although the cytotoxicity of nanoparticles (NPs) is greatly influenced by their interactions with blood proteins, toxic effects resulting from blood interactions are often ignored in the development and use of nanostructured biomaterials for in vivo applications. Protein coronas created during the initial reaction with NPs can determine the subsequent immunological cascade, and protein coronas formed on NPs can either stimulate or mitigate the immune response. Along these lines, the understanding of NP-protein corona formation in terms of physiochemical surface properties of the NPs and NP interactions with the immune system components in blood is an essential step for evaluating NP toxicity for in vivo therapeutics. This article reviews the most recent developments in NP-based protein coronas through the modification of NP surface properties and discusses the associated immune responses.
Collapse
Affiliation(s)
- Yeon Kyung Lee
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| | - Eun-Ju Choi
- Division of Sport Science, College of Science and Technology, Konkuk University, Chungju, South Korea
| | - Thomas J Webster
- Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA
| | - Sang-Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Dongwoo Khang
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
42
|
Liptrott NJ, Kendall E, Nieves DJ, Farrell J, Rannard S, Fernig DG, Owen A. Partial mitigation of gold nanoparticle interactions with human lymphocytes by surface functionalization with a ‘mixed matrix’. Nanomedicine (Lond) 2014; 9:2467-79. [DOI: 10.2217/nnm.14.38] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: To investigate interactions of gold nanoparticles with primary human lymphocytes and determine if the addition of a self-assembled monolayer of ‘mixed-matrix’ ligands influenced these interactions. Materials & methods: The effect of gold nanoparticles was measured by exposure to peripheral blood mononuclear cells (PBMCs) from healthy volunteers with subsequent examination of cell proliferation, cytokine secretion and CD4+ T-cell activation relative to controls. Results: Capped and as-synthesized gold nanoparticles augmented PBMC proliferation in response to phytohemagglutinin and this effect was greater for as-synthesized than for capped gold nanoparticles. Release of IL-10 and IFN-γ from PBMCs was increased and the effect was again more marked for as-synthesized than capped gold nanoparticles. Conclusion: This method provides an ex vivo approach for studying the interaction of nanoparticles with the human immune system. Further research is required to determine the specific mechanisms for reduction of immune activation seen here which could then be used to design a truly ‘stealth’ nanoparticle. Original submitted 11 October 2013; Revised submitted 30 January 2014
Collapse
Affiliation(s)
- Neill J Liptrott
- Department of Molecular & Clinical Pharmacology, University of Liverpool, UK
| | - Emily Kendall
- Department of Molecular & Clinical Pharmacology, University of Liverpool, UK
| | - Daniel J Nieves
- Department of Structural & Chemical Biology, Institute of Integrative Biology, University of Liverpool, UK
| | - John Farrell
- Department of Molecular & Clinical Pharmacology, University of Liverpool, UK
| | - Steve Rannard
- Department of Chemistry, University of Liverpool, UK
| | - David G Fernig
- Department of Structural & Chemical Biology, Institute of Integrative Biology, University of Liverpool, UK
| | - Andrew Owen
- Department of Molecular & Clinical Pharmacology, University of Liverpool, UK
| |
Collapse
|
43
|
Ma Z, Bai J, Wang Y, Jiang X. Impact of shape and pore size of mesoporous silica nanoparticles on serum protein adsorption and RBCs hemolysis. ACS APPLIED MATERIALS & INTERFACES 2014; 6:2431-2438. [PMID: 24460090 DOI: 10.1021/am404860q] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
With the rapid development of nanotechnology, mesoporous silica nanoparticles (MSNs) with numerous forms and structures have been synthesized and extensively applied in biomedicine in the past decades. However, our knowledge about the biocompatibility of the developed MSNs has not matched their development. Therefore, in this work, we have synthesized sphere-shaped MSNs with different pore scales (s-SPs and l-SPs) and rod-shape (RPs-3) MSNs to evaluate the influence of the morphology and pore size on their interaction with serum proteins and red blood cells (RBCs). The adsorption of human albumin (HSA), globulin (HGG), and fibrinogen (HSF) onto different kinds of MSNs has been analyzed by pseudo second-order kinetic model, and the conformational changes of the adsorbed proteins have been studied by FTIR spectroscopy. We find that the conformation of absorbed HSA and HSF, while not HGG, will be affected by the pore size and morphology of the MSNs. The conformational changes of the adsorbed proteins will further affect their saturated adsorption capacity. However, the initial adsorption rate is only determined by the property of MSNs and proteins. Additional hemolysis assay shows that the pore size and morphology of the MSNs will also affect their hemolytic activity in RBCs which will be extremely depressed by the formation of protein corona. These systematic studies will provide an overall understanding in the blood compatibility of MSNs as well as useful guidelines for fabrication of blood-compatible nanomaterials.
Collapse
Affiliation(s)
- Zhifang Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun, Jilin, 130022, People's Republic of China
| | | | | | | |
Collapse
|
44
|
Svensson S, Forsberg M, Hulander M, Vazirisani F, Palmquist A, Lausmaa J, Thomsen P, Trobos M. Role of nanostructured gold surfaces on monocyte activation and Staphylococcus epidermidis biofilm formation. Int J Nanomedicine 2014; 9:775-94. [PMID: 24550671 PMCID: PMC3925225 DOI: 10.2147/ijn.s51465] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The role of material surface properties in the direct interaction with bacteria and the indirect route via host defense cells is not fully understood. Recently, it was suggested that nanostructured implant surfaces possess antimicrobial properties. In the current study, the adhesion and biofilm formation of Staphylococcus epidermidis and human monocyte adhesion and activation were studied separately and in coculture in different in vitro models using smooth gold and well-defined nanostructured gold surfaces. Two polystyrene surfaces were used as controls in the monocyte experiments. Fluorescent viability staining demonstrated a reduction in the viability of S. epidermidis close to the nanostructured gold surface, whereas the smooth gold correlated with more live biofilm. The results were supported by scanning electron microscopy observations, showing higher biofilm tower formations and more mature biofilms on smooth gold compared with nanostructured gold. Unstimulated monocytes on the different substrates demonstrated low activation, reduced gene expression of pro- and anti-inflammatory cytokines, and low cytokine secretion. In contrast, stimulation with opsonized zymosan or opsonized live S. epidermidis for 1 hour significantly increased the production of reactive oxygen species, the gene expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-10, as well as the secretion of TNF-α, demonstrating the ability of the cells to elicit a response and actively phagocytose prey. In addition, cells cultured on the smooth gold and the nanostructured gold displayed a different adhesion pattern and a more rapid oxidative burst than those cultured on polystyrene upon stimulation. We conclude that S. epidermidis decreased its viability initially when adhering to nanostructured surfaces compared with smooth gold surfaces, especially in the bacterial cell layers closest to the surface. In contrast, material surface properties neither strongly promoted nor attenuated the activity of monocytes when exposed to zymosan particles or S. epidermidis.
Collapse
Affiliation(s)
- Sara Svensson
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Magnus Forsberg
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Mats Hulander
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Forugh Vazirisani
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Jukka Lausmaa
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden ; SP Technical Research Institute of Sweden, Borås, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Margarita Trobos
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| |
Collapse
|
45
|
Albrektsson T, Dahlin C, Jemt T, Sennerby L, Turri A, Wennerberg A. Is Marginal Bone Loss around Oral Implants the Result of a Provoked Foreign Body Reaction? Clin Implant Dent Relat Res 2013; 16:155-65. [DOI: 10.1111/cid.12142] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tomas Albrektsson
- Department of Biomaterials; Göteborg University; Göteborg Sweden
- Department of Prosthodontics; Malmö University; Malmö Sweden
| | - Christer Dahlin
- Department of Biomaterials; Göteborg University; Göteborg Sweden
- Department of Oral& Maxillofacial Surgery; NU Hospital Group; Trollhättan Sweden
| | - Torsten Jemt
- Department of Prosthetic Dentistry/Dental Material Science; University of Göteborg; Göteborg Sweden
- The Brånemark Clinic; Public Dental Health Service; Göteborg Sweden
| | - Lars Sennerby
- Department of Oral and Maxillofacial Surgery; Göteborg University; Göteborg Sweden
| | - Alberto Turri
- Department of Biomaterials; Göteborg University; Göteborg Sweden
- The Brånemark Clinic; Public Dental Health Service; Göteborg Sweden
| | - Ann Wennerberg
- Department of Prosthodontics; Malmö University; Malmö Sweden
| |
Collapse
|
46
|
Isaacman MJ, Corigliano EM, Theogarajan LS. Stealth polymeric vesicles via metal-free click coupling. Biomacromolecules 2013; 14:2996-3000. [PMID: 23952743 DOI: 10.1021/bm400940h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The strain-promoted azide-alkyne cycloaddition represents an optimal metal-free method for the modular coupling of amphiphilic polymer blocks. Hydrophilic poly(oxazoline) (PMOXA) or poly(ethylene glycol) (PEG) A-blocks were coupled with a hydrophobic poly(siloxane) B-block to provide triblock copolymers capable of self-assembling into vesicular nanostructures. Stealth properties investigated via a complement activation assay revealed the superior in vitro stealth attributes of polymeric vesicles synthesized via a metal-free approach to those coupled via the widely used copper-catalyzed click method. Furthermore, the ability to change a single parameter, such as the hydrophilic block, allowed the direct comparison of the biocompatibility properties of triblock copolymers containing PMOXA or PEG. Our studies convincingly demonstrate the need for a metal-free approach, both in preventing cytotoxicity while imparting optimal stealth properties for potential biomedical applications.
Collapse
Affiliation(s)
- Michael J Isaacman
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | | | | |
Collapse
|
47
|
Hulander M, Lundgren A, Faxälv L, Lindahl TL, Palmquist A, Berglin M, Elwing H. Gradients in surface nanotopography used to study platelet adhesion and activation. Colloids Surf B Biointerfaces 2013; 110:261-9. [PMID: 23732803 DOI: 10.1016/j.colsurfb.2013.04.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/15/2013] [Accepted: 04/12/2013] [Indexed: 11/19/2022]
Abstract
Gradients in surface nanotopography were prepared by adsorbing gold nanoparticles on smooth gold substrates using diffusion technique. Following a sintering procedure the particle binding chemistry was removed, and integration of the particles into the underlying gold substrate was achieved, leaving a nanostructured surface with uniform surface chemistry. After pre-adsorption of human fibrinogen, the effect of surface nanotopography on platelets was studied. The use of a gradient in nanotopography allowed for platelet adhesion and activation to be studied as a function of nanoparticle coverage on one single substrate. A peak in platelet adhesion was found at 23% nanoparticle surface coverage. The highest number of activated platelets was found on the smooth control part of the surface, and did not coincide with the number of adhered platelets. Activation correlated inversely with particle coverage, hence the lowest fraction of activated platelets was found at high particle coverage. Hydrophobization of the gradient surface lowered the total number of adhering cells, but not the ratio of activated cells. Little or no effect was seen on gradients with 36nm particles, suggesting the existence of a lower limit for sensing of surface nano-roughness in platelets. These results demonstrate that parameters such as ratio between size and inter-particle distance can be more relevant for cell response than wettability on nanostructured surfaces. The minor effect of hydrophobicity, the generally reduced activation on nanostructured surfaces and the presence of a cut-off in activation of human platelets as a function of nanoparticle size could have implications for the design of future blood-contacting biomaterials.
Collapse
Affiliation(s)
- M Hulander
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9E, 413 90 Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
48
|
Svensson S, Suska F, Emanuelsson L, Palmquist A, Norlindh B, Trobos M, Bäckros H, Persson L, Rydja G, Ohrlander M, Lyvén B, Lausmaa J, Thomsen P. Osseointegration of titanium with an antimicrobial nanostructured noble metal coating. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:1048-56. [PMID: 23639678 DOI: 10.1016/j.nano.2013.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 03/15/2013] [Accepted: 04/15/2013] [Indexed: 12/31/2022]
Abstract
UNLABELLED Nanometer scale surface features on implants and prostheses can potentially be used to enhance osseointegration and may also add further functionalities, such as infection resistance, to the implant. In this study, a nanostructured noble metal coating consisting of palladium, gold and silver, never previously used in bone applications, was applied to machined titanium screws to evaluate osseointegration after 6 and 12 weeks in rabbit tibiae and femurs. Infection resistance was confirmed by in vitro adhesion test. A qualitatively and quantitatively similar in vivo bone response was observed for the coated and uncoated control screws, using histology, histomorphometry and electron microscopy. The bone-implant interface analysis revealed an extensive bone formation and direct bone-implant contact. These results demonstrate that the nanostructured noble metal coating with antimicrobial properties promotes osseointegration and may therefore be used to add extra implant functionality in the form of increased resistance to infection without the use of antibiotics. FROM THE CLINICAL EDITOR The authors of this paper demonstrate that nanostructured noble metal coating of implants and prostheses used in orthopedic procedures promotes osseointegration and may be used to add extra implant functionality in the form of increased resistance to infection without the use of antibiotics.
Collapse
Affiliation(s)
- Sara Svensson
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden; Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Benhnia MREI, Maybeno M, Blum D, Aguilar-Sino R, Matho M, Meng X, Head S, Felgner PL, Zajonc DM, Koriazova L, Kato S, Burton DR, Xiang Y, Crowe JE, Peters B, Crotty S. Unusual features of vaccinia virus extracellular virion form neutralization resistance revealed in human antibody responses to the smallpox vaccine. J Virol 2013; 87:1569-85. [PMID: 23152530 PMCID: PMC3554146 DOI: 10.1128/jvi.02152-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/07/2012] [Indexed: 11/20/2022] Open
Abstract
The extracellular virion form (EV) of vaccinia virus (VACV) is essential for viral pathogenesis and is difficult to neutralize with antibodies. Why this is the case and how the smallpox vaccine overcomes this challenge remain incompletely understood. We previously showed that high concentrations of anti-B5 antibodies are insufficient to directly neutralize EV (M. R. Benhnia, et al., J. Virol. 83:1201-1215, 2009). This allowed for at least two possible interpretations: covering the EV surface is insufficient for neutralization, or there are insufficient copies of B5 to allow anti-B5 IgG to cover the whole surface of EV and another viral receptor protein remains active. We endeavored to test these possibilities, focusing on the antibody responses elicited by immunization against smallpox. We tested whether human monoclonal antibodies (MAbs) against the three major EV antigens, B5, A33, and A56, could individually or together neutralize EV. While anti-B5 or anti-A33 (but not anti-A56) MAbs of appropriate isotypes were capable of neutralizing EV in the presence of complement, a mixture of anti-B5, anti-A33, and anti-A56 MAbs was incapable of directly neutralizing EV, even at high concentrations. This remained true when neutralizing the IHD-J strain, which lacks a functional version of the fourth and final known EV surface protein, A34. These immunological data are consistent with the possibility that viral proteins may not be the active component of the EV surface for target cell binding and infectivity. We conclude that the protection afforded by the smallpox vaccine anti-EV response is predominantly mediated not by direct neutralization but by isotype-dependent effector functions, such as complement recruitment for antibodies targeting B5 and A33.
Collapse
Affiliation(s)
| | | | - David Blum
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rowena Aguilar-Sino
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
| | - Michael Matho
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California, USA
| | - Xiangzhi Meng
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Steven Head
- DNA Array Core Facility and Consortium for Functional Glycomics, The Scripps Research Institute, La Jolla, California, USA
| | - Philip L. Felgner
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California, USA
| | - Dirk M. Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California, USA
| | | | | | - Dennis R. Burton
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
| | - Yan Xiang
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
50
|
Koegler P, Clayton A, Thissen H, Santos GNC, Kingshott P. The influence of nanostructured materials on biointerfacial interactions. Adv Drug Deliv Rev 2012; 64:1820-39. [PMID: 22705547 DOI: 10.1016/j.addr.2012.06.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 05/29/2012] [Accepted: 06/07/2012] [Indexed: 01/08/2023]
Abstract
Control over biointerfacial interactions in vitro and in vivo is the key to many biomedical applications: from cell culture and diagnostic tools to drug delivery, biomaterials and regenerative medicine. The increasing use of nanostructured materials is placing a greater demand on improving our understanding of how these new materials influence biointerfacial interactions, including protein adsorption and subsequent cellular responses. A range of nanoscale material properties influence these interactions, and material toxicity. The ability to manipulate both material nanochemistry and nanotopography remains challenging in its own right, however, a more in-depth knowledge of the subsequent biological responses to these new materials must occur simultaneously if they are ever to be affective in the clinic. We highlight some of the key technologies used for fabrication of nanostructured materials, examine how nanostructured materials influence the behavior of proteins and cells at surfaces and provide details of important analytical techniques used in this context.
Collapse
Affiliation(s)
- Peter Koegler
- Industrial Research Institute Swinburne, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | | | | | | | | |
Collapse
|