1
|
Hosseininejad-Chafi M, Eftekhari Z, Oghalaie A, Behdani M, Sotoudeh N, Kazemi-Lomedasht F. Nanobodies as innovative immune checkpoint modulators: advancing cancer immunotherapy. Med Oncol 2024; 42:36. [PMID: 39719469 DOI: 10.1007/s12032-024-02588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024]
Abstract
The immune system relies on a delicate balance between attacking harmful pathogens and preserving the body's own tissues, a balance maintained by immune checkpoints. These checkpoints play a critical role in preventing autoimmune diseases by restraining excessive immune responses while allowing the immune system to recognize and destroy abnormal cells, such as tumors. In recent years, immune checkpoint inhibitors (ICIs) have become central to cancer therapy, enabling the immune system to target and eliminate cancer cells that evade detection. Traditional antibodies, such as IgGs, have been widely used in immune therapies but are limited by their size and complexity. Nanobodies (Nbs), derived from camelid heavy-chain-only antibodies, offer a promising alternative. These small, stable antibody fragments retain the antigen-binding specificity of traditional antibodies but have enhanced solubility and the ability to target otherwise inaccessible epitopes. This review explores the use of Nbs as ICIs, emphasizing their potential in cancer immunotherapy and other immune-related treatments. Their unique structural properties and small size make Nbs highly effective tools for modulating immune responses, representing a novel approach in the evolving landscape of checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Mohammad Hosseininejad-Chafi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Nazli Sotoudeh
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.
| |
Collapse
|
2
|
Lauwers Y, De Groof TWM, Vincke C, Van Craenenbroeck J, Jumapili NA, Barthelmess RM, Courtoy G, Waelput W, De Pauw T, Raes G, Devoogdt N, Van Ginderachter JA. Imaging of tumor-associated macrophage dynamics during immunotherapy using a CD163-specific nanobody-based immunotracer. Proc Natl Acad Sci U S A 2024; 121:e2409668121. [PMID: 39693339 DOI: 10.1073/pnas.2409668121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Immunotherapies have emerged as an effective treatment option for immune-related diseases, such as cancer and inflammatory diseases. However, variations in patient responsiveness limit the broad applicability and success of these immunotherapies. Noninvasive whole-body imaging of the immune status of individual patients during immunotherapy could enable the prediction and monitoring of the patient's response, resulting in more personalized treatments. In this study, we developed a nanobody-based immunotracer targeting CD163, a receptor specifically expressed on macrophages. This anti-CD163 immunotracer bound to human and mouse CD163 with high affinity and specificity without competing for ligand binding. Furthermore, the tracer showed no unwanted immune cell activation and was nonimmunogenic. Upon radiolabeling of the anti-CD163 immunotracer, specific imaging of CD163+ macrophages using micro-single-photon emission computerized tomography/computed tomography or micro-positron emission tomography/CT was performed. The anti-CD163 immunotracer was able to stratify immunotherapy responders from nonresponders (NR) by visualizing differences in the intratumoral CD163+ TAM distribution in Lewis lung carcinoma-ovalbumin tumor-bearing mice receiving an anti-programmed cell death protein-1 (PD-1)/CSF1R combination treatment. Immunotherapy-responding mice showed a more homogeneous distribution of the PET signal in the middle of the tumor, while CD163+ TAMs were located at the tumor periphery in NR. As such, visualization of CD163+ TAM distribution in the tumor microenvironment could allow a prediction or follow-up of therapy response. Altogether, this study describes an immunotracer, specific for CD163+ macrophages, that allows same-day imaging and follow-up of these immune cells in the tumor microenvironment, providing a good basis for the prediction and follow-up of immunotherapy responses in cancer patients.
Collapse
Affiliation(s)
- Yoline Lauwers
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Timo W M De Groof
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Cécile Vincke
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Brussels 1050, Belgium
- Laboratory of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Jolien Van Craenenbroeck
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Brussels 1050, Belgium
- Laboratory of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Neema Ahishakiye Jumapili
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Brussels 1050, Belgium
- Laboratory of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Romina Mora Barthelmess
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Brussels 1050, Belgium
- Laboratory of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Guillaume Courtoy
- Department of Pathology, Universitair Ziekenhuis Brussel, Brussels B-1090, Belgium
- Laboratory of Experimental Pathology, Supporting Clinical Sciences, Vrije Universiteit Brussel, Brussels B-1090, Belgium
| | - Wim Waelput
- Department of Pathology, Universitair Ziekenhuis Brussel, Brussels B-1090, Belgium
- Laboratory of Experimental Pathology, Supporting Clinical Sciences, Vrije Universiteit Brussel, Brussels B-1090, Belgium
| | - Tessa De Pauw
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Geert Raes
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Brussels 1050, Belgium
- Laboratory of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Nick Devoogdt
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Brussels 1050, Belgium
- Laboratory of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
3
|
Jia F, Wang W, Tian Y, Zahra A, He Y, Ge C, Zhang T, Wang M, Gong J, Zhang G, Yang G, Yang W, Shi C, Wang J, Huang H, Cao X, Zeng Y, Wang N, Wang Z, Wang C, Jiang Y. Delivery of dendritic cells targeting 3M2e-HA2 nanoparticles with a CpG adjuvant via lysosomal escape of Salmonella enhances protection against H9N2 avian influenza virus. Poult Sci 2024; 104:104616. [PMID: 39631272 DOI: 10.1016/j.psj.2024.104616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024] Open
Abstract
Avian influenza virus (AIV) subtype H9N2 still poses a great threat to the poultry farming industry and public health worldwide, and the development of a new influenza vaccine that is safe and conservative and able to address influenza virus mutations is highly promising for application. HA2, the neck of the HA protein, and M2e, the extracellular N-terminal structural domain of the M2 protein, are conserved and effective protective antigens. In this study, the HA2 sequences were fused with three M2e copies (H9N2, H1N1 and H5N1) to the norovirus VP1 protein via the SpyTag-SpyCatcher platform to form self-assembled nanoparticles and display antigenic proteins on its surface, yielding pYL262. The chicken dendritic cells (DCs) targeting the nanobody phage-54 were then fused to HA2-3M2e to yield pYL327. Finally, a synthesized 20-repeat CpG adjuvant gene fragment was inserted into pYL327, resulting in the plasmid pYL331. All the constructed plasmids were then transformed into the sifA gene-deficient Salmonella vector χYL56 for oral immunization. The results showed that sifA-deficient Salmonella could efficiently increase antigen-specific mucosal sIgA antibody titers, especially in alveolar lavage samples, whereas the presence of the phage-54 nanobody could dramatically increase intracellular IFN-γ mRNA levels, indicating its ability to enhance the Th1-type immune response. Finally, the presence of the CpG adjuvant clearly increased T-cell proliferation and promoted DC activation, with elevated splenic TLR21 levels observed. Strikingly, after oral immunization with χYL56 (pYL331), chickens were protected against challenge with the G57 genotype H9N2 virus, which presented similar or even better levels of virus shedding and body weight gain compared with the commercial inactivated vaccine, providing a new option for controlling H9N2 virus infection in the future.
Collapse
Affiliation(s)
- Futing Jia
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wenfeng Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yawen Tian
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Ainul Zahra
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yingkai He
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chongbo Ge
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Tongyu Zhang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Mingyue Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jingshuo Gong
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Gerui Zhang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Guilian Yang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wentao Yang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chunwei Shi
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jianzhong Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Haibin Huang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Cao
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yang Zeng
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Nan Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Zhannan Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Chunfeng Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Yanlong Jiang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
4
|
Li X, Li Y, Xie A, Chen F, Wang J, Zhou J, Xu X, Xu Z, Wang Y, Qiu X. A potent and selective anti-glutathione peroxidase 4 nanobody as a ferroptosis inducer. Chem Sci 2024; 15:19420-19431. [PMID: 39568902 PMCID: PMC11575642 DOI: 10.1039/d4sc05448b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Glutathione peroxidase 4 (GPX4) plays a crucial role in the ferroptosis pathway, emerging as a potential drug target in the treatment of refractory tumors. Unfortunately, the development of GPX4-targeted treatment has been very limited due to the poor selectivity and drug-like properties of current GPX4 inhibitors. Here, we report a proof-of-concept study of potent anti-GPX4 nanobodies, successfully identified through immunizing Bactrian camels and constructing a phage library. Utilizing a cell-penetrating peptide fusion strategy, these nanobodies with high affinities to GPX4 efficiently internalized in cells and formed the basis for further applications. In particular, 12E significantly inhibited cellular GPX4 and consequently induced remarkable ferroptosis in cancer cells. Furthermore, 12E could impair zebrafish dorsal organizer formation in vivo, as evidenced by a phenotype comparable to that observed in zebrafish with the gpx4b gene knocked out. The new GPX4-inhibiting nanobody described here exhibits superior proteome-wide selectivity and a vastly improved safety profile compared to existing GPX4 inhibitors. These incredible features of 12E, as an anti-GPX4 nanobody, may not only contribute to ferroptosis-related anticancer treatment but also establish a new paradigm for nanobodies in drug development for traditionally undruggable targets.
Collapse
Affiliation(s)
- Xinyu Li
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Yaru Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China
| | - Aowei Xie
- School of Food Science and Engineering, Ocean University of China Qingdao 266003 China
| | - Fenglin Chen
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Jing Wang
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Ximing Xu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
- Marine Biomedical Research Institute of Qingdao, School of Medicine and Pharmacy, Ocean University of China Qingdao 266071 Shandong P. R. China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China
| | - Yong Wang
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Xue Qiu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| |
Collapse
|
5
|
Alexander E, Leong KW. Discovery of nanobodies: a comprehensive review of their applications and potential over the past five years. J Nanobiotechnology 2024; 22:661. [PMID: 39455963 PMCID: PMC11515141 DOI: 10.1186/s12951-024-02900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Nanobodies (Nbs) are antibody fragments derived from heavy-chain-only IgG antibodies found in the Camelidae family as well as cartilaginous fish. Their unique structural and functional properties, such as their small size, the ability to be engineered for high antigen-binding affinity, stability under extreme conditions, and ease of production, have made them promising tools for diagnostics and therapeutics. This potential was realized in 2018 with the approval of caplacizumab, the world's first Nb-based drug. Currently, Nbs are being investigated in clinical trials for a broad range of treatments, including targeted therapies against PDL1 and Epidermal Growth Factor Receptor (EGFR), cardiovascular diseases, inflammatory conditions, and neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. They are also being studied for their potential for detecting and imaging autoimmune conditions and infectious diseases such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A variety of methods are now available to generate target-specific Nbs quickly and efficiently at low costs, increasing their accessibility. This article examines these diverse applications of Nbs and their promising roles. Only the most recent articles published in the last five years have been used to summarize the most advanced developments in the field.
Collapse
Affiliation(s)
- Elena Alexander
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| |
Collapse
|
6
|
Lemmex AC, Allred J, Ostergard J, Trask J, Bui HN, Anderson MJM, Kopp B, Streeter O, Smiley AT, Babilonia-Díaz NS, Blazar BR, Higgins L, Gordon PM, Muretta JM, Gordon WR. Single-chain nanobody inhibition of Notch and avidity enhancement utilizing the β-pore forming toxin Aerolysin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.617501. [PMID: 39484510 PMCID: PMC11526928 DOI: 10.1101/2024.10.22.617501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Notch plays critical roles in developmental processes and disease pathogenesis, which has led to numerous efforts to modulate its function with small molecules and antibodies. Here we present a nanobody inhibitor of Notch signaling, derived from a synthetic phage-display library targeting the notch Negative Regulatory Region (NRR). The nanobody inhibits Notch signaling in a luciferase reporter assay and in Notch-dependent hematopoietic progenitor cell differentiation assay, despite a modest 19uM affinity for Notch. We addressed the low affinity by fusion to a membrane-associating domain derived from the β-Pore forming toxin Aerolysin, resulting in a significantly improved IC50 for Notch inhibition. The nanobody-aerolysin fusion inhibits proliferation of T-ALL cell lines with similar efficacy to other Notch pathway inhibitors. Overall, this study reports the development of a Notch inhibitory antibody, and demonstrates a proof-of-concept for a generalizable strategy to increase the efficacy and potency of low-affinity antibody binders.
Collapse
Affiliation(s)
| | | | | | - Jake Trask
- University of Minnesota, Twin Cities. Minneapolis, MN 55409
| | - Hannah N. Bui
- University of Minnesota, Twin Cities. Minneapolis, MN 55409
| | | | - Benjamin Kopp
- University of Minnesota, Twin Cities. Minneapolis, MN 55409
| | | | - Adam T. Smiley
- University of Minnesota, Twin Cities. Minneapolis, MN 55409
| | | | | | - LeAnn Higgins
- University of Minnesota, Twin Cities. Minneapolis, MN 55409
| | | | | | | |
Collapse
|
7
|
Rosen GA, Kirsch D, Nicks R, Kelley H, Mathias R, Cormier KA, Kubilus CA, Dec B, Stein TD, Alvarez VE, Alosco ML, McKee AC, Huber BR. SHARD: an improved method for staining and visualizing multiplex immunofluorescence in optically cleared postmortem human brain tissue. Front Neurosci 2024; 18:1474617. [PMID: 39445075 PMCID: PMC11496292 DOI: 10.3389/fnins.2024.1474617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Postmortem human brain tissue is a critical resource for studying neurodegenerative disease, providing critical insights into cellular morphology, pathology, and network connectivity. To improve standard microscopy and enable high-resolution, three-dimensional (3D) images of tissues at the subcellular level, tissue-clearing methods have been developed. These 3D images allow for the analysis of large regions of interest and can be used to study structural and spatial changes that occur during neurodegeneration. Additionally, 3D imaging facilitates the visualization of whole-cell morphology, especially in cells with long processes that would otherwise be truncated in single-plane images. Human brain tissue is especially challenging for tissue clearing due to the abundance of lipids in myelin and the need for optimal fixation and low postmortem intervals. Formaldehyde-based fixatives, commonly used in preserving tissue, hinder antibody binding by crosslinking important antibody epitopes, and fluorescent microscopy requires the incorporation of fluorescent labels through passive diffusion or electrophoresis. Recent studies have focused on optimally fixed human brain tissue with short postmortem intervals, limiting the general applicability of these methods. To address these challenges, we developed SHARD (SHIELD, antigen retrieval, and delipidation), a simple and widely applicable method for clearing and labeling human brain tissue, which can be applied to long-term banked human brain tissue preserved in formaldehyde. SHARD is a novel addition to the SHIELD tissue clarification method, combining antigen retrieval, tissue clearing, and staining of 200-μm sections from long-term banked human brain tissue. The SHARD method is effective for postmortem intervals (PMIs) ranging from 10 to 72 h in multiple neurodegenerative diseases and control samples. In this study, we demonstrate that the SHARD method significantly enhances the immunostaining of glial fibrillary acidic protein (GFAP), an astrocytic cytoskeletal marker. Overall, the combination of antigen retrieval and tissue delipidation holds great potential for achieving detailed 3D immunostaining in long-term formaldehyde-fixed postmortem human brain tissue, opening new avenues for research and discovery.
Collapse
Affiliation(s)
- Grace A. Rosen
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, United States
| | - Daniel Kirsch
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Raymond Nicks
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| | - Hunter Kelley
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| | - Rebecca Mathias
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Kerry A. Cormier
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, United States
| | - Caroline A. Kubilus
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, United States
| | - Bryan Dec
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| | - Thor D. Stein
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| | - Victor E. Alvarez
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, United States
| | - Michael L. Alosco
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- Department of Neurology, Boston Medical Center, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Ann C. McKee
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, United States
| | - Bertrand R. Huber
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| |
Collapse
|
8
|
Saleem MZ, Jahangir GZ, Saleem A, Zulfiqar A, Khan KA, Ercisli S, Ali B, Saleem MH, Saleem A. Production Technologies for Recombinant Antibodies: Insights into Eukaryotic, Prokaryotic, and Transgenic Expression Systems. Biochem Genet 2024:10.1007/s10528-024-10911-5. [PMID: 39287779 DOI: 10.1007/s10528-024-10911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Recombinant antibodies, a prominent class of recombinant proteins, are witnessing substantial growth in research and diagnostics. Recombinant antibodies are being produced employing diverse hosts ranging from highly complex eukaryotes, for instance, mammalian cell lines (and insects, fungi, yeast, etc.) to unicellular prokaryotic models like gram-positive and gram-negative bacteria. This review delves into these production methods, highlighting approaches like antibody phage display that employs bacteriophages for gene library creation. Recent studies emphasize monoclonal antibody generation through hybridoma technology, utilizing hybridoma cells from myeloma and B-lymphocytes. Transgenic plants and animals have emerged as sources for polyclonal and monoclonal antibodies, with transgenic animals preferred due to their human-like post-translational modifications and reduced immunogenicity risk. Chloroplast expression offers environmental safety by preventing transgene contamination in pollen. Diverse production technologies, such as stable cell pools and clonal cell lines, are available, followed by purification via techniques like affinity chromatography. The burgeoning applications of recombinant antibodies in medicine have led to their large-scale industrial production.
Collapse
Affiliation(s)
| | | | - Ammara Saleem
- Institute of Botany, University of the Punjab, Lahore, Pakistan.
| | - Asma Zulfiqar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, 25240, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, 25240, Erzurum, Türkiye
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- School of Science, Western Sydney University, Penrith, 2751, Australia
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar
| | - Aroona Saleem
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.
- Department of Microbiology, Dr. Ikram-Ul-Haq Institute of Industrial Biotechnology (IIIB), Government College University, Lahore, 54000, Pakistan.
| |
Collapse
|
9
|
Raja A, Kasana A, Verma V. Next-Generation Therapeutic Antibodies for Cancer Treatment: Advancements, Applications, and Challenges. Mol Biotechnol 2024:10.1007/s12033-024-01270-y. [PMID: 39222285 DOI: 10.1007/s12033-024-01270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
The field of cancer treatment has evolved significantly over the last decade with the emergence of next-generation therapeutic antibodies. Conventional treatments like chemotherapy pose significant challenges, including adverse side effects. Monoclonal antibodies have paved the way for more targeted and effective interventions. The evolution from chimeric to humanized and fully human antibodies has led to a reduction in immunogenicity and enhanced tolerance in vivo. The advent of next-generation antibodies, including bispecific antibodies, nanobodies, antibody-drug conjugates, glyco-engineered antibodies, and antibody fragments, represents a leap forward in cancer therapy. These innovations offer increased potency, adaptability, and reduced drug resistance. Challenges such as target validation, immunogenicity, and high production costs exist. However, technological advancements in antibody engineering techniques provide optimism for addressing these issues. The future promises a paradigm shift, where ongoing research will propel these powerful antibodies to the forefront, revolutionizing the fight against cancer and creating new preventive and curative treatments. This review provides an overview of three next-generation antibody-based molecules, namely bispecific antibodies, antibody-drug conjugates, and nanobodies that have shown promising results in cancer treatment. It discusses the evolution of antibodies from conventional forms to next-generation molecules, along with their applications in cancer treatment, production methods, and associated challenges. The review aims to offer researchers insights into the evolving landscape of next-generation antibody-based cancer therapeutics and their potential to revolutionize treatment strategies.
Collapse
Affiliation(s)
- Abhavya Raja
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, Uttar Pradesh, India
| | - Abhishek Kasana
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, Uttar Pradesh, India
| | - Vaishali Verma
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, Uttar Pradesh, India.
| |
Collapse
|
10
|
Zhang Y, Zhang Y, Zhang L, Liu Y. Oriented immobilization of nanobodies using SpyCatcher/SpyTag significantly enhances the capacity of affinity chromatography. J Chromatogr A 2024; 1730:465107. [PMID: 38905946 DOI: 10.1016/j.chroma.2024.465107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
The use of nanobodies (Nbs) in affinity chromatography for biomacromolecule purification is gaining popularity. However, high-performance Nb-based affinity resins are not readily available, mainly due to the lack of suitable immobilization methods. In this study, we explored an autocatalytic coupling strategy based on the SpyCatcher/SpyTag chemistry to achieve oriented immobilization of Nb ligands. To facilitate this approach, a variant cSpyCatcher003 (cSC003) was coupled onto agarose microspheres, providing a specific attachment site for SpyTagged nanobody ligands. The cSC003 easily purified from Escherichia coli through a two-step procedure, exhibits exceptional alkali resistance and structural recovery capability, highlighting its robustness as a linker in the coupling strategy. To validate the effectiveness of cSC003-derivatized support, we employed VHSA, a nanobody against human serum albumin (HSA), as the model ligand. Notably, the immobilization of SpyTagged VHSA onto the cSC003-derivatized support was achieved with a coupling efficiency of 90 %, significantly higher than that of traditional thiol-based coupling method. This improvement directly correlated to the preservation of the native conformation of nanobodies during the coupling process. In addition, the Spy-immobilized resin demonstrated better performance in the binding capacity, with a 3-fold improvement in capture efficiency, underscoring the advantages of the Spy immobilization strategy for oriented immobilization of VHSA ligands. Moreover, online purification and immobilization of SpyTagged VHSA from crude bacterial lysate was achieved using the cSC003-derivatized support. The resulting resin exhibited high binding specificity towards HSA, yielding a purity above 95 % directly from human serum, and maintained good stability throughout multiple purification cycles. These findings highlight the potential of the Spy immobilization strategy for developing Nb-based affinity chromatographic materials, with significant implications for biopharmaceutical downstream processes.
Collapse
Affiliation(s)
- Yuxiang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Luyao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongdong Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
11
|
Wang X, Sheng Y, Ji P, Deng Y, Sun Y, Chen Y, Nan Y, Hiscox JA, Zhou EM, Liu B, Zhao Q. A Broad-specificity Neutralizing Nanobody against Hepatitis E Virus Capsid Protein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:442-455. [PMID: 38905108 PMCID: PMC11299488 DOI: 10.4049/jimmunol.2300706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/03/2024] [Indexed: 06/23/2024]
Abstract
Hepatitis E virus (HEV) is a worldwide zoonotic and public health concern. The study of HEV biology is helpful for designing viral vaccines and drugs. Nanobodies have recently been considered appealing materials for viral biological research. In this study, a Bactrian camel was immunized with capsid proteins from different genotypes (1, 3, 4, and avian) of HEV. Then, a phage library (6.3 × 108 individual clones) was constructed using peripheral blood lymphocytes from the immunized camel, and 12 nanobodies against the truncated capsid protein of genotype 3 HEV (g3-p239) were screened. g3-p239-Nb55 can cross-react with different genotypes of HEV and block Kernow-C1/P6 HEV from infecting HepG2/C3A cells. To our knowledge, the epitope recognized by g3-p239-Nb55 was determined to be a novel conformational epitope located on the surface of viral particles and highly conserved among different mammalian HEV isolates. Next, to increase the affinity and half-life of the nanobody, it was displayed on the surface of ferritin, which can self-assemble into a 24-subunit nanocage, namely, fenobody-55. The affinities of fenobody-55 to g3-p239 were ∼20 times greater than those of g3-p239-Nb55. In addition, the half-life of fenobody-55 was nine times greater than that of g3-p239-Nb55. G3-p239-Nb55 and fenobody-55 can block p239 attachment and Kernow-C1/P6 infection of HepG2/C3A cells. Fenobody-55 can completely neutralize HEV infection in rabbits when it is preincubated with nonenveloped HEV particles. Our study reported a case in which a nanobody neutralized HEV infection by preincubation, identified a (to our knowledge) novel and conserved conformational epitope of HEV, and provided new material for researching HEV biology.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Veterinary Medicine, Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong, China
| | - Yamin Sheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pinpin Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingying Deng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiyang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Julian A. Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
12
|
Xu X, Ding Y, Dong Y, Yuan H, Xia P, Qu C, Ma J, Wang H, Zhang X, Zhao L, Li Z, Liang Z, Wang J. Nanobody-Engineered Biohybrid Bacteria Targeting Gastrointestinal Cancers Induce Robust STING-Mediated Anti-Tumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401905. [PMID: 38888519 PMCID: PMC11336900 DOI: 10.1002/advs.202401905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Bacteria can be utilized for cancer therapy owing to their preferential colonization at tumor sites. However, unmodified non-pathogenic bacteria carry potential risks due to their non-specific targeting effects, and their anti-tumor activity is limited when used as monotherapy. In this study, a biohybrid-engineered bacterial system comprising non-pathogenic MG1655 bacteria modified with CDH17 nanobodies on their surface and conjugated with photosensitizer croconium (CR) molecules is developed. The resultant biohybrid bacteria can efficiently home to CDH17-positive tumors, including gastric, pancreatic, and colorectal cancers, and significantly suppress tumor growth upon irradiation. More importantly, biohybrid bacteria-mediated photothermal therapy (PTT) induced abundant macrophage infiltration in a syngeneic murine colorectal model. Further, that the STING pathway is activated in tumor macrophages by the released bacterial nucleic acid after PTT is revealed, leading to the production of type I interferons. The addition of CD47 nanobody but not PD-1 antibody to the PTT regimen can eradicate the tumors and extend survival. This results indicate that bacteria endowed with tumor-specific selectivity and coupled with photothermal payloads can serve as an innovative strategy for low-immunogenicity cancers. This strategy can potentially reprogram the tumor microenvironment by inducing macrophage infiltration and enhancing the efficacy of immunotherapy targeting macrophages.
Collapse
Affiliation(s)
- Xiaolong Xu
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
- Integrated Chinese and Western Medicine Postdoctoral Research StationJinan UniversityGuangzhou510632China
| | - Youbin Ding
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
- Department of Medical ImagingThe Third Affiliated HospitalSouthern Medical University (Academy of Orthopedics Guangdong Province)Guangzhou510515China
| | - Yafang Dong
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
- Department of Medical ImagingThe Third Affiliated HospitalSouthern Medical University (Academy of Orthopedics Guangdong Province)Guangzhou510515China
| | - Haitao Yuan
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Chengming Qu
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Jingbo Ma
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Huifang Wang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Xiaodong Zhang
- Department of Medical ImagingThe Third Affiliated HospitalSouthern Medical University (Academy of Orthopedics Guangdong Province)Guangzhou510515China
| | - Liang Zhao
- Department of PathologyShunde Hospital, Southern Medical University (The First People's Hospital of Shunde)Foshan528308China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Zhijie Li
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Zhen Liang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Jigang Wang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
- Department of OncologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuan646000China
- Department of Traditional Chinese Medicine and School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
- State Key Laboratory of Antiviral DrugsSchool of PharmacyHenan UniversityKaifeng475004China
| |
Collapse
|
13
|
Hawkes JE, Al-Saedy M, Bouché N, Al-Saedy S, Drew DT, Song EJ. The Psoriasis Treatment Pipeline: An Overview and Update. Dermatol Clin 2024; 42:365-375. [PMID: 38796268 DOI: 10.1016/j.det.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Significant research advances in our understanding of psoriatic disease have led to the development of several highly selective, effective, and safe topical and systemic treatments. These treatments have led to unprecedented levels of disease clearance and control for most patients with psoriasis with cutaneous disease. However, there remains a need for improved treatments for those patients with recalcitrant disease, psoriatic arthritis, or nonplaque disease variants. Recently approved therapies and investigational products in ongoing clinical development programs that target IL-17A/F, IL-23, TYK2, PDE4, AhR or IL-36 cytokine signaling are improving the clinician's ability to care for a broader range of patients affected by psoriasis.
Collapse
Affiliation(s)
- Jason E Hawkes
- Department of Dermatology, Integrative Skin Science and Research, Pacific Skin Institute, 1495 River Park Drive, Sacramento, CA 95815, USA
| | - Miriam Al-Saedy
- Elson S. Floyd College of Medicine, 412 East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Nicole Bouché
- Elson S. Floyd College of Medicine, 412 East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Salsabeal Al-Saedy
- Elson S. Floyd College of Medicine, 412 East Spokane Falls Boulevard, Spokane, WA 99202, USA
| | - Delaney T Drew
- University Hospitals Regional Hospitals, 13207 Ravenna Road, Chardon, OH 44024, USA
| | - Eingun James Song
- Department of Dermatology, Frontier Dermatology, 15906 Mill Creek Boulevard #105, Mill Creek, WA 98012, USA.
| |
Collapse
|
14
|
Huynh TT, Feng Y, Meshaw R, Zhao XG, Rosenfeld L, Vaidyanathan G, Papo N, Zalutsky MR. PSMA-reactive NB7 single domain antibody fragment: A potential scaffold for developing prostate cancer theranostics. Nucl Med Biol 2024; 134-135:108913. [PMID: 38703588 DOI: 10.1016/j.nucmedbio.2024.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Single domain antibody fragments (sdAbs) are an appealing scaffold for radiopharmaceutical development due to their small size (~15 kDa), high solubility, high stability, and excellent tumor penetration. Previously, we developed NB7 sdAb, which has very high affinity for an epitope on PSMA that is different from those targeted by small molecule PSMA inhibitors. Herein, we evaluated NB7 after radioiodination using [*I]SGMIB (1,3,4-isomer) and iso-[*I]SGMIB (1,3,5-isomer), as well as their 211At-labeled analogues. METHODS [*I]SGMIB, iso-[*I]SGMIB, [211At]SAGMB, and iso-[211At]SAGMB conjugates of NB7 sdAb were synthesized and their binding affinity, cell uptake and internalization were assessed in PSMA+ PC3 PIP and PSMA- PC3 flu cells. Biodistribution studies were performed in mice bearing PSMA+ PC3 PIP xenografts. First, a single-label experiment evaluated the tissue distribution of a NB7 bearing a His6-tag (NB7H6) and labeled with iso-[125I]SGMIB. Three paired-label experiments then were performed to compare: a) NB7 labeled using [*I]SGMIB and iso-[*I]SGMIB, b) 131I- vs 211At-labeled NB7 conjugates and c) [125I]SGMIB-NB7H6 to the small molecule PSMA inhibitor [131I]YF2. RESULTS All NB7 radioconjugates bound specifically to PSMA with dissociation constants, Kd, in the low nM range (1.4-6.4 nM). An initial biodistribution study demonstrated good tumor uptake for iso-[125I]SGMIB-NB7H6 (7.2 ± 1.5 % ID/g at 1 h) and no deleterious effect of the His6-tag on renal activity levels, which declined to 3.1 ± 1.1 % ID/g by 4 h. Paired-label biodistribution found no distinction between the two SGMIB isomer NB7 conjugates with the [131I]SGMIB-NB7-to-iso-[125I]SGMIB-NB7 tumor uptake ratios not significantly different from unity: 1.06 ± 0.08 at 1 h, 1.04 ± 0.12 at 4 h, and 1.07 ± 0.09 at 24 h. Both isomer conjugates cleared rapidly from normal tissues and exhibited very low uptake in thyroid, lacrimal and salivary glands. Paired-label biodistribution of [131I]SGMIB-NB7H6 and [211At]SAGMB-NB7H6 demonstrated similar tumor uptake and kidney clearance for the two radioconjugates. However, levels of 211At in thyroid, stomach, salivary and lacrimal glands were significantly higher (P < 0.05) that those for 131I suggesting greater dehalogenation for [211At]SAGMB-NB7H6. Finally, co-administration of [125I]SGMIB-NB7H6 and [131I]YF2 demonstrated good tumor uptake for both with considerably more rapid renal clearance for the NB7 radioconjugate. CONCLUSION NB7 radioconjugates exhibited good accumulation in PSMA-positive xenografts with rapid clearance from kidney and other normal tissues. We conclude that NB7 is a potentially useful scaffold for developing PSMA-targeted theranostics with different characteristics than current small molecule and antibody-based approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Niv Papo
- Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
15
|
El Salamouni NS, Cater JH, Spenkelink LM, Yu H. Nanobody engineering: computational modelling and design for biomedical and therapeutic applications. FEBS Open Bio 2024. [PMID: 38898362 DOI: 10.1002/2211-5463.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Nanobodies, the smallest functional antibody fragment derived from camelid heavy-chain-only antibodies, have emerged as powerful tools for diverse biomedical applications. In this comprehensive review, we discuss the structural characteristics, functional properties, and computational approaches driving the design and optimisation of synthetic nanobodies. We explore their unique antigen-binding domains, highlighting the critical role of complementarity-determining regions in target recognition and specificity. This review further underscores the advantages of nanobodies over conventional antibodies from a biosynthesis perspective, including their small size, stability, and solubility, which make them ideal candidates for economical antigen capture in diagnostics, therapeutics, and biosensing. We discuss the recent advancements in computational methods for nanobody modelling, epitope prediction, and affinity maturation, shedding light on their intricate antigen-binding mechanisms and conformational dynamics. Finally, we examine a direct example of how computational design strategies were implemented for improving a nanobody-based immunosensor, known as a Quenchbody. Through combining experimental findings and computational insights, this review elucidates the transformative impact of nanobodies in biotechnology and biomedical research, offering a roadmap for future advancements and applications in healthcare and diagnostics.
Collapse
Affiliation(s)
- Nehad S El Salamouni
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Australia
| | - Jordan H Cater
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Australia
| | - Haibo Yu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Australia
- ARC Centre of Excellence in Quantum Biotechnology, University of Wollongong, Australia
| |
Collapse
|
16
|
Huang X, Li W, Cao X, Zhang Q, Lin Y, Xu S, Dong X, Liu P, Liu Y, He G, Luo K, Feng S. Generation and characterization of a nanobody against the avian influenza virus H7 subtype. Int J Biol Macromol 2024; 267:131458. [PMID: 38593899 DOI: 10.1016/j.ijbiomac.2024.131458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Avian influenza virus (AIV) H7N9 diseases have been recently reported, raising concerns about a potential pandemic. Thus, there is an urgent need for effective therapeutics for AIV H7N9 infections. Herein, camelid immunization and yeast two-hybrid techniques were used to identify potent neutralizing nanobodies (Nbs) targeting the H7 subtype hemagglutinin. First, we evaluated the binding specificity and hemagglutination inhibition activity of the screened Nbs against the H7 subtype hemagglutinin. Nb-Z77, with high hemagglutination inhibition activity was selected from the screened Nbs to optimize the yeast expression conditions and construct oligomeric forms of Nb-Z77 using various ligation methods. The oligomers Nb-Z77-DiGS, Nb-Z77-TriGS, Nb-Z77-Fc and Nb-Z77-Foldon were successfully constructed and expressed. Nb-Z77-DiGS and Nb-Z77-Foldon exhibited considerably greater activity than did Nb-Z77 against H7 subtype hemagglutinin, with median effective concentrations of 384.7 and 27.33 pM and binding affinity values of 213 and 5.21 pM, respectively. Nb-Z77-DiGS and Nb-Z77-Foldon completely inhibited the hemagglutination activity of the inactivated virus H7-Re1 at the lowest concentration of 0.938 μg/mL. This study screened a strain of Nb with high hemagglutination inhibition activity and enhanced its antiviral activity through oligomerization, which may have great potential for developing effective agents for the prevention, diagnosis, and treatment of AIV H7 subtype infection.
Collapse
Affiliation(s)
- Xiuqin Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weiye Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuewei Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qi Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yizhen Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Siqi Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinying Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peiqi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yutong Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ge He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaijian Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
17
|
Liu M, Jin D, Yu W, Yu J, Cao K, Cheng J, Zheng X, Wang A, Liu Y. Enhancing Tumor Immunotherapy by Multivalent Anti-PD-L1 Nanobody Assembled via Ferritin Nanocage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308248. [PMID: 38491904 PMCID: PMC11132087 DOI: 10.1002/advs.202308248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/12/2024] [Indexed: 03/18/2024]
Abstract
Increasing immunotherapy response rate and durability can lead to significant improvements in cancer care. To address this challenge, a novel multivalent immune checkpoint therapeutic platform is constructed through site-specific ligation of anti-PD-L1 nanobody (Nb) on ferritin (Ftn) nanocage. Nb-Ftn blocks PD-1/PD-L1 interaction and downregulates PD-L1 levels via endocytosis-induced degradation. In addition, the cage structure of Ftn allows encapsulation of indocyanine green (ICG), an FDA-approved dye. Photothermal treatment with Nb-Ftn@ICG induces immunogenic death of tumor cells, which improves systemic immune response via maturation of dendritic cells and enhanced infiltration of T cells. Moreover, Nb-Ftn encapsulation significantly enhances cellular uptake, tumor accumulation and retention of ICG. In vivo assays showed that this nanoplatform ablates the primary tumor, suppresses abscopal tumors and inhibits tumor metastasis, leading to a prolonged survival rate. This work presents a novel strategy for improving cancer immunotherapy using multivalent nanobody-ferritin conjugates as immunological targeting and enhancing carriers.
Collapse
Affiliation(s)
- Manman Liu
- Department of Pharmacythe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineDepartment of ChemistryUniversity of Science and Technology of ChinaHefei230001China
| | - Duo Jin
- Department of Pharmacythe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineDepartment of ChemistryUniversity of Science and Technology of ChinaHefei230001China
| | - Wenxin Yu
- Department of Pharmacythe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineDepartment of ChemistryUniversity of Science and Technology of ChinaHefei230001China
| | - Jiaji Yu
- Department of Pharmacythe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineDepartment of ChemistryUniversity of Science and Technology of ChinaHefei230001China
| | - Kaiming Cao
- Department of Pharmacythe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineDepartment of ChemistryUniversity of Science and Technology of ChinaHefei230001China
| | - Junjie Cheng
- Department of Pharmacythe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineDepartment of ChemistryUniversity of Science and Technology of ChinaHefei230001China
| | - Xiaohu Zheng
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesCenter for Advanced Interdisciplinary Science and Biomedicine of IHMDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Andrew Wang
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallas75230USA
| | - Yangzhong Liu
- Department of Pharmacythe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineDepartment of ChemistryUniversity of Science and Technology of ChinaHefei230001China
| |
Collapse
|
18
|
Xiong Q, Wang H, Shen Q, Wang Y, Yuan X, Lin G, Jiang P. The development of chimeric antigen receptor T-cells against CD70 for renal cell carcinoma treatment. J Transl Med 2024; 22:368. [PMID: 38637886 PMCID: PMC11025280 DOI: 10.1186/s12967-024-05101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
In this study, we investigated CD70 as a promising target for renal cell carcinoma (RCC) therapy and developed a potent chimeric antigen receptor T (CAR-T) cells for potential clinical testing. CD70, found to be highly expressed in RCC tumors, was associated with decreased survival. We generated CAR-T cells expressing VHH sequence of various novel nanobodies from immunized alpaca and a single-chain variable fragment (scFv) derived from human antibody (41D12). In our in vitro experiments, anti-CD70 CAR-T cells effectively eliminated CD70-positive tumor cells while sparing CD70-negative cells. The nanobody-based CAR-T cells demonstrated significantly higher production of cytokines such as IL-2, IFN-γ and TNF-ɑ during co-culture, indicating their potential for enhanced functionality. In xenograft mouse model, these CAR-T cells exhibited remarkable anti-tumor activity, leading to the eradication of RCC tumor cells. Importantly, human T cell expansion after infusion was significantly higher in the VHH groups compared to the scFv CAR-T group. Upon re-challenging mice with RCC tumor cells, the VHH CAR-T treated group remained tumor-free, suggesting a robust and long-lasting anti-tumor response. These findings provide strong support for the potential of nanobody-based CD70 CAR-T cells as a promising therapeutic option for RCC. This warrants further development and consideration for future clinical trials and applications.
Collapse
Affiliation(s)
- Qinghui Xiong
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China.
| | - Haiying Wang
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China.
| | - Qiushuang Shen
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Yan Wang
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Xiujie Yuan
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Guangyao Lin
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Pengfei Jiang
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| |
Collapse
|
19
|
Hu B, Ma X, Shi L, Liu T, Li L, Yao M, Li C, Jia B. Noninvasive Evaluation of Tumoral PD-L1 Using a Novel 99mTc-Labeled Nanobody Tracer with Rapid Renal Clearance. Mol Pharm 2024; 21:1977-1986. [PMID: 38395797 DOI: 10.1021/acs.molpharmaceut.3c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The expression level of PD-L1 in tumor tissue is considered one of the effective biomarkers to guide PD-1/PD-L1 therapy. Quantifying whole-body PD-L1 expression by SPECT imaging may help in selecting patients that potentially respond to PD-1/PD-L1 therapy. Nanobody is the smallest antibody fragment with antigen-binding ability that is well suited for radionuclide imaging. Nevertheless, high retention of radioactivity in the kidney may limit its clinical translation. The present study aimed to screen, design, and prepare a nanobody-based SPECT probe with rapid renal clearance to evaluate the PD-L1 expression level in vivo noninvasively. A phage library was constructed by immunizing alpaca with recombinant human PD-L1 protein, and 17 anti-PD-L1 nanobodies were screened by the phage display technique. After sequence alignment and flow cytometry analysis, APN09 was selected as the candidate nanobody, and a GGGC chelator was attached to its C-terminus for 99mTc labeling to prepare a SPECT imaging probe. The affinity and specificity of 99mTc-APN09 were evaluated by protein and cell-binding experiments, and SPECT imaging and biodistribution were performed in a mouse model with bilateral transplantation of A549 and A549PD-L1 tumors. The ability of 99mTc-APN09 to quantify the PD-L1 expression level in vivo was validated in tumor models with different PD-L1 expression levels. 99mTc-APN09 had a radiochemical purity higher than 99% and a binding equilibrium dissociation constant of 21.44 ± 1.65 nM with hPD-L1, showing high affinity. SPECT imaging results showed that 99mTc-APN09 could efficiently detect PD-L1-positive tumors within 0.5 h, and the quantitative results of SPECT were well correlated with the expression level of PD-L1 in cell lines. SPECT imaging and biodistribution results also showed that 99mTc-APN09 was rapidly cleared from the kidney in 2 h postinjection. 99mTc-APN09 was a simple and stable tool for visualizing PD-L1 expression in the whole body. In addition, due to its significant reduction in renal retention, it has better prospects for clinical translation.
Collapse
Affiliation(s)
- Biao Hu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Department of Nuclear Medicine, Molecular Imaging Lab, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiaopan Ma
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Linqing Shi
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Tianyu Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Liqiang Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Meinan Yao
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chenzhen Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Bing Jia
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
20
|
Albach FN, Burmester GR, Mucke J. [Therapeutic antibodies in rheumatology]. Z Rheumatol 2024; 83:98-104. [PMID: 37656186 DOI: 10.1007/s00393-023-01409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
Emil von Behring's serum therapy for diphtheria was the first therapeutic use of antibodies. More than 100 years later, a new era in the treatment of rheumatic diseases began in 1998 with the approval of infliximab, an antibody directed against tumor necrosis factor alpha (TNF alpha). The special feature of antibody therapy is the ability to bind and neutralize antigens in a highly specific manner. In addition, target cells can be eliminated by activation of the immune system. These properties of the immune system are exploited in rheumatology to eliminate inflammatory cytokines or antibody-producing B lymphocytes. The tolerability is usually good but potential side effects, such as reactivation of tuberculosis with anti-TNF alpha treatment must be considered. Currently, 20 different antibodies and fusion proteins have been approved in Germany for the treatment of various inflammatory rheumatic diseases. Biosimilars can contribute to a price reduction after the patent protection expires. Many additional target antigens are being investigated and further structural innovations (e.g., bispecific antibodies, nanobodies or coupling with small molecules) are being developed.
Collapse
Affiliation(s)
- Fredrik N Albach
- Klinik für Rheumatologie und klinische Immunologie, Charité Universitätsmedizin Berlin, Berlin, Deutschland
| | - Gerd-Rüdiger Burmester
- Klinik für Rheumatologie und klinische Immunologie, Charité Universitätsmedizin Berlin, Berlin, Deutschland
| | - Johanna Mucke
- Klinik für Rheumatologie, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
| |
Collapse
|
21
|
Heremans J, Maximilian Awad R, Bridoux J, Ertveldt T, Caveliers V, Madder A, Hoogenboom R, Devoogdt N, Ballet S, Hernot S, Breckpot K, Martin C. Sustained release of a human PD-L1 single-domain antibody using peptide-based hydrogels. Eur J Pharm Biopharm 2024; 196:114183. [PMID: 38246566 DOI: 10.1016/j.ejpb.2024.114183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Monoclonal antibodies (mAbs) targeting the immune checkpoint axis, which contains the programmed cell death protein-1 (PD-1) and its ligand PD-L1, revolutionized the field of oncology. Unfortunately, the large size of mAbs and the presence of an Fc fraction limit their tumor penetrative capacities and support off-target effects, potentially resulting in unresponsive patients and immune-related adverse events (irAEs) respectively. Single-domain antibodies (sdAbs) are ten times smaller than conventional mAbs and represent an emerging antibody subclass that has been proposed as next generation immune checkpoint inhibitor (ICI) therapeutics. They demonstrate favorable characteristics, such as an excellent stability, high antigen-binding affinity and an enhanced tumor penetration. Because sdAbs have a short half-life, methods to prolong their presence in the circulation and at the target site might be necessary in some cases to unfold their full therapeutic potential. In this study, we investigated a peptide-based hydrogel as an injectable biomaterial depot formulation for the sustained release of the human PD-L1 sdAb K2. We showed that a hydrogel composed of the amphipathic hexapeptide hydrogelator H-FQFQFK-NH2 prolonged the in vivo release of K2 after subcutaneous (s.c.) injection, up to at least 72 h, as monitored by SPECT/CT and fluorescence imaging. Additionally, after encapsulation in the hydrogel and s.c. administration, a significantly extended systemic presence and tumor uptake of K2 was observed in mice bearing a melanoma tumor expressing human PD-L1. Altogether, this study describes how peptide hydrogels can be exploited to provide the sustained release of sdAbs, thereby potentially enhancing its clinical and therapeutic effects.
Collapse
Affiliation(s)
- Julie Heremans
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Jessica Bridoux
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Vicky Caveliers
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Sophie Hernot
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| |
Collapse
|
22
|
Zhang X, Wang J, Tan Y, Chen C, Tang S, Zhao S, Qin Q, Huang H, Duan S. Nanobodies in cytokine‑mediated immunotherapy and immunoimaging (Review). Int J Mol Med 2024; 53:12. [PMID: 38063273 DOI: 10.3892/ijmm.2023.5336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Cytokines are the main regulators of innate and adaptive immunity, mediating communications between the cells of the immune system and regulating biological functions, including cell motility, differentiation, growth and apoptosis. Cytokines and cytokine receptors have been used in the treatment of tumors and autoimmune diseases, and to intervene in cytokine storms. Indeed, the use of monoclonal antibodies to block cytokine‑receptor interactions, as well as antibody‑cytokine fusion proteins has exhibited immense potential for the treatment of tumors and autoimmune diseases. Compared with these traditional types of antibodies, nanobodies not only maintain a high affinity and specificity, but also have the advantages of high thermal stability, a high capacity for chemical manipulation, low immunogenicity, good tissue permeability, rapid clearance and economic production. Thus, nanobodies have extensive potential for use in the diagnosis and treatment of cytokine‑related diseases. The present review summarizes the application of nanobodies in cytokine‑mediated immunotherapy and immunoimaging.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Jin Wang
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Ying Tan
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Chaoting Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shuang Tang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shimei Zhao
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Qiuhong Qin
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Hansheng Huang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Siliang Duan
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| |
Collapse
|
23
|
Carmès L, Bort G, Lux F, Seban L, Rocchi P, Muradova Z, Hagège A, Heinrich-Balard L, Delolme F, Gueguen-Chaignon V, Truillet C, Crowley S, Bello E, Doussineau T, Dougan M, Tillement O, Schoenfeld JD, Brown N, Berbeco R. AGuIX nanoparticle-nanobody bioconjugates to target immune checkpoint receptors. NANOSCALE 2024; 16:2347-2360. [PMID: 38113032 DOI: 10.1039/d3nr04777f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
This article presents bioconjugates combining nanoparticles (AGuIX) with nanobodies (VHH) targeting Programmed Death-Ligand 1 (PD-L1, A12 VHH) and Cluster of Differentiation 47 (CD47, A4 VHH) for active tumor targeting. AGuIX nanoparticles offer theranostic capabilities and an efficient biodistribution/pharmacokinetic profile (BD/PK), while VHH's reduced size (15 kDa) allows efficient tumor penetration. Site-selective sortagging and click chemistry were compared for bioconjugation. While both methods yielded bioconjugates with similar functionality, click chemistry demonstrated higher yield and could be used for the conjugation of various VHH. The specific targeting of AGuIX@VHH has been demonstrated in both in vitro and ex vivo settings, paving the way for combined targeted immunotherapies, radiotherapy, and cancer imaging.
Collapse
Affiliation(s)
- Léna Carmès
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France.
- NH TherAguix SA, Meylan 38240, France
| | - Guillaume Bort
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France.
- Institut Curie, PSL Research University, CNRS, UMR9187, INSERM, U1196, Chemistry and Modeling for the Biology of Cancer, F-91400, Orsay, France
- Université Paris-Saclay, CNRS, UMR9187, INSERM, U1196, Chemistry and Modeling for the Biology of Cancer, F-91400, Orsay, France
| | - François Lux
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France.
- Institut Universitaire de France (IUF), Paris, France
| | - Léa Seban
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston 02115, USA.
| | - Paul Rocchi
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France.
- NH TherAguix SA, Meylan 38240, France
| | - Zeinaf Muradova
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston 02115, USA.
| | - Agnès Hagège
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 69100, Villeurbanne, France
| | - Laurence Heinrich-Balard
- Université Lyon 1, CNRS, MATEIS, UMR5510, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - Frédéric Delolme
- Université Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS UAR3444, Inserm US8, SFR Biosciences, F-69007 Lyon, France
| | - Virginie Gueguen-Chaignon
- Université Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS UAR3444, Inserm US8, SFR Biosciences, F-69007 Lyon, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| | - Stephanie Crowley
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Elisa Bello
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | | - Michael Dougan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Olivier Tillement
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France.
| | - Jonathan D Schoenfeld
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston 02115, USA.
| | - Needa Brown
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston 02115, USA.
- Department of Physics, Northeastern University, Boston 02115, USA.
| | - Ross Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston 02115, USA.
| |
Collapse
|
24
|
Briolay T, Fresquet J, Meyer D, Kerfelec B, Chames P, Ishow E, Blanquart C. Specific Targeting of Mesothelin-Expressing Malignant Cells Using Nanobody-Functionalized Magneto-Fluorescent Nanoassemblies. Int J Nanomedicine 2024; 19:633-650. [PMID: 38269255 PMCID: PMC10807453 DOI: 10.2147/ijn.s435787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction Most current anti-cancer therapies are associated with major side effects due to a lack of tumor specificity. Appropriate vectorization of drugs using engineered nanovectors is known to increase local concentration of therapeutic molecules in tumors while minimizing their side effects. Mesothelin (MSLN) is a well-known tumor associated antigen overexpressed in many malignancies, in particular in malignant pleural mesothelioma (MPM), and various MSLN-targeting anticancer therapies are currently evaluated in preclinical and clinical assays. In this study, we described, for the first time, the functionalization of fluorescent organic nanoassemblies (NA) with a nanobody (Nb) targeting MSLN for the specific targeting of MSLN expressing MPM cancer cells. Methods Cell lines from different cancer origin expressing or not MSLN were used. An Nb directed against MSLN was coupled to fluorescent NA using click chemistry. A panel of endocytosis inhibitors was used to study targeted NA internalization by cells. Cancer cells were grown in 2D or 3D and under a flow to evaluate the specificity of the targeted NA. Binding and internalization of the targeted NA were studied using flow cytometry, confocal microscopy and transmission electron microscopy. Results We show that the targeted NA specifically bind to MSLN-expressing tumor cells. Moreover, such functionalized NA appear to be internalized more rapidly and in significantly larger proportions compared to naked ones in MSLN+ MPM cells, thereby demonstrating both the functionality and interest of the active targeting strategy. We demonstrated that targeted NA are mainly internalized through a clathrin-independent/dynamin-dependent endocytosis pathway and are directed to lysosomes for degradation. A 3D cell culture model based on MSLN-expressing multicellular tumor spheroids reveals NA penetration in the first superficial layers. Conclusion Altogether, these results open the path to novel anticancer strategies based on MSLN-activated internalization of NA incorporating drugs to promote specific accumulation of active treatments in tumors.
Collapse
Affiliation(s)
- Tina Briolay
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, Nantes, F-44000, France
| | - Judith Fresquet
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, Nantes, F-44000, France
| | - Damien Meyer
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Brigitte Kerfelec
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Patrick Chames
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Eléna Ishow
- Nantes Université, CNRS, CEISAM, UMR 6230, Nantes, F-44000, France
| | - Christophe Blanquart
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, Nantes, F-44000, France
| |
Collapse
|
25
|
Babamohamadi M, Mohammadi N, Faryadi E, Haddadi M, Merati A, Ghobadinezhad F, Amirian R, Izadi Z, Hadjati J. Anti-CTLA-4 nanobody as a promising approach in cancer immunotherapy. Cell Death Dis 2024; 15:17. [PMID: 38191571 PMCID: PMC10774412 DOI: 10.1038/s41419-023-06391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
Cancer is one of the most common diseases and causes of death worldwide. Since common treatment approaches do not yield acceptable results in many patients, developing innovative strategies for effective treatment is necessary. Immunotherapy is one of the promising approaches that has been highly regarded for preventing tumor recurrence and new metastases. Meanwhile, inhibiting immune checkpoints is one of the most attractive methods of cancer immunotherapy. Cytotoxic T lymphocyte-associated protein-4 (CTLA-4) is an essential immune molecule that plays a vital role in cell cycle modulation, regulation of T cell proliferation, and cytokine production. This molecule is classically expressed by stimulated T cells. Inhibition of overexpression of immune checkpoints such as CTLA-4 receptors has been confirmed as an effective strategy. In cancer immunotherapy, immune checkpoint-blocking drugs can be enhanced with nanobodies that target immune checkpoint molecules. Nanobodies are derived from the variable domain of heavy antibody chains. These small protein fragments have evolved entirely without a light chain and can be used as a powerful tool in imaging and treating diseases with their unique structure. They have a low molecular weight, which makes them smaller than conventional antibodies while still being able to bind to specific antigens. In addition to low molecular weight, specific binding to targets, resistance to temperature, pH, and enzymes, high ability to penetrate tumor tissues, and low toxicity make nanobodies an ideal approach to overcome the disadvantages of monoclonal antibody-based immunotherapy. In this article, while reviewing the cellular and molecular functions of CTLA-4, the structure and mechanisms of nanobodies' activity, and their delivery methods, we will explain the advantages and challenges of using nanobodies, emphasizing immunotherapy treatments based on anti-CTLA-4 nanobodies.
Collapse
Affiliation(s)
- Mehregan Babamohamadi
- Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nastaran Mohammadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Faryadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Haddadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhossein Merati
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Laboratory Sciences, School of Paramedical, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farbod Ghobadinezhad
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roshanak Amirian
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Wemlinger SM, Cambier JC. Therapeutic tactics for targeting B lymphocytes in autoimmunity and cancer. Eur J Immunol 2024; 54:e2249947. [PMID: 37816494 DOI: 10.1002/eji.202249947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
B lymphocytes have become a very popular therapeutic target in a number of autoimmune indications due to their newly appreciated roles, and approachability, in these diseases. Many of the therapies now applied in autoimmunity were initially developed to deplete malignant B cells. These strategies have also been found to benefit patients suffering from such autoimmune diseases as multiple sclerosis, type I diabetes, systemic lupus erythematosus, and rheumatoid arthritis, to name a few. These observations have supported the expansion of research addressing the mechanistic contributions of B cells in these diseases, as well as blossoming of therapeutics that target them. This review seeks to summarize cutting-edge modalities for targeting B cells, including monoclonal antibodies, bispecific antibodies, antibody-drug conjugates, chimeric antigen receptor-T cells, and small molecule inhibitors. Efforts to refine B-cell targeted therapy to eliminate only pathogenic autoreactive cells will be addressed as well as the potential for future B-cell-based cellular therapeutics. Finally, we also address approaches that seek to silence B-cell function without depletion.
Collapse
Affiliation(s)
- Scott M Wemlinger
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
27
|
Ding Z, Sun S, Wang X, Yang X, Shi W, Huang X, Xie S, Mo F, Hou X, Liu A, Jiang X, Tang Z, Lu X. Nanobody-based trispecific T cell engager (Nb-TriTE) enhances therapeutic efficacy by overcoming tumor-mediated immunosuppression. J Hematol Oncol 2023; 16:115. [PMID: 38031188 PMCID: PMC10688028 DOI: 10.1186/s13045-023-01507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND T cell engagers (TCEs) have been established as an emerging modality for hematologic malignancies, but solid tumors remain refractory. However, the upregulation of programmed cell death 1 (PD-1) is correlated with T cell dysfunction that confer tumor-mediated immunosuppression. Developing a novel nanobody-based trispecific T cell engager (Nb-TriTE) would be a potential strategy to improve therapeutic efficacy. METHODS Given the therapeutic potential of nanobodies (Nbs), we first screened Nb targeting fibroblast activation protein (FAP) and successfully generated a Nb-based bispecific T cell engager (Nb-BiTE) targeting FAP. Then, we developed a Nb-TriTE by fusing an anti-PD-1 Nb to the Nb-BiTE. The biological activity and antitumor efficacy of the Nb-TriTE were evaluated in vitro and in both cell line-derived and patient-derived xenograft mouse models. RESULTS We had for the first time successfully selected a FAP Nb for the generation of novel Nb-BiTE and Nb-TriTE, which showed good binding ability to their targets. Nb-TriTE not only induced robust tumor antigen-specific killing, potent T cell activation and enhanced T cell function in vitro, but also suppressed tumor growth, improved survival and mediated more T cell infiltration than Nb-BiTE in mouse models of different solid tumors without toxicity. CONCLUSIONS This novel Nb-TriTE provides a promising and universal platform to overcome tumor-mediated immunosuppression and improve patient outcomes in the future.
Collapse
Affiliation(s)
- Ziqiang Ding
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Shuyang Sun
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaomei Yang
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Wei Shi
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xianing Huang
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Shenxia Xie
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Fengzhen Mo
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoqiong Hou
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Aiqun Liu
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhuoran Tang
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China.
| | - Xiaoling Lu
- School of Basic Medical Sciences/College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/Laboratory Animal Center/Pharmaceutical College/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
28
|
Zhang L, Rao Z. Structural biology and inhibition of the Mtb cell wall glycoconjugates biosynthesis on the membrane. Curr Opin Struct Biol 2023; 82:102670. [PMID: 37542906 DOI: 10.1016/j.sbi.2023.102670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Glycoconjugates are the dominant components of the Mycobacterium tuberculosis cell wall. These glycoconjugates are essential for the viability of Mtb and attribute to drug resistance and virulence during infection. The assembly and maturation of the cell wall largely relies on the Mtb plasma membrane. A significant number of membrane-bound glycosyltransferases (GTs) and transporters play pivotal roles in forming the complex glycoconjugates and are targeted by the first-line anti-TB drug and potent drug candidates. Here we summarize the latest structural biology of mycobacterial GTs and transporters, and describe the modes of action of drug and drug candidates that are of substantial clinical value in anti-TB chemotherapeutics.
Collapse
Affiliation(s)
- Lu Zhang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Zihe Rao
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Liu R, Zhu M, Chen J, Gai J, Huang J, Zhou Y, Wan Y, Tu C. Identification and Characterization of a Novel Nanobody Against Human CTGF to Reveal Its Antifibrotic Effect in an in vitro Model of Liver Fibrosis. Int J Nanomedicine 2023; 18:5407-5422. [PMID: 37753068 PMCID: PMC10519214 DOI: 10.2147/ijn.s428430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Background No agents are currently available for the treatment or reversal of liver fibrosis. Novel antifibrotic therapies for chronic liver diseases are thus urgently needed. Connective tissue growth factor (CTGF) has been shown to contributes profoundly to liver fibrogenesis, which makes CTGF as a promising target for developing antifibrotic agents. Methods In this study, we identified a novel nanobody (Nb) against human CTGF (anti-CTGF Nb) by phage display using an immunized camel, which showed high affinity and specificity in vitro. LX-2 cells, the immortalized human hepatic stellate cells, were induced by transforming growth factor beta1 (TGFβ1) as an in vitro model of liver fibrosis to verify the antifibrotic activity of the anti-CTGF Nb. Results Our data demonstrated that anti-CTGF Nb effectively alleviated TGFβ1-induced LX-2 cell proliferation, activation, and migration, and promoted the apoptosis of activated LX-2 cells in response to TGFβ1. Moreover, the anti-CTGF Nb remarkably reduced the levels of TGFβ1, Smad2, and Smad3 expression in LX-2 stellate cells stimulated by TGFβ1. Conclusion Taken together, we successfully identified a novel Nb against human CTGF, which exhibited antifibrotic effects in vitro by regulating the biological functions of human stellate cells LX-2.
Collapse
Affiliation(s)
- Rong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Min Zhu
- Shanghai Novamab Biopharmaceuticals Co., Ltd, Shanghai, 201318, People's Republic of China
| | - Jiaojiao Chen
- Department of Gastroenterology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, 200434, People's Republic of China
| | - Junwei Gai
- Shanghai Novamab Biopharmaceuticals Co., Ltd, Shanghai, 201318, People's Republic of China
| | - Jing Huang
- Shanghai Novamab Biopharmaceuticals Co., Ltd, Shanghai, 201318, People's Republic of China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd, Shanghai, 201318, People's Republic of China
| | - Chuantao Tu
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, People's Republic of China
| |
Collapse
|
30
|
Lee BW, Moon SJ. Inflammatory Cytokines in Psoriatic Arthritis: Understanding Pathogenesis and Implications for Treatment. Int J Mol Sci 2023; 24:11662. [PMID: 37511421 PMCID: PMC10381020 DOI: 10.3390/ijms241411662] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Psoriatic arthritis (PsA) is a persistent, inflammatory disease that affects individuals with psoriasis, arthritis, and enthesitis. Research has demonstrated that inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-23 (IL-23), and interleukin-17 (IL-17) play a pivotal role in both the onset and progression of PsA. These cytokines are generated by activated immune cells and stimulate the attraction of inflammatory cells to the synovium and joint tissues, resulting in the deterioration of cartilage and bone. The blocking of these cytokines has become a successful treatment strategy for PsA, as biological drugs that inhibit TNF-α, IL-23, and IL-17 have demonstrated notable clinical benefits. The association between PsA and other types of inflammatory cytokines or chemokines, excluding TNF-α, IL-23, and IL-17, has been extensively investigated in numerous studies. These findings may provide a chance for the discovery of novel therapeutic agents targeting other molecules, distinct from the currently approved biologics and targeted synthetic disease-modifying anti-rheumatic drugs. In this review, we discuss the current understanding of the role of inflammatory cytokines in PsA pathogenesis and clinical implications of targeting these cytokines for PsA treatment.
Collapse
Affiliation(s)
- Bong-Woo Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Republic of Korea
| |
Collapse
|
31
|
Feng X, Wang H. Emerging Landscape of Nanobodies and Their Neutralizing Applications against SARS-CoV-2 Virus. ACS Pharmacol Transl Sci 2023; 6:925-942. [PMID: 37470012 PMCID: PMC10275483 DOI: 10.1021/acsptsci.3c00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 07/21/2023]
Abstract
The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the coronavirus disease 2019 (COVID-19) has significantly altered people's way of life. Despite widespread knowledge of vaccination, mask use, and avoidance of close contact, COVID-19 is still spreading around the world. Numerous research teams are examining the SARS-CoV-2 infection process to discover strategies to identify, prevent, and treat COVID-19 to limit the spread of this chronic coronavirus illness and restore lives to normalcy. Nanobodies have advantages over polyclonal and monoclonal antibodies (Ab) and Ab fragments, including reduced size, high stability, simplicity in manufacture, compatibility with genetic engineering methods, and lack of solubility and aggregation issues. Recent studies have shown that nanobodies that target the SARS-CoV-2 receptor-binding domain and disrupt ACE2 interactions are helpful in the prevention and treatment of SARS-CoV-2-infected animal models, despite the lack of evidence in human patients. The creation and evaluation of nanobodies, as well as their diagnostic and therapeutic applications against COVID-19, are discussed in this paper.
Collapse
Affiliation(s)
- Xuemei Feng
- Department
of Microbiology and Immunology, College
of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Hu Wang
- Department
of Microbiology and Immunology, College
of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore 21215, United States
| |
Collapse
|
32
|
Narbona J, Hernández-Baraza L, Gordo RG, Sanz L, Lacadena J. Nanobody-Based EGFR-Targeting Immunotoxins for Colorectal Cancer Treatment. Biomolecules 2023; 13:1042. [PMID: 37509078 PMCID: PMC10377705 DOI: 10.3390/biom13071042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Immunotoxins (ITXs) are chimeric molecules that combine the specificity of a targeting domain, usually derived from an antibody, and the cytotoxic potency of a toxin, leading to the selective death of tumor cells. However, several issues must be addressed and optimized in order to use ITXs as therapeutic tools, such as the selection of a suitable tumor-associated antigen (TAA), high tumor penetration and retention, low kidney elimination, or low immunogenicity of foreign proteins. To this end, we produced and characterized several ITX designs, using a nanobody against EGFR (VHH 7D12) as the targeting domain. First, we generated a nanoITX, combining VHH 7D12 and the fungal ribotoxin α-sarcin (αS) as the toxic moiety (VHHEGFRαS). Then, we incorporated a trimerization domain (TIEXVIII) into the construct, obtaining a trimeric nanoITX (TriVHHEGFRαS). Finally, we designed and characterized a bispecific ITX, combining the VHH 7D12 and the scFv against GPA33 as targeting domains, and a deimmunized (DI) variant of α-sarcin (BsITXαSDI). The results confirm the therapeutic potential of α-sarcin-based nanoITXs. The incorporation of nanobodies as target domains improves their therapeutic use due to their lower molecular size and binding features. The enhanced avidity and toxic load in the trimeric nanoITX and the combination of two different target domains in the bispecific nanoITX allow for increased antitumor effectiveness.
Collapse
Affiliation(s)
- Javier Narbona
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Luisa Hernández-Baraza
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
- University Institute of Biomedical and Health Research (IUIBS), Las Palmas University, 35016 Las Palmas de Gran Canaria, Spain
| | - Rubén G Gordo
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute, Hospital Universitario Puerta de Hierro, Majadahonda, 28222 Madrid, Spain
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
33
|
Bocancia-Mateescu LA, Stan D, Mirica AC, Ghita MG, Stan D, Ruta LL. Nanobodies as Diagnostic and Therapeutic Tools for Cardiovascular Diseases (CVDs). Pharmaceuticals (Basel) 2023; 16:863. [PMID: 37375810 PMCID: PMC10301117 DOI: 10.3390/ph16060863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this review is to summarize some of the most recent work in the field of cardiovascular disease (CVD) diagnosis and therapy, focusing mainly on the role of nanobodies in the development of non-invasive imaging methods, diagnostic devices, and advanced biotechnological therapy tools. In the context of the increased number of people suffering from CVDs due to a variety of factors such as sedentariness, poor nutrition, stress, and smoking, there is an urgent need for new and improved diagnostic and therapeutic methods. Nanobodies can be easily produced in prokaryotes, lower eukaryotes, and plant and mammalian cells, and offer great advantages. In the diagnosis domain, they are mainly used as labeled probes that bind to certain surface receptors or other target molecules and give important information on the severity and extent of atherosclerotic lesions, using imaging methods such as contrast-enhanced ultrasound molecular imaging (CEUMI), positron emission tomography (PET), single-photon emission computed tomography coupled with computed tomography (SPECT/CT), and PET/CT. As therapy tools, nanobodies have been used either for transporting drug-loaded vesicles to specific targets or as inhibitors for certain enzymes and receptors, demonstrated to be involved in various CVDs.
Collapse
Affiliation(s)
| | - Dana Stan
- DDS Diagnostic, 7 Vulcan Judetu, 031427 Bucharest, Romania; (L.-A.B.-M.); (D.S.); (A.-C.M.); (M.G.G.); (D.S.)
- Medicine Doctoral School, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Andreea-Cristina Mirica
- DDS Diagnostic, 7 Vulcan Judetu, 031427 Bucharest, Romania; (L.-A.B.-M.); (D.S.); (A.-C.M.); (M.G.G.); (D.S.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Miruna Gabriela Ghita
- DDS Diagnostic, 7 Vulcan Judetu, 031427 Bucharest, Romania; (L.-A.B.-M.); (D.S.); (A.-C.M.); (M.G.G.); (D.S.)
| | - Diana Stan
- DDS Diagnostic, 7 Vulcan Judetu, 031427 Bucharest, Romania; (L.-A.B.-M.); (D.S.); (A.-C.M.); (M.G.G.); (D.S.)
| | - Lavinia Liliana Ruta
- Faculty of Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania
| |
Collapse
|
34
|
Kaewchim K, Glab-ampai K, Mahasongkram K, Saenlom T, Thepsawat W, Chulanetra M, Choowongkomon K, Sookrung N, Chaicumpa W. Neutralizing and Enhancing Epitopes of the SARS-CoV-2 Receptor-Binding Domain (RBD) Identified by Nanobodies. Viruses 2023; 15:1252. [PMID: 37376552 PMCID: PMC10301551 DOI: 10.3390/v15061252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Engineered nanobodies (VHs) to the SARS-CoV-2 receptor-binding domain (RBD) were generated using phage display technology. A recombinant Wuhan RBD served as bait in phage panning to fish out nanobody-displaying phages from a VH/VHH phage display library. Sixteen phage-infected E. coli clones produced nanobodies with 81.79-98.96% framework similarity to human antibodies; thus, they may be regarded as human nanobodies. Nanobodies of E. coli clones 114 and 278 neutralized SARS-CoV-2 infectivity in a dose-dependent manner; nanobodies of clones 103 and 105 enhanced the virus's infectivity by increasing the cytopathic effect (CPE) in an infected Vero E6 monolayer. These four nanobodies also bound to recombinant Delta and Omicron RBDs and native SARS-CoV-2 spike proteins. The neutralizing VH114 epitope contains the previously reported VYAWN motif (Wuhan RBD residues 350-354). The linear epitope of neutralizing VH278 at Wuhan RBD 319RVQPTESIVRFPNITN334 is novel. In this study, for the first time, we report SARS-CoV-2 RBD-enhancing epitopes, i.e., a linear VH103 epitope at RBD residues 359NCVADVSVLYNSAPFFTFKCYG380, and the VH105 epitope, most likely conformational and formed by residues in three RBD regions that are spatially juxtaposed upon the protein folding. Data obtained in this way are useful for the rational design of subunit SARS-CoV-2 vaccines that should be devoid of enhancing epitopes. VH114 and VH278 should be tested further for clinical use against COVID-19.
Collapse
Affiliation(s)
- Kanasap Kaewchim
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand;
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; (K.G.-a.); (K.M.); (T.S.); (W.T.); (M.C.); (N.S.)
| | - Kittirat Glab-ampai
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; (K.G.-a.); (K.M.); (T.S.); (W.T.); (M.C.); (N.S.)
| | - Kodchakorn Mahasongkram
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; (K.G.-a.); (K.M.); (T.S.); (W.T.); (M.C.); (N.S.)
| | - Thanatsaran Saenlom
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; (K.G.-a.); (K.M.); (T.S.); (W.T.); (M.C.); (N.S.)
| | - Watayagorn Thepsawat
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; (K.G.-a.); (K.M.); (T.S.); (W.T.); (M.C.); (N.S.)
| | - Monrat Chulanetra
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; (K.G.-a.); (K.M.); (T.S.); (W.T.); (M.C.); (N.S.)
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Sciences, Kasetsart University, Bangkok 10900, Thailand;
| | - Nitat Sookrung
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; (K.G.-a.); (K.M.); (T.S.); (W.T.); (M.C.); (N.S.)
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; (K.G.-a.); (K.M.); (T.S.); (W.T.); (M.C.); (N.S.)
| |
Collapse
|
35
|
Castrignano C, Di Scipio F, Franco F, Mognetti B, Berta GN. Reviving a Classic Antigen with a Cutting-Edge Approach: Nanobodies for HER2+ Breast Cancer. Pharmaceuticals (Basel) 2023; 16:794. [PMID: 37375741 PMCID: PMC10302560 DOI: 10.3390/ph16060794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The serendipitous discovery of nanobodies (NBs) around two decades ago opened the door to new possibilities for innovative strategies, particularly in cancer treatment. These antigen-binding fragments are derived from heavy-chain-only antibodies naturally found in the serum of camelids and sharks. NBs are an appealing agent for the progress of innovative therapeutic strategies because they combine the advantageous assets of smaller molecules and conventional monoclonal antibodies (mAbs). Moreover, the possibility to produce NBs using bacterial systems reduces manufacturing expenses and speeds up the production process, making them a feasible option for the development of new bio-drugs. Several NBs have been developed over the past 10 years and are currently being tested in clinical trials for various human targets. Here, we provide an overview of the notable structural and biochemical characteristics of NBs, particularly in their application against HER2, an extracellular receptor that often gets aberrantly activated during breast cancer tumorigenesis. The focus is on the recent advancements in diagnostic and therapeutic research up to the present date.
Collapse
Affiliation(s)
- Chiara Castrignano
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (C.C.); (F.D.S.); (F.F.)
| | - Federica Di Scipio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (C.C.); (F.D.S.); (F.F.)
| | - Francesco Franco
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (C.C.); (F.D.S.); (F.F.)
| | - Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Giovanni Nicolao Berta
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (C.C.); (F.D.S.); (F.F.)
| |
Collapse
|
36
|
Zhou Z, Wang Y, Shao Z, Zhang G, Jiang H, Tang Y, Huang Z, Zhu Y, Li J. A multiparametric fluorescent visualization approach for detecting drug resistance in living cancer cells. Talanta 2023; 259:124564. [PMID: 37080074 DOI: 10.1016/j.talanta.2023.124564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
Drug resistance is a worldwide health care crisis which impedes disease treatment and increases financial burden, especially for its multifactorial nature and high complexity. Herein, we developed a multiparametric approach to visualize and detect drug resistance in living cancer cells, through the combination of DNA-templated covalent protein labeling strategy and fluorescent resonance energy transfer technique. Gefitinib resistance in non-small cell lung cancer caused by mesenchymal-epidermal transition factor (Met) overexpression and hyperactivation was investigated as a proof-of-concept. Unlike the traditional single-factor investigation, the proposed approach evaluated the contribution of three important parameters towards the resistance, including the changes of Met expression level, the homodimerization of Met with itself and the heterodimerization of Met with epidermal growth factor receptor (EGFR). A multiple regression model based on these three parameters was tentatively established for evaluation of the resistance level of laboratory-developed resistant cells and evaluation of the resistance level of patient-derived cells. Such an approach facilitates a quick identification of a drug resistance, to evaluate not only the resistance level but also the resistance mechanism.
Collapse
Affiliation(s)
- Zhilan Zhou
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Ya Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Zhengtao Shao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Guixi Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Hang Jiang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yiyuan Tang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Zening Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Yingdi Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Juan Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
37
|
He Q, McCoy MR, Yang H, Lin M, Cui X, Zhao S, Morisseau C, Li D, Hammock BD. Mix-and-Read Nanobody-Based Sandwich Homogeneous Split-Luciferase Assay for the Rapid Detection of Human Soluble Epoxide Hydrolase. Anal Chem 2023; 95:6038-6045. [PMID: 36972550 PMCID: PMC10335774 DOI: 10.1021/acs.analchem.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The soluble epoxide hydrolase (sEH) is possibly both a marker for and target of numerous diseases. Herein, we describe a homogeneous mix-and-read assay for the detection of human sEH based on using split-luciferase detection coupled with anti-sEH nanobodies. Selective anti-sEH nanobodies were individually fused with NanoLuc Binary Technology (NanoBiT), which consists of a large and small portion of NanoLuc (LgBiT and SmBiT, respectively). Different orientations of the LgBiT and SmBiT-nanobody fusions were expressed and investigated for their ability to reform the active NanoLuc in the presence of the sEH. After optimization, the linear range of the assay could reach 3 orders of magnitude with a limit of detection (LOD) of 1.4 ng/mL. The assay has a high sensitivity to human sEH and reached a similar detection limit to our previously reported conventional nanobody-based ELISA. The procedure of the assay was faster (30 min total) and easy to operate, providing a more flexible and simple way to monitor human sEH levels in biological samples. In general, the immunoassay proposed here offers a more efficient detection and quantification approach that can be easily adapted to numerous macromolecules.
Collapse
Affiliation(s)
- Qiyi He
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, California, 95616, United States
| | - Mark R. McCoy
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, California, 95616, United States
| | - Huiyi Yang
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, California, 95616, United States
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Mingxia Lin
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiping Cui
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Christophe Morisseau
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, California, 95616, United States
| | - Dongyang Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, California, 95616, United States
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, California, 95616, United States
| |
Collapse
|
38
|
Jin BK, Odongo S, Radwanska M, Magez S. NANOBODIES®: A Review of Diagnostic and Therapeutic Applications. Int J Mol Sci 2023; 24:5994. [PMID: 36983063 PMCID: PMC10057852 DOI: 10.3390/ijms24065994] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
NANOBODY® (a registered trademark of Ablynx N.V) molecules (Nbs), also referred to as single domain-based VHHs, are antibody fragments derived from heavy-chain only IgG antibodies found in the Camelidae family. Due to their small size, simple structure, high antigen binding affinity, and remarkable stability in extreme conditions, nanobodies possess the potential to overcome several of the limitations of conventional monoclonal antibodies. For many years, nanobodies have been of great interest in a wide variety of research fields, particularly in the diagnosis and treatment of diseases. This culminated in the approval of the world's first nanobody based drug (Caplacizumab) in 2018 with others following soon thereafter. This review will provide an overview, with examples, of (i) the structure and advantages of nanobodies compared to conventional monoclonal antibodies, (ii) methods used to generate and produce antigen-specific nanobodies, (iii) applications for diagnostics, and (iv) ongoing clinical trials for nanobody therapeutics as well as promising candidates for clinical development.
Collapse
Affiliation(s)
- Bo-kyung Jin
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
| | - Steven Odongo
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda
- Center for Biosecurity and Global Health, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
39
|
Venkatesh D, Merghoub T. Paving the Way for Cancer Therapy a Nano Step at a Time. J Pharmacol Exp Ther 2023; 384:327-330. [PMID: 36822843 DOI: 10.1124/jpet.122.001514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/21/2022] [Indexed: 02/25/2023] Open
Affiliation(s)
- Divya Venkatesh
- Department of Pharmacology and Edward Meyer Cancer Center and Ludwig Collaborative and Swim Across America Laboratory, Weill Cornell Medicine, New York, New York
| | - Taha Merghoub
- Department of Pharmacology and Edward Meyer Cancer Center and Ludwig Collaborative and Swim Across America Laboratory, Weill Cornell Medicine, New York, New York
| |
Collapse
|
40
|
Jacková B, Mottet G, Rudiuk S, Morel M, Baigl D. DNA-Encoded Immunoassay in Picoliter Drops: A Minimal Cell-Free Approach. Adv Biol (Weinh) 2023; 7:e2200266. [PMID: 36750732 DOI: 10.1002/adbi.202200266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/21/2022] [Indexed: 02/09/2023]
Abstract
Immunoassays have emerged as indispensable bioanalytical tools but necessitate long preliminary steps for the selection, production, and purification of the antibody(ies) to be used. Here is explored the paradigm shift of creating a rapid and purification-free assay in picoliter drops where the antibody is expressed from coding DNA and its binding to antigens concomitantly characterized in situ. Efficient synthesis in bulk of various functional variable domains of heavy-chain only antibodies (VHH) using reconstituted cell-free expression media, including an anti-green fluorescent protein VHH, is shown first. A microfluidic device is then used to generate monodisperse drops (30 pL) containing all the assay components, including a capture scaffold, onto which the accumulation of VHH:antigen produces a specific fluorescent signal. This allows to assess, in parallel or sequentially at high throughput (500 Hz), the VHH-antigen binding and its specificity in less than 3 h, directly from a VHH-coding DNA, for multiple VHH sequences, various antigens and down to DNA concentrations as low as 12 plasmids per drop. It is anticipated that the ultraminiaturized format, robustness, and programmability of this novel cell-free immunoassay concept will constitute valuable assets in fields as diverse as antibody discovery, point-of-care diagnostics, synthetic biology, and/or bioanalytical assays.
Collapse
Affiliation(s)
- Barbara Jacková
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
- Large Molecules Research Platform, Sanofi, Vitry-sur-Seine, 94400, France
| | - Guillaume Mottet
- Large Molecules Research Platform, Sanofi, Vitry-sur-Seine, 94400, France
| | - Sergii Rudiuk
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Mathieu Morel
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Damien Baigl
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| |
Collapse
|
41
|
Tang H, Gao Y, Han J. Application Progress of the Single Domain Antibody in Medicine. Int J Mol Sci 2023; 24:ijms24044176. [PMID: 36835588 PMCID: PMC9967291 DOI: 10.3390/ijms24044176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The camelid-derived single chain antibody (sdAb), also termed VHH or nanobody, is a unique, functional heavy (H)-chain antibody (HCAb). In contrast to conventional antibodies, sdAb is a unique antibody fragment consisting of a heavy-chain variable domain. It lacks light chains and a first constant domain (CH1). With a small molecular weight of only 12~15 kDa, sdAb has a similar antigen-binding affinity to conventional Abs but a higher solubility, which exerts unique advantages for the recognition and binding of functional, versatile, target-specific antigen fragments. In recent decades, with their unique structural and functional features, nanobodies have been considered promising agents and alternatives to traditional monoclonal antibodies. As a new generation of nano-biological tools, natural and synthetic nanobodies have been used in many fields of biomedicine, including biomolecular materials, biological research, medical diagnosis and immune therapies. This article briefly overviews the biomolecular structure, biochemical properties, immune acquisition and phage library construction of nanobodies and comprehensively reviews their applications in medical research. It is expected that this review will provide a reference for the further exploration and unveiling of nanobody properties and function, as well as a bright future for the development of drugs and therapeutic methods based on nanobodies.
Collapse
Affiliation(s)
- Huaping Tang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence:
| | - Jiangyuan Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
42
|
Zhao L, Gong J, Qi Q, Liu C, Su H, Xing Y, Zhao J. 131I-Labeled Anti-HER2 Nanobody for Targeted Radionuclide Therapy of HER2-Positive Breast Cancer. Int J Nanomedicine 2023; 18:1915-1925. [PMID: 37064291 PMCID: PMC10094415 DOI: 10.2147/ijn.s399322] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/04/2023] [Indexed: 04/18/2023] Open
Abstract
Purpose The unique structure of nanobodies is advantageous for the development of radiopharmaceuticals for nuclear medicine. Nanobodies targeted to human epidermal growth factor receptor 2 (HER2) can be used as tools for the imaging and therapy of HER2-overexpressing tumors. In this study, we aimed to describe the generation of a 131I-labeled anti-HER2 nanobody as a targeted radionuclide therapy (TRNT) agent for HER2-positive breast cancer. Methods The anti-HER2 nanobody NM-02 was labeled with 131I using the iodogen method, and its radiochemical purity and stability in vitro were assessed. The pharmacokinetic profile of 131I-NM-02 was investigated in normal mice. Tumor accumulation, biodistribution, and therapeutic potential of 131I-NM-02 were evaluated in HER2-positive SKBR3 xenografts; HER2-negative MB-MDA-231 xenografts were used as the control group. Results 131I-NM-02 could be readily prepared with satisfactory radiochemical purity and stability in vitro. Apparent tumor uptake was observed in HER2-positive tumor-bearing mice with rapid blood clearance and favorable biodistribution. 131I-NM-02 could significantly inhibit tumor growth and extend the life of these mice with good organ compatibility. Negligible tumor accumulation and inhibitory effects of 131I-NM-02 were observed in the negative control group. Conclusion 131I-NM-02 has the potential to be explored as a novel tool for TRNT of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jiali Gong
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Qinli Qi
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Changcun Liu
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Hongxing Su
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yan Xing
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Correspondence: Jinhua Zhao; Yan Xing, Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Shanghai, 200080, People’s Republic of China, Tel/Fax +86 21 3779 8352, Email ;
| |
Collapse
|
43
|
Sunzini F, D'Antonio A, Fatica M, Triggianese P, Conigliaro P, Greco E, Bergamini A, Chimenti MS. What's new and what's next for biological and targeted synthetic treatments in psoriatic arthritis? Expert Opin Biol Ther 2022; 22:1545-1559. [PMID: 36453200 DOI: 10.1080/14712598.2022.2152321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
INTRODUCTION Psoriatic arthritis (PsA) is a chronic arthritis typically associated with cutaneous psoriasis (PsO). Its pathogenesis is connected to an innate and acquired immune response, as well as genetic risk alleles. The extent of immunopathogenic mechanisms and the heterogenicity of clinical manifestation make the identification of patient-targeted therapies a critical issue, and the treatment decision challenging in patients' management. AREAS COVERED This review includes a brief overview of biological and small-molecule therapies, focusing on evidence from clinical trials and real-world data that support their use in PsA. We summarize novel and future possible therapeutic strategies, the importance that comorbidities have on selection of therapy and discuss the adverse event of each drug. Relevant papers for up to 1 August 2022 (trials, real-life studies, and reviews) regarding biologics and/or small molecules were summarized. EXPERT OPINION In recent years, the treatment of PsA has been revolutionized by new targeted therapies, which offer the opportunity to perform a tailored-tail management, considering risk factors, comorbidities, and the different PsA phenotypes. Growing experience with these new agents allows novel treatment approaches that may improve clinical outcomes for PsA patients, in terms of remission/low disease activity and quality of life.
Collapse
Affiliation(s)
- Flavia Sunzini
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kindom
| | - Arianna D'Antonio
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mauro Fatica
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Elisabetta Greco
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alberto Bergamini
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
44
|
Zaman R, Islam RA, Chowdhury EH. Evolving therapeutic proteins to precisely kill cancer cells. J Control Release 2022; 351:779-804. [DOI: 10.1016/j.jconrel.2022.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
|
45
|
Niu Z, Luo Z, Sun P, Ning L, Jin X, Chen G, Guo C, Zhi L, Chang W, Zhu W. In Vitro Nanobody Library Construction by Using Gene Designated-Region Pan-Editing Technology. BIODESIGN RESEARCH 2022; 2022:9823578. [PMID: 37850144 PMCID: PMC10521727 DOI: 10.34133/2022/9823578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/09/2022] [Indexed: 10/19/2023] Open
Abstract
Camelid single-domain antibody fragments (nanobodies) are an emerging force in therapeutic biopharmaceuticals and clinical diagnostic reagents in recent years. Nearly all nanobodies available to date have been obtained by animal immunization, a bottleneck restricting the large-scale application of nanobodies. In this study, we developed three kinds of gene designated-region pan-editing (GDP) technologies to introduce multiple mutations in complementarity-determining regions (CDRs) of nanobodies in vitro. Including the integration of G-quadruplex fragments in CDRs, which induces the spontaneous multiple mutations in CDRs; however, these mutant sequences are highly similar, resulting in a lack of sequences diversity in the CDRs. We also used CDR-targeting traditional gRNA-guided base-editors, which effectively diversify the CDRs. And most importantly, we developed the self-assembling gRNAs, which are generated by reprogrammed tracrRNA hijacking of endogenous mRNAs as crRNAs. Using base-editors guided by self-assembling gRNAs, we can realize the iteratively diversify the CDRs. And we believe the last GDP technology is highly promising in immunization-free nanobody library construction, and the full development of this novel nanobody discovery platform can realize the synthetic evolution of nanobodies in vitro.
Collapse
Affiliation(s)
- Zhiyuan Niu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Zhixia Luo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Pengyang Sun
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Linwei Ning
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Xinru Jin
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Guanxu Chen
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Changjiang Guo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Lingtong Zhi
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Wei Chang
- Department of Oncology, Xinxiang First People’s Hospital, The Affiliated People’s Hospital of Xinxiang Medical University, Xinxiang 453000China
| | - Wuling Zhu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| |
Collapse
|
46
|
Identification and Characterization of Specific Nanobodies against Trop-2 for Tumor Targeting. Int J Mol Sci 2022; 23:ijms23147942. [PMID: 35887287 PMCID: PMC9316174 DOI: 10.3390/ijms23147942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Trophoblast cell-surface antigen 2 (Trop-2) is a tumor-associated antigen that is connected with the development of various tumors and has been identified as a promising target for tumor immunotherapy. To date, the immunotherapy against Trop-2 mainly relies on the specific targeting by monoclonal antibody in antibody-drug conjugate (ADC). Alternatively, the single domain antibodies of nanobodies (Nbs) possesses unique properties such as smaller size, better tissue penetration, etc., to make them good candidates for tumor targeting. Thus, it was proposed to develop anti-Trop-2 Nbs for tumor targeting in this study. Generally, three consecutive rounds of bio-panning were performed against immobilized recombinant Trop-2, and yielded three Nbs (Nb60, Nb65, and Nb108). The affinity of selected Nbs was determined in the nanomolar range, especially the good properties of Nb60 were verified as a promising candidate for tumor labeling. The binding to native Trop-2 was confirmed by flow cytometry against tumor cells. The inhibitory effects of the selected Nbs on tumor cell proliferation and migration were confirmed by wound healing and Transwell assay. The clear localization of the selected Nbs on the surface of tumor cells verified the potent labeling efficiency. In conclusion, this study provided several Nbs with the potential to be developed as targeting moiety of drug conjugates.
Collapse
|
47
|
Jin Y, Edalatian Zakeri S, Bahal R, Wiemer AJ. New Technologies Bloom Together for Bettering Cancer Drug Conjugates. Pharmacol Rev 2022; 74:680-711. [PMID: 35710136 PMCID: PMC9553120 DOI: 10.1124/pharmrev.121.000499] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug conjugates, including antibody-drug conjugates, are a step toward realizing Paul Ehrlich's idea from over 100 years ago of a "magic bullet" for cancer treatment. Through balancing selective targeting molecules with highly potent payloads, drug conjugates can target specific tumor microenvironments and kill tumor cells. A drug conjugate consists of three parts: a targeting agent, a linker, and a payload. In some conjugates, monoclonal antibodies act as the targeting agent, but new strategies for targeting include antibody derivatives, peptides, and even small molecules. Linkers are responsible for connecting the payload to the targeting agent. Payloads impact vital cellular processes to kill tumor cells. At present, there are 12 antibody-drug conjugates on the market for different types of cancers. Research on drug conjugates is increasing year by year to solve problems encountered in conjugate design, such as tumor heterogeneity, poor circulation, low drug loading, low tumor uptake, and heterogenous expression of target antigens. This review highlights some important preclinical research on drug conjugates in recent years. We focus on three significant areas: improvement of antibody-drug conjugates, identification of new conjugate targets, and development of new types of drug conjugates, including nanotechnology. We close by highlighting the critical barriers to clinical translation and the open questions going forward. SIGNIFICANCE STATEMENT: The development of anticancer drug conjugates is now focused in three broad areas: improvements to existing antibody drug conjugates, identification of new targets, and development of new conjugate forms. This article focuses on the exciting preclinical studies in these three areas and advances in the technology that improves preclinical development.
Collapse
Affiliation(s)
- Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | | | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
48
|
Shoari A, Tahmasebi M, Khodabakhsh F, Cohan RA, Oghalaie A, Behdani M. Angiogenic biomolecules specific nanobodies application in cancer imaging and therapy; review and updates. Int Immunopharmacol 2022; 105:108585. [DOI: 10.1016/j.intimp.2022.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/05/2022]
|
49
|
Jiang M, Zhao J, Mei G, Lin H, Hong H, Li D, Wu Z. Chemoenzymatic synthesis of 6′-sialolactose-modified nanobody. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2055048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Min Jiang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jie Zhao
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guodong Mei
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Han Lin
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Dan Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
50
|
Ying M, Li Q, Wu J, Jiang Y, Xu Z, Ma M, Xu G. CuS@BSA-NB2 Nanoparticles for HER2-Targeted Photothermal Therapy. Front Pharmacol 2022; 12:779591. [PMID: 35126119 PMCID: PMC8815789 DOI: 10.3389/fphar.2021.779591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is characterized by the uncontrolled proliferation of breast epithelial cells under the action of a variety of carcinogens. Although HER2-inhibitors were currently applied for HER2-positive breast cancer patients, they didn't work for patients with resistance to HER2-targeted anti-cancer drugs. In this work, we prepared novel CuS@BSA-NB2 nanoparticles (NPs) for breast cancer photothermal therapy (PTT). The NPs had good biocompatibility due to the Bovine Serum Albumin (BSA) encapsulating and excellent targeting to HER2 because of nanobody 2 (NB2). Under 808 nm laser irradiation, CuS@BSA-NB2 NPs had high photothermal conversion efficiency and photothermal stability. Meanwhile, we constructed a stable cell line of MDA-MB-231/HER2 with a high expression of HER2 protein. Immunofluorescence and ICP-MS assays showed that CuS@BSA-NB2 NPs can be specifically enriched and be ingested in MDA-MB-231/HER2 cells. Furthermore, CuS@BSA-NB2 NPs had shown a more significant photothermal treatment effect than CuS@BSA under certain treatment conditions for MDA-MB-231/HER2. In addition, the cytotoxicity assay demonstrated that CuS@BSA-NB2 NPs had a low toxicity for MDA-MB-231/HER2 cells. The above results suggested that CuS@BSA-NB2 NPs were great photothermal therapeutic agents to reduce the malignant proliferation of breast epithelial cells and have potential for breast cancer therapy.
Collapse
Affiliation(s)
- Ming Ying
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jingbo Wu
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Mingze Ma
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|