1
|
Aydin A, Ulag S, Nouri S, Durasi E, Pelit Arayıcı P, Tinaz GB, Güncü MM, Cakir R, Gunduz O, Ustundag CB. Production of Polyvinyl Alcohol/Amoxicillin - Chitosan/Collagen Hybrid Bilayer Membranes for Regeneration of Gingival Tissues. Macromol Biosci 2024:e2400331. [PMID: 39555824 DOI: 10.1002/mabi.202400331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/01/2024] [Indexed: 11/19/2024]
Abstract
Periodontal diseases, if untreated, can cause gum recession and tooth root exposure, resulting in infection and irreversible damage. Traditional treatments using autologous grafts are painful and often result in postoperative complications. Scaffolds offer a less invasive alternative, promoting cell proliferation and healing without additional surgery, thus enhancing comfort for patients and doctors. This study developed Chitosan (Chit)/Collagen (Col) film surfaces and drug-loaded Polyvinyl Alcohol (PVA)/Amoxicillin (AMX) nanofibers using solvent casting and electrospinning methods, respectively. The surfaces are characterized by scanning electron microscopy (SEM), mechanical testing, Fourier Transform Infrared Spectroscopy (FTIR), and differential scanning calorimetry (DSC). Biocompatibility and antimicrobial properties are assessed using NIH/3T3 fibroblast cells and bacterial cultures. SEM images confirmed the structural integrity of AMX-loaded 13% PVA nanofibers, while FTIR analysis validated the compositional integrity of PVA/AMX nanofibers and Chit/Col film hybrid surfaces. Cell studies showed over 90% viability for Chit/Col film + PVA/AMX nanofiber hybrid bilayer membranes, confirming their biocompatibility. The antimicrobial assessment indicated that the Chit/Col film + PVA/AMX (0.2%) nanofiber hybrid bilayer membrane exhibited superior efficacy against Streptococcus mutans. These findings suggest that this hybrid bilayer membrane can enhance cell growth, promote proliferation, and enable controlled drug release, offering significant promise for regeneration of gingival tissues.
Collapse
Affiliation(s)
- Ayca Aydin
- Bıçakcılar Medical Devices, Istanbul, 34522, Türkiye
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, 34722, Türkiye
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, 34220, Türkiye
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, 34722, Türkiye
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Istanbul, 34469, Türkiye
- Turkish Biotechnology Institute, Health Institutes of Türkiye (TUSEB), Istanbul, 34718, Türkiye
| | - Sabereh Nouri
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, 34722, Türkiye
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 817467344, Iran
| | - Elif Durasi
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, 34220, Türkiye
| | - Pelin Pelit Arayıcı
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, 34220, Türkiye
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, 34220, Türkiye
| | - Gülgün Bosgelmez Tinaz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, 34722, Türkiye
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, 34220, Türkiye
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, 34668, Türkiye
| | - Mehmet Mücahit Güncü
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, 34722, Türkiye
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, 34668, Türkiye
| | - Rabia Cakir
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, 34220, Türkiye
- Turkish Biotechnology Institute, Health Institutes of Türkiye (TUSEB), Istanbul, 34718, Türkiye
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, 34220, Türkiye
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, 34722, Türkiye
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Istanbul, 34469, Türkiye
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, 34220, Türkiye
| | - Cem Bulent Ustundag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, 34722, Türkiye
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, 34220, Türkiye
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, 34220, Türkiye
| |
Collapse
|
2
|
Shi R, Zhu Y, Lu W, Zhai R, Zhou M, Shi S, Chen Y. Nanomaterials: innovative approaches for addressing key objectives in periodontitis treatment. RSC Adv 2024; 14:27904-27927. [PMID: 39224639 PMCID: PMC11367407 DOI: 10.1039/d4ra03809f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease primarily caused by dental plaque, which is a significant global public health concern due to its high prevalence and severe impact on oral, and even systemic diseases. The current therapeutic plan focuses on three objectives: pathogenic bacteria inhibition, inflammation control, and osteogenic differentiation induction. Existing treatments still have plenty of drawbacks, thus, there is a pressing need for novel methods to achieve more effective treatment effects. Nanomaterials, as emerging materials, have been proven to exert their inherent biological properties or serve as stable drug delivery platforms, which may offer innovative solutions in periodontitis treatment. Nanomaterials utilized in periodontitis treatment fall into two categories, organic and inorganic nanomaterials. Organic nanomaterials are known for their biocompatibility and their potential to promote tissue regeneration and cell functions, including natural and synthetic polymers. Inorganic nanomaterials, such as metal, oxides, and mesoporous silica nanoparticles, exhibit unique physicochemical properties that make them suitable as antibacterial agents and drug delivery platforms. The inorganic nanosurface provides terrain induction for cell migration and osteogenic regeneration at defect sites by introducing different surface morphologies. Inorganic nanomaterials also play a role in antibacterial photodynamic therapy (aPDT) for eliminating pathogenic bacteria in the oral cavity. In this review, we will introduce multiple forms and applications of nanomaterials in periodontitis treatment and focus on their roles in addressing the key therapeutic objectives, to emphasize their promising future in achieving more effective and patient-friendly approaches toward periodontal tissue regeneration and overall health.
Collapse
Affiliation(s)
- Ruijianghan Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Yujie Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Weitong Lu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Ruohan Zhai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Mi Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Yang Chen
- Department of Pediatric Surgery, Department of Liver Surgery & Liver Transplantation Center, West China Hospital of Sichuan University Chengdu 610041 Sichuan China
| |
Collapse
|
3
|
Zhang Z, Zhang Y, Guo Y, Qian C, Chen K, Fang S, Qiu A, Zhong L, Zhang J, He R. Preparing gelatin-containing polycaprolactone / polylactic acid nanofibrous membranes for periodontal tissue regeneration using side-by-side electrospinning technology. J Biomater Appl 2024; 39:48-57. [PMID: 38659361 DOI: 10.1177/08853282241248778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Electrospinning technology has recently attracted increased attention in the biomedical field, and preparing various cellulose nanofibril membranes for periodontal tissue regeneration has unique advantages. However, the characteristics of using a single material tend to make it challenging to satisfy the requirements for a periodontal barrier film, and the production of composite fibrous membranes frequently impacts the quality of the final fiber membrane due to the influence of miscibility between different materials. In this study, nanofibrous membranes composed of polylactic acid (PLA) and polycaprolactone (PCL) fibers were fabricated using side-by-side electrospinning. Different concentrations of gelatin were added to the fiber membranes to improve their hydrophilic properties. The morphological structure of the different films as well as their composition, wettability and mechanical characteristics were examined. The results show that PCL/PLA dual-fibrous composite membranes with an appropriate amount of gelatin ensures sufficient mechanical strength while obtaining improved hydrophilic properties. The viability of L929 fibroblasts was evaluated using CCK-8 assays, and cell adhesion on the scaffolds was confirmed by scanning electron microscopy and by immunofluorescence assays. The results demonstrated that none of the fibrous membranes were toxic to cells and the addition of gelatin improved cell adhesion to those membranes. Based on our findings, adding 30% gelatin to the membrane may be the most appropriate content for periodontal tissue regeneration, considering the scaffold's mechanical qualities, hydrophilic properties and biocompatibility. In addition, the PCL-gelatin/PLA-gelatin dual-fibrous membranes prepared using side-by-side electrospinning technology have potential applications for tissue engineering.
Collapse
Affiliation(s)
- Zhuochen Zhang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Ying Zhang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Yabin Guo
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Cheng Qian
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Kailun Chen
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Sheng Fang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Anna Qiu
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Liangjun Zhong
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Jian Zhang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Rui He
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
4
|
Toledano-Osorio M, Osorio R, Bueno J, Vallecillo C, Vallecillo-Rivas M, Sanz M. Next-generation antibacterial nanopolymers for treating oral chronic inflammatory diseases of bacterial origin. Int Endod J 2024; 57:787-803. [PMID: 38340038 DOI: 10.1111/iej.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND 'Periodontitis' refers to periodontal destruction of connective tissue attachment and bone, in response to microorganisms forming subgingival biofilms on the root surface, while 'apical periodontitis' refers to periapical inflammatory processes occurring in response to microorganisms within the root canal system. The treatment of both diseases is based on the elimination of the bacterial challenge, though its predictability depends on the ability of disrupting these biofilms, what may need adjunctive antibacterial strategies, such as the next-generation antibacterial strategies (NGAS). From all the newly developed NGAS, the use of polymeric nanotechnology may pose a potential effective approach. Although some of these strategies have only been tested in vitro and in preclinical in vivo models, their use holds a great potential, and therefore, it is relevant to understand their mechanism of action and evaluate their scientific evidence of efficacy. OBJECTIVES To explore NGAS based on polymeric nanotechnology used for the potential treatment of periodontitis and apical periodontitis. METHOD A systemic search of scientific publications of adjunctive antimicrobial strategies using nanopolymers to treat periodontal and periapical diseases was conducted using The National Library of Medicine (MEDLINE by PubMed), The Cochrane Oral Health Group Trials Register, EMBASE and Web of Science. RESULTS Different polymeric nanoparticles, nanofibres and nanostructured hydrogels combined with antimicrobial substances have been identified in the periodontal literature, being the most commonly used nanopolymers of polycaprolactone, poly(lactic-co-glycolic acid) and chitosan. As antimicrobials, the most frequently used have been antibiotics, though other antimicrobial substances, such as metallic ions, peptides and naturally derived products, have also been added to the nanopolymers. CONCLUSION Polymeric nanomaterials containing antimicrobial compounds may be considered as a potential NGAS. Its relative efficacy, however, is not well understood since most of the existing evidence is derived from in vitro or preclinical in vivo studies.
Collapse
Affiliation(s)
- Manuel Toledano-Osorio
- Postgraduate Program of Specialization in Periodontology, Faculty of Dentistry, University Complutense of Madrid, Madrid, Spain
| | - Raquel Osorio
- Faculty of Dentistry, University of Granada, Granada, Spain
| | - Jaime Bueno
- Postgraduate Program of Specialization in Periodontology, Faculty of Dentistry, University Complutense of Madrid, Madrid, Spain
| | | | | | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
5
|
Rahimnejad M, Makkar H, Dal-Fabbro R, Malda J, Sriram G, Bottino MC. Biofabrication Strategies for Oral Soft Tissue Regeneration. Adv Healthc Mater 2024; 13:e2304537. [PMID: 38529835 PMCID: PMC11254569 DOI: 10.1002/adhm.202304537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Gingival recession, a prevalent condition affecting the gum tissues, is characterized by the exposure of tooth root surfaces due to the displacement of the gingival margin. This review explores conventional treatments, highlighting their limitations and the quest for innovative alternatives. Importantly, it emphasizes the critical considerations in gingival tissue engineering leveraging on cells, biomaterials, and signaling factors. Successful tissue-engineered gingival constructs hinge on strategic choices such as cell sources, scaffold design, mechanical properties, and growth factor delivery. Unveiling advancements in recent biofabrication technologies like 3D bioprinting, electrospinning, and microfluidic organ-on-chip systems, this review elucidates their precise control over cell arrangement, biomaterials, and signaling cues. These technologies empower the recapitulation of microphysiological features, enabling the development of gingival constructs that closely emulate the anatomical, physiological, and functional characteristics of native gingival tissues. The review explores diverse engineering strategies aiming at the biofabrication of realistic tissue-engineered gingival grafts. Further, the parallels between the skin and gingival tissues are highlighted, exploring the potential transfer of biofabrication approaches from skin tissue regeneration to gingival tissue engineering. To conclude, the exploration of innovative biofabrication technologies for gingival tissues and inspiration drawn from skin tissue engineering look forward to a transformative era in regenerative dentistry with improved clinical outcomes.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Garg U, Dua T, Kaul S, Jain N, Pandey M, Nagaich U. Enhancing periodontal defences with nanofiber treatment: recent advances and future prospects. J Drug Target 2024; 32:470-484. [PMID: 38404239 DOI: 10.1080/1061186x.2024.2321372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
The term periodontal disease is used to define diseases characterised by inflammation and regeneration of the gums, cementum, supporting bone, and periodontal ligament. The conventional treatment involves the combination of scaling, root planning, and surgical approaches which are invasive and can pose certain challenges. Intrapocket administration of nanofibers can be used for overcoming challenges which can help in speeding up the wound repair process and can also be used to promote osteogenesis. To help make drug delivery more effective, nanofibers are an interesting solution. Nanofibers are nanosized 3D structures that can fill the pockets and have excellent mucoadhesion which prolongs their retention time on the target site. Moreover, their structure mimics the natural extracellular matrix which enables nanomaterials to sense local biological conditions and start cellular-level reprogramming to produce the necessary therapeutic efficacy. In this review, the significance of intrapocket administration of nanofibers using recent research for the management of periodontitis has been discussed in detail. Furthermore, we have discussed polymers used for the preparation of nanofibers, nanofiber production methods, and the patents associated with these developments. This comprehensive compilation of data serves as a valuable resource, consolidating recent developments in nanofiber applications for periodontitis management into one accessible platform.
Collapse
Affiliation(s)
- Unnati Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Tanya Dua
- Department of Periodontology, Inderprastha Dental College and Hospital, Atal Bihari Vajpayee Medical University, Lucknow, UP, India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| |
Collapse
|
7
|
Li Q, Wang D, Xiao C, Wang H, Dong S. Advances in Hydrogels for Periodontitis Treatment. ACS Biomater Sci Eng 2024; 10:2742-2761. [PMID: 38639082 DOI: 10.1021/acsbiomaterials.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Periodontitis is a common condition characterized by a bacterial infection and the disruption of the body's immune-inflammatory response, which causes damage to the teeth and supporting tissues and eventually results in tooth loss. Current therapy involves the systemic and local administration of antibiotics. However, the existing treatments cannot exert effective, sustained release and maintain an effective therapeutic concentration of the drug at the lesion site. Hydrogels are used to treat periodontitis due to their low cytotoxicity, exceptional water retention capability, and controlled drug release profile. Hydrogels can imitate the extracellular matrix of periodontal cells while offering suitable sites to load antibiotics. This article reviews the utilization of hydrogels for periodontitis therapy based on the pathogenesis and clinical manifestations of the disease. Additionally, the latest therapeutic strategies for smart hydrogels and the main techniques for hydrogel preparation have been discussed. The information will aid in designing and preparing future hydrogels for periodontitis treatment.
Collapse
Affiliation(s)
- Qiqi Li
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Di Wang
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
8
|
Kalluri L, Griggs JA, Janorkar AV, Xu X, Chandran R, Mei H, Nobles KP, Yang S, Alberto L, Duan Y. Preparation and optimization of an eggshell membrane-based biomaterial for GTR applications. Dent Mater 2024; 40:728-738. [PMID: 38401993 DOI: 10.1016/j.dental.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVES Guided Tissue Regeneration (GTR) is a popular clinical procedure for periodontal tissue regeneration. However, its key component, the barrier membrane, is largely collagen-based and is still quite expensive, posing a financial burden to the patients as well as healthcare systems and negatively impacting the patient's decision-making. Thus, our aim is to prepare a novel biomimetic GTR membrane utilizing a natural biomaterial, soluble eggshell membrane protein (SEP), which is economical as it comes from an abundant industrial waste from food and poultry industries, unlike collagen. Additive polymer, poly (lactic-co-glycolic acid) (PLGA), and a bioceramic, nano-hydroxyapatite (HAp), were added to improve its mechanical and biological properties. METHODS For this barrier membrane preparation, we initially screened the significant factors affecting its mechanical properties using Taguchi orthogonal array design and further optimized the significant factors using response surface methodology. Furthermore, this membrane was characterized using SEM, EDAX, and ATR-FTIR, and tested for proliferation activity of human periodontal ligament fibroblasts (HPLFs). RESULTS Optimization using response surface methodology predicted that the maximal tensile strength of 3.1 MPa and modulus of 39.9 MPa could be obtained at membrane composition of 8.9 wt% PLGA, 7.2 wt% of SEP, and 2 wt% HAp. Optimized PLGA/SEP/HAp membrane specimens that were electrospun on a static collector showed higher proliferation activity of HPLFs compared to tissue culture polystyrene and a commercial collagen membrane. SIGNIFICANCE From the results observed, we can conclude that SEP-based nanofibrous GTR membrane could be a promising, environment-friendly, and cost-effective alternative for commercial collagen-based GTR membrane products.
Collapse
Affiliation(s)
- Lohitha Kalluri
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jason A Griggs
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Amol V Janorkar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Xiaoming Xu
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA 70119, USA
| | - Ravi Chandran
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Hao Mei
- Department of Data Science, School of Population Health, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Kadie P Nobles
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shan Yang
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Laura Alberto
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yuanyuan Duan
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
9
|
Jiang X, Zeng YE, Li C, Wang K, Yu DG. Enhancing diabetic wound healing: advances in electrospun scaffolds from pathogenesis to therapeutic applications. Front Bioeng Biotechnol 2024; 12:1354286. [PMID: 38375451 PMCID: PMC10875055 DOI: 10.3389/fbioe.2024.1354286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic wounds are a significant subset of chronic wounds characterized by elevated levels of inflammatory cytokines, matrix metalloproteinases (MMPs), and reactive oxygen species (ROS). They are also associated with impaired angiogenesis, persistent infection, and a high likelihood of hospitalization, leading to a substantial economic burden for patients. In severe cases, amputation or even mortality may occur. Diabetic foot ulcers (DFUs) are a common complication of diabetes, with up to 25% of diabetic patients being at risk of developing foot ulcers over their lifetime, and more than 70% ultimately requiring amputation. Electrospun scaffolds exhibit a structural similarity to the extracellular matrix (ECM), promoting the adhesion, growth, and migration of fibroblasts, thereby facilitating the formation of new skin tissue at the wound site. The composition and size of electrospun scaffolds can be easily adjusted, enabling controlled drug release through fiber structure modifications. The porous nature of these scaffolds facilitates gas exchange and the absorption of wound exudate. Furthermore, the fiber surface can be readily modified to impart specific functionalities, making electrospinning nanofiber scaffolds highly promising for the treatment of diabetic wounds. This article provides a concise overview of the healing process in normal wounds and the pathological mechanisms underlying diabetic wounds, including complications such as diabetic foot ulcers. It also explores the advantages of electrospinning nanofiber scaffolds in diabetic wound treatment. Additionally, it summarizes findings from various studies on the use of different types of nanofiber scaffolds for diabetic wounds and reviews methods of drug loading onto nanofiber scaffolds. These advancements broaden the horizon for effectively treating diabetic wounds.
Collapse
Affiliation(s)
- Xuewen Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yu-E Zeng
- Department of Neurology, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
10
|
Li P, Xu T, Dang X, Shao L, Yan L, Yang X, Lin L, Ren L, Song R. Improving astaxanthin-loaded chitosan/polyvinyl alcohol/graphene oxide nanofiber membranes and their application in periodontitis. Int J Biol Macromol 2024; 258:128980. [PMID: 38151084 DOI: 10.1016/j.ijbiomac.2023.128980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/02/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Periodontitis is a chronic inflammatory disease primarily driven by host inflammation and plaque-induced immune responses. Controlling the host inflammatory response and improving the periodontal inflammatory microenvironment are crucial to promoting periodontal tissue regeneration. In this study, the blended nanofiber membranes previously prepared by our research group were improved, and we developed multifunctional chitosan/polyvinyl alcohol/graphene oxide/astaxanthin coaxial nanofiber membranes. Scanning electron microscopy showed that the prepared nanofibers had a smooth surface and a uniform diameter distribution. The mechanical property test results showed that the coaxial nanofiber membranes exhibited higher tensile strength compared to the blended nanofiber membranes, which increased from 4.50 ± 0.32 and 3.70 ± 0.45 MPa to 7.12 ± 0.22 and 5.62 ± 0.79 MPa respectively. Drug release studies indicated that the "shell-core" structure of coaxial nanofibers significantly reduced the initial burst release of astaxanthin (ASTA), with only 13.49 % and 10.71 % release in the first 24 h, and drug release lasted for over a week. Animal experiments confirmed that the coaxial nanofiber membranes loaded with ASTA promoted periodontal bone defect repair while inhibiting periodontal inflammation. In conclusion, the prepared coaxial nanofiber membranes are a promising sustained-release drug system for treating periodontitis.
Collapse
Affiliation(s)
- Pei Li
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin 150001, China
| | - Tao Xu
- School of Medicine Huaqiao University, No. 269 Chenghua North Road, Quanzhou 362000, China
| | - Xuan Dang
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin 150001, China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Linlin Yan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaobin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lexun Lin
- Department of Pathogenic Microbiology, School of Basic Medical Sciences, Harbin Medical University, No. 157 Baojian Street, Nangang District, Harbin 150081, China
| | - Liping Ren
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin 150001, China
| | - Rong Song
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin 150001, China.
| |
Collapse
|
11
|
Zheng Q, Xi Y, Weng Y. Functional electrospun nanofibers: fabrication, properties, and applications in wound-healing process. RSC Adv 2024; 14:3359-3378. [PMID: 38259986 PMCID: PMC10801448 DOI: 10.1039/d3ra07075a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Electrostatic spinning as a technique for producing nanoscale fibers has recently attracted increasing attention due to its simplicity, versatility, and loadability. Nanofibers prepared by electrostatic spinning have been widely studied, especially in biomedical applications, because of their high specific surface area, high porosity, easy size control, and easy surface functionalization. Wound healing is a highly complex and dynamic process that is a crucial step in the body's healing process to recover from tissue injury or other forms of damage. Single-component nanofibers are more or less limited in terms of structural properties and do not fully satisfy various needs of the materials. This review aims to provide an in-depth analysis of the literature on the use of electrostatically spun nanofibers to promote wound healing, to overview the infinite possibilities for researchers to tap into their biomedical applications through functional composite modification of nanofibers for advanced and multifunctional materials, and to propose directions and perspectives for future research.
Collapse
Affiliation(s)
- Qianlan Zheng
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Yuewei Xi
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University Beijing 100048 China
| | - Yunxuan Weng
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
12
|
Kilic NM, Gelen SS, Er Zeybekler S, Odaci D. Carbon-Based Nanomaterials Decorated Electrospun Nanofibers in Biosensors: A Review. ACS OMEGA 2024; 9:3-15. [PMID: 38222586 PMCID: PMC10785068 DOI: 10.1021/acsomega.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Nanomaterials have revolutionized scientific research due to their exceptional physical and chemical capabilities. Carbon-based nanomaterials such as graphene and its derivates have excellent electrical, optical, thermal, physical, and chemical properties that have made them indispensable in several industries worldwide, including medicine, electronics, and energy. By incorporating carbon-based nanomaterials as nanofillers in electrospun nanofibers (ESNFs), smoother and highly conductive nanofibers can be achieved that possess a large surface area and porosity. This approach provides a superior alternative to traditional materials in the development of improved biosensors. Carbon-based ESNFs, among the most exciting new-generation materials, have many applications, including filtration, pharmaceuticals, biosensors, and membranes. The electrospinning technique is a highly efficient and cost-effective method for producing desired nanofibers compared to other methods. Various types of natural and synthetic organic polymers have been successfully utilized in solution electrospinning to produce nanofibers directly. To create diagnostics devices, various biomolecules like antibodies, enzymes, aptamers, ligands, and even cells can be bound to the surface of nanofibers. Electrospun nanofibers can serve as an immobilization matrix to create a biofunctional surface. Thus, biosensors with desired features can be produced in this way. This study comprehensively reviews biosensors that integrate nanodiamonds, fullerenes, carbon nanotubes, graphene oxide, and carbon dots into electrospun nanofibers.
Collapse
Affiliation(s)
- Nur Melis Kilic
- Ege
University, Faculty of Science
Biochemistry Department, 35100 Bornova-Izmir, Turkey
| | - Sultan Sacide Gelen
- Ege
University, Faculty of Science
Biochemistry Department, 35100 Bornova-Izmir, Turkey
| | - Simge Er Zeybekler
- Ege
University, Faculty of Science
Biochemistry Department, 35100 Bornova-Izmir, Turkey
| | - Dilek Odaci
- Ege
University, Faculty of Science
Biochemistry Department, 35100 Bornova-Izmir, Turkey
| |
Collapse
|
13
|
Han Y, Dal-Fabbro R, Mahmoud AH, Rahimnejad M, Xu J, Castilho M, Dissanayaka WL, Bottino MC. GelMA/TCP nanocomposite scaffold for vital pulp therapy. Acta Biomater 2024; 173:495-508. [PMID: 37939819 PMCID: PMC10964899 DOI: 10.1016/j.actbio.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Pulp capping is a necessary procedure for preserving the vitality and health of the dental pulp, playing a crucial role in preventing the need for root canal treatment or tooth extraction. Here, we developed an electrospun gelatin methacryloyl (GelMA) fibrous scaffold incorporating beta-tricalcium phosphate (TCP) particles for pulp capping. A comprehensive morphological, physical-chemical, and mechanical characterization of the engineered fibrous scaffolds was performed. In vitro bioactivity, cell compatibility, and odontogenic differentiation potential of the scaffolds in dental pulp stem cells (DPSCs) were also evaluated. A pre-clinical in vivo model was used to determine the therapeutic role of the GelMA/TCP scaffolds in promoting hard tissue formation. Morphological, chemical, and thermal analyses confirmed effective TCP incorporation in the GelMA nanofibers. The GelMA+20%TCP nanofibrous scaffold exhibited bead-free morphology and suitable mechanical and degradation properties. In vitro, GelMA+20%TCP scaffolds supported apatite-like formation, improved cell spreading, and increased deposition of mineralization nodules. Gene expression analysis revealed upregulation of ALPL, RUNX2, COL1A1, and DMP1 in the presence of TCP-laden scaffolds. In vivo, analyses showed mild inflammatory reaction upon scaffolds' contact while supporting mineralized tissue formation. Although the levels of Nestin and DMP1 proteins did not exceed those associated with the clinical reference treatment (i.e., mineral trioxide aggregate), the GelMA+20%TCP scaffold exhibited comparable levels, thus suggesting the emergence of differentiated odontoblast-like cells capable of dentin matrix secretion. Our innovative GelMA/TCP scaffold represents a simplified and efficient alternative to conventional pulp-capping biomaterials. STATEMENT OF SIGNIFICANCE: Vital pulp therapy (VPT) aims to preserve dental pulp vitality and avoid root canal treatment. Biomaterials that bolster mineralized tissue regeneration with ease of use are still lacking. We successfully engineered gelatin methacryloyl (GelMA) electrospun scaffolds incorporated with beta-tricalcium phosphate (TCP) for VPT. Notably, electrospun GelMA-based scaffolds containing 20% (w/v) of TCP exhibited favorable mechanical properties and degradation, cytocompatibility, and mineralization potential indicated by apatite-like structures in vitro and mineralized tissue deposition in vivo, although not surpassing those associated with the standard of care. Collectively, our innovative GelMA/TCP scaffold represents a simplified alternative to conventional pulp capping materials such as MTA and Biodentine™ since it is a ready-to-use biomaterial, requires no setting time, and is therapeutically effective.
Collapse
Affiliation(s)
- Yuanyuan Han
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States; Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Abdel H Mahmoud
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Jinping Xu
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Miguel Castilho
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Waruna L Dissanayaka
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
14
|
Yu DG, Xu L. Impact Evaluations of Articles in Current Drug Delivery based on Web of Science. Curr Drug Deliv 2024; 21:360-367. [PMID: 37157193 DOI: 10.2174/1567201820666230508115356] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
A total of 1534 and 308 articles were published in the journal Current Drug Delivery (CDD), from 2004 and 2019 to 2021, respectively. In this commentary, their impacts were analyzed based on search data about citation times in the Web of Science. These publications were categorized from different standpoints and evaluated in terms of their citations, particularly in the year 2021. The thematic, contemporary, and local features of these articles, as well as the article types and publication formats, were interpreted. Results demonstrated that CDD should be loyal to the contents about drug delivery, particularly nano-drug delivery systems and nano-pharmaceutical technologies. Publications from the developing and developed countries and regions showed no remarkable differences; therefore, submissions are similarly welcomed. Research articles and review articles are the main stream of CDD. The ratio of review papers is about 30%, which is reasonable but should not be further extended. Moreover, open publications with an article processing charge always have a high impact than those with subscription.
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
15
|
Chew CH, Lee HL, Chen AL, Huang WT, Chen SM, Liu YL, Chen CC. Review of electrospun microtube array membrane (MTAM)-a novel new class of hollow fiber for encapsulated cell therapy (ECT) in clinical applications. J Biomed Mater Res B Appl Biomater 2024; 112:e35348. [PMID: 38247238 DOI: 10.1002/jbm.b.35348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/14/2023] [Indexed: 01/23/2024]
Abstract
Encapsulated cell therapy (ECT) shows significant potential for treating neurodegenerative disorders including Alzheimer's and Parkinson's, which currently lack curative medicines and must be managed symptomatically. This novel technique encapsulates functional cells with a semi-permeable membrane, providing protection while enabling critical nutrients and therapeutic substances to pass through. Traditional ECT procedures, on the other hand, pose difficulties in terms of cell survival and retrieval. We introduce the Microtube Array Membrane (MTAM), a revolutionary technology that solves these constraints, in this comprehensive overview. Microtube Array Membrane has distinct microstructures that improve encapsulated cells' long-term viability by combining the advantages of macro and micron scales. Importantly, the MTAM platform improves biosafety by allowing the entire encapsulated unit to be retrieved in the event of an adverse reaction. Our findings show that MTAM-based ECT has a great potential in a variety of illness situations. For cancer treatment, hybridoma cells secreting anti-CEACAM 6 antibodies inhibit triple-negative breast cancer cell lines for an extended period of time. In animal brain models of Alzheimer's disease, hybridoma cells secreting anti-pTau antibodies successfully reduce pTau buildup, accompanied by improvements in memory performance. In mouse models, MTAM-encapsulated primary cardiac mesenchymal stem cells dramatically improve overall survival and heart function. These findings illustrate the efficacy and adaptability of MTAM-based ECT in addressing major issues such as immunological isolation, cell viability, and patient safety. We provide new possibilities for the treatment of neurodegenerative illnesses and other conditions by combining the potential of ECT with MTAM. Continued research and development in this subject has a lot of promise for developing cell therapy and giving hope to people suffering from chronic diseases.
Collapse
Affiliation(s)
- Chee Ho Chew
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Research and Marketing Department, MTAMTech Corporation, Taipei, Taiwan
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Amanda Lin Chen
- Immune Deficiency Cellular Therapy Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Wan-Ting Huang
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Research and Marketing Department, MTAMTech Corporation, Taipei, Taiwan
| | - Shu-Mei Chen
- Division of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yen-Lin Liu
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chien-Chung Chen
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Research and Marketing Department, MTAMTech Corporation, Taipei, Taiwan
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- The PhD Program for Translational Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Ramesh VH, Goudanavar P, Ramesh B, Naveen NR, Gowthami B. Pharmaceutical/Biomedical Applications of Electrospun Nanofibers - Comprehensive Review, Attentive to Process Parameters and Patent Landscape. Pharm Nanotechnol 2024; 12:412-427. [PMID: 37702161 DOI: 10.2174/2211738511666230911163249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 09/14/2023]
Abstract
Nanotechnology is a new science and business endeavour with worldwide economic benefits. Growing knowledge of nanomaterial fabrication techniques has increased the focus on nanomaterial preparation for various purposes. Nanofibers are one-dimensional nanomaterials having distinct physicochemical properties and characteristics. Nanofibers are nanomaterial types with a cross-sectional dimension of tens to hundreds of nanometres. They may create high porosity mesh networks with significant interconnections among pores, making them suitable for advanced applications. Electrospinning stands out for its ease of use, flexibility, low cost, and variety among the approaches described in the literature. The most common method for making nanofibers is electrospinning. This article extensively describes and summarizes the impact of various process variables on the fabrication of nanofibers. Special attention has been given to scientific and patent prospection to confirm the research interests in nanofibers.
Collapse
Affiliation(s)
- Varshini Hemmanahalli Ramesh
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Prakash Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Bevenahalli Ramesh
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Buduru Gowthami
- Department of Pharmaceutics, Annamacharya College of Pharmacy, New Boyanapalli, Rajampet, 516126, Andhra Pradesh, India
| |
Collapse
|
17
|
Zięba M, Sikorska W, Musioł M, Janeczek H, Włodarczyk J, Pastusiak M, Gupta A, Radecka I, Parati M, Tylko G, Kowalczuk M, Adamus G. Designing of Drug Delivery Systems to Improve the Antimicrobial Efficacy in the Periodontal Pocket Based on Biodegradable Polyesters. Int J Mol Sci 2023; 25:503. [PMID: 38203673 PMCID: PMC10778800 DOI: 10.3390/ijms25010503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Delivery systems for biologically active substances such as proanthocyanidins (PCANs), produced in the form of electrospun nonwoven through the electrospinning method, were designed using a polymeric blend of poly(L-lactide-co-glycolide) (PLGA)and poly[(R,S)-3-hydroxybutyrate] ((R,S)-PHB). The studies involved the structural and thermal characteristics of the developed electrospun three-dimensional fibre matrices unloaded and loaded with PCANs. In the next step, the hydrolytic degradation tests of these systems were performed. The release profile of PCANs from the electrospun nonwoven was determined with the aid of UV-VIS spectroscopy. Approximately 30% of the PCANs were released from the tested electrospun nonwoven during the initial 15-20 days of incubation. The chemical structure of water-soluble oligomers that were formed after the hydrolytic degradation of the developed delivery system was identified through electrospray ionization mass spectrometry. Oligomers of lactic acid and OLAGA oligocopolyester, as well as oligo-3-hydroxybutyrate terminated with hydroxyl and carboxyl end groups, were recognized as degradation products released into the water during the incubation time. It was also demonstrated that variations in the degradation rate of individual mat components influenced the degradation pattern and the number of formed oligomers. The obtained results suggest that the incorporation of proanthocyanidins into the system slowed down the hydrolytic degradation process of the poly(L-lactide-co-glycolide)/poly[(R,S)-3-hydroxybutyrate] three-dimensional fibre matrix. In addition, in vitro cytotoxicity and antimicrobial studies advocate the use of PCANs for biomedical applications with promising antimicrobial activity.
Collapse
Affiliation(s)
- Magdalena Zięba
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
- Department of Optoelectronics, Silesian University of Technology, B. Krzywoustego 2, 44-100 Gliwice, Poland
| | - Wanda Sikorska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Jakub Włodarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Małgorzata Pastusiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Abhishek Gupta
- Faculty of Science and Engineering, School of Pharmacy, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
| | - Iza Radecka
- Faculty of Science and Engineering, Wolverhampton School of Life Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (I.R.); (M.P.)
| | - Mattia Parati
- Faculty of Science and Engineering, Wolverhampton School of Life Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (I.R.); (M.P.)
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland;
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| |
Collapse
|
18
|
Epicoco L, Pellegrino R, Madaghiele M, Friuli M, Giannotti L, Di Chiara Stanca B, Palermo A, Siculella L, Savkovic V, Demitri C, Nitti P. Recent Advances in Functionalized Electrospun Membranes for Periodontal Regeneration. Pharmaceutics 2023; 15:2725. [PMID: 38140066 PMCID: PMC10747510 DOI: 10.3390/pharmaceutics15122725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Periodontitis is a global, multifaceted, chronic inflammatory disease caused by bacterial microorganisms and an exaggerated host immune response that not only leads to the destruction of the periodontal apparatus but may also aggravate or promote the development of other systemic diseases. The periodontium is composed of four different tissues (alveolar bone, cementum, gingiva, and periodontal ligament) and various non-surgical and surgical therapies have been used to restore its normal function. However, due to the etiology of the disease and the heterogeneous nature of the periodontium components, complete regeneration is still a challenge. In this context, guided tissue/bone regeneration strategies in the field of tissue engineering and regenerative medicine have gained more and more interest, having as a goal the complete restoration of the periodontium and its functions. In particular, the use of electrospun nanofibrous scaffolds has emerged as an effective strategy to achieve this goal due to their ability to mimic the extracellular matrix and simultaneously exert antimicrobial, anti-inflammatory and regenerative activities. This review provides an overview of periodontal regeneration using electrospun membranes, highlighting the use of these nanofibrous scaffolds as delivery systems for bioactive molecules and drugs and their functionalization to promote periodontal regeneration.
Collapse
Affiliation(s)
- Luana Epicoco
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
- Institute of Medical Physics and Biophysics, University of Leipzig, 04103 Leipzig, Germany
| | - Rebecca Pellegrino
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Marco Friuli
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Laura Giannotti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Benedetta Di Chiara Stanca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Andrea Palermo
- Implant Dentistry College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Vuk Savkovic
- Clinic and Polyclinic for Oral and Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Christian Demitri
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Paola Nitti
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| |
Collapse
|
19
|
Moradi Haghgoo J, Torkzaban P, Hashemi P, Sarvari R, Hashemi S, Fakhri E, Alafchi B. Clinical evaluation of chitosan/polycaprolactone nanofibrous scaffolds releasing tetracycline hydrochloride in periodontal pockets of patients with chronic periodontitis. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2023; 15:74-79. [PMID: 38357337 PMCID: PMC10862042 DOI: 10.34172/japid.2023.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 02/16/2024]
Abstract
Background The role of bacteria in the initiation and progression of periodontitis has led to a great interest in using antibiotics to suppress pathogenic microbiota. Considering the drawbacks of systemic antibiotics' application, local delivery systems directly in the periodontal pocket can be helpful. Therefore, the effect of an efficient tetracycline-loaded delivery system was investigated on the clinical parameters of periodontitis. Methods In this clinical trial with a split-mouth design, 10 patients with periodontitis with pocket depths≥5 mm were included. After scaling and root planing (SRP) for all the patients, one side of the mouth was randomly considered as the control group, and on the other side, chitosan/polycaprolactone (PCL) nanofibrous films containing tetracycline (5%) were placed in pockets of 5 mm and deeper. Clinical measurements of pocket probing depth (PPD), clinical attachment loss (CAL), and bleeding on probing (BOP) indices were made at the beginning and after 8 weeks of intervention. PPD, CAL, and BOP parameters were compared between the control and test groups before and after the intervention with paired t tests using SPSS 24. The significance level of the tests was considered at P<0.05. Results The mean PPD, CAL, and BOP in both the control (SRP) and test (LDDs) groups decreased after 8 weeks. A significant difference was detected in reducing PPD, BOP, and CAL after 8 weeks in 5-mm pockets, and the mean values were higher in the test group than in the control (P<0.05). Conclusion The local drug delivery system using chitosan/PCL nanofibrous films containing tetracycline can effectively control periodontal diseases by reducing pocket depth and inflammation and improving CAL without offering side effects, although further evaluations are needed.
Collapse
Affiliation(s)
- Janet Moradi Haghgoo
- Department of Periodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parviz Torkzaban
- Department of Periodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parisa Hashemi
- Department of Periodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rana Sarvari
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sana Hashemi
- Department of Prosthodontics, School of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Fakhri
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Alafchi
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
20
|
Ashfaq R, Sisa B, Kovács A, Berkó S, Szécsényi M, Burián K, Vályi P, Budai-Szűcs M. Factorial design of in situ gelling two-compartment systems containing chlorhexidine for the treatment of periodontitis. Eur J Pharm Sci 2023; 191:106607. [PMID: 37821010 DOI: 10.1016/j.ejps.2023.106607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/15/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
Periodontitis is one of the most widespread bacterial infectious oral diseases that affects a significant percentage of the population worldwide. Different bacterial strains are responsible for the chronic inflammation and subgingival plaque that could be effectively treated with prolonged exposure to therapeutic levels of antibiotics and antiseptics in the periodontal pockets. Medicated in situ gels of chlorhexidine (CHX), for extended drug release and long-lasting antiseptic effect in the targeted cavities, were prepared in a two-compartment system. One compartment was loaded with sodium alginate solution while other was filled with CHX and calcium solution. The mixing of the solutions during the application resulted in gelation. Two 33 full factorial designs were applied in this study in order to optimize the gel formulation. Initially, the effects of concentration of gelling agent, crosslinker, and pH of the system on the dependent variables such as gel formation and structure characteristics were investigated. Then, the concentration of the crosslinker was optimized. Afterwards, the effect of gelling agent, loading of the drug, and pH of the gel system were correlated with the gel characteristics through another factorial design. Optimized formulations were tested for mucoadhesion, in vitro drug release, and microbiological investigation. Based on the results of the factorial design, mucoadhesiveness, antimicrobial investigation, and drug release, a 4 % alginate composition can be considered optimal. Overall, the optimized in situ periodontal gel was found to be effective with prolonged retention time and desirable outcomes.
Collapse
Affiliation(s)
- Rabia Ashfaq
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös 6, Szeged H-6720, Hungary
| | - Bianka Sisa
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös 6, Szeged H-6720, Hungary
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös 6, Szeged H-6720, Hungary
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös 6, Szeged H-6720, Hungary
| | - Mária Szécsényi
- Department of Medical Microbiology, University of Szeged, Szeged H-6720, Hungary
| | - Katalin Burián
- Department of Medical Microbiology, University of Szeged, Szeged H-6720, Hungary
| | - Péter Vályi
- Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, Budapest H-1088, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös 6, Szeged H-6720, Hungary.
| |
Collapse
|
21
|
Kurowiak J, Klekiel T, Będziński R. Biodegradable Polymers in Biomedical Applications: A Review-Developments, Perspectives and Future Challenges. Int J Mol Sci 2023; 24:16952. [PMID: 38069272 PMCID: PMC10707259 DOI: 10.3390/ijms242316952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Biodegradable polymers are materials that, thanks to their remarkable properties, are widely understood to be suitable for use in scientific fields such as tissue engineering and materials engineering. Due to the alarming increase in the number of diagnosed diseases and conditions, polymers are of great interest in biomedical applications especially. The use of biodegradable polymers in biomedicine is constantly expanding. The application of new techniques or the improvement of existing ones makes it possible to produce materials with desired properties, such as mechanical strength, controlled degradation time and rate and antibacterial and antimicrobial properties. In addition, these materials can take virtually unlimited shapes as a result of appropriate design. This is additionally desirable when it is necessary to develop new structures that support or restore the proper functioning of systems in the body.
Collapse
Affiliation(s)
| | | | - Romuald Będziński
- Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Licealna 9 Street, 65-417 Zielona Gora, Poland; (J.K.); (T.K.)
| |
Collapse
|
22
|
Luo Y, Zheng S, Wang K, Luo H, Shi H, Cui Y, Li B, He H, Wu J. Drug cross-linking electrospun fiber for effective infected wound healing. Bioeng Transl Med 2023; 8:e10540. [PMID: 38023724 PMCID: PMC10658581 DOI: 10.1002/btm2.10540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 12/01/2023] Open
Abstract
The management of infected wounds is still an intractable challenge in clinic. Development of antibacterial wound dressing is of great practical significance for wound management. Herein, a natural-derived antibacterial drug, tannic acid (TA), was incorporated into the electrospun polyvinyl alcohol (PVA) fiber (TA/PVA fiber, 952 ± 40 nm in diameter). TA worked as a cross-linker via hydrogen bonding with PVA to improve the physicochemical properties of the fiber and to reach a sustained drug release (88% release of drug at 48 h). Improved mechanical property (0.8-1.2 MPa) and computational simulation validated the formation of the hydrogen bonds between TA and PVA. Moreover, the antibacterial and anti-inflammatory characteristics of TA laid the foundation for the application of TA/PVA fiber in repairing infected wounds. Meanwhile, in vitro studies proved the high hemocompatibility and cytocompatibility of TA/PVA fiber. Further in vivo animal investigation showed that the TA/PVA fiber promoted the repair of infected wound by inhibiting the bacterial growth, promoting granulation formation, and collagen matrix deposition, accelerating angiogenesis, and inducing M2 macrophage polarization within 14 days. All the data demonstrated that the TA cross-linked fiber would be a potent dressing for bacteria-infected wound healing.
Collapse
Affiliation(s)
- Yuting Luo
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Sen Zheng
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Kun Wang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Hangqi Luo
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Huiling Shi
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Yanna Cui
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Bingxin Li
- College of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiangPeople's Republic of China
| | - Huacheng He
- College of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiangPeople's Republic of China
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| |
Collapse
|
23
|
Yu DG, Zhou J. How can Electrospinning Further Service Well for Pharmaceutical Researches? J Pharm Sci 2023; 112:2719-2723. [PMID: 37643699 DOI: 10.1016/j.xphs.2023.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
The past two decades have witnessed the enormous success and progress of electrospinning, as well as its broad and useful applications in pharmaceutics as a laboratory pharmaceutical nanotechnology. Everything in the past is a preface, in which the large screen opens for electrospinning and electrospun nanofibers (particularly those multiple-fluid electrospinning processes and the related multiple-chamber nanostructures) to stride into a new stage and the real commercial applications. In this commentary, four hot regions are identified for the further progress of the applications of electrospinning in pharmaceutics, in which electrospinning and its products can provide more and better services to the development of pharmaceutics.
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials and Chemistry, Univeristy of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jianfeng Zhou
- School of Materials and Chemistry, Univeristy of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
24
|
Kikionis S, Iliou K, Karra AG, Polychronis G, Choinopoulos I, Iatrou H, Eliades G, Kitraki E, Tseti I, Zinelis S, Ioannou E, Roussis V. Development of Bi- and Tri-Layer Nanofibrous Membranes Based on the Sulfated Polysaccharide Carrageenan for Periodontal Tissue Regeneration. Mar Drugs 2023; 21:565. [PMID: 37999389 PMCID: PMC10671875 DOI: 10.3390/md21110565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Periodontitis is a microbially-induced inflammation of the periodontium that is characterized by the destruction of the periodontal ligament (PDL) and alveolar bone and constitutes the principal cause of teeth loss in adults. Periodontal tissue regeneration can be achieved through guided tissue/bone regeneration (GTR/GBR) membranes that act as a physical barrier preventing epithelial infiltration and providing adequate time and space for PDL cells and osteoblasts to proliferate into the affected area. Electrospun nanofibrous scaffolds, simulating the natural architecture of the extracellular matrix (ECM), have attracted increasing attention in periodontal tissue engineering. Carrageenans are ideal candidates for the development of novel nanofibrous GTR/GBR membranes, since previous studies have highlighted the potential of carrageenans for bone regeneration by promoting the attachment and proliferation of osteoblasts. Herein, we report the development of bi- and tri-layer nanofibrous GTR/GBR membranes based on carrageenans and other biocompatible polymers for the regeneration of periodontal tissue. The fabricated membranes were morphologically characterized, and their thermal and mechanical properties were determined. Their periodontal tissue regeneration potential was investigated through the evaluation of cell attachment, biocompatibility, and osteogenic differentiation of human PDL cells seeded on the prepared membranes.
Collapse
Affiliation(s)
- Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (K.I.); (E.I.)
| | - Konstantina Iliou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (K.I.); (E.I.)
| | - Aikaterini G. Karra
- Department of Basic Sciences, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.K.); (E.K.)
| | - Georgios Polychronis
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.P.); (G.E.); (S.Z.)
| | - Ioannis Choinopoulos
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (I.C.); (H.I.)
| | - Hermis Iatrou
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (I.C.); (H.I.)
| | - George Eliades
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.P.); (G.E.); (S.Z.)
| | - Efthymia Kitraki
- Department of Basic Sciences, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.K.); (E.K.)
| | - Ioulia Tseti
- Uni-Pharma S.A., 35 Kalyftaki Str., 14564 Kifissia, Greece;
| | - Spiros Zinelis
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.P.); (G.E.); (S.Z.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (K.I.); (E.I.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (K.I.); (E.I.)
| |
Collapse
|
25
|
Budală DG, Luchian I, Tatarciuc M, Butnaru O, Armencia AO, Virvescu DI, Scutariu MM, Rusu D. Are Local Drug Delivery Systems a Challenge in Clinical Periodontology? J Clin Med 2023; 12:4137. [PMID: 37373830 PMCID: PMC10298898 DOI: 10.3390/jcm12124137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Placing antimicrobial treatments directly in periodontal pockets is an example of the local administration of antimicrobial drugs to treat periodontitis. This method of therapy is advantageous since the drug concentration after application far surpasses the minimum inhibitory concentration (MIC) and lasts for a number of weeks. As a result, numerous local drug delivery systems (LDDSs) utilizing various antibiotics or antiseptics have been created. There is constant effort to develop novel formulations for the localized administration of periodontitis treatments, some of which have failed to show any efficacy while others show promise. Thus, future research should focus on the way LDDSs can be personalized in order to optimize future clinical protocols in periodontal therapy.
Collapse
Affiliation(s)
- Dana Gabriela Budală
- Department of Implantology, Removable Prostheses, Dental Prostheses Technology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania; (D.G.B.)
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Monica Tatarciuc
- Department of Implantology, Removable Prostheses, Dental Prostheses Technology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania; (D.G.B.)
| | - Oana Butnaru
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Adina Oana Armencia
- Department of Surgery and Oral Health, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Dragoș Ioan Virvescu
- Department of Fixed Prosthodontics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Monica Mihaela Scutariu
- Department of Implantology, Removable Prostheses, Dental Prostheses Technology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania; (D.G.B.)
| | - Darian Rusu
- Department of Periodontology, Faculty of Dental Medicine, “Anton Sculean” Research Center for Periodontal and Peri-Implant Diseases, “Victor Babes” University of Medicine and Pharmacy, Piața Eftimie Murgu 2, 300041 Timisoara, Romania
| |
Collapse
|
26
|
Wang H, Lu Y, Yang H, Yu DG, Lu X. The influence of the ultrasonic treatment of working fluids on electrospun amorphous solid dispersions. Front Mol Biosci 2023; 10:1184767. [PMID: 37234919 PMCID: PMC10206001 DOI: 10.3389/fmolb.2023.1184767] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Based on a working fluid consisting of a poorly water-soluble drug and a pharmaceutical polymer in an organic solvent, electrospinning has been widely exploited to create a variety of amorphous solid dispersions However, there have been very few reports about how to prepare the working fluid in a reasonable manner. In this study, an investigation was conducted to determine the influences of ultrasonic fluid pretreatment on the quality of resultant ASDs fabricated from the working fluids. SEM results demonstrated that nanofiber-based amorphous solid dispersions from the treated fluids treated amorphous solid dispersions exhibited better quality than the traditional nanofibers from untreated fluids in the following aspects: 1) a straighter linear morphology; 2) a smooth surface; and 3) a more evener diameter distribution. The fabrication mechanism associated with the influences of ultrasonic treatments of working fluids on the resultant nanofibers' quality is suggested. Although XRD and ATR-FTIR experiments clearly verified that the drug ketoprofen was homogeneously distributed all over the TASDs and the traditional nanofibers in an amorphous state regardless of the ultrasonic treatments, the in vitro dissolution tests clearly demonstrated that the TASDs had a better sustained drug release performance than the traditional nanofibers in terms of the initial release rate and the sustained release time periods.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yingying Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Haisong Yang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xuhua Lu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
27
|
Zhou J, Wang P, Yu DG, Zhu Y. Biphasic drug release from electrospun structures. Expert Opin Drug Deliv 2023; 20:621-640. [PMID: 37140041 DOI: 10.1080/17425247.2023.2210834] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Biphasic release, as a special drug-modified release profile that combines immediate and sustained release, allows fast therapeutic action and retains blood drug concentration for long periods. Electrospun nanofibers, particularly those with complex nanostructures produced by multi-fluid electrospinning processes, are potential novel biphasic drug delivery systems (DDSs). AREAS COVERED This review summarizes the most recent developments in electrospinning and related structures. In this review, the role of electrospun nanostructures in biphasic drug release was comprehensively explored. These electrospun nanostructures include monolithic nanofibers obtained through single-fluid blending electrospinning, core-shell and Janus nanostructures prepared via bifluid electrospinning, three-compartment nanostructures obtained via trifluid electrospinning, nanofibrous assemblies obtained through the layer-by-layer deposition of nanofibers, and the combined structure of electrospun nanofiber mats with casting films. The strategies and mechanisms through which complex structures facilitate biphasic release were analyzed. EXPERT OPINION Electrospun structures can provide many strategies for the development of biphasic drug release DDSs. However, many issues such as the scale-up productions of complex nanostructures, the in vivo verification of the biphasic release effects, keeping pace with the developments of multi-fluid electrospinning, drawing support from the state-of-the-art pharmaceutical excipients, and the combination with traditional pharmaceutical methods need to be addressed for real applications.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Pu Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuanjie Zhu
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
28
|
Santos MS, Carvalho MS, Silva JC. Recent Advances on Electrospun Nanofibers for Periodontal Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1307. [PMID: 37110894 PMCID: PMC10141626 DOI: 10.3390/nano13081307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Periodontitis is an inflammatory infection caused by bacterial plaque accumulation that affects the periodontal tissues. Current treatments lack bioactive signals to induce tissue repair and coordinated regeneration of the periodontium, thus alternative strategies are needed to improve clinical outcomes. Electrospun nanofibers present high porosity and surface area and are able to mimic the natural extracellular matrix, which modulates cell attachment, migration, proliferation, and differentiation. Recently, several electrospun nanofibrous membranes have been fabricated with antibacterial, anti-inflammatory, and osteogenic properties, showing promising results for periodontal regeneration. Thus, this review aims to provide an overview of the current state of the art of these nanofibrous scaffolds in periodontal regeneration strategies. First, we describe the periodontal tissues and periodontitis, as well as the currently available treatments. Next, periodontal tissue engineering (TE) strategies, as promising alternatives to the current treatments, are addressed. Electrospinning is briefly explained, the characteristics of electrospun nanofibrous scaffolds are highlighted, and a detailed overview of electrospun nanofibers applied to periodontal TE is provided. Finally, current limitations and possible future developments of electrospun nanofibrous scaffolds for periodontitis treatment are also discussed.
Collapse
Affiliation(s)
- Mafalda S. Santos
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta S. Carvalho
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
29
|
Liu H, Dai Y, Li J, Liu P, Zhou W, Yu DG, Ge R. Fast and convenient delivery of fluidextracts liquorice through electrospun core-shell nanohybrids. Front Bioeng Biotechnol 2023; 11:1172133. [PMID: 37091339 PMCID: PMC10117974 DOI: 10.3389/fbioe.2023.1172133] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Introduction: As an interdisciplinary field, drug delivery relies on the developments of modern science and technology. Correspondingly, how to upgrade the traditional dosage forms for a more efficacious, safer, and convenient drug delivery poses a continuous challenge to researchers. Methods, results and discussion: In this study, a proof-of-concept demonstration was conducted to convert a popular traditional liquid dosage form (a commercial oral compound solution prepared from an intermediate licorice fluidextract) into a solid dosage form. The oral commercial solution was successfully encapsulated into the core-shell nanohybrids, and the ethanol in the oral solution was removed. The SEM and TEM evaluations showed that the prepared nanofibers had linear morphologies without any discerned spindles or beads and an obvious core-shell nanostructure. The FTIR and XRD results verified that the active ingredients in the commercial solution were compatible with the polymeric matrices and were presented in the core section in an amorphous state. Three different types of methods were developed, and the fast dissolution of the electrospun core-shell nanofibers was verified. Conclusion: Coaxial electrospinning can act as a nano pharmaceutical technique to upgrade the traditional oral solution into fast-dissolving solid drug delivery films to retain the advantages of the liquid dosage forms and the solid dosage forms.
Collapse
Affiliation(s)
- Hang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yelin Dai
- Wenqi Middle School, Shanghai, China
- Qingpu Campus, High School Affiliated to Fudan University, Shanghai, China
| | - Jia Li
- Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhui Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, The Third Affiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
30
|
Du Y, Yang Z, Kang S, Yu DG, Chen X, Shao J. A Sequential Electrospinning of a Coaxial and Blending Process for Creating Double-Layer Hybrid Films to Sense Glucose. SENSORS (BASEL, SWITZERLAND) 2023; 23:3685. [PMID: 37050745 PMCID: PMC10099372 DOI: 10.3390/s23073685] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/21/2023]
Abstract
This study presents a glucose biosensor based on electrospun core-sheath nanofibers. Two types of film were fabricated using different electrospinning procedures. Film F1 was composed solely of core-sheath nanofibers fabricated using a modified coaxial electrospinning process. Film F2 was a double-layer hybrid film fabricated through a sequential electrospinning and blending process. The bottom layer of F2 comprised core-sheath nanofibers fabricated using a modified process, in which pure polymethacrylate type A (Eudragit L100) was used as the core section and water-soluble lignin (WSL) and phenol were loaded as the sheath section. The top layer of F2 contained glucose oxidase (GOx) and gold nanoparticles, which were distributed throughout the polyvinylpyrrolidone K90 (PVP K90) nanofibers through a single-fluid blending electrospinning process. The study investigated the sequential electrospinning process in detail. The experimental results demonstrated that the F2 hybrid film had a higher degradation efficiency of β-D-glucose than F1, reaching a maximum of over 70% after 12 h within the concentration range of 10-40 mmol/L. The hybrid film F2 is used for colorimetric sensing of β-D-glucose in the range of 1-15 mmol/L. The solution exhibited a color that deepened gradually with an increase in β-D-glucose concentration. Electrospinning is flexible in creating structures for bio-cascade reactions, and the double-layer hybrid film can provide a simple template for developing other sensing nanomaterials.
Collapse
Affiliation(s)
- Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
| | - Zili Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
| | - Shixiong Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Xiren Chen
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China
| | - Jun Shao
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China
| |
Collapse
|
31
|
Feng Z, Wang K, Liu Y, Han B, Yu DG. Piezoelectric Enhancement of Piezoceramic Nanoparticle-Doped PVDF/PCL Core-Sheath Fibers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13071243. [PMID: 37049335 PMCID: PMC10096487 DOI: 10.3390/nano13071243] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/30/2023]
Abstract
Electrospinning is considered to be an efficient method to prepare piezoelectric thin films because of its ability to transform the phase of the polymers. A core-sheath structure can endow fibers with more functions and properties. In this study, fibers with a core-sheath structure were prepared using polyvinylidene fluoride (PVDF) included with nanoparticles (NPs) as the shell layer and polycaprolactone (PCL) as the core layer. Their mechanical and piezoelectric properties were studied in detail. During the course of the electrospinning process, PVDF was demonstrated to increase the amount of its polar phase, with the help of nanoparticles acting as a nucleating agent to facilitate the change. PCL was chosen as a core material because of its good mechanical properties and its compatibility with PVDF. Transmission electron microscope (TEM) assessments revealed that the fibers have a core-sheath structure, and shell layers were loaded with nanoparticles. Mechanical testing showed that the core layer can significantly improve mechanical properties. The XRD patterns of the core-sheath structure fibers indicated the β phase domain the main component. Piezoelectric testing showed that the doped nanoparticles were able to enhance piezoelectric performances. The increases of mechanical and piezoelectric properties of core-sheath structure fibers provide a feasible application for wearable electronics, which require flexibility and good mechanical properties.
Collapse
Affiliation(s)
| | - Ke Wang
- Correspondence: (K.W.); (D.-G.Y.)
| | | | | | | |
Collapse
|
32
|
Lin J, Shi T, Wang Y, He Z, Mu Z, Cai X, Deng H, Shen J, Liu F. Hybrid Hydrogel Loaded with Chlorhexidine⊂β-CD-MSN Composites as Wound Dressing. Int J Nanomedicine 2023; 18:1725-1740. [PMID: 37025923 PMCID: PMC10072218 DOI: 10.2147/ijn.s401705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/21/2023] [Indexed: 04/03/2023] Open
Abstract
Background Much attention has been paid to sustained drug release and anti-infection in wound management. Hydrogels, which are biocompatible materials, are promising tools for controlled drug release and infective protection during wound healing. However, hydrogels also demonstrate limitations in the highly efficient treatment of wounds because of the diffusion rate. In this work, we explored pH-sensitive hydrogels that enable ultra-long-acting drug release and sustained antibacterial properties. Methods We constructed a hybrid gelatin methacrylate (GelMA) system with sustainable antibacterial properties combining hyaluronic acid (HA)-coated mesoporous silica nanoparticles (MSN), which loaded host-guest complexes of chlorhexidine (CHX) with β-cyclodextrins (β-CD) (CHX⊂CD-MSN@HA@GelMA). The release mechanism of CHX was explored using UV-vis spectra after intermittent diffusion of CHX. The hybrid hydrogels were characterized, and the drug content in terms of the release profile, bacterial inhibition, and in vivo experiments were investigated. Results Except for dual protection from both hydrogels, MSN in the HA improved the drug loading efficiency to promote the local drug concentration. It showed that complicated CHX-loaded MSN releases CHX more gradually and over a longer duration than CHX-loaded MSNs. This demonstrated a 12-day CHX release time and antibacterial activity, primarily attributable to the capacity of β-CD to form an inclusion complex with CHX. Meanwhile, in vivo experiments revealed that the hydrogels safely promote skin wound healing and enhance therapeutic efficacy. Conclusion We constructed pH-sensitive CHX⊂CD-MSN@HA@GelMA hydrogels that enable ultra-long-acting drug release and sustained antibacterial properties. The combination of β-CD and MSN would be better suited to release a reduced rate of active molecules over time (slow delivery), making them great candidates for wound dressing anti-infection materials.
Collapse
Affiliation(s)
- Jian Lin
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Tianpeng Shi
- Department of Stomatology, PLA Strategic Support Force Medical Center, Beijing, People’s Republic of China
| | - Yi Wang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Zhiqi He
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Zhixiang Mu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaojun Cai
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Hui Deng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Correspondence: Hui Deng; Fen Liu, Email ;
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People’s Republic of China
- Department of Regenerative Medicine, Vision, and Brain Health, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, People’s Republic of China
| | - Fen Liu
- Department of Histology and Embryology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| |
Collapse
|
33
|
Recent Progress of the Preparation and Application of Electrospun Porous Nanofibers. Polymers (Basel) 2023; 15:polym15040921. [PMID: 36850206 PMCID: PMC9961710 DOI: 10.3390/polym15040921] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Electrospun porous nanofibers have gained a lot of interest recently in various fields because of their adjustable porous structure, high specific surface area, and large number of active sites, which can further enhance the performance of materials. This paper provides an overview of the common polymers, preparation, and applications of electrospun porous nanofibers. Firstly, the polymers commonly used to construct porous structures and the main pore-forming methods in porous nanofibers by electrospinning, namely the template method and phase separation method, are introduced. Secondly, recent applications of electrospun porous nanofibers in air purification, water treatment, energy storage, biomedicine, food packaging, sensor, sound and wave absorption, flame retardant, and heat insulation are reviewed. Finally, the challenges and possible research directions for the future study of electrospun porous nanofibers are discussed.
Collapse
|
34
|
Baykara D, Pilavci E, Cesur S, Ilhan E, Ulag S, Sengor M, Kijeńska‐Gawrońska E, Gunduz O. Controlled Release of Gentamicin from Electrospun Poly(Vinyl Alcohol)/Gelatin Nanofibers: The Effect of Crosslinking Time Using Glutaraldehyde Vapor. ChemistrySelect 2023. [DOI: 10.1002/slct.202203681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Dilruba Baykara
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Turkey
- Department of Bioengineering Faculty of Chemical and Metallurgical Engineering Yildiz Technical University Turkey
| | - Esra Pilavci
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Turkey
- Department of Metallurgical and Materials Engineering Faculty of Technology Marmara University Turkey
| | - Sumeyye Cesur
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Turkey
| | - Elif Ilhan
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Turkey
- Department of Bioengineering Faculty of Engineering Marmara University Turkey
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Turkey
| | - Mustafa Sengor
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Turkey
- Department of Metallurgical and Materials Engineering Faculty of Technology Marmara University Turkey
| | - Ewa Kijeńska‐Gawrońska
- Centre for Advanced Materials and Technologies CEZAMAT Warsaw University of Technology Poland
- Faculty of Materials Science and Engineering Warsaw University of Technology Poland
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Turkey
- Department of Metallurgical and Materials Engineering Faculty of Technology Marmara University Turkey
| |
Collapse
|
35
|
A Correlation Analysis between Undergraduate Students' Safety Behaviors in the Laboratory and Their Learning Efficiencies. Behav Sci (Basel) 2023; 13:bs13020127. [PMID: 36829356 PMCID: PMC9952147 DOI: 10.3390/bs13020127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Students' behaviors have a close relationship with their learning efficiencies, particularly about professional knowledge. Different types of behaviors should have different influences. Disclosing the special relationship between undergraduate students' conscious safety behaviors in their laboratory experiments with their learning efficiencies is important for fostering them into professional talents. In this study, a course entitled "Advanced Methods of Materials Characterization" was arranged to contain three sections: theoretical learning in the classroom, eight characterization experiments in the laboratory in sequence, and self-training to apply the knowledge. In the final examination, eighteen percent was allocated to the examination questions about safety issues. The students' scores for this section were associated with their total roll scores. Two quantitative relationships are disclosed. One is between the students' final examination score (y) and their subjective consciousness of safety behaviors (x) in their laboratory experiments, as y = 5.56 + 4.83 x (R = 0.9192). The other is between their grade point average (y) and safety behavior evaluation (x) as y = 0.51 + 0.15 x (R = 0.7296). Undergraduate students' behaviors in scientific laboratories need to be verified to have a close and positive relationship with their professional knowledge learning efficiencies. This offers a hint that improving students' safety behaviors and enhancing their subjective safety awareness are conducive to improving their learning efficiency for professional knowledge.
Collapse
|
36
|
Ge R, Ji Y, Ding Y, Huang C, He H, Yu DG. Electrospun self-emulsifying core-shell nanofibers for effective delivery of paclitaxel. Front Bioeng Biotechnol 2023; 11:1112338. [PMID: 36741747 PMCID: PMC9892910 DOI: 10.3389/fbioe.2023.1112338] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
The poor solubility of numerous drugs pose a long-existing challenge to the researchers in the fields of pharmaceutics, bioengineering and biotechnology. Many "top-down" and "bottom-up" nano fabrication methods have been exploited to provide solutions for this issue. In this study, a combination strategy of top-down process (electrospinning) and bottom-up (self-emulsifying) was demonstrated to be useful for enhancing the dissolution of a typical poorly water-soluble anticancer model drug (paclitaxel, PTX). With polyvinylpyrrolidone (PVP K90) as the filament-forming matrix and drug carrier, polyoxyethylene castor oil (PCO) as emulsifier, and triglyceride (TG) as oil phase, Both a single-fluid blending process and a coaxial process were utilized to prepare medicated nanofibers. Scanning electron microscope and transmission electron microscope (TEM) results clearly demonstrated the morphology and inner structures of the nanofibers. The lipid nanoparticles of emulsions after self-emulsification were also assessed through TEM. The encapsulation efficiency (EE) and in vitro dissolution tests demonstrated that the cores-shell nanofibers could provide a better self-emulsifying process int terms of a higher EE and a better drug sustained release profile. Meanwhile, an increase of sheath fluid rate could benefit an even better results, suggesting a clear process-property-performance relationship. The protocols reported here pave anew way for effective oral delivery of poorly water-soluble drug.
Collapse
Affiliation(s)
- Ruiliang Ge
- Department of Outpatient, The Third Affiliated Hospital, Naval Medical University, Shanghai, China,Correspondence: Ruiliang Ge, ; Deng-Guang Yu,
| | - Yuexin Ji
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yanfei Ding
- Sinopec Shanghai Engineering Co., Ltd., Shanghai, China
| | - Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Hua He
- Department of Outpatient, The Third Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China,Correspondence: Ruiliang Ge, ; Deng-Guang Yu,
| |
Collapse
|
37
|
Liu H, Bai Y, Huang C, Wang Y, Ji Y, Du Y, Xu L, Yu DG, Bligh SWA. Recent Progress of Electrospun Herbal Medicine Nanofibers. Biomolecules 2023; 13:184. [PMID: 36671570 PMCID: PMC9855805 DOI: 10.3390/biom13010184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Herbal medicine has a long history of medical efficacy with low toxicity, side effects and good biocompatibility. However, the bioavailability of the extract of raw herbs and bioactive compounds is poor because of their low water solubility. In order to overcome the solubility issues, electrospinning technology can offer a delivery alternative to resolve them. The electrospun fibers have the advantages of high specific surface area, high porosity, excellent mechanical strength and flexible structures. At the same time, various natural and synthetic polymer-bound fibers can mimic extracellular matrix applications in different medical fields. In this paper, the development of electrospinning technology and polymers used for incorporating herbal medicine into electrospun nanofibers are reviewed. Finally, the recent progress of the applications of these herbal medicine nanofibers in biomedical (drug delivery, wound dressing, tissue engineering) and food fields along with their future prospects is discussed.
Collapse
Affiliation(s)
- Hang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yubin Bai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuexin Ji
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China
| |
Collapse
|
38
|
Malczewska B, Lochyński P, Charazińska S, Sikora A, Farnood R. Electrospun Silica-Polyacrylonitrile Nanohybrids for Water Treatments. MEMBRANES 2023; 13:72. [PMID: 36676879 PMCID: PMC9861717 DOI: 10.3390/membranes13010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/12/2023]
Abstract
In this work, the removal of NOM (natural organic matter) as represented by humic acid by means of electrospun nanofiber adsorptive membranes (ENAMs) is described. Polyacrylonitrile (PAN) was used for the preparation of ENAMs incorporating silica nanoparticles as adsorbents. The addition of silica to the polymer left visible changes on the structural morphology and fibers' properties of the membrane. The membrane samples were characterized by pure water permeability, contact angle measurement, SEM, XPS, and XRD. This study assesses the preliminary performance of PAN-Si membranes for the removal of natural organic matter (NOM). The membrane rejected the humic acid, a surrogate of NOM, from 69.57% to 87.5%.
Collapse
Affiliation(s)
- Beata Malczewska
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-365 Wroclaw, Poland
| | - Paweł Lochyński
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-365 Wroclaw, Poland
| | - Sylwia Charazińska
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-365 Wroclaw, Poland
| | - Andrzej Sikora
- Department of Nanometrology, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, 50-372 Wroclaw, Poland
| | - Ramin Farnood
- Department of Chemical Engineering & Applied Chemistry, Faculty of Applied Science & Engineering, University of Toronto, 200 College St, Toronto, ON M5S 3E5, Canada
| |
Collapse
|
39
|
Pavithra ME, Jayaraman R, Azarudeen RS, Thirumarimurugan M. Casting hydrophilic polymers blended polycaprolactone membranes for drug delivery to eradicate the cancer cells and pathogenic microorganisms. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - Raja S. Azarudeen
- Department of Chemical Engineering Coimbatore Institute of Technology Coimbatore India
- Department of Chemistry Coimbatore Institute of Technology Coimbatore India
| | | |
Collapse
|
40
|
Bartošová L, Sedlaříková J, Peer P, Janalíková M, Pleva P. Antibacterial and Antifouling Efficiency of Essential Oils-Loaded Electrospun Polyvinylidene Difluoride Membranes. Int J Mol Sci 2022; 24:ijms24010423. [PMID: 36613867 PMCID: PMC9820142 DOI: 10.3390/ijms24010423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Nanofibers have become a promising material in many industries in recent years, mainly due to their various properties. The only disadvantage of nanofibers as a potential filtration membrane is their short life due to clogging by bacteria in water treatment. The enrichment of nanofibers with active molecules could prevent these negative effects, represented by essential oils components such as Thymol, Eugenol, Linalool, Cinnamaldehyde and Carvacrol. Our study deals with the preparation of electrospun polyvinylidene difluoride (PVDF)-based nanofibers with incorporated essential oils, their characterization, testing their antibacterial properties and the evaluation of biofilm formation on the membrane surface. The study of the nanofibers' morphology points to the nanofibers' diverse fiber diameters ranging from 570 to 900 nm. Besides that, the nanofibers were detected as hydrophobic material with wettability over 130°. The satisfactory results of PVDF membranes were observed in nanofibers enriched with Thymol and Eugenol that showed their antifouling activity against the tested bacteria Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Therefore, these PVDF membranes could find potential applications as filtration membranes in healthcare or the environment.
Collapse
Affiliation(s)
- Lucie Bartošová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic
| | - Jana Sedlaříková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic
| | - Petra Peer
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic
| | - Magda Janalíková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic
| | - Pavel Pleva
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic
- Correspondence:
| |
Collapse
|
41
|
Wang Y, Yu DG, Liu Y, Liu YN. Progress of Electrospun Nanofibrous Carriers for Modifications to Drug Release Profiles. J Funct Biomater 2022; 13:jfb13040289. [PMID: 36547549 PMCID: PMC9787859 DOI: 10.3390/jfb13040289] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Electrospinning is an advanced technology for the preparation of drug-carrying nanofibers that has demonstrated great advantages in the biomedical field. Electrospun nanofiber membranes are widely used in the field of drug administration due to their advantages such as their large specific surface area and similarity to the extracellular matrix. Different electrospinning technologies can be used to prepare nanofibers of different structures, such as those with a monolithic structure, a core-shell structure, a Janus structure, or a porous structure. It is also possible to prepare nanofibers with different controlled-release functions, such as sustained release, delayed release, biphasic release, and targeted release. This paper elaborates on the preparation of drug-loaded nanofibers using various electrospinning technologies and concludes the mechanisms behind the controlled release of drugs.
Collapse
Affiliation(s)
- Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
- Correspondence: (D.-G.Y.); (Y.-N.L.)
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, China
| | - Ya-Nan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (D.-G.Y.); (Y.-N.L.)
| |
Collapse
|
42
|
Monirul Islam M, HR V, Durga Bhavani P, Goudanavar PS, Naveen NR, Ramesh B, Fattepur S, Narayanappa Shiroorkar P, Habeebuddin M, Meravanige G, Telsang M, Sreeharsha N. Optimization of process parameters for fabrication of electrospun nanofibers containing neomycin sulfate and Malva sylvestris extract for a better diabetic wound healing. Drug Deliv 2022; 29:3370-3383. [PMID: 36404771 PMCID: PMC9848420 DOI: 10.1080/10717544.2022.2144963] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetes mellitus is one of the most concerning conditions, and its chronic consequences are almost always accompanied by infection, oxidative stress, and inflammation. Reducing excessive reactive oxygen species and the wound's inflammatory response is a necessary treatment during the acute inflammatory phase of diabetic wound healing. Malva sylvestris extract (MS) containing nanofibers containing neomycin sulfate (NS) were synthesized for this investigation, and their impact on the healing process of diabetic wounds was assessed. Using Design Expert, the electrospinning process for the fabrication of NS nanofibers (NS-NF) was adjusted for applied voltage (X1), the distance between the needle's tip and the collector (X2), and the feed rate (X3) for attaining desired entrapment efficacy [EE] and average nanofiber diameter (ND). The optimal formulation can be prepared with 19.11 kV of voltage, 20 cm of distance, and a flow rate of 0.502 mL/h utilizing the desirability approach. All the selected parameters and responses have their impact on drug delivery from nanofibers. In addition, M. sylvestris extracts have been added into the optimal formulation [MS-NS-NF] and assessed for their surface morphology, tensile strength, water absorption potential, and in vitro drug release studies. The NS and MS delivery from MS-NS-NF has been extended for more than 60 h. M. sylvestris-loaded nanofibers demonstrated superior antibacterial activity compared to plain NS nanofibers. The scaffolds featured a broad aspect and a highly linked porous fibrous network structure. Histomorphometry study and the in vitro scratch assay demonstrate the formulation's efficacy in treating diabetic wound healing. The cells treated with MS-NS-NF in vivo demonstrated that wound dressings successfully reduced both acute and chronic inflammations. To improve the healing of diabetic wounds, MS-NS-NF may be regarded as an appropriate candidate for wound dressing.
Collapse
Affiliation(s)
- Mohammed Monirul Islam
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia,Nagaraja Sreeharsha Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa31982, Saudi Arabia or
| | - Varshini HR
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India
| | - Penmetsa Durga Bhavani
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Telangana, India
| | - Prakash S. Goudanavar
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India,Nagaraja Sreeharsha Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa31982, Saudi Arabia or
| | - N. Raghavendra Naveen
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India,CONTACT N. Raghavendra Naveen Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, 571448, India or
| | - B. Ramesh
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India
| | - Santosh Fattepur
- School of Pharmacy, Management and Science University, Selangor, Malaysia,Santosh Fattepur School of Pharmacy, Management and Science University, Seksyen 13, Shah Alam40100, Selangor, Malaysia
| | | | - Mohammed Habeebuddin
- Department of Medicine, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Girish Meravanige
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Mallikarjun Telsang
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia,Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bangalore, India,Nagaraja Sreeharsha Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa31982, Saudi Arabia or
| |
Collapse
|
43
|
Liu Y, Li C, Feng Z, Han B, Yu DG, Wang K. Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing. Biomolecules 2022; 12:1727. [PMID: 36551155 PMCID: PMC9775188 DOI: 10.3390/biom12121727] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic diabetic wounds are one of the main complications of diabetes, manifested by persistent inflammation, decreased epithelialization motility, and impaired wound healing. This will not only lead to the repeated hospitalization of patients, but also bear expensive hospitalization costs. In severe cases, it can lead to amputation, sepsis or death. Electrospun nanofibers membranes have the characteristics of high porosity, high specific surface area, and easy functionalization of structure, so they can be used as a safe and effective platform in the treatment of diabetic wounds and have great application potential. This article briefly reviewed the pathogenesis of chronic diabetic wounds and the types of dressings commonly used, and then reviewed the development of electrospinning technology in recent years and the advantages of electrospun nanofibers in the treatment of diabetic wounds. Finally, the reports of different types of nanofiber dressings on diabetic wounds are summarized, and the method of using multi-drug combination therapy in diabetic wounds is emphasized, which provides new ideas for the effective treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Biao Han
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
44
|
The Applications of Ferulic-Acid-Loaded Fibrous Films for Fruit Preservation. Polymers (Basel) 2022; 14:polym14224947. [PMID: 36433073 PMCID: PMC9693208 DOI: 10.3390/polym14224947] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to develop a novel ultrathin fibrous membrane with a core-sheath structure as an antioxidant food packaging membrane. The core-sheath structure was prepared by coaxial electrospinning, and the release of active substances was regulated by its special structure. Ferulic acid (FA) was incorporated into the electrospun zein/polyethylene oxide ultrathin fibers to ensure their synergistic antioxidant properties. We found that the prepared ultrathin fibers had a good morphology and smooth surface. The internal structure of the fibers was stable, and the three materials that we used were compatible. For the different loading positions, it was observed that the core layer ferulic-acid-loaded fibers had a sustained action, while the sheath layer ferulic-acid-loaded fibers had a pre-burst action. Finally, apples were selected for packaging using fibrous membranes to simulate practical applications. The fibrous membrane was effective in reducing water loss and apple quality loss, as well as extending the shelf life. According to these experiments, the FA-loaded zein/PEO coaxial electrospinning fiber can be used as antioxidant food packaging and will also undergo more improvements in the future.
Collapse
|
45
|
Electrospun Porous Nanofibers: Pore−Forming Mechanisms and Applications for Photocatalytic Degradation of Organic Pollutants in Wastewater. Polymers (Basel) 2022; 14:polym14193990. [PMID: 36235934 PMCID: PMC9570808 DOI: 10.3390/polym14193990] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Electrospun porous nanofibers have large specific surface areas and abundant active centers, which can effectively improve the properties of nanofibers. In the field of photocatalysis, electrospun porous nanofibers can increase the contact area of loaded photocatalytic particles with light, shorten the electron transfer path, and improve photocatalytic activity. In this paper, the main pore−forming mechanisms of electrospun porous nanofiber are summarized as breath figures, phase separation (vapor−induced phase separation, non−solvent−induced phase separation, and thermally induced phase separation) and post−processing (selective removal). Then, the application of electrospun porous nanofiber loading photocatalytic particles in the degradation of pollutants (such as organic, inorganic, and bacteria) in water is introduced, and its future development prospected. Although porous structures are beneficial in improving the photocatalytic performance of nanofibers, they reduce their mechanical properties. Therefore, strategies for improving the mechanical properties of electrospun porous nanofibers are also briefly discussed.
Collapse
|