1
|
Zhang Z, Lu Y, Liu W, Huang Y. Nanomaterial-assisted delivery of CpG oligodeoxynucleotides for boosting cancer immunotherapy. J Control Release 2024; 376:184-199. [PMID: 39368710 DOI: 10.1016/j.jconrel.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/03/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Cancer immunotherapy aims to improve immunity to not only eliminate the primary tumor but also inhibit metastasis and recurrence. It is considered an extremely promising therapeutic approach that breaks free from the traditional paradigm of oncological treatment. As the medical community learns more about the immune system's mechanisms that "turn off the brake" and "step on the throttle", there is increasingly successful research on immunomodulators. However, there are still more restrictions than countermeasures with immunotherapy related to immunomodulators, such as low responsiveness and immune-related adverse events that cause multiple adverse reactions. Therefore, medical experts and materials scientists attempted to the efficacy of immunomodulatory treatments through various methods, especially nanomaterial-assisted strategies. CpG oligodeoxynucleotides (CpG) not only act as an adjuvant to promote immune responses, but also induce autophagy. In this review, the enhancement of immunotherapy using nanomaterial-based CpG formulations is systematically elaborated, with a focus on the delivery, protection, synergistic promotion of CpG efficacy by nanomaterials, and selection of the timing of treatment. In addition, we also discuss and prospect the existing problems and future directions of research on nanomaterials in auxiliary CpG therapy.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yu Lu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Wenjing Liu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Tian T, Zhu Y, Shi J, Shang K, Yin Z, Shi H, He Y, Ding J, Zhang F. The development of a human Brucella mucosal vaccine: What should be considered? Life Sci 2024; 355:122986. [PMID: 39151885 DOI: 10.1016/j.lfs.2024.122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Brucellosis is a chronic infectious disease that is zoonotic in nature. Brucella can infect humans through interactions with livestock, primarily via the digestive tract, respiratory tract, and oral cavity. This bacterium has the potential to be utilized as a biological weapon and is classified as a Category B pathogen by the Centers for Disease Control and Prevention. Currently, there is no approved vaccine for humans against Brucella, highlighting an urgent need for the development of a vaccine to mitigate the risks posed by this pathogen. Brucella primarily infects its host by adhering to and penetrating mucosal surfaces. Mucosal immunity plays a vital role in preventing local infections, clearing microorganisms from mucosal surfaces, and inhibiting the spread of pathogens. As mucosal vaccine strategies continue to evolve, the development of a safe and effective mucosal vaccine against Brucella appears promising.This paper reviews the immune mechanism of mucosal vaccines, the infection mechanism of Brucella, successful Brucella mucosal vaccines in animals, and mucosal adjuvants. Additionally, it elucidates targeting and optimization strategies for mucosal vaccines to facilitate the development of human vaccines against Brucella.
Collapse
Affiliation(s)
- Tingting Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yuejie Zhu
- Reproductive Fertility Assistance Center, First Afffliated Hospital of Xinjiang Medical University, China
| | - Juan Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Kaiyu Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Zhengwei Yin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Huidong Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yueyue He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Jianbing Ding
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China; Department of Clinical laboratory, The First Affiliated hospital of Xinjiang Medical University, China.
| |
Collapse
|
3
|
McDowall S, Aung-Htut M, Wilton S, Li D. Antisense oligonucleotides and their applications in rare neurological diseases. Front Neurosci 2024; 18:1414658. [PMID: 39376536 PMCID: PMC11456401 DOI: 10.3389/fnins.2024.1414658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/20/2024] [Indexed: 10/09/2024] Open
Abstract
Rare diseases affect almost 500 million people globally, predominantly impacting children and often leading to significantly impaired quality of life and high treatment costs. While significant contributions have been made to develop effective treatments for those with rare diseases, more rapid drug discovery strategies are needed. Therapeutic antisense oligonucleotides can modulate target gene expression with high specificity through various mechanisms determined by base sequences and chemical modifications; and have shown efficacy in clinical trials for a few rare neurological conditions. Therefore, this review will focus on the applications of antisense oligonucleotides, in particular splice-switching antisense oligomers as promising therapeutics for rare neurological diseases, with key examples of Duchenne muscular dystrophy and spinal muscular atrophy. Challenges and future perspectives in developing antisense therapeutics for rare conditions including target discovery, antisense chemical modifications, animal models for therapeutic validations, and clinical trial designs will also be briefly discussed.
Collapse
Affiliation(s)
- Simon McDowall
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
| | - May Aung-Htut
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Steve Wilton
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Dunhui Li
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
4
|
Yu X, Xu C, Sun J, Xu H, Huang H, Gan Z, George A, Ouyang S, Liu F. Recent developments in two-dimensional molybdenum disulfide-based multimodal cancer theranostics. J Nanobiotechnology 2024; 22:515. [PMID: 39198894 PMCID: PMC11351052 DOI: 10.1186/s12951-024-02785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Recent advancements in cancer research have led to the generation of innovative nanomaterials for improved diagnostic and therapeutic strategies. Despite the proven potential of two-dimensional (2D) molybdenum disulfide (MoS2) as a versatile platform in biomedical applications, few review articles have focused on MoS2-based platforms for cancer theranostics. This review aims to fill this gap by providing a comprehensive overview of the latest developments in 2D MoS2 cancer theranostics and emerging strategies in this field. This review highlights the potential applications of 2D MoS2 in single-model imaging and therapy, including fluorescence imaging, photoacoustic imaging, photothermal therapy, and catalytic therapy. This review further classifies the potential of 2D MoS2 in multimodal imaging for diagnostic and synergistic theranostic platforms. In particular, this review underscores the progress of 2D MoS2 as an integrated drug delivery system, covering a broad spectrum of therapeutic strategies from chemotherapy and gene therapy to immunotherapy and photodynamic therapy. Finally, this review discusses the current challenges and future perspectives in meeting the diverse demands of advanced cancer diagnostic and theranostic applications.
Collapse
Affiliation(s)
- Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Chen Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jingxu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
| | - Hainan Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ziyang Gan
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Antony George
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Sihui Ouyang
- College of Materials Science and Engineering, Chongqing University, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China.
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
5
|
Haseeb M, Choi YS, Patra MC, Jeong U, Lee WH, Qayyum N, Choi H, Kim W, Choi S. Discovery of Novel Small Molecule Dual Inhibitor Targeting Toll-Like Receptors 7 and 9. J Chem Inf Model 2024; 64:5090-5107. [PMID: 38904299 DOI: 10.1021/acs.jcim.4c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The aberrant secretion of proinflammatory cytokines by immune cells is the principal cause of inflammatory diseases, such as systemic lupus erythematosus and rheumatoid arthritis. Toll-like receptor 7 (TLR7) and TLR9, sequestered to the endosomal compartment of dendritic cells and macrophages, are closely associated with the initiation and progression of these diseases. Therefore, the development of drugs targeting dysregulated endosomal TLRs is imperative to mitigate systemic inflammation. Here, we applied the principles of computer-aided drug discovery to identify a novel low-molecular-weight compound, TLR inhibitory compound 10 (TIC10), and its potent derivative (TIC10g), which demonstrated dual inhibition of TLR7 and TLR9 signaling pathways. Compared to TIC10, TIC10g exhibited a more pronounced inhibition of the TLR7- and TLR9-mediated secretion of the proinflammatory cytokine tumor necrosis factor-α in a mouse macrophage cell line and mouse bone marrow dendritic cells in a concentration-dependent manner. While TIC10g slightly prevented TLR3 and TLR8 activation, it had no impact on cell surface TLRs (TLR1/2, TLR2/6, TLR4, or TLR5), indicating its selectivity for TLR7 and TLR9. Additionally, mechanistic studies suggested that TIC10g interfered with TLR9 activation by CpG DNA and suppressed downstream pathways by directly binding to TLR9. Western blot analysis revealed that TIC10g downregulated the phosphorylation of the p65 subunit of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPKs), including extracellular-signal-regulated kinase, p38-MAPK, and c-Jun N-terminal kinase. These findings indicate that the novel ligand, TIC10g, is a specific dual inhibitor of endosomal TLRs (TLR7 and TLR9), disrupting MAPK- and NF-κB-mediated proinflammatory gene expression.
Collapse
Affiliation(s)
- Muhammad Haseeb
- S&K Therapeutics, Ajou University, Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Yang Seon Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Mahesh Chandra Patra
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Uisuk Jeong
- S&K Therapeutics, Ajou University, Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Wang Hee Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Naila Qayyum
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Hongjoon Choi
- S&K Therapeutics, Ajou University, Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Sangdun Choi
- S&K Therapeutics, Ajou University, Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| |
Collapse
|
6
|
Murata K, Harayama K, Shimoda M, Niimura M, Wakao M, Suda Y, Moroishi T, Shinchi H. Improvement of the Nuclease Resistance and Immunostimulatory Activity of CpG Oligodeoxynucleotides by Conjugation to Sugar-Immobilized Gold Nanoparticles. Bioconjug Chem 2024; 35:804-815. [PMID: 38718344 DOI: 10.1021/acs.bioconjchem.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Adjuvants are essential substances for vaccines and immunotherapies that enhance antigen-specific immune responses. Single-stranded oligodeoxynucleotides containing an unmethylated CpG motif (CpG ODNs) are agonistic ligands for toll-like receptor 9 that initiate an innate immune response. They represent promising adjuvants for antiviral and antitumor immunotherapies; however, CpG ODNs have some limitations, such as poor nuclease resistance and low cell membrane permeability. Therefore, an effective formulation is needed to improve the nuclease resistance and immunostimulatory effects of CpG ODNs. Previously, we demonstrated the selective delivery of a small molecule toll-like receptor 7 ligand to immune cells through sugar-binding receptors using sugar-immobilized gold nanoparticles (SGNPs), which significantly enhanced the potency of the ligand. In this study, we examined SGNPs as carriers for partially phosphorothioated A-type CpG ODN (D35) and an entirely phosphorothioated B-type CpG ODN (K3) and evaluated the functionality of the sugar moiety on SGNPs immobilized with CpG ODN. SGNPs immobilized with D35 (D35-SGNPs) exhibited improved nuclease resistance and the in vitro and in vivo potency was significantly higher compared with that of unconjugated D35. Furthermore, the sugar structure on the GNPs was a significant factor in enhancing the cell internalization ability, and enhanced intracellular delivery of D35 resulted in improving the potencies of the A-type CpG ODN, D35. SGNPs immobilized with K3 (K3-SGNPs) exhibited significantly higher induction activities for both humoral and cellular immunity compared with unconjugated K3 and D35-SGNPs. On the other hand, sugar structure on K3-SGNPs did not affect the immunostimulatory effects. These results indicate that the sugar moiety on K3-SGNPs primarily functions as a hydrophilic dispersant for GNPs and the formulation of K3 to SGNPs contributes to improving the immunostimulatory activity of K3. Because our CpG ODN-SGNPs have superior induction activities for antigen-specific T-cell mediated immune responses, they may be effective adjuvants for vaccines and immunotherapies.
Collapse
Affiliation(s)
- Koki Murata
- Department of Engineering, Chemistry and Biotechnology program, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Kai Harayama
- Department of Engineering, Chemistry and Biotechnology program, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Mayuko Shimoda
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Mayumi Niimura
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masahiro Wakao
- Department of Engineering, Chemistry and Biotechnology program, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Yasuo Suda
- Collaborative Research Laboratory on Glyco-nanotechnology, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Toshiro Moroishi
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Science, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hiroyuki Shinchi
- Department of Engineering, Chemistry and Biotechnology program, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
7
|
Qu X, Zhang Q, Zhang C, Sun J, Du S, Liang C, Chen Y, Zheng Y, Wang L. Effect of chondroitin sulfate modified polyethyleneimine on mediating oligodeoxynucleotide YW002 in the treatment of periodontitis. RSC Adv 2024; 14:20328-20338. [PMID: 38919285 PMCID: PMC11197841 DOI: 10.1039/d4ra00884g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
PURPOSE In a previous study, we found that oligodeoxynucleotide (ODN) YW002 could induce the activity of alkaline phosphatase of early osteogenesis in human periodontal membrane stem cells, and downregulate the synthesis of nitric oxide in RAW 264.7 cells in the late inflammatory stage, laying the experimental foundation for the subsequent application of ODN YW002 in periodontitis. However, free ODN does not easily adhere to cells and is easily hydrolyzed by nuclease, so the immune effect of ODN is greatly reduced. Therefore, the nano-drug delivery system provides a method for efficient delivery and uptake of ODN. METHODS We synthesized a polyethyleneimine (PEI) modified chondroitin sulfate (CS) derivative (PEI-CS) via Michael addition to deliver ODN YW002. We aimed to evaluate whether PEI-CS could effectively deliver YW002 to RAW 264.7 cells and if it can regulate inflammation in vitro. PEI-CS/YW002 nanocomplexes were locally injected into a mouse periodontitis model, and the therapeutic effects were evaluated by microcomputed tomography (micro-CT) and hematoxylin-eosin (H&E) staining. RESULTS The results indicated that PEI-CS had good biocompatibility and could form a stable nanocomplex with YW002 at a mass ratio of 4 : 1. Moreover, PEI-CS could deliver YW002 into RAW 246.7 cells and markedly decreased the expression levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α. Histological evaluation and micro-CT scanning showed that PEI-CS/YW002 nanocomplexes effectively inhibited periodontitis and reduced alveolar bone resorption in mice. CONCLUSION Our study has underscored the potential of PEI-CS/YW002 nanocomplexes as promising agents for the prevention and treatment of periodontitis due to their potent anti-inflammatory effects.
Collapse
Affiliation(s)
- Xingyuan Qu
- Department of Periodontology, Hospital of Stomatology, Jilin University 1500 Tsinghua Road, Chaoyang District Changchun 130021 China +86-0431-8879-6039 +86-139-4400-1891 +86-186-4498-6173
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University 763 Heguang Road, Chaoyang District Changchun 130021 China
| | - Qian Zhang
- Second Affiliated Hospital, Jinzhou Medical University 49 Shanghai Road, Guta District Jinzhou 121000 China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University 763 Heguang Road, Chaoyang District Changchun 130021 China
| | - Chuang Zhang
- School of Pharmacy, Jilin Medical University 5 Jilin Street Jilin 132013 China
| | - Jichao Sun
- Department of Chemistry, Northeast Normal University 5268 Renmin Street Changchun 130024 China
| | - Siyu Du
- Department of Periodontology, Hospital of Stomatology, Jilin University 1500 Tsinghua Road, Chaoyang District Changchun 130021 China +86-0431-8879-6039 +86-139-4400-1891 +86-186-4498-6173
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University 763 Heguang Road, Chaoyang District Changchun 130021 China
| | - Chen Liang
- Department of Periodontology, Hospital of Stomatology, Jilin University 1500 Tsinghua Road, Chaoyang District Changchun 130021 China +86-0431-8879-6039 +86-139-4400-1891 +86-186-4498-6173
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University 763 Heguang Road, Chaoyang District Changchun 130021 China
| | - Yabing Chen
- Department of Periodontology, Hospital of Stomatology, Jilin University 1500 Tsinghua Road, Chaoyang District Changchun 130021 China +86-0431-8879-6039 +86-139-4400-1891 +86-186-4498-6173
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University 763 Heguang Road, Chaoyang District Changchun 130021 China
| | - Yi Zheng
- Department of Periodontology, Hospital of Stomatology, Jilin University 1500 Tsinghua Road, Chaoyang District Changchun 130021 China +86-0431-8879-6039 +86-139-4400-1891 +86-186-4498-6173
| | - Lei Wang
- Department of Periodontology, Hospital of Stomatology, Jilin University 1500 Tsinghua Road, Chaoyang District Changchun 130021 China +86-0431-8879-6039 +86-139-4400-1891 +86-186-4498-6173
| |
Collapse
|
8
|
Qin Y, Rouatbi N, Wang JTW, Baker R, Spicer J, Walters AA, Al-Jamal KT. Plasmid DNA ionisable lipid nanoparticles as non-inert carriers and potent immune activators for cancer immunotherapy. J Control Release 2024; 369:251-265. [PMID: 38493950 PMCID: PMC11464404 DOI: 10.1016/j.jconrel.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Immunotherapy is currently a standard of care in the treatment of many malignancies. However, predictable side effects caused by systemic administration of highly immunostimulatory molecules have been a serious concern within this field. Intratumoural expression or silencing of immunogenic and immunoinhibitory molecules using nucleic acid-based approaches such as plasmid DNA (pDNA) and small interfering RNA (siRNA), respectively, could represent a next generation of cancer immunotherapy. Here, we employed lipid nanoparticles (LNPs) to deliver either non-specific pDNA and siRNA, or constructs targeting two prominent immunotherapeutic targets OX40L and indoleamine 2,3-dioxygenase-1 (IDO), to tumours in vivo. In the B16F10 mouse model, intratumoural delivery of LNP-formulated non-specific pDNA and siRNA led to strong local immune activation and tumour growth inhibition even at low doses due to the pDNA immunogenic nature. Replacement of these non-specific constructs by pOX40L and siIDO resulted in more prominent immune activation as evidenced by increased immune cell infiltration in tumours and tumour-draining lymph nodes. Consistently, pOX40L alone or in combination with siIDO could prolong overall survival, resulting in complete tumour regression and the formation of immunological memory in tumour rechallenge models. Our results suggest that intratumoural administration of LNP-formulated pDNA and siRNA offers a promising approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Yue Qin
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Nadia Rouatbi
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Rafal Baker
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - James Spicer
- Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust (GSTT), London SE1 9RT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
| | - Adam A Walters
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
9
|
Li M, Yao H, Yi K, Lao YH, Shao D, Tao Y. Emerging nanoparticle platforms for CpG oligonucleotide delivery. Biomater Sci 2024; 12:2203-2228. [PMID: 38293828 DOI: 10.1039/d3bm01970e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), which were therapeutic DNA with high immunostimulatory activity, have been applied in widespread applications from basic research to clinics as therapeutic agents for cancer immunotherapy, viral infection, allergic diseases and asthma since their discovery in 1995. The major factors to consider for clinical translation using CpG motifs are the protection of CpG ODNs from DNase degradation and the delivery of CpG ODNs to the Toll-like receptor-9 expressed human B-cells and plasmacytoid dendritic cells. Therefore, great efforts have been devoted to the advances of efficient delivery systems for CpG ODNs. In this review, we outline new horizons and recent developments in this field, providing a comprehensive summary of the nanoparticle-based CpG delivery systems developed to improve the efficacy of CpG-mediated immune responses, including DNA nanostructures, inorganic nanoparticles, polymer nanoparticles, metal-organic-frameworks, lipid-based nanosystems, proteins and peptides, as well as exosomes and cell membrane nanoparticles. Moreover, future challenges in the establishment of CpG delivery systems for immunotherapeutic applications are discussed. We expect that the continuously growing interest in the development of CpG-based immunotherapy will certainly fuel the excitement and stimulation in medicine research.
Collapse
Affiliation(s)
- Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Haochen Yao
- Hepatobiliary and Pancreatic Surgery Department, General Surgery Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
10
|
Chinnathambi S, Shirahata N, Lesani P, Thangavel V, Pandian GN. Surface charge-dependent cytokine production using near-infrared emitting silicon quantum dots. Sci Rep 2024; 14:9618. [PMID: 38671084 PMCID: PMC11053057 DOI: 10.1038/s41598-024-60536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024] Open
Abstract
Toll-like receptor 9 (TLR-9) is a protein that helps our immune system identify specific DNA types. Upon detection, CpG oligodeoxynucleotides signal the immune system to generate cytokines, essential proteins that contribute to the body's defence against infectious diseases. Native phosphodiester type B CpG ODNs induce only Interleukin-6 with no effect on interferon-α. We prepared silicon quantum dots containing different surface charges, such as positive, negative, and neutral, using amine, acrylate-modified Plouronic F-127, and Plouronic F-127. Then, class B CpG ODNs are loaded on the surface of the prepared SiQDs. The uptake of ODNs varies based on the surface charge; positively charged SiQDs demonstrate higher adsorption compared to SiQDs with negative and neutral surface charges. The level of cytokine production in peripheral blood mononuclear cells was found to be associated with the surface charge of SiQDs prior to the binding of the CpG ODNs. Significantly higher levels of IL-6 and IFN-α induction were observed compared to neutral and negatively charged SiQDs loaded with CpG ODNs. This observation strongly supports the notion that the surface charge of SiQDs effectively regulates cytokine induction.
Collapse
Affiliation(s)
- Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, 616-8510, Japan.
| | - Naoto Shirahata
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan.
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, 060-0814, Japan.
| | - Pooria Lesani
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3000, Australia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vaijayanthi Thangavel
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, 616-8510, Japan
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, 616-8510, Japan.
| |
Collapse
|
11
|
Reidel IG, Curti CC, Dorémus L, Béré E, Delwail A, Russi RC, Lecron JC, Morel F, García MI, Müller DM, Jégou JF, Veaute CM. Liposomal co-encapsulation of a novel gemini lipopeptide and a CpG-ODN induces a strong Th1 response with the co-activation of a Th2/Th17 profile and high antibody levels. Vaccine 2024; 42:1953-1965. [PMID: 38378388 DOI: 10.1016/j.vaccine.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
A successful vaccine depends on its capacity to elicit a protective immune response against the target pathogen. The adjuvant used plays an important role in enhancing and directing the immune response. Liposomes are vaccine adjuvants that allow the co-encapsulation of antigens and immunostimulants. Our aim was to evaluate the adjuvanticity of a cationic liposome (Lip) formulated with a novel gemini lipopeptide (AG2-C16) alone or in combination with CpG-ODN as immunostimulants. To achieve this, we used the recombinant clumping factor of Staphylococcus aureus (rClfA) as a model antigen, in a murine model. We characterized the formulations by DLS, Cryo-SEM, and TEM, and analyzed the humoral and cellular immune responses induced in BALB/c and C57BL/6J mice injected with free rClfA and three formulations: Lip + CpG-ODN + rClfA, Lip + AG2-C16 + rClfA and Lip + AG2-C16 + CpG-ODN + rClfA. The addition of immunostimulants to the liposomes did not change the membrane diameter but affected their hydrodynamic diameter, z-potential, and homogeneity. All liposomal formulations were able to stimulate a specific humoral response, with high serum IgG, IgG1 and IgG2a or IgG2c titers in BALB/c or C57BL/6J mice, respectively. In addition, increased vaginal IgG levels were detected after injection, with no specific IgA. The cellular immunity induced by Lip + AG2-C16 + CpG-ODN + rClfA was characterized by a predominant Th1 profile, with the co-induction of Th2 and Th17 cells, and IFN-γ+ cytotoxic T cells. Furthermore, we studied the capacity of the different formulations to stimulate murine keratinocytes and fibroblasts in vitro. While no formulation activated keratinocytes, Lip + AG2-C16 + CpG-ODN increased the expression of CXCL9 in fibroblasts. These results suggest Lip + AG2-C16 + CpG-ODN as a promising adjuvant candidate to be used in vaccines against pathogens that require Th1/Th2/Th17 combined profiles, like S. aureus. Additionally, based on the IFN-γ+ cytotoxic T cells stimulation and the CXCL9 production by fibroblasts, we propose the use of this adjuvant formulation for the stimulation of a Th1 profile.
Collapse
Affiliation(s)
- Ivana Gabriela Reidel
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States; Université de Poitiers, LITEC, UR15560, Poitiers, France
| | - Cecilia Carol Curti
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Léa Dorémus
- Université de Poitiers, ImageUP platform, CNRS, UAR2038, BioS, Poitiers, France
| | - Emile Béré
- Université de Poitiers, ImageUP platform, CNRS, UAR2038, BioS, Poitiers, France
| | - Adriana Delwail
- Université de Poitiers, ImageUP platform, CNRS, UAR2038, BioS, Poitiers, France; Université de Poitiers, CNRS, UMR 6041, 4CS, Laboratory Channels & Connexins in Cancers and Cell Stemness, Poitiers, France
| | - Romina Cecilia Russi
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | - Franck Morel
- Université de Poitiers, LITEC, UR15560, Poitiers, France
| | - María Inés García
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diana María Müller
- LAQUIMAP, Dto. Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jean-François Jégou
- Université de Poitiers, ImageUP platform, CNRS, UAR2038, BioS, Poitiers, France; Université de Poitiers, LITEC, UR15560, Poitiers, France
| | - Carolina Melania Veaute
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
12
|
Zhang H, Lai L, Wang Z, Zhang J, Zhou J, Nie Y, Chen J. Glycogen for lysosome-targeted CpG ODNs delivery and enhanced cancer immunotherapy. Int J Biol Macromol 2024; 257:128536. [PMID: 38061522 DOI: 10.1016/j.ijbiomac.2023.128536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/26/2024]
Abstract
CpG oligodeoxynucleotides (ODNs) strongly activate the immune system after binding to toll-like receptor 9 (TLR9) in lysosome, which demonstrated significant potential in cancer immunotherapy. However, their therapeutic efficacy is limited by drawbacks such as rapid degradation and poor cellular uptake. Although encouraging progress have been made on developing various delivery systems for CpG ODNs, safety risks of the synthetic nanocarriers as well as the deficient CpG ODNs release within lysosome remain big obstacles. Herein, we developed a novel nanovector for lysosome-targeted CpG ODNs delivery and enhanced cancer immunotherapy. Natural glycogen was simply aminated (NH2-Gly) through grafting with diethylenetriamine (DETA), which was spherical in shape with diameter of approximately 40 nm. NH2-Gly possessed good biocompatibility. Cationic NH2-Gly complexed CpG ODNs well and protected them from nuclease digestion. NH2-Gly significantly enhanced the cellular uptake of CpG ODNs. Efficient CpG ODNs release was observed in the presence of α-glucosidase that mimicking the environment of lysosome. Consequently, NH2-Gly/CpG complexes triggered potent antitumor immunity and effectively inhibit the tumor growth without causing any toxic effect or tissue damages. This work highlights the promise of glycogen for lysosome-targeted on-command delivery of CpG ODNs, which brings new hope for precision cancer immunotherapy.
Collapse
Affiliation(s)
- Huijie Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Li Lai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhiqing Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiawen Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jianzhu Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Zhang H, Wang Z, Wang S, Zhang J, Qiu L, Chen J. Aminated yeast β-D-glucan for macrophage-targeted delivery of CpG oligodeoxynucleotides and synergistically enhanced cancer immunotherapy. Int J Biol Macromol 2023; 253:126998. [PMID: 37729981 DOI: 10.1016/j.ijbiomac.2023.126998] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
CpG oligodeoxynucleotides (CpG ODNs) activate immune system and show strong potential in cancer immunotherapy. However, therapeutic efficacy of CpG ODNs is hampered due to rapid nuclease degradation and insufficient cellular uptake. Delivery of CpG ODNs into antigen presenting cells (APCs) is vital to enhance their therapeutic efficacy. Herein, we developed a super-convenient yet efficient strategy for macrophage-targeted delivery of CpG ODNs and synergistically enhanced cancer immunotherapy. Aminated yeast β-D-glucan (NH2-Glu) was simply synthesized through functionalization of β-D-glucan with DETA, which exhibited a dendrimer-like shape with size of about 80 nm. NH2-Glu complexed negatively-charged CpG ODNs. The as-prepared NH2-Glu/CpG complexes were positively charged, uniformly dispersed and exhibited good stability against nuclease degradation. Due to the specific recognition with dectin-1 expressed on macrophages, NH2-Glu/CpG complexes targeted macrophage and exhibited significantly enhanced cellular uptake due to dectin-1-mediated endocytosis. NH2-Glu/CpG complexes showed potent immunostimulatory activity. Contributed by the inherent immunostimulatory and antitumor activity, yeast β-D-glucan functioned synergistically with CpG ODNs in inducing antitumor immunity. NH2-Glu/CpG complexes remarkably inhibited tumor growth without causing toxic effect. In summary, this work provides a facile yet efficient macrophage-targeted CpG ODNs delivery system for cancer immunotherapy.
Collapse
Affiliation(s)
- Huijie Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhiqing Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuo Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiawen Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lipeng Qiu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
14
|
Zhang J, Wang S, Huang H, Chen H, Chen J, Zhang H. Cationic Starch Nanoparticles for Enhancing CpG Oligodeoxynucleotide-Mediated Antitumor Immunity. Biomacromolecules 2023; 24:5898-5904. [PMID: 37957110 DOI: 10.1021/acs.biomac.3c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
CpG ODNs demonstrate a significant promise for immunotherapy. However, their application is limited owing to quick DNase digestion and inadequate cellular internalization. Transportation of CpG ODNs into immune cells is crucial. Although viral vectors exhibit high transfection efficiency, safety risks, high cost, and low carrying capacity remain big obstacles. Herein, a novel CpG ODNs vector was fabricated by using starch. Starch was ultrasonicated and simply aminated (NH2-St) through grafting with diethylenetriamine, which was spherical with a diameter of 50 nm. NH2-St possessed good biocompatibility. Cationic NH2-St encapsulated CpG ODNs well and possessed a high loading capacity of 317 μg/mg. NH2-St protected CpG ODNs from nuclease digestion and significantly enhanced their cellular uptake. NH2-St/CpG induced the potent secretion of antitumor cytokines from macrophages and effectively suppressed the growth of tumor cells. This work highlights the promise of starch for CpG ODNs delivery, which brings new hope for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiawen Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuo Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Honghui Huang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongqian Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Huijie Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Zhong Z, Chen Y, Deswarte K, Lauwers H, De Lombaerde E, Cui X, Van Herck S, Ye T, Gontsarik M, Lienenklaus S, Sanders NN, Lambrecht BN, De Koker S, De Geest BG. Lipid Nanoparticle Delivery Alters the Adjuvanticity of the TLR9 Agonist CpG by Innate Immune Activation in Lymphoid Tissue. Adv Healthc Mater 2023; 12:e2301687. [PMID: 37772637 DOI: 10.1002/adhm.202301687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/22/2023] [Indexed: 09/30/2023]
Abstract
Pharmacological strategies to activate innate immune cells are of great relevance in the context of vaccine design and anticancer immune therapy, to mount broad immune responses able to clear infection and malignant cells. Synthetic CpG oligodeoxynucleotides (CpG-ODNs) are short single-stranded DNA molecules containing unmethylated CpG dinucleotides and a phosphorothioate backbone. Class B CpG ODNs activate robust innate immune responses through a TLR9-dependent NF-κB signaling pathway. This feature is attractive to exploit in the context of vaccine design and cancer immunotherapy. Soluble CpG-ODNs cause hepatic toxicity, which reduces its therapeutic applicability. The formulation of class B CpG ODN1826 in lipid nanoparticles (LNPs) containing an ionizable cationic lipid that complexes CpG through electrostatic interaction is reported. Upon local administration, LNP-formulated CpG drains to lymph nodes and triggers robust innate immune activation. Unformulated, soluble, CpG, by contrast, is unable to induce robust innate activation in draining lymph nodes and is distributed systemically. In a vaccination setting, LNP-formulated CpG, admixed with a protein antigen, induces higher antigen-specific antibody titers and T cell responses than antigen admixed with unformulated soluble CpG.
Collapse
Affiliation(s)
- Zifu Zhong
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Kim Deswarte
- Department of Internal Medicine and Pediatrics, Ghent University, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Gent, Ghent, 9052, Belgium
| | - Heleen Lauwers
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Emily De Lombaerde
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Xiaole Cui
- Laboratory of Gene Therapy, Ghent University, Belgium, Heidestraat 19, Merelbeke, 9820, Belgium
| | - Simon Van Herck
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Tingting Ye
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Mark Gontsarik
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science and Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | - Niek N Sanders
- Laboratory of Gene Therapy, Ghent University, Belgium, Heidestraat 19, Merelbeke, 9820, Belgium
| | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Gent, Ghent, 9052, Belgium
| | | | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| |
Collapse
|
16
|
Matsuda M, Mochizuki S. Control of A/D type CpG-ODN aggregates to a suitable size for induction of strong immunostimulant activity. Biochem Biophys Rep 2023; 36:101573. [PMID: 37954170 PMCID: PMC10633530 DOI: 10.1016/j.bbrep.2023.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Among several types of CpG-ODNs, A/D-type CpG-ODNs have potent adjuvant activity to induce Th-1 immune responses, but exhibit a propensity to aggregate. For the clinical application of A/D-type CpG-ODNs, it is necessary to control such aggregation and obtain a comprehensive understanding of the relationship between their structure and the immune responses. This study revealed that a representative A/D-type CpG ODN, D35, adopted a single-stranded structure in water, while it assembled into aggregates in response to Na+ ions. From polyacrylamide gel electrophoresis and circular dichroism analyses, D35 adopted a homodimeric form (duplex) via palindromic sequences in low-Na+-concentration conditions (10-50 mM NaCl). After replacement of the solution with PBS, quadruplexes began to form in a manner coordinated by Na+, resulting in large aggregates. The duplexes and small aggregates prepared in 50 mM NaCl showed not only high cellular uptake but also high affinity to Toll-like receptor 9 (TLR9) proteins, leading to the production of a large amount of interferon-α for peripheral blood mononuclear cells. The much larger aggregates prepared in 100 mM NaCl were incorporated into cells at a high level, but showed a low ability to induce cytokine production. This suggests that the large aggregates have difficulty inducing TLR9 dimerization, resulting in loss of the stimulation of the cells. We thus succeeded in inducing adequate innate immunity in vitro by controlling and adjusting the formation of D35 aggregates. Therefore, the findings in this study for D35 ODNs could be a vital research foundation for in vivo applications.
Collapse
Affiliation(s)
- Miyu Matsuda
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Shinichi Mochizuki
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| |
Collapse
|
17
|
Le NBT, Tu ATT, Zhao D, Yoshikawa C, Kawakami K, Kaizuka Y, Yamazaki T. Influence of the Charge Ratio of Guanine-Quadruplex Structure-Based CpG Oligodeoxynucleotides and Cationic DOTAP Liposomes on Cytokine Induction Profiles. Biomolecules 2023; 13:1639. [PMID: 38002321 PMCID: PMC10669863 DOI: 10.3390/biom13111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Cationic liposomes, specifically 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) liposomes, serve as successful carriers for guanine-quadruplex (G4) structure-based cytosine-guanine oligodeoxynucleotides (CpG ODNs). The combined benefits of CpG ODNs forming a G4 structure and a non-viral vector carrier endow the ensuing complex with promising adjuvant properties. Although G4-CpG ODN-DOTAP complexes show a higher immunostimulatory effect than naked G4-CpG ODNs, the effects of the complex composition, especially charge ratios, on the production of the pro-inflammatory cytokines interleukin (IL)-6 and interferon (IFN)-α remain unclear. Here, we examined whether charge ratios drive the bifurcation of cytokine inductions in human peripheral blood mononuclear cells. Linear CpG ODN-DOTAP liposome complexes formed micrometer-sized positively charged agglomerates; G4-CpG ODN-DOTAP liposome complexes with low charge ratios (0.5 and 1.5) formed ~250 nm-sized negatively charged complexes. Notably, low-charge-ratio (0.5 and 1.5) complexes induced significantly higher IL-6 and IFN-α levels simultaneously than high-charge-ratio (2 and 2.5) complexes. Moreover, confocal microscopy indicated a positive correlation between the cellular uptake of the complex and amount of cytokine induced. The observed effects of charge ratios on complex size, surface charge, and affinity for factors that modify cellular-uptake, intracellular-activity, and cytokine-production efficiency highlight the importance of a rational complex design for delivering and controlling G4-CpG ODN activity.
Collapse
Affiliation(s)
- Nguyen Bui Thao Le
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| | - Anh Thi Tram Tu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
- Department of Magnetic and Biomedical Materials, Faculty of Materials Science and Technology, VNUHCM-University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam
- Ho Chi Minh City Campus, Vietnam National University, Linh Trung, Thu Duc, Ho Chi Minh City 70000, Vietnam
| | - Dandan Zhao
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
| | - Chiaki Yoshikawa
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| | - Kohsaku Kawakami
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
| | - Yoshihisa Kaizuka
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
| | - Tomohiko Yamazaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan; (N.B.T.L.); (A.T.T.T.); (D.Z.); (C.Y.); (K.K.); (Y.K.)
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| |
Collapse
|
18
|
Zhang Q, Qu X, Liang C, Li H, Du S, Wang C, Xie Y, Zheng Y, Wang L. Effect of oligonucleotide MT01 delivered by N-isopropylacrylamide modified polyethyleneimine for bone regeneration. Front Bioeng Biotechnol 2023; 11:1204571. [PMID: 37404683 PMCID: PMC10315576 DOI: 10.3389/fbioe.2023.1204571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/09/2023] [Indexed: 07/06/2023] Open
Abstract
Objective: This study aimed to investigate the regulatory effect of N-isopropylacrylamide-modified polyethyleneimine (PEN)-delivered oligodeoxynucleotide (ODN) MT01 on bone regeneration in vitro and in vivo. Methods: A polyethylenimine (PEI) derivative, PEN, was constructed through Michael addition and employed as a carrier for ODN MT01 transfection. PEN/MT01 nanocomposites were characterized using agarose gel retardation assay, size distribution, zeta potential and transmission electron microscopy. The Cell Counting Kit-8 (CCK-8) assay was used to detect the effect of PEN on cell viability. Alkaline phosphatase (ALP) staining was used to detect the osteogenic differentiation ability of PEN/MT01 nanocomposite. Real-time quantitative PCR (q RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the regulatory effects of PEN/MT01 nanocomposite on osteogenic differentiation gene expression. Rat model was observed using the skull defect method and verified using micro-computed tomography (CT), serum biochemical indices, hematoxylin and eosin (H&E) staining and Immunohistochemistry (IHC). Results: PEN had good biological properties and could deliver MT01 well to achieve efficient transmission of MT01. PEN/MT01 nanocomposites were effectively transfected into MC3T3-E1 cells at a ratio of 6.0. CCK-8 assay displayed that PEN had no cytotoxicity to MC3T3-E1 cells. Additionally, PEN/MT01 nanocomposites could promote the expression of osteogenic genes. In vivo results revealed that PEN/MT01 nanocomposites could promote bone regeneration more effectively than the other groups. Conclusion: PEN has good biocompatibility and low toxicity, which is a good carrier for ODN MT01. PEN-delivered MT01 can be potentially employed as a useful approach to achieving bone regeneration.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Xingyuan Qu
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Chen Liang
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Hongyan Li
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Siyu Du
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Chang Wang
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Yuandong Xie
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Yi Zheng
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Lei Wang
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
19
|
Chen X, Zhang P, Li P, Wang G, Li J, Wu Y, Cao Z, Zhou Y, Sun Y. CpG ODN 1668 as TLR9 agonist mediates humpback grouper (Cromileptes altivelis) antibacterial immune responses. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108839. [PMID: 37207883 DOI: 10.1016/j.fsi.2023.108839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Cromileptes altivelis (humpback grouper) is the main farmed species in the southern coastal area of China owing to its important economic value. Toll-like receptor 9 (TLR9) belongs to the toll-like receptor (TLR) family and functions as a pattern recognition receptor, recognising unmethylated oligodeoxynucleotides containing the CpG motif (CpG ODNs) in bacterial and viral genomes, thereby activating host immune response. In this study, the C. altivelis TLR9 (CaTLR9) ligand CpG ODN 1668 was screened and found to significantly enhance the antibacterial immunity of humpback grouper in vivo and head kidney lymphocytes (HKLs) in vitro. In addition, CpG ODN 1668 also promoted the cell proliferation and immune gene expression of HKLs and strengthened the phagocytosis activity of head kidney macrophages. However, when the CaTLR9 expression was knocked down in the humpback group, the expression levels of TLR9, myeloid differentiation factor 88 (Myd88), tumour necrosis factor-α (TNF-α), interferon γ (IFN-γ), interleukin-1β (IL-1β), IL-6, and IL-8 were significantly reduced, and the antibacterial immune effects induced by CpG ODN 1668 were mostly abolished. Therefore, CpG ODN 1668 induced antibacterial immune responses in a CaTLR9-dependent pathway. These results enhance the knowledge of the antibacterial immunity of fish TLR signalling pathways and have important implications for exploring natural antibacterial molecules in fish.
Collapse
Affiliation(s)
- Xiaojuan Chen
- Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Panpan Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Pengshuo Li
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Guotao Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jianlong Li
- Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Ying Wu
- Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Zhenjie Cao
- Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Yongcan Zhou
- Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Yun Sun
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China.
| |
Collapse
|
20
|
Chen X, Wu Y, Qiu Y, Li P, Cao Z, Zhou Y, Sun Y. CpG ODN 2102 promotes antibacterial immune responses and enhances vaccine-induced protection in golden pompano (Trachinotusovatus). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108783. [PMID: 37137380 DOI: 10.1016/j.fsi.2023.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/05/2023]
Abstract
CpG oligodeoxynucleotides (ODNs) are oligodeoxynucleotides containing CpG motifs and can be recognized by toll-like receptor 9 (TLR9), activating the host's immune responses. In this study, ten different CpG ODNs were designed and synthesized to study the antibacterial immune responses of CpG ODNs in golden pompano (Trachinotus ovatus). Results showed that CpG ODN 2102 significantly improved the immunity of golden pompano against bacteria. Besides, CpG ODN 2102 promoted the proliferation of head kidney lymphocytes and activated the head kidney macrophages. When TLR9-specific small interfering RNA (siRNA) was used to interfere with TLR9 expression, the immune responses were decreased. Moreover, the expression levels of myeloid differentiation primary response 88 (Myd88), p65, tumor necrosis factor receptor-associated factor 6 (TRAF6), and tumor necrosis factor-alpha (TNF-α) in the TLR9-knockdown golden pompano kidney (GPK) cells were significantly reduced. The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) promoter activity of the TLR9-knockdown GPK cells was also significantly reduced. In vivo, the antibacterial immune effects induced by CpG ODN 2102 in golden pompano were mostly abolished when TLR9 expression was knocked down. These results suggested that TLR9 was involved in the immune responses induced by CpG ODN 2102. CpG ODN 2102 also enhanced the protective effect of the Vibrio harveyi vaccine pCTssJ, where the survival rate of golden pompano was significantly improved by 20%. In addition, CpG ODN 2102 enhanced the messenger RNA (mRNA) expression levels of TLR9, Myxovirus resistance (Mx), interferon γ (IFN-γ), TNF-α, interleukin (IL)-1β, IL-8, major histocompatibility complex class (MHC) Iα, MHC IIα, Immunoglobulin D (IgD), and IgM. Therefore, TLR9 was involved in the antibacterial immune responses induced by CpG ODN 2102 and CpG ODN 2102 possessed adjuvant immune effects. These results enlarged our knowledge of the antibacterial immunity of fish TLRs signaling pathway and had important implications for exploring natural antibacterial molecules in fish and developing new vaccine adjuvants.
Collapse
Affiliation(s)
- Xiaojuan Chen
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Ying Wu
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Yulin Qiu
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Pengshuo Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Zhenjie Cao
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Yongcan Zhou
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China.
| | - Yun Sun
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China.
| |
Collapse
|
21
|
Cheng T, Yan T, Wu J, Wang Q, Zhang H. Yeast β-D-glucan functionalized graphene oxide for macrophage-targeted delivery of CpG oligodeoxynucleotides and synergistically enhanced antitumor immunity. Int J Biol Macromol 2023; 234:123432. [PMID: 36716835 DOI: 10.1016/j.ijbiomac.2023.123432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/13/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023]
Abstract
Immunostimulatory CpG oligodeoxynucleotides (CpG ODNs) show strong potential in cancer immunotherapy. However, therapeutic efficacy of CpG ODNs is hindered due to rapid nuclease degradation and insufficient cellular uptake. Transfecting CpG ODNs into antigen presenting cells (APCs) is vital to enhance their therapeutic efficacy while reduce the potential side effects. Herein, a multifunctional CpG ODNs vector was fabricated through functionalization of graphene oxide (GO) with yeast β-D-glucan, and its potential in cancer immunotherapy was further investigated. GO-β-D-glucan protected CpG ODNs from nuclease digestion. β-D-glucan endowed the delivery system with targeting ability for macrophage due to its recognition with dectin-1. Thus, GO-β-D-glucan enhanced the delivery of CpG ODNs into RAW264.7 cells due to dectin-1-mediated endocytosis. More importantly, β-D-glucan functioned synergistically with CpG ODNs in inducing antitumor immunity. GO-β-D-glucan/CpG ODNs inhibited the tumor cells growth more effectively. This work provides a macrophage-targeted CpG ODNs delivery system for cancer immunotherapy. Graphic abstract.
Collapse
Affiliation(s)
- Ting Cheng
- Department of Oncology, Wuxi No.2 People's Hospital, Wuxi 214000, China
| | - Ting Yan
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Wu
- Department of Oncology, Wuxi No.2 People's Hospital, Wuxi 214000, China
| | - Qi Wang
- Department of Oncology, Wuxi No.2 People's Hospital, Wuxi 214000, China.
| | - Huijie Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
22
|
Takano S, Miyashima Y, Fujii S, Sakurai K. Molecular Bottlebrushes for Immunostimulatory CpG ODN Delivery: Relationship among Cation Density, Complex Formation Ability, and Cytotoxicity. Biomacromolecules 2023; 24:1299-1309. [PMID: 36762890 DOI: 10.1021/acs.biomac.2c01348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Artificially designed short single-stranded DNA sequences containing unmethylated CG (CpG ODNs) are agonists for toll-like receptor 9 (TLR9); thus, they have great potential as vaccine adjuvants for cancer immunotherapy and preventing infectious diseases. To deliver effectively CpG ODNs into cells bearing TLR9, nanoparticle polyion complexes of cationic polymers that are able to ingest multiple CpG ODN molecules have been developed; however, their structures and synthesized polycations are hard to control and bioincompatible, respectively. To solve these issues, we designed cationic molecular bottlebrushes (CMBs) with branches that are made from copolymers of 2-methacryloyloxyethyl phosphorylcholine and 2-methacryloyloxyethyl trimethylammonium chloride. Several instrumental methods were carried out to determine the structure of a CMB and its complex with CpG ODNs. The complexation did not change the overall shape of the original CMB, and the bound CpG ODNs were captured by the outer layer of the CMB. The moderation of cations was important to reduce toxicity and improve secretion of inflammatory cytokines.
Collapse
Affiliation(s)
- Shin Takano
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Yusuke Miyashima
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|
23
|
Ananya A, Holden KG, Gu Z, Nettleton D, Mallapragada SK, Wannemuehler MJ, Kohut ML, Narasimhan B. "Just right" combinations of adjuvants with nanoscale carriers activate aged dendritic cells without overt inflammation. Immun Ageing 2023; 20:10. [PMID: 36895007 PMCID: PMC9996592 DOI: 10.1186/s12979-023-00332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/05/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND The loss in age-related immunological markers, known as immunosenescence, is caused by a combination of factors, one of which is inflammaging. Inflammaging is associated with the continuous basal generation of proinflammatory cytokines. Studies have demonstrated that inflammaging reduces the effectiveness of vaccines. Strategies aimed at modifying baseline inflammation are being developed to improve vaccination responses in older adults. Dendritic cells have attracted attention as an age-specific target because of their significance in immunization as antigen presenting cells that stimulate T lymphocytes. RESULTS In this study, bone marrow derived dendritic cells (BMDCs) were generated from aged mice and used to investigate the effects of combinations of adjuvants, including Toll-like receptor, NOD2, and STING agonists with polyanhydride nanoparticles and pentablock copolymer micelles under in vitro conditions. Cellular stimulation was characterized via expression of costimulatory molecules, T cell-activating cytokines, proinflammatory cytokines, and chemokines. Our results indicate that multiple TLR agonists substantially increase costimulatory molecule expression and cytokines associated with T cell activation and inflammation in culture. In contrast, NOD2 and STING agonists had only a moderate effect on BMDC activation, while nanoparticles and micelles had no effect by themselves. However, when nanoparticles and micelles were combined with a TLR9 agonist, a reduction in the production of proinflammatory cytokines was observed while maintaining increased production of T cell activating cytokines and enhancing cell surface marker expression. Additionally, combining nanoparticles and micelles with a STING agonist resulted in a synergistic impact on the upregulation of costimulatory molecules and an increase in cytokine secretion from BMDCs linked with T cell activation without excessive secretion of proinflammatory cytokines. CONCLUSIONS These studies provide new insights into rational adjuvant selection for vaccines for older adults. Combining appropriate adjuvants with nanoparticles and micelles may lead to balanced immune activation characterized by low inflammation, setting the stage for designing next generation vaccines that can induce mucosal immunity in older adults.
Collapse
Affiliation(s)
- Ananya Ananya
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kaitlyn G Holden
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Zhiling Gu
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Surya K Mallapragada
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | | | - Marian L Kohut
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Kinesiology, Iowa State University, Ames, IA, 50011, USA
| | - Balaji Narasimhan
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA.
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
24
|
Screening of Optimal CpG-Oligodeoxynucleotide for Anti-Inflammatory Responses in the Avian Macrophage Cell Line HD11. J Poult Sci 2023; 60:2023002. [PMID: 36756048 PMCID: PMC9884633 DOI: 10.2141/jpsa.2023002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
CpG-oligodeoxynucleotides (. CpG-ODNs ) have been shown to possess immunostimulatory features in both mammals and birds. However, compared to their proinflammatory effects, little is known about the anti-inflammatory responses triggered by CpG-ODN in avian cells. Hence, in this study, the anti-inflammatory response in the chicken macrophage cell line HD11 was characterized under stimulation with five types of CpG-ODNs: CpG-A1585, CpG-AD35, CpG-B1555, CpG-BK3, and CpG-C2395. Single-stimulus of CpG-B1555, CpG-BK3, or CpG-C2395 induced interleukin (IL)-10 expression without causing cell injury. The effects of pretreatment with CpG-ODNs before subsequent lipopolysaccharide stimulation were also evaluated. Interestingly, pretreatment with only CpG-C2395 resulted in high expression levels of IL-10 mRNA in the presence of lipopolysaccharide. Finally, gene expression analysis of inflammation-related cytokines and receptors revealed that pre-treatment with CpG-C2395 significantly reduced the mRNA expression of tumor necrosis factor-α, IL-1β, IL-6, and Toll-like receptor 4. Overall, these results shed light on the anti-inflammatory responses triggered by CpG-C2395 stimulation through a comparative analysis of five types of CpG-ODNs in chicken macrophages. These results also offer insights into the use of CpG-ODNs to suppress the expression of proinflammatory cytokines, which may be valuable in the prevention of avian infectious diseases in the poultry industry.
Collapse
|
25
|
Kim KR, Lee AS, Kim SM, Heo HR, Kim CS. Virus-like nanoparticles as a theranostic platform for cancer. Front Bioeng Biotechnol 2023; 10:1106767. [PMID: 36714624 PMCID: PMC9878189 DOI: 10.3389/fbioe.2022.1106767] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Virus-like nanoparticles (VLPs) are natural polymer-based nanomaterials that mimic viral structures through the hierarchical assembly of viral coat proteins, while lacking viral genomes. VLPs have received enormous attention in a wide range of nanotechnology-based medical diagnostics and therapies, including cancer therapy, imaging, and theranostics. VLPs are biocompatible and biodegradable and have a uniform structure and controllable assembly. They can encapsulate a wide range of therapeutic and diagnostic agents, and can be genetically or chemically modified. These properties have led to sophisticated multifunctional theranostic platforms. This article reviews the current progress in developing and applying engineered VLPs for molecular imaging, drug delivery, and multifunctional theranostics in cancer research.
Collapse
Affiliation(s)
- Kyeong Rok Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Ae Sol Lee
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Su Min Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Hye Ryoung Heo
- Senotherapy-Based Metabolic Disease Control Research Center, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Chang Sup Kim, ; Hye Ryoung Heo,
| | - Chang Sup Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea,School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Chang Sup Kim, ; Hye Ryoung Heo,
| |
Collapse
|
26
|
Iswanti FC, Putri QH, Prijanti AR, Djauzi S, Sadikin M, Witarto AB, Yamazaki T. The Use of Chitosan Nanoparticles for Delivery of CpG ODN in Treatment of Allergic Balb/C Mice. Rep Biochem Mol Biol 2023; 11:599-613. [PMID: 37131904 PMCID: PMC10149129 DOI: 10.52547/rbmb.11.4.599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/12/2022] [Indexed: 05/04/2023]
Abstract
Background This study aims to prepare high stability chitosan nanoparticles (CNP) and examine the ability of CNP in CpG-ODN delivery when treating allergic mice model. Methods Preparation and characterization of CNP were performed by ionic gelation, dynamic light scattering, and zeta sizer. The CNP cytotoxicity and activation ability of CpG ODN delivered with CNP were tested using a cell counting kit-8 and Quanti blue method. Allergic mice were injected intraperitoneal with 10 ug ovalbumin on day 0 and 7, and then treated with intranasal CpG ODN/CpG ODN, delivered with CNP/CNP, on the third week three times per week for three weeks. The ELISA method measured cytokine and IgE profiles in the allergic mice's plasma and spleen. Results CNP results have sizes 27.73 nm±3.67 dan 188.23 nm±53.47, spherical in shape and non-toxic, and did not alter the NF-κB activation of CpG ODN in RAW-blue cells. The application of CpG ODN delivered by chitosan nanoparticles shows no statistical difference between groups of IFN-γ, IL-10, and IL-13 in Balb/c mice's plasma and spleen, in contrast with IgE level. Conclusions The results showed that using chitosan nanoparticles as a delivery system for CpG ODN has the potency to safely CpG ODN efficacy.
Collapse
Affiliation(s)
- Febriana Catur Iswanti
- Department of Biochemistry and Molecular Biology Faculty of Medicine, Universitas Indonesia, Indonesia.
- Corresponding author: Febriana Catur Iswanti; Tel: +98 9381267697; E-mail:
| | - Qarina Hasyala Putri
- Master’s Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Indonesia.
| | - Ani Retno Prijanti
- Department of Biochemistry and Molecular Biology Faculty of Medicine, Universitas Indonesia, Indonesia.
| | - Samsuridjal Djauzi
- Department of Internal Medicine, Faculty of Medicine, Ciptomangunkusumo Hospital, Universitas Indonesia, Indonesia.
| | - Mohamad Sadikin
- Department of Biochemistry and Molecular Biology Faculty of Medicine, Universitas Indonesia, Indonesia.
| | - Arief Budi Witarto
- Department of Molecular Biology and Cell, Faculty of Medicine, Indonesia Defense University, Indonesia.
| | - Tomohiko Yamazaki
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Japan.
| |
Collapse
|
27
|
Fehri E, Ennaifer E, Bel Haj Rhouma R, Ardhaoui M, Boubaker S. TLR9 and Glioma: Friends or Foes? Cells 2022; 12:cells12010152. [PMID: 36611945 PMCID: PMC9818384 DOI: 10.3390/cells12010152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptor 9 (TLR9) is an intracellular innate immunity receptor that plays a vital role in chronic inflammation and in recognizing pathogenic and self-DNA in immune complexes. This activation of intracellular signaling leads to the transcription of either immune-related or malignancy genes through specific transcription factors. Thus, it has been hypothesized that TLR9 may cause glioma. This article reviews the roles of TLR9 in the pathogenesis of glioma and its related signaling molecules in either defending or promoting glioma. TLR9 mediates the invasion-induced hypoxia of brain cancer cells by the activation of matrix metalloproteinases (2, 9, and 13) in brain tissues. In contrast, the combination of the TLR9 agonist CpG ODN to radiotherapy boosts the role of T cells in antitumor effects. The TLR9 agonist CpG ODN 107 also enhances the radiosensitivity of human glioma U87 cells by blocking tumor angiogenesis. CpG enhances apoptosis in vitro and in vivo. Furthermore, it can enhance the antigen-presenting capacity of microglia, switch immune response toward CD8 T cells, and reduce the number of CD4CD25 Treg cells. CpG ODN shows promise as a potent immunotherapeutic drug against cancer, but specific cautions should be taken when activating TLR9, especially in the case of glioblastoma.
Collapse
Affiliation(s)
- Emna Fehri
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Correspondence:
| | - Emna Ennaifer
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Rahima Bel Haj Rhouma
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Monia Ardhaoui
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Samir Boubaker
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| |
Collapse
|
28
|
Zhao D, Tu ATT, Shobo M, Le NBT, Yoshikawa C, Sugai K, Hakamata Y, Yamazaki T. Non-Modified CpG Oligodeoxynucleotide Forming Guanine-Quadruplex Structure Complexes with ε-Poly- L-Lysine Induce Antibody Production as Vaccine Adjuvants. Biomolecules 2022; 12:biom12121868. [PMID: 36551297 PMCID: PMC9775190 DOI: 10.3390/biom12121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Unmethylated cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODNs) induce inflammatory cytokines and type I interferons (IFNs) to activate the immune system. To apply CpG ODNs as vaccine adjuvants, the cellular uptake and stability of phosphodiester-based, non-modified ODNs require further improvement. Previously developed new CpG ODNs forming guanine-quadruplex (G4) structures showed higher nuclease resistance and cellular uptake than linear CpG ODNs; however, the complex formation of G4-CpG ODNs with antigen proteins is necessary for their application as vaccine adjuvants. In this study, we utilized a cationic polymer, ε-poly-L-lysine (ε-PLL), as a carrier for G4-CpG ODNs and antigen. The ε-PLL/G4-CpG ODN complex exhibited enhanced stability against nucleases. Cellular uptake of the ε-PLL/G4-CpG ODN complex positively correlated with the N/P ratio. In comparison to naked G4-CpG ODNs, the ε-PLL/G4-CpG ODN complex induced extremely high levels of interleukin (IL)-6, IL-12, and IFN-β. Relative immune cytokine production was successfully tuned by N/P ratio modification. Mice with the ε-PLL/G4-CpG ODN/ovalbumin (OVA) complex showed increased OVA-specific immunoglobulin (Ig)G, IgG1, and IgG2c levels, whereas total IgE levels did not increase and weight gain rates were not affected. Therefore, ε-PLL can serve as a safe and effective phosphodiester-based, non-modified CpG ODN delivery system, and the ε-PLL/G4-CpG ODN/antigen complex is a highly promising candidate for vaccine adjuvants and can be further used in clinical research.
Collapse
Affiliation(s)
- Dandan Zhao
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
| | - Anh Thi Tram Tu
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
- Department of Magnetic and Biomedical Materials, Faculty of Materials Science and Technology, University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam
- Ho Chi Minh City Campus, Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 70000, Vietnam
| | - Miwako Shobo
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
| | - Nguyen Bui Thao Le
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| | - Chiaki Yoshikawa
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
| | - Kazuhisa Sugai
- School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-shi, Tokyo 180-8602, Japan
| | - Yoji Hakamata
- School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-shi, Tokyo 180-8602, Japan
| | - Tomohiko Yamazaki
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
- Correspondence: ; Tel.: +81-29-859-2345; Fax: +81-29-859-2449
| |
Collapse
|
29
|
Műzes G, Bohusné Barta B, Szabó O, Horgas V, Sipos F. Cell-Free DNA in the Pathogenesis and Therapy of Non-Infectious Inflammations and Tumors. Biomedicines 2022; 10:biomedicines10112853. [PMID: 36359370 PMCID: PMC9687442 DOI: 10.3390/biomedicines10112853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
The basic function of the immune system is the protection of the host against infections, along with the preservation of the individual antigenic identity. The process of self-tolerance covers the discrimination between self and foreign antigens, including proteins, nucleic acids, and larger molecules. Consequently, a broken immunological self-tolerance results in the development of autoimmune or autoinflammatory disorders. Immunocompetent cells express pattern-recognition receptors on their cell membrane and cytoplasm. The majority of endogenous DNA is located intracellularly within nuclei and mitochondria. However, extracellular, cell-free DNA (cfDNA) can also be detected in a variety of diseases, such as autoimmune disorders and malignancies, which has sparked interest in using cfDNA as a possible biomarker. In recent years, the widespread use of liquid biopsies and the increasing demand for screening, as well as monitoring disease activity and therapy response, have enabled the revival of cfDNA research. The majority of studies have mainly focused on the function of cfDNA as a biomarker. However, research regarding the immunological consequences of cfDNA, such as its potential immunomodulatory or therapeutic benefits, is still in its infancy. This article discusses the involvement of various DNA-sensing receptors (e.g., absent in melanoma-2; Toll-like receptor 9; cyclic GMP-AMP synthase/activator of interferon genes) in identifying host cfDNA as a potent danger-associated molecular pattern. Furthermore, we aim to summarize the results of the experimental studies that we recently performed and highlight the immunomodulatory capacity of cfDNA, and thus, the potential for possible therapeutic consideration.
Collapse
Affiliation(s)
| | | | | | | | - Ferenc Sipos
- Correspondence: ; Tel.: +36-20-478-0752; Fax: +36-1-266-0816
| |
Collapse
|
30
|
Lee J, Kim D, Le QV, Oh YK. Nanotherapeutics for immune network modulation in tumor microenvironments. Semin Cancer Biol 2022; 86:1066-1087. [PMID: 34844846 DOI: 10.1016/j.semcancer.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023]
Abstract
Immunotherapy has shown promise in cancer treatment, and is thus drawing increasing interest in this field. While the standard chemotherapy- and/or radiotherapy-based cancer treatments aim to directly kill cancer cells, immunotherapy uses host immune cell surveillance to fight cancer. In the tumor environment, there is a close relationship between tumor cells and the adjacent immune cells, which are largely suppressed by cancer-related regulation of immune checkpoints, immune-suppressive cytokines, and metabolic factors. The immune modulators currently approved for cancer treatment remain limited by issues with dose tolerance and insufficient efficacy. Researchers have developed and tested various nano-delivery systems with the goal of improving the treatment outcome of these drugs. By encapsulating immune modulators in particles and directing their tissue accumulation, some such systems have decreased immune-related toxicity while sharpening the antitumor response. Surface-ligand modification of nanoparticles has allowed drugs to be delivered to specific immune cells types. Researchers have also studied strategies for depleting or reprogramming the immune-suppressive cells to recover the immune environment. Combining a nanomaterial with an external stimulus has been used to induce immunogenic cell death; this favors the inflammatory environment found in tumor tissues to promote antitumor immunity. The present review covers the most recent strategies aimed at modulating the tumor immune environment, and discusses the challenges and future perspectives in developing nanoparticles for cancer immunotherapy.
Collapse
Affiliation(s)
- Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Quoc-Viet Le
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
31
|
Mao Y, Chen Y, Li W, Wang Y, Qiu J, Fu Y, Guan J, Zhou P. Physiology-Inspired Multilayer Nanofibrous Membranes Modulating Endogenous Stem Cell Recruitment and Osteo-Differentiation for Staged Bone Regeneration. Adv Healthc Mater 2022; 11:e2201457. [PMID: 36027596 DOI: 10.1002/adhm.202201457] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Indexed: 01/28/2023]
Abstract
Bone regeneration involves a cascade of sophisticated, multiple-staged cellular and molecular events, where early-phase stem cell recruitment mediated by chemokines and late-phase osteo-differentiation induced by pro-osteogenic factors play the crucial roles. Herein, enlightened by a bone physiological and regenerative mechanism, the multilayer nanofibrous membranes (PLLA@SDF-1α@MT01) consisting of PLLA/MT01 micro-sol electrospun nanofibers as intima and PLLA/PEG/SDF-1α electrospun nanofibers as adventitia are fabricated through micro-sol electrospinning and manual multi-layer stacking technologies. In vitro releasing profiles show that PLLA@SDF-1α@MT01 represents the rapid release of stromal cell-derived SDF-1α (SDF-1α) in the outer layers, while with long-term sustained release of MT01 in the inner layer. Owing to interconnected porosity like the natural bone extracellular matrix and improved hydrophilia, PLLA@SDF-1α@MT01 manifests good biocompatibility both in vitro and in vivo. Furthermore, PLLA@SDF-1α@MT01 can promote bone marrow mesenchymal stem cells (BMSCs) migration by amplifying the SDF-1α/CXCR4 axis and stimulating BMSCs osteo-differentiation via activating the MAPK pathway in vitro. PLLA@SDF-1α@MT01, with a programmed dual-delivery system, exhibits the synergetic promotion of bone regeneration and vascularization by emulating key characteristics of the staged bone repair in vivo. Overall, PLLA@SDF-1α@MT01 that mimics the endogenous cascades of bone regeneration can enrich the physiology-mimetic staged regenerative strategy and represent a promising tissue-engineered scaffold for the bone defect.
Collapse
Affiliation(s)
- Yingji Mao
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China.,Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
| | - Yu Chen
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China.,Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China
| | - Weifeng Li
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China
| | - Ying Wang
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China.,Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China
| | - Jingjing Qiu
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
| | - Yingxiao Fu
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China
| | - Jianzhong Guan
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China.,Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
| | - Pinghui Zhou
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China.,Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
| |
Collapse
|
32
|
Piñón-Zárate G, Hernández-Téllez B, Jarquín-Yáñez K, Herrera-Enríquez MÁ, Fuerte-Pérez AE, Valencia-Escamilla EA, Castell-Rodríguez AE. Gelatin/Hyaluronic Acid Scaffold Coupled to CpG and MAGE-A5 as a Treatment against Murine Melanoma. Polymers (Basel) 2022; 14:4608. [PMID: 36365602 PMCID: PMC9657831 DOI: 10.3390/polym14214608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2024] Open
Abstract
The half-time of cells and molecules used in immunotherapy is limited. Scaffolds-based immunotherapy against cancer may increase the half-life of the molecules and also support the migration and activation of leukocytes in situ. For this purpose, the use of gelatin (Ge)/hyaluronic acid (HA) scaffolds coupled to CpG and the tumor antigen MAGE-A5 is proposed. Ge and HA are components of the extracellular matrix that stimulate cell adhesion and activation of leucocytes; CpG can promote dendritic cell maturation, and MAGE-A5 a specific antitumor response. C57BL/6 mice were treated with Ge/HA/scaffolds coupled to MAGE-A5 and/or CpG and then challenged with the B16-F10 melanoma cell line. Survival, tumor growth rate and the immune response induced by the scaffolds were analyzed. Ge/HA/CpG and Ge/HA/MAGE-A5 mediated dendritic cell maturation and macrophage activation, increased survival, and decreased the tumor growth rate and a tumor parenchyma with abundant cell death areas and abundant tumor cells with melanin granules. Only the scaffolds coupled to MAGE-A5 induced the activation of CD8 T cells. In conclusion, Ge/HA scaffolds coupled to CpG or MAGE-A5, but not the mixture, can induce a successful immune response capable of promoting tumor cell clearance and increased survival.
Collapse
Affiliation(s)
- Gabriela Piñón-Zárate
- Facultad de Medicina, National Autonomous University of Mexico, Ciudad de México 04510, Mexico
| | | | | | | | | | | | | |
Collapse
|
33
|
Bencze D, Fekete T, Pfliegler W, Szöőr Á, Csoma E, Szántó A, Tarr T, Bácsi A, Kemény L, Veréb Z, Pázmándi K. Interactions between the NLRP3-Dependent IL-1β and the Type I Interferon Pathways in Human Plasmacytoid Dendritic Cells. Int J Mol Sci 2022; 23:12154. [PMID: 36293012 PMCID: PMC9602791 DOI: 10.3390/ijms232012154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Generally, a reciprocal antagonistic interaction exists between the antiviral type I interferon (IFN) and the antibacterial nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3)-dependent IL-1β pathways that can significantly shape immune responses. Plasmacytoid dendritic cells (pDCs), as professional type I IFN-producing cells, are the major coordinators of antiviral immunity; however, their NLRP3-dependent IL-1β secretory pathway is poorly studied. Our aim was to determine the functional activity of the IL-1β pathway and its possible interaction with the type I IFN pathway in pDCs. We found that potent nuclear factor-kappa B (NF-κB) inducers promote higher levels of pro-IL-1β during priming compared to those activation signals, which mainly trigger interferon regulatory factor (IRF)-mediated type I IFN production. The generation of cleaved IL-1β requires certain secondary signals in pDCs and IFN-α or type I IFN-inducing viruses inhibit IL-1β production of pDCs, presumably by promoting the expression of various NLRP3 pathway inhibitors. In line with that, we detected significantly lower IL-1β production in pDCs of psoriasis patients with elevated IFN-α levels. Collectively, our results show that the NLRP3-dependent IL-1β secretory pathway is inducible in pDCs; however, it may only prevail under inflammatory conditions, in which the type I IFN pathway is not dominant.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Walter Pfliegler
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Árpád Szöőr
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Antónia Szántó
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tünde Tarr
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Lajos Kemény
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
34
|
Siddiqui SA, Bahmid NA, Taha A, Abdel-Moneim AME, Shehata AM, Tan C, Kharazmi MS, Li Y, Assadpour E, Castro-Muñoz R, Jafari SM. Bioactive-loaded nanodelivery systems for the feed and drugs of livestock; purposes, techniques and applications. Adv Colloid Interface Sci 2022; 308:102772. [PMID: 36087561 DOI: 10.1016/j.cis.2022.102772] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 01/06/2023]
Abstract
Advances in animal husbandry and better performance of livestock results in growing demands for feed and its nutrients, bioactive compounds (bioactives), such as vitamins, minerals, proteins, and phenolics, along with drugs/vaccines. To protect the feed bioactives in unintended circumstances, they can be encapsulated to achieve desired efficacy in animal feeding and nanoencapsulation gives more potential for better protection, absorption and targeted delivery of bioactives. This study reviews structures, properties, and methods of nanoencapsulation for animal feedings and relevant drugs. Essential oil (EOs) and plant extracts are mostly encapsulated bioactives and phytochemicals for poultry diets and chitosan is found as most effective nanocarrier to load EOs and plant extracts. Nanoparticles (NPs) and nanocapsules are frequently studied nanocarriers, which are mostly processed by using the ionotropic/ionic gelation. Nanofibers, nanohydrogels and nanoemulsions are not found yet for their application in feed bioactives. These nanocarriers can have an improved protection, stability, and controlled release of feed bioactives which benefits to additional nutrition for the growth of livestock regardless of the low stability and water solubility of bioactives. For ruminants' feeds, nano-minerals, vitamins, phytochemicals, essential fatty acids, and drugs are encapsulated by NPs to facilitate the delivery to target organs through direct penetration, to improve their bioavailability, to generate more efficient absorption in cells and tissues, and protect them from rapid degradation. Furthermore, safety and regulatory issues, as well as advantages and disadvantages of nanoencapsulation application in animal feeds are also discussed. The review shows an accurate design of NPs can largely mask safety issues with straightforward approaches and awareness of safety concerns is fundamental for better designing of nanoencapsulation systems and commercialization. This review gives an insight of understanding and potential of nanoencapsulation in ruminants and poultry feedings to obtain a better bioavailability of the nutrients and bioactives with improved safety and awareness for better designing of nanoencapsulating systems.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straße 7, 49610 D-Quakenbrück, Germany; Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861 Yogyakarta, Indonesia; Agricultural Product Technology Department, Universitas Sulawesi Barat, Majene 90311, Indonesia
| | - Ahmed Taha
- State Research Institute, Center for Physical Sciences and Technology, Saulėtekio al. 3, Vilnius, Lithuania; Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | | | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt; Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | | | - Yuan Li
- Beijing Advanced Center for Food Nutrition and Human Health, Center of Food Colloids and Delivery of Functionally, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Roberto Castro-Muñoz
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland; Tecnologico de Monterrey, Campus Toluca. Av. Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
35
|
Martínez-Puente DH, Pérez-Trujillo JJ, Zavala-Flores LM, García-García A, Villanueva-Olivo A, Rodríguez-Rocha H, Valdés J, Saucedo-Cárdenas O, Montes de Oca-Luna R, Loera-Arias MDJ. Plasmid DNA for Therapeutic Applications in Cancer. Pharmaceutics 2022; 14:pharmaceutics14091861. [PMID: 36145609 PMCID: PMC9503848 DOI: 10.3390/pharmaceutics14091861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, the interest in using nucleic acids for therapeutic applications has been increasing. DNA molecules can be manipulated to express a gene of interest for gene therapy applications or vaccine development. Plasmid DNA can be developed to treat different diseases, such as infections and cancer. In most cancers, the immune system is limited or suppressed, allowing cancer cells to grow. DNA vaccination has demonstrated its capacity to stimulate the immune system to fight against cancer cells. Furthermore, plasmids for cancer gene therapy can direct the expression of proteins with different functions, such as enzymes, toxins, and cytotoxic or proapoptotic proteins, to directly kill cancer cells. The progress and promising results reported in animal models in recent years have led to interesting clinical results. These DNA strategies are expected to be approved for cancer treatment in the near future. This review discusses the main strategies, challenges, and future perspectives of using plasmid DNA for cancer treatment.
Collapse
Affiliation(s)
| | - José Juan Pérez-Trujillo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Laura Mireya Zavala-Flores
- Department of Molecular Genetics, Northeast Biomedical Research Center (CIBIN) of IMSS, Nuevo Leon Delegation, Monterrey 64720, Mexico
| | - Aracely García-García
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Arnulfo Villanueva-Olivo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Humberto Rodríguez-Rocha
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-México, Av. IPN 2508, Colonia San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Odila Saucedo-Cárdenas
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Roberto Montes de Oca-Luna
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
- Correspondence: (R.M.d.O.-L.); (M.d.J.L.-A.); Tel.: +52-81-8329-4195 (R.M.d.O.-L. & M.d.J.L.-A.)
| | - María de Jesús Loera-Arias
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
- Correspondence: (R.M.d.O.-L.); (M.d.J.L.-A.); Tel.: +52-81-8329-4195 (R.M.d.O.-L. & M.d.J.L.-A.)
| |
Collapse
|
36
|
Huang Z, Callmann CE, Wang S, Vasher MK, Evangelopoulos M, Petrosko SH, Mirkin CA. Rational Vaccinology: Harnessing Nanoscale Chemical Design for Cancer Immunotherapy. ACS CENTRAL SCIENCE 2022; 8:692-704. [PMID: 35756370 PMCID: PMC9228553 DOI: 10.1021/acscentsci.2c00227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 05/12/2023]
Abstract
Cancer immunotherapy is a powerful treatment strategy that mobilizes the immune system to fight disease. Cancer vaccination is one form of cancer immunotherapy, where spatiotemporal control of the delivery of tumor-specific antigens, adjuvants, and/or cytokines has been key to successfully activating the immune system. Nanoscale materials that take advantage of chemistry to control the nanoscale structural arrangement, composition, and release of immunostimulatory components have shown significant promise in this regard. In this Outlook, we examine how the nanoscale structure, chemistry, and composition of immunostimulatory compounds can be modulated to maximize immune response and mitigate off-target effects, focusing on spherical nucleic acids as a model system. Furthermore, we emphasize how chemistry and materials science are driving the rational design and development of next-generation cancer vaccines. Finally, we identify gaps in the field that should be addressed moving forward and outline future directions to galvanize researchers from multiple disciplines to help realize the full potential of this form of cancer immunotherapy through chemistry and rational vaccinology.
Collapse
Affiliation(s)
- Ziyin Huang
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Cassandra E. Callmann
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Shuya Wang
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew K. Vasher
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael Evangelopoulos
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sarah Hurst Petrosko
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
37
|
Facciolà A, Visalli G, Laganà A, Di Pietro A. An Overview of Vaccine Adjuvants: Current Evidence and Future Perspectives. Vaccines (Basel) 2022; 10:vaccines10050819. [PMID: 35632575 PMCID: PMC9147349 DOI: 10.3390/vaccines10050819] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Vaccinations are one of the most important preventive tools against infectious diseases. Over time, many different types of vaccines have been developed concerning the antigen component. Adjuvants are essential elements that increase the efficacy of vaccination practises through many different actions, especially acting as carriers, depots, and stimulators of immune responses. For many years, few adjuvants have been included in vaccines, with aluminium salts being the most commonly used adjuvant. However, recent research has focused its attention on many different new compounds with effective adjuvant properties and improved safety. Modern technologies such as nanotechnologies and molecular biology have forcefully entered the production processes of both antigen and adjuvant components, thereby improving vaccine efficacy. Microparticles, emulsions, and immune stimulators are currently in the spotlight for their huge potential in vaccine production. Although studies have reported some potential side effects of vaccine adjuvants such as the recently recognised ASIA syndrome, the huge worth of vaccines remains unquestionable. Indeed, the recent COVID-19 pandemic has highlighted the importance of vaccines, especially in regard to managing future potential pandemics. In this field, research into adjuvants could play a leading role in the production of increasingly effective vaccines.
Collapse
Affiliation(s)
- Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
- Correspondence:
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
| | - Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
- Multi-Specialist Clinical Institute for Orthopaedic Trauma Care (COT), 98124 Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
| |
Collapse
|
38
|
Rekvig OP. The Anti-DNA Antibodies: Their Specificities for Unique DNA Structures and Their Unresolved Clinical Impact-A System Criticism and a Hypothesis. Front Immunol 2022; 12:808008. [PMID: 35087528 PMCID: PMC8786728 DOI: 10.3389/fimmu.2021.808008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is diagnosed and classified by criteria, or by experience, intuition and traditions, and not by scientifically well-defined etiology(ies) or pathogenicity(ies). One central criterion and diagnostic factor is founded on theoretical and analytical approaches based on our imperfect definition of the term “The anti-dsDNA antibody”. “The anti-dsDNA antibody” holds an archaic position in SLE as a unique classification criterium and pathogenic factor. In a wider sense, antibodies to unique transcriptionally active or silent DNA structures and chromatin components may have individual and profound nephritogenic impact although not considered yet – not in theoretical nor in descriptive or experimental contexts. This hypothesis is contemplated here. In this analysis, our state-of-the-art conception of these antibodies is probed and found too deficient with respect to their origin, structural DNA specificities and clinical/pathogenic impact. Discoveries of DNA structures and functions started with Miescher’s Nuclein (1871), via Chargaff, Franklin, Watson and Crick, and continues today. The discoveries have left us with a DNA helix that presents distinct structures expressing unique operations of DNA. All structures are proven immunogenic! Unique autoimmune antibodies are described against e.g. ssDNA, elongated B DNA, bent B DNA, Z DNA, cruciform DNA, or individual components of chromatin. In light of the massive scientific interest in anti-DNA antibodies over decades, it is an unexpected observation that the spectrum of DNA structures has been known for decades without being implemented in clinical immunology. This leads consequently to a critical analysis of historical and contemporary evidence-based data and of ignored and one-dimensional contexts and hypotheses: i.e. “one antibody - one disease”. In this study radical viewpoints on the impact of DNA and chromatin immunity/autoimmunity are considered and discussed in context of the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Section of Autoimmunity, Fürst Medical Laboratory, Oslo, Norway.,Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
39
|
Okada H, Takahashi K, Yaku H, Kobiyama K, Iwaisako K, Zhao X, Shiokawa M, Uza N, Kodama Y, Ishii KJ, Seno H. In situ vaccination using unique TLR9 ligand K3-SPG induces long-lasting systemic immune response and synergizes with systemic and local immunotherapy. Sci Rep 2022; 12:2132. [PMID: 35136110 PMCID: PMC8825851 DOI: 10.1038/s41598-022-05702-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/18/2022] [Indexed: 02/08/2023] Open
Abstract
Although checkpoint inhibitors (CPIs) have changed the paradigm of cancer therapy, low response rates and serious systemic adverse events remain challenging. In situ vaccine (ISV), intratumoral injection of immunomodulators that stimulate innate immunity at the tumor site, allows for the development of vaccines in patients themselves. K3-SPG, a second-generation nanoparticulate Toll-like receptor 9 (TLR9) ligand consisting of K-type CpG oligodeoxynucleotide (ODN) wrapped with SPG (schizophyllan), integrates the best of conventional CpG ODNs, making it an ideal cancer immunotherapy adjuvant. Focusing on clinical feasibility for pancreaticobiliary and gastrointestinal cancers, we investigated the antitumor activity of K3-SPG-ISV in preclinical models of pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC). K3-SPG-ISV suppressed tumor growth more potently than K3-ISV or K3-SPG intravenous injections, prolonged survival, and enhanced the antitumor effect of CPIs. Notably, in PDAC model, K3-SPG-ISV alone induced systemic antitumor effect and immunological memory. ISV combination of K3-SPG and agonistic CD40 antibody further enhanced the antitumor effect. Our results imply that K3-SPG-based ISV can be applied as monotherapy or combined with CPIs to improve their response rate or, conversely, with CPI-free local immunotherapy to avoid CPI-related adverse events. In either strategy, the potency of K3-SPG-based ISV would provide the rationale for its clinical application to puncturable pancreaticobiliary and gastrointestinal malignancies.
Collapse
Affiliation(s)
- Hirokazu Okada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54-Syogoin Kawara-cho, Sakyoku, Kyoto, 606-8507, Japan
| | - Ken Takahashi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54-Syogoin Kawara-cho, Sakyoku, Kyoto, 606-8507, Japan.
| | - Hiroaki Yaku
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54-Syogoin Kawara-cho, Sakyoku, Kyoto, 606-8507, Japan
| | - Kouji Kobiyama
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Keiko Iwaisako
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, 610-0394, Japan
| | - Xiangdong Zhao
- Division of HBP Surgery and Transplantation, Department of Surgery, Kyoto University, 54-Shogoin Kawahara-cho, Sakyoku, Kyoto, 606-8507, Japan
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54-Syogoin Kawara-cho, Sakyoku, Kyoto, 606-8507, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54-Syogoin Kawara-cho, Sakyoku, Kyoto, 606-8507, Japan
| | - Yuzo Kodama
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ken J Ishii
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54-Syogoin Kawara-cho, Sakyoku, Kyoto, 606-8507, Japan
| |
Collapse
|
40
|
Xu J, Li X, Du Y. Antibody-Pattern Recognition Receptor Agonist Conjugates: A Promising Therapeutic Strategy for Cancer. Adv Biol (Weinh) 2022; 6:e2101065. [PMID: 35122418 DOI: 10.1002/adbi.202101065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/27/2021] [Indexed: 01/15/2023]
Abstract
Antibody-drug conjugates (ADCs) are composed of monoclonal antibodies linked to cytotoxic payload drugs, each of which can be diversely designed in accordance with pharmacological and clinical requirements. The use of ADCs is effective for the treatment of different diseases, including cancers, and is gaining widespread attention. To date, 12 ADCs have been approved by the U.S. Food and Drug Administration for treating cancer and improving the quality of life of patients. To expand the application of ADCs and improve their treatment efficiency, various formats have recently been manufactured, including pattern recognition receptor (PRR) agonist-based ADCs. The antibody has a unique structure that enables the specific delivery of PRR agonists to the tumor area, and this improves the therapeutic efficacy while minimizing systemic toxicity. This review briefly discusses the current landscape and future perspectives of antibody-PRR agonist conjugates for cancer therapy.
Collapse
Affiliation(s)
- Jian Xu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiang Li
- Beijing Kawin Technology Share-Holding Co., Ltd, BDA, Beijing, 100176, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
41
|
Tu ATT, Hoshi K, Shobo M, Yamazaki T. G-quadruplex-based CpG oligodeoxynucleotide/DOTAP complex strongly stimulates immunity in CpG motif-specific and loop-length-dependent manners. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 40:102508. [PMID: 34906721 DOI: 10.1016/j.nano.2021.102508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Guanine-quadruplex (G4) oligodeoxynucleotides (ODNs) that contain unmethylated cytosine-phosphate-guanine motifs (G4 CpG ODN) with phosphodiester backbones are safer than the phosphorothioate (PT)-modified CpG ODNs recently used as vaccine adjuvants. However, cellular uptake and the nuclease stability of G4 CpG ODNs are still insufficient, resulting in lower immunostimulatory activity than PT-modified CpG ODNs. We aimed to enhance the immunostimulatory properties of G4 CpG ODNs by complexing with the cationic liposome 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The complex acquired nuclease resistance and improved cellular uptake. The immunostimulatory activity of the G4 CpG ODN-DOTAP lipoplexes was enhanced to a level comparable to that of PT-modified ODNs. In addition, the lipoplexes based on unmodified G4 CpG ODNs demonstrated CpG motif-specific immunostimulant activity, although PT-modified ODNs lacking the CpG motif could activate human immune cells. Interestingly, G4 CpG ODN-DOTAP lipoplexes induced interferon-α production in a loop-length dependent manner.
Collapse
Affiliation(s)
- Anh Thi Tram Tu
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan; Division of Life Science, Hokkaido university, Sapporo, Japan
| | - Kazuaki Hoshi
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Miwako Shobo
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Tomohiko Yamazaki
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan; Division of Life Science, Hokkaido university, Sapporo, Japan.
| |
Collapse
|
42
|
Chen H, Zhang Y, Li L, Guo R, Shi X, Cao X. Effective CpG Delivery Using Zwitterion-Functionalized Dendrimer-Entrapped Gold Nanoparticles to Promote T Cell-Mediated Immunotherapy of Cancer Cells. BIOSENSORS 2022; 12:71. [PMID: 35200332 PMCID: PMC8869692 DOI: 10.3390/bios12020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
Abstract
Recently, cell-based immunotherapy has become one of the most promising ways to completely eliminate cancer. The major challenge is to effectively promote a proper immune response to kill the cancer cells by activated T cells. This study investigated the effect of T cell-mediated immunotherapy trigged by Au DENPs-MPC (zwitterion 2-methacryloyloxyethyl phosphorylcholine (MPC)-functionalized dendrimer-entrapped gold nanoparticles) loading oli-godeoxynucleotides (ODN) of unmethylated cytosine guanine dinucleotide (CPG). Here, we first synthesized Au DENPs-MPC, evaluated their capability to compress and transfect CpG-ODN to bone marrow dendritic cells (BMDCs), and investigated the potential to use T cells stimulated by matured BMDCs to inhibit the growth of tumor cells. The developed Au DENPs-MPC could apparently reduce the toxicity of Au DENPs, and enhanced transfer CpG-ODN to the BMDCs for the maturation as demonstrated by the 44.41-48.53% increase in different surface maturation markers. The transwell experiments certificated that ex vivo activated T cells display excellent anti-tumor ability, which could effectively inhibit the growth of tumor cells. These results suggest that Au DENPs-MPC can deliver CpG-ODN efficiently to enhance the antigen presentation ability of BMDCs to activate T cells, indicating that T cells-based immunotherapy mediated by Au DENPs-MPC loaded with CpG-ODN may become the most promising treatment of cancer.
Collapse
Affiliation(s)
| | | | | | | | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (H.C.); (Y.Z.); (L.L.); (R.G.)
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (H.C.); (Y.Z.); (L.L.); (R.G.)
| |
Collapse
|
43
|
Lin HT, Chen CC, Chiao DJ, Chang TY, Chen XA, Young JJ, Kuo SC. Nanoparticular CpG-adjuvanted SARS-CoV-2 S1 protein elicits broadly neutralizing and Th1-biased immunoreactivity in mice. Int J Biol Macromol 2021; 193:1885-1897. [PMID: 34774590 PMCID: PMC8580573 DOI: 10.1016/j.ijbiomac.2021.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023]
Abstract
The spike (S) protein is a leading vaccine candidate against SARS-CoV-2 infection. The S1 domain of S protein, which contains a critical receptor-binding domain (RBD) antigen, potentially induces protective immunoreactivities against SARS-CoV-2. In this study, we presented preclinical evaluations of a novel insect cell-derived SARS-CoV-2 recombinant S1 (rS1) protein as a potent COVID-19 vaccine candidate. The native antigenicity of rS1 was characterized by enzyme-linked immunosorbent assay with a neutralizing monoclonal antibody targeting the RBD antigen. To improve its immunogenicity, rS1-adjuvanted with fucoidan/trimethylchitosan nanoparticles (FUC-TMC NPs) and cytosine-phosphate-guanosine-oligodeoxynucleotides (CpG-ODNs) were investigated using a mouse model. The S1-specific immunoglobulin G (IgG) titers, FluoroSpot assay, pseudovirus- and prototype SARS-CoV-2-based neutralization assays were assessed. The results showed that the rS1/CpG/ FUC-TMC NPs (rS1/CpG/NPs) formulation induced a broad-spectrum IgG response with potent, long-lasting, and cross-protective neutralizing activity against the emerging SARS-CoV-2 variant of concern, along with a Th1-biased cellular response. Thus, the rS1/CpG/NPs formulation presents a promising vaccination approach against COVID-19.
Collapse
Affiliation(s)
- Hui-Tsu Lin
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC,Graduate Institute of Medical Science, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - Der-Jiang Chiao
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Tein-Yao Chang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Xin-An Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Jenn-Jong Young
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC,Corresponding authors at: Institute of Preventive Medicine, National Defense Medical Center, PO Box 90048-700, Sanhsia District, New Taipei City 23742, Taiwan, ROC
| | - Szu-Cheng Kuo
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC,Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan, ROC,Corresponding authors at: Institute of Preventive Medicine, National Defense Medical Center, PO Box 90048-700, Sanhsia District, New Taipei City 23742, Taiwan, ROC
| |
Collapse
|
44
|
Cherubini A, Casirati E, Tomasi M, Valenti L. PNPLA3 as a therapeutic target for fatty liver disease: the evidence to date. Expert Opin Ther Targets 2021; 25:1033-1043. [PMID: 34904923 DOI: 10.1080/14728222.2021.2018418] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION An interaction between metabolic triggers and inherited predisposition underpins the development and progression of non alcoholic fatty liver disease (NAFLD) and fatty liver disease in general. Among the specific NAFLD risk variants, PNPLA3 rs738409 C>G, encoding for the p.I148M protein variant, accounts for the largest fraction of liver disease heritability and is being intensively scrutinized. It promotes intrahepatic lipid accumulation and is associated with lipotoxicity and the more severe phenotypes, including fibrosis and carcinogenesis. Therefore, PNPLA3 appears as an appealing therapeutic target to counter NAFLD progression. AREAS COVERED The scope of this review is to briefly describe the PNPLA3 gene and protein function before discussing therapeutic approaches for fatty liver aiming at this target. Literature review was carried out searching through PubMed and clinicaltrials.gov website and focusing on the most recent works and reviews. EXPERT OPINION The main therapeutic strategies under development for NAFLD have shown variable efficacy and side-effects likely due to disease heterogeneity and lack of engagement of the main pathogenic drivers of liver disease. To overcome these limitations, new strategies are becoming available for targeting PNPLA3 p.I148M, responsible for a large fraction of disease susceptibility.
Collapse
Affiliation(s)
- Alessandro Cherubini
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elia Casirati
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| | - Melissa Tomasi
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
45
|
Sartorius R, Trovato M, Manco R, D'Apice L, De Berardinis P. Exploiting viral sensing mediated by Toll-like receptors to design innovative vaccines. NPJ Vaccines 2021; 6:127. [PMID: 34711839 PMCID: PMC8553822 DOI: 10.1038/s41541-021-00391-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) are transmembrane proteins belonging to the family of pattern-recognition receptors. They function as sensors of invading pathogens through recognition of pathogen-associated molecular patterns. After their engagement by microbial ligands, TLRs trigger downstream signaling pathways that culminate into transcriptional upregulation of genes involved in immune defense. Here we provide an updated overview on members of the TLR family and we focus on their role in antiviral response. Understanding of innate sensing and signaling of viruses triggered by these receptors would provide useful knowledge to prompt the development of vaccines able to elicit effective and long-lasting immune responses. We describe the mechanisms developed by viral pathogens to escape from immune surveillance mediated by TLRs and finally discuss how TLR/virus interplay might be exploited to guide the design of innovative vaccine platforms.
Collapse
Affiliation(s)
- Rossella Sartorius
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy.
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy
| | - Roberta Manco
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy
| | - Luciana D'Apice
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy.
| | | |
Collapse
|
46
|
Ong GH, Lian BSX, Kawasaki T, Kawai T. Exploration of Pattern Recognition Receptor Agonists as Candidate Adjuvants. Front Cell Infect Microbiol 2021; 11:745016. [PMID: 34692565 PMCID: PMC8526852 DOI: 10.3389/fcimb.2021.745016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Adjuvants are used to maximize the potency of vaccines by enhancing immune reactions. Components of adjuvants include pathogen-associated molecular patterns (PAMPs) and damage-associate molecular patterns (DAMPs) that are agonists for innate immune receptors. Innate immune responses are usually activated when pathogen recognition receptors (PRRs) recognize PAMPs derived from invading pathogens or DAMPs released by host cells upon tissue damage. Activation of innate immunity by PRR agonists in adjuvants activates acquired immune responses, which is crucial to enhance immune reactions against the targeted pathogen. For example, agonists for Toll-like receptors have yielded promising results as adjuvants, which target PRR as adjuvant candidates. However, a comprehensive understanding of the type of immunological reaction against agonists for PRRs is essential to ensure the safety and reliability of vaccine adjuvants. This review provides an overview of the current progress in development of PRR agonists as vaccine adjuvants, the molecular mechanisms that underlie activation of immune responses, and the enhancement of vaccine efficacy by these potential adjuvant candidates.
Collapse
Affiliation(s)
- Guang Han Ong
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Benedict Shi Xiang Lian
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Takumi Kawasaki
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
47
|
Liang Z, Cui X, Yang L, Hu Q, Li D, Zhang X, Han L, Shi S, Shen Y, Zhao W, Ju Q, Deng X, Wu Y, Sheng W. Co-assembled nanocomplexes of peptide neoantigen Adpgk and Toll-like receptor 9 agonist CpG ODN for efficient colorectal cancer immunotherapy. Int J Pharm 2021; 608:121091. [PMID: 34555477 DOI: 10.1016/j.ijpharm.2021.121091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/22/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023]
Abstract
Cancer vaccines targeting tumor specific neoantigens derived from nonsynonymous mutations of tumor cells have emerged as an effective approach to induce antitumor T cells responses for personalized cancer immunotherapy. Despite the enormous potential of synthetic peptides as a common modality for neoantigen vaccines, their practical efficacy was limited due to their relatively low immunogenicity. Herein, we modify neoantigen peptide (Adpgk) derived from MC-38 colon carcinoma by supplementing ten consecutive positively-charged lysines (10 K-Adpgk) to obtain cationic polypeptide. And then we made them self-assemble with toll-like receptor 9 (TLR-9) agonist CpG oligodeoxynucleotides (CpG ODN) adjuvant directly forming antigen/adjuvant integrated nanocomplexes (PCNPs) through electrostatic interaction for potent tumor immunotherapy. The optimal formed PCNPs were around 175 nm with uniform size distribution and could maintain stability in physiological saline solution. CpG ODN and 10 K-Adpgk in the formed PCNPs could be effectively uptake by dendritic cells (DCs) and stimulate the maturation of DCs as well as improving the efficiency of antigen cross-presentation efficiency in vitro. Furthermore, the PCNPs vaccine could markedly improve neoantigen and adjuvant co-delivery efficiency to lymphoid organs and activate cytotoxic T cells. In addition, vaccination with PCNPs could not only offer prophylactic to protect mice from challenged MC-38 colorectal tumors, but also achieve a better anti-tumor effect in an established colorectal tumor model, and significantly prolong the survival rate of tumor-bearing mice. Therefore, this work provided a versatile but effective method for neoantigen peptide and CpG ODN co-assembly vaccine platform for efficient colorectal cancer immunotherapy.
Collapse
Affiliation(s)
- Zhaoyuan Liang
- The Faculty of Environment and Life, Beijing University of Technology, NO. 100, Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Xinyue Cui
- The Faculty of Environment and Life, Beijing University of Technology, NO. 100, Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Liqun Yang
- The Faculty of Environment and Life, Beijing University of Technology, NO. 100, Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Qin Hu
- The Faculty of Environment and Life, Beijing University of Technology, NO. 100, Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Danyang Li
- The Faculty of Environment and Life, Beijing University of Technology, NO. 100, Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Xiaofei Zhang
- The Faculty of Environment and Life, Beijing University of Technology, NO. 100, Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Lu Han
- The Faculty of Environment and Life, Beijing University of Technology, NO. 100, Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Siwei Shi
- The Faculty of Environment and Life, Beijing University of Technology, NO. 100, Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Yurong Shen
- The Faculty of Environment and Life, Beijing University of Technology, NO. 100, Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Weijian Zhao
- The Faculty of Environment and Life, Beijing University of Technology, NO. 100, Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Qi Ju
- The Faculty of Environment and Life, Beijing University of Technology, NO. 100, Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Xiongwei Deng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, People's Republic of China.
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, People's Republic of China.
| | - Wang Sheng
- The Faculty of Environment and Life, Beijing University of Technology, NO. 100, Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China.
| |
Collapse
|
48
|
Tseng JC, Yang JX, Liu YL, Su YW, Lee AYL, Chen YW, Liu KJ, Luo Y, Hong YR, Chuang TH. Sharpening up tumor microenvironment to enhance the efficacy of immune checkpoint blockade on head and neck cancer using a CpG-oligodeoxynucleotide. Cancer Immunol Immunother 2021; 71:1115-1128. [PMID: 34581869 PMCID: PMC9016021 DOI: 10.1007/s00262-021-03062-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/17/2021] [Indexed: 12/09/2022]
Abstract
Head and neck cancers are a type of life-threatening cancers characterized by an immunosuppressive tumor microenvironment. Only less than 20% of the patients respond to immune checkpoint blockade therapy, indicating the need for a strategy to increase the efficacy of immunotherapy for this type of cancers. Previously, we identified a type B CpG-oligodeoxynucleotide (CpG-ODN) called CpG-2722, which has the universal activity of eliciting an immune response in grouper, mouse, and human cells. In this study, we further characterized and compared its cytokine-inducing profiles with different types of CpG-ODNs. The antitumor effect of CpG-2722 was further investigated alone and in combination with an immune checkpoint inhibitor in a newly developed syngeneic orthotopic head and neck cancer animal model. Along with other inflammatory cytokines, CpG-2722 induces the gene expressions of interleukin-12 and different types of interferons, which are critical for the antitumor response. Both CpG-2722 and anti-programmed death (PD)-1 alone suppressed tumor growth. Their tumor suppression efficacies were further enhanced when CpG-2722 and anti-PD-1 were used in combination. Mechanistically, CpG-2722 shaped a tumor microenvironment that is favorable for the action of anti-PD-1, which included promoting the expression of different cytokines such as IL-12, IFN-β, and IFN-γ, and increasing the presence of plasmacytoid dendritic cells, M1 macrophages, and CD8 positive T cells. Overall, CpG-2722 provided a priming effect for CD8 positive T cells by sharpening the tumor microenvironment, whereas anti-PD-1 released the brake for their tumor-killing effect, resulting in an enhanced efficacy of the combined CpG-2722 and anti-PD-1.
Collapse
Affiliation(s)
- Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Jing-Xing Yang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yi-Ling Liu
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yu-Wen Su
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Ya-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
49
|
Gracia, Cao E, Kochappan R, Jh Porter C, Pr Johnston A, Trevaskis NL. Association of a vaccine adjuvant with endogenous HDL increases lymph uptake and dendritic cell activation. Eur J Pharm Biopharm 2021; 172:240-252. [PMID: 34571191 DOI: 10.1016/j.ejpb.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 11/28/2022]
Abstract
Vaccines are a powerful health intervention but there is still an unmet need for effective preventative and therapeutic vaccines for many diseases such as cancer and infections. Interstitial (e.g. subcutaneous (SC)) injection in nano-sized carriers such as high density lipoproteins (HDLs) can improve the access of vaccine subunit antigens or adjuvants to target immune cells in the lymphatics and potentiate vaccination responses such as cytotoxic T lymphocyte (CTL) responses[1-3]. Here we examined how cholesterol conjugation to the vaccine adjuvant CpG, and incorporation into HDL, changes lymphatic absorption and association with, and processing by, dendritic cells (DCs), ultimately influencing adjuvant efficacy. We investigated the lymphatic disposition of cholesterol conjugated CpG incorporated into HDL (HDL(Chol-CpG-Cy5)) relative to cholesterol conjugated (Chol-CpG-Cy5) and unconjugated CpG (free CpG-Cy5) alone after SC administration into rats and mice. HDL (Chol-CpG-Cy5) and Chol-CpG-Cy5 differentially altered CpG absorption into lymph vs. blood, but surprisingly resulted in similarly higher LN accumulation relative to free CpG. The mechanism of access of Chol-CpG-Cy5 into lymph might be partly due to association with endogenous HDL at the injection site followed by transport into lymph in association with the HDL. To measure CpG association with and processing by DCs and the strength of the immune response, mice were vaccinated with free ovalbumin (OVA) co-administered with the different CpG constructs. There were significant changes in DC activation that were reflective of the trend in LN accumulation at 24h post-vaccination. However, T cell response at 24h and 7 days post-vaccination were not significantly different across the CpG groups although the response was less variable for Chol-CpG-Cy5 compared to free CpG Cy5 and also HDL(Chol-CpG-Cy5) - despite similar LN accumulation with the latter. Overall, our data indicate that cholesterol conjugation and incorporation into HDL increases adjuvant lymph disposition and DC activation.
Collapse
Affiliation(s)
- Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Ruby Kochappan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Christopher Jh Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Angus Pr Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia.
| |
Collapse
|
50
|
Yang J, Choi ES, You G, Mok H. Evaluation of Lipid-polyethylenimine Conjugates as Biocompatible Carriers of CpG Oligodeoxynucleotides to Macrophages. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|