1
|
Li C, Zhang X, Wang Y, Cheng L, Li C, Xiang Y. The role of IL-1 family of cytokines in the pathogenesis and therapy of Alzheimer's disease. Inflammopharmacology 2024:10.1007/s10787-024-01534-8. [PMID: 39126573 DOI: 10.1007/s10787-024-01534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurological condition that occurs with age and poses a significant global public health concern, is distinguished by the degeneration of neurons and synapses in various regions of the brain. While the exact processes behind the neurodegeneration in AD are not completely known, it is now acknowledged that inflammation may have a significant impact on the beginning and advancement of AD neurodegeneration. The severity of many neurological illnesses can be influenced by the equilibrium between pro-inflammatory and anti-inflammatory mediators. The IL-1 family of cytokines is linked to innate immune responses, which are present in both acute inflammation and chronic inflammatory diseases. Research on the role of the IL-1 family in chronic neurological disease has been concentrated on AD. In this context, there is indirect evidence suggesting its involvement in the development of the disease. This review aims to provide a summary of the contribution of every IL-1 family member in AD pathogenesis, current immunotherapies in AD disease, and present treatment possibilities for either targeting or boosting these cytokines.
Collapse
Affiliation(s)
- ChangQing Li
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - Xun Zhang
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - Yunqian Wang
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - Le Cheng
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - ChangBao Li
- Urology Department, Huili People's Hospital, Huili615100, Guangyuan, Sichuan, China
| | - Yu Xiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Liang T, Yang SX, Qian C, Du LD, Qian ZM, Yung WH, Ke Y. HMGB1 Mediates Inflammation-Induced DMT1 Increase and Dopaminergic Neurodegeneration in the Early Stage of Parkinsonism. Mol Neurobiol 2024; 61:2006-2020. [PMID: 37833459 DOI: 10.1007/s12035-023-03668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Both neuroinflammation and iron accumulation play roles in the pathogenesis of Parkinson's disease (PD). However, whether inflammation induces iron dyshomeostasis in dopaminergic neurons at an early stage of PD, at which no quantifiable dopaminergic neuron loss can be observed, is still unknown. As for the inflammation mediators, although several cytokines have been reported to increase in PD, the functions of these cytokines in the SN are double-edged and controversial. In this study, whether inflammation could induce iron dyshomeostasis in dopaminergic neurons through high mobility group protein B1 (HMGB1) in the early stage of PD is explored. Lipopolysaccharide (LPS), a toxin that primarily activates glia cells, and 6-hydroxydopamine (6-OHDA), the neurotoxin that firstly impacts dopaminergic neurons, were utilized to mimic PD in rats. We found a common and exceedingly early over-production of HMGB1, followed by an increase of divalent metal transporter 1 with iron responsive element (DMT1+) in the dopaminergic neurons before quantifiable neuronal loss. HMGB1 neutralizing antibody suppressed inflammation in the SN, DMT1+ elevation in dopaminergic neurons, and dopaminergic neuronal loss in both LPS and 6-OHDA administration- induced PD models. On the contrary, interleukin-1β inhibitor diacerein failed to suppress these outcomes induced by 6-OHDA. Our findings not only demonstrate that inflammation could be one of the causes of DMT1+ increase in dopaminergic neurons, but also highlight HMGB1 as a pivotal early mediator of inflammation-induced iron increase and subsequent neurodegeneration, thereby HMGB1 could serve as a potential target for early-stage PD treatment.
Collapse
Affiliation(s)
- Tuo Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, China
| | - Sheng-Xi Yang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, China
| | - Christopher Qian
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, China
| | - Li-Da Du
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, Nantong, 226001, China
| | - Wing-Ho Yung
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, China.
| |
Collapse
|
3
|
Vincent JC, Garnett CN, Watson JB, Higgins EK, Macheda T, Sanders L, Roberts KN, Shahidehpour RK, Blalock EM, Quan N, Bachstetter AD. IL-1R1 signaling in TBI: assessing chronic impacts and neuroinflammatory dynamics in a mouse model of mild closed-head injury. J Neuroinflammation 2023; 20:248. [PMID: 37884959 PMCID: PMC10601112 DOI: 10.1186/s12974-023-02934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Neuroinflammation contributes to secondary injury cascades following traumatic brain injury (TBI), with alternating waves of inflammation and resolution. Interleukin-1 (IL-1), a critical neuroinflammatory mediator originating from brain endothelial cells, microglia, astrocytes, and peripheral immune cells, is acutely overexpressed after TBI, propagating secondary injury and tissue damage. IL-1 affects blood-brain barrier permeability, immune cell activation, and neural plasticity. Despite the complexity of cytokine signaling post-TBI, we hypothesize that IL-1 signaling specifically regulates neuroinflammatory response components. Using a closed-head injury (CHI) TBI model, we investigated IL-1's role in the neuroinflammatory cascade with a new global knock-out (gKO) mouse model of the IL-1 receptor (IL-1R1), which efficiently eliminates all IL-1 signaling. We found that IL-1R1 gKO attenuated behavioral impairments 14 weeks post-injury and reduced reactive microglia and astrocyte staining in the neocortex, corpus callosum, and hippocampus. We then examined whether IL-1R1 loss altered acute neuroinflammatory dynamics, measuring gene expression changes in the neocortex at 3, 9, 24, and 72 h post-CHI using the NanoString Neuroinflammatory panel. Of 757 analyzed genes, IL-1R1 signaling showed temporal specificity in neuroinflammatory gene regulation, with major effects at 9 h post-CHI. IL-1R1 signaling specifically affected astrocyte-related genes, selectively upregulating chemokines like Ccl2, Ccl3, and Ccl4, while having limited impact on cytokine regulation, such as Tnfα. This study provides further insight into IL-1R1 function in amplifying the neuroinflammatory cascade following CHI in mice and demonstrates that suppression of IL-1R1 signaling offers long-term protective effects on brain health.
Collapse
Affiliation(s)
- Jonathan C Vincent
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- MD/PhD Program, University of Kentucky, Lexington, KY, USA
| | - Colleen N Garnett
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James B Watson
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Emma K Higgins
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Teresa Macheda
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Lydia Sanders
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Kelly N Roberts
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Ryan K Shahidehpour
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Eric M Blalock
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Adam D Bachstetter
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA.
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA.
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Boraschi D, Italiani P, Migliorini P, Bossù P. Cause or consequence? The role of IL-1 family cytokines and receptors in neuroinflammatory and neurodegenerative diseases. Front Immunol 2023; 14:1128190. [PMID: 37223102 PMCID: PMC10200871 DOI: 10.3389/fimmu.2023.1128190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/11/2023] [Indexed: 05/25/2023] Open
Abstract
Cytokines and receptors of the IL-1 family are key mediators in innate immune and inflammatory reactions in physiological defensive conditions, but are also significantly involved in immune-mediated inflammatory diseases. Here, we will address the role of cytokines of the IL-1 superfamily and their receptors in neuroinflammatory and neurodegenerative diseases, in particular Multiple Sclerosis and Alzheimer's disease. Notably, several members of the IL-1 family are present in the brain as tissue-specific splice variants. Attention will be devoted to understanding whether these molecules are involved in the disease onset or are effectors of the downstream degenerative events. We will focus on the balance between the inflammatory cytokines IL-1β and IL-18 and inhibitory cytokines and receptors, in view of future therapeutic approaches.
Collapse
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
| | - Paola Migliorini
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Bossù
- Laboratory of Experimental Neuro-psychobiology, Department of Clinical and Behavioral Neurology, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
5
|
Revisiting Excitotoxicity in Traumatic Brain Injury: From Bench to Bedside. Pharmaceutics 2022; 14:pharmaceutics14010152. [PMID: 35057048 PMCID: PMC8781803 DOI: 10.3390/pharmaceutics14010152] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality. Consequences vary from mild cognitive impairment to death and, no matter the severity of subsequent sequelae, it represents a high burden for affected patients and for the health care system. Brain trauma can cause neuronal death through mechanical forces that disrupt cell architecture, and other secondary consequences through mechanisms such as inflammation, oxidative stress, programmed cell death, and, most importantly, excitotoxicity. This review aims to provide a comprehensive understanding of the many classical and novel pathways implicated in tissue damage following TBI. We summarize the preclinical evidence of potential therapeutic interventions and describe the available clinical evaluation of novel drug targets such as vitamin B12 and ifenprodil, among others.
Collapse
|
6
|
Parkitny L, Maletic-Savatic M. Glial PAMPering and DAMPening of Adult Hippocampal Neurogenesis. Brain Sci 2021; 11:1299. [PMID: 34679362 PMCID: PMC8533961 DOI: 10.3390/brainsci11101299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Adult neurogenesis represents a mature brain's capacity to integrate newly generated neurons into functional circuits. Impairment of neurogenesis contributes to the pathophysiology of various mood and cognitive disorders such as depression and Alzheimer's Disease. The hippocampal neurogenic niche hosts neural progenitors, glia, and vasculature, which all respond to intrinsic and environmental cues, helping determine their current state and ultimate fate. In this article we focus on the major immune communication pathways and mechanisms through which glial cells sense, interact with, and modulate the neurogenic niche. We pay particular attention to those related to the sensing of and response to innate immune danger signals. Receptors for danger signals were first discovered as a critical component of the innate immune system response to pathogens but are now also recognized to play a crucial role in modulating non-pathogenic sterile inflammation. In the neurogenic niche, viable, stressed, apoptotic, and dying cells can activate danger responses in neuroimmune cells, resulting in neuroprotection or neurotoxicity. Through these mechanisms glial cells can influence hippocampal stem cell fate, survival, neuronal maturation, and integration. Depending on the context, such responses may be appropriate and on-target, as in the case of learning-associated synaptic pruning, or excessive and off-target, as in neurodegenerative disorders.
Collapse
Affiliation(s)
- Luke Parkitny
- Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA;
| | | |
Collapse
|
7
|
Lv J, Yan W, Zhou J, Pei H, Zhao R. Per- and post-remote ischemic conditioning attenuates ischemic brain injury via inhibition of the TLR4/MyD88 signaling pathway in aged rats. Exp Brain Res 2021; 239:2561-2567. [PMID: 34185099 DOI: 10.1007/s00221-021-06150-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022]
Abstract
Remote ischemic conditioning (RIC), as an emerging protective method, might be used clinically to prevent ischemia-reperfusion injury (IRI) in ischemic stroke. In this study, we aim to investigate whether RIC performed either during brain ischemia or after reperfusion has a protective effect and further explore the mechanistic basis for the protective effects of RIC against IRI in an aged rat model. We investigated brain IRI in 16-18 months old SD rats. Animals underwent: (i) sham laparotomy, (ii) brain IRI, (iii) brain IRI + RIC during ischemia (IRI + RIperC), or (iv) brain IRI + RIC after reperfusion (IRI + RIpostC). RIC consists of three cycles of 10 min of hind limb ischemia followed by 10 min reperfusion. After 24 h of reperfusion, the infarct size, neurological deficit scores and brain oedema were assessed in all groups. The levels of IL-1β, IL-6, TNF-α were measured by ELISA. The mRNA and protein expressions of TLR4, MyD88, TRAF6 and NF-κB were detected by RT-PCR and western blot. Both RIperC and RIpostC treatment attenuated the IRI-induced neuronal injury, reflected by reductions in the infarct size, neurological deficit scores and brain oedema. RIperC and RIpostC also can decrease the concentration of IL-1β, IL-6, TNF-α in IRI. From the results of RT-PCR and western blot, we found that RIC decreased the mRNA and protein expression of TLR4, MyD88, TRAF6 and NF-κB compared to that in the IRI group. The present study suggested that RIC protected aged rats against IRI, and this protective effect might be mediated by inhibiting the TLR-4/MyD88/TRAF-6/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jinglei Lv
- Department of Neurology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Wenjing Yan
- Department of Neurology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Jie Zhou
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Haitao Pei
- Department of Neurology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Renliang Zhao
- Department of Neurology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong, China.
| |
Collapse
|
8
|
Gómez-Budia M, Konttinen H, Saveleva L, Korhonen P, Jalava PI, Kanninen KM, Malm T. Glial smog: Interplay between air pollution and astrocyte-microglia interactions. Neurochem Int 2020; 136:104715. [DOI: 10.1016/j.neuint.2020.104715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022]
|
9
|
An J, Yin JJ, He Y, Sui RX, Miao Q, Wang Q, Yu JZ, Yu JW, Shi FD, Ma CG, Xiao BG. Temporal and Spatial Dynamics of Astroglial Reaction and Immune Response in Cuprizone-Induced Demyelination. Neurotox Res 2019; 37:587-601. [DOI: 10.1007/s12640-019-00129-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/03/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022]
|
10
|
Zonis S, Breunig JJ, Mamelak A, Wawrowsky K, Bresee C, Ginzburg N, Chesnokova V. Inflammation-induced Gro1 triggers senescence in neuronal progenitors: effects of estradiol. J Neuroinflammation 2018; 15:260. [PMID: 30201019 PMCID: PMC6131894 DOI: 10.1186/s12974-018-1298-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/29/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Inflammation has been proposed to contribute to the decline in adult hippocampal neurogenesis. Proinflammatory cytokines activate transcription of chemokine growth-regulated oncogene α (Gro1) in human and murine hippocampal neuronal progenitor cells (NPC). The goal of this study was to investigate the effects of Gro1 on hippocampal neurogenesis in the presence of inflammation. METHODS Human hippocampal NPC were transfected with lentivirus expressing Gro1, and murine NPC and hippocampal neuronal HT-22 cells were treated with Gro1 protein. A plasmid expressing mGro1 was electroporated in the hippocampus of newborn mice that were sacrificed 10 days later. Adult male and female mice were injected with lipopolysaccharide (LPS; 1 mg/kg, i.p in five daily injections) or normal saline. Adult male mice were implanted with pellets releasing 17-β estradiol (E2; 2.5 mg/pellet, 41.666 μg/day release) or placebo for 6 weeks and challenged with LPS or normal saline as above. In both experiments, mice were sacrificed 3 h after the last injection. Hippocampal markers of neurogenesis were assessed in vitro and in vivo by Western blot, real-time PCR, and immunohisto/cytochemistry. RESULTS Gro1 induced premature senescence in NPC and HT-22 cells, activating senescence-associated β-galactosidase and the cell cycle inhibitor p16 and suppressing neuroblast proliferation and expression of doublecortin (DCX) and neuron-specific class III beta-tubulin (Tuj-1), both neuroblast markers, while promoting proliferation of neural glial antigen 2 (Ng2)-positive oligodendrocytes. Gro1 overexpression in the hippocampus of newborn mice resulted in decreased neuroblast development, as evidenced by decreased DCX expression and increased expression of platelet-derived growth factor α receptor (PDGFαR), a marker of oligodendrocyte precursors. In adult mice, Gro1 was induced in response to LPS treatment in male but not in female hippocampus, with a subsequent decrease in neurogenesis and activation of oligodendrocyte progenitors. No changes in neurogenesis were observed in females. Treatment with E2 blunted LPS-induced Gro1 in the male hippocampus. CONCLUSIONS Inflammation-induced Gro1 triggers neuroblast senescence, thus suppressing new neuron development in the hippocampus. Sex-dependent differences in Gro1 response are attributed to estradiol, which blunts these changes, protecting the female hippocampus from the deleterious effects of inflammation-induced Gro1 on neurogenesis.
Collapse
Affiliation(s)
- Svetlana Zonis
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048 USA
| | - Joshua J. Breunig
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048 USA
| | - Adam Mamelak
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048 USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048 USA
| | - Kolja Wawrowsky
- Department of Biomedical Science, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048 USA
| | - Catherine Bresee
- Biostatistics and Bioinformatics Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048 USA
| | - Nadiya Ginzburg
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048 USA
| | - Vera Chesnokova
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048 USA
| |
Collapse
|
11
|
Microglial recruitment of IL-1β-producing monocytes to brain endothelium causes stress-induced anxiety. Mol Psychiatry 2018; 23:1421-1431. [PMID: 28373688 PMCID: PMC5628107 DOI: 10.1038/mp.2017.64] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/23/2017] [Accepted: 02/14/2017] [Indexed: 12/16/2022]
Abstract
Psychosocial stress contributes to the development of anxiety and depression. Recent clinical studies have reported increased inflammatory leukocytes in circulation of individuals with stress-related psychiatric disorders. Parallel to this, our work in mice shows that social stress causes release of inflammatory monocytes into circulation. In addition, social stress caused the development of prolonged anxiety that was dependent on inflammatory monocytes in the brain. Therefore, we hypothesize that chronic stress drives the production of inflammatory monocytes that are actively recruited to the brain by microglia, and these monocytes augment neuroinflammatory signaling and prolong anxiety. Here we show that repeated social defeat stress in mice activated threat appraisal centers in the brain that spatially coincided with microglial activation and endothelial facilitation of monocyte recruitment. Moreover, microglial depletion with a CSF1R antagonist prior to stress prevented the recruitment of monocytes to the brain and abrogated the development of anxiety. Cell-specific transcriptional profiling revealed that microglia selectively enhanced CCL2 expression, while monocytes expressed the pro-inflammatory cytokine interleukin-1β (IL-1β). Consistent with these profiles, the recruited inflammatory monocytes with stress adhered to IL-1R1+ neurovascular endothelial cells and this interaction was blocked by microglial depletion. Furthermore, disruption of IL-1β signaling by caspase-1KO specifically within bone marrow-derived cells revealed that monocytes promoted anxiogenesis through stimulation of neurovascular IL-1R1 by IL-1β. Collectively, the development of anxiety during stress was caused by microglial recruitment of IL-1β-producing monocytes, which stimulated brain endothelial IL-1R1. Thus, monocyte IL-1β production represents a novel mechanism that underlies behavioral complications associated with stress-related psychiatric disorders.
Collapse
|
12
|
Liu X, Quan N. Microglia and CNS Interleukin-1: Beyond Immunological Concepts. Front Neurol 2018; 9:8. [PMID: 29410649 PMCID: PMC5787061 DOI: 10.3389/fneur.2018.00008] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Activation of microglia and expression of the inflammatory cytokine interleukin-1 (IL-1) in the CNS have become almost synonymous with neuroinflammation. In numerous studies, increased CNS IL-1 expression and altered microglial morphology have been used as hallmarks of CNS inflammation. A central concept of how CNS IL-1 and microglia influence functions of the nervous system was derived from the notion initially generated in the peripheral immune system: IL-1 stimulates monocyte/macrophage (the peripheral counterparts of microglia) to amplify inflammation. It is increasingly clear, however, CNS IL-1 acts on other targets in the CNS and microglia participates in many neural functions that are not related to immunological activities. Further, CNS exhibits immunological privilege (although not as absolute as previously thought), rendering amplification of inflammation within CNS under stringent control. This review will analyze current literature to evaluate the contribution of immunological and non-immunological aspects of microglia/IL-1 interaction in the CNS to gain insights for how these aspects might affect health and disease in the nervous tissue.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Medicine, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| | - Ning Quan
- College of Medicine, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States.,Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
13
|
Krasnow SM, Knoll JG, Verghese SC, Levasseur PR, Marks DL. Amplification and propagation of interleukin-1β signaling by murine brain endothelial and glial cells. J Neuroinflammation 2017; 14:133. [PMID: 28668091 PMCID: PMC5494131 DOI: 10.1186/s12974-017-0908-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/25/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND During acute infections and chronic illnesses, the pro-inflammatory cytokine interleukin-1β (IL-1β) acts within the brain to elicit metabolic derangements and sickness behaviors. It is unknown which cells in the brain are the proximal targets for IL-1β with respect to the generation of these illness responses. We performed a series of in vitro experiments to (1) investigate which brain cell populations exhibit inflammatory responses to IL-1β and (2) examine the interactions between different IL-1β-responsive cell types in various co-culture combinations. METHODS We treated primary cultures of murine brain microvessel endothelial cells (BMEC), astrocytes, and microglia with PBS or IL-1β, and then performed qPCR to measure inflammatory gene expression or immunocytochemistry to evaluate nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. To evaluate whether astrocytes and/or BMEC propagate inflammatory signals to microglia, we exposed microglia to astrocyte-conditioned media and co-cultured endothelial cells and glia in transwells. Treatment groups were compared by Student's t tests or by ANOVA followed by Bonferroni-corrected t tests. RESULTS IL-1β increased inflammatory gene expression and NF-κB activation in primary murine-mixed glia, enriched astrocyte, and BMEC cultures. Although IL-1β elicited minimal changes in inflammatory gene expression and did not induce the nuclear translocation of NF-κB in isolated microglia, these cells were more robustly activated by IL-1β when co-cultured with astrocytes and/or BMEC. We observed a polarized endothelial response to IL-1β, because the application of IL-1β to the abluminal endothelial surface produced a more complex microglial inflammatory response than that which occurred following luminal IL-1β exposure. CONCLUSIONS Inflammatory signals are detected, amplified, and propagated through the CNS via a sequential and reverberating signaling cascade involving communication between brain endothelial cells and glia. We propose that the brain's innate immune response differs depending upon which side of the blood-brain barrier the inflammatory stimulus arises, thus allowing the brain to respond differently to central vs. peripheral inflammatory insults.
Collapse
Affiliation(s)
- Stephanie M Krasnow
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - J Gabriel Knoll
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Santhosh Chakkaramakkil Verghese
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Peter R Levasseur
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Daniel L Marks
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA. .,Oregon Health & Science University, Mail Code L481, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA.
| |
Collapse
|
14
|
Walker DG, Lue LF, Tang TM, Adler CH, Caviness JN, Sabbagh MN, Serrano GE, Sue LI, Beach TG. Changes in CD200 and intercellular adhesion molecule-1 (ICAM-1) levels in brains of Lewy body disorder cases are associated with amounts of Alzheimer's pathology not α-synuclein pathology. Neurobiol Aging 2017; 54:175-186. [PMID: 28390825 DOI: 10.1016/j.neurobiolaging.2017.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/30/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
Abstract
Enhanced inflammation has been associated with Alzheimer's disease (AD) and diseases with Lewy body (LB) pathology, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). One issue is whether amyloid and tangle pathology, features of AD, or α-synuclein LB pathology have similar or different effects on brain inflammation. An aim of this study was to examine if certain features of inflammation changed in brains with increasing LB pathology. To assess this, we measured levels of the anti-inflammatory protein CD200 and the pro-inflammatory protein intercellular adhesion molecule-1 (ICAM-1) in cingulate and temporal cortex from a total of 143 cases classified according to the Unified Staging System for LB disorders. Changes in CD200 and ICAM-1 levels did not correlate with LB pathology, but with AD pathology. CD200 negatively correlated with density of neurofibrillary tangles, phosphorylated tau, and amyloid plaque density. ICAM-1 positively correlated with these AD pathology measures. Double immunohistochemistry for phosphorylated α-synuclein and markers for microglia showed limited association of microglia with LB pathology, but microglia strongly associated with amyloid plaques or phosphorylated tau. These results suggest that there are different features of inflammatory pathology in diseases associated with abnormal α-synuclein compared with AD.
Collapse
Affiliation(s)
- Douglas G Walker
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA.
| | - Lih-Fen Lue
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Tiffany M Tang
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - John N Caviness
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | | | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | | |
Collapse
|
15
|
Daniels BP, Jujjavarapu H, Durrant DM, Williams JL, Green RR, White JP, Lazear HM, Gale M, Diamond MS, Klein RS. Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection. J Clin Invest 2017; 127:843-856. [PMID: 28134626 PMCID: PMC5330728 DOI: 10.1172/jci88720] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023] Open
Abstract
Type I IFNs promote cellular responses to viruses, and IFN receptor (IFNAR) signaling regulates the responses of endothelial cells of the blood-brain barrier (BBB) during neurotropic viral infection. However, the role of astrocytes in innate immune responses of the BBB during viral infection of the CNS remains to be fully elucidated. Here, we have demonstrated that type I IFNAR signaling in astrocytes regulates BBB permeability and protects the cerebellum from infection and immunopathology. Mice with astrocyte-specific loss of IFNAR signaling showed decreased survival after West Nile virus infection. Accelerated mortality was not due to expanded viral tropism or increased replication. Rather, viral entry increased specifically in the hindbrain of IFNAR-deficient mice, suggesting that IFNAR signaling critically regulates BBB permeability in this brain region. Pattern recognition receptors and IFN-stimulated genes had higher basal and IFN-induced expression in human and mouse cerebellar astrocytes than did cerebral cortical astrocytes, suggesting that IFNAR signaling has brain region-specific roles in CNS immune responses. Taken together, our data identify cerebellar astrocytes as key responders to viral infection and highlight the existence of distinct innate immune programs in astrocytes from evolutionarily disparate regions of the CNS.
Collapse
Affiliation(s)
- Brian P. Daniels
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Harsha Jujjavarapu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Douglas M. Durrant
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biological Sciences, California State Polytechnic University, Pomona, California, USA
| | - Jessica L. Williams
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard R. Green
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - James P. White
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Helen M. Lazear
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Michael S. Diamond
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robyn S. Klein
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Drake RAR, Leith JL, Almahasneh F, Martindale J, Wilson AW, Lumb B, Donaldson LF. Periaqueductal Grey EP3 Receptors Facilitate Spinal Nociception in Arthritic Secondary Hypersensitivity. J Neurosci 2016; 36:9026-40. [PMID: 27581447 PMCID: PMC5005717 DOI: 10.1523/jneurosci.4393-15.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 06/17/2016] [Accepted: 06/22/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Descending controls on spinal nociceptive processing play a pivotal role in shaping the pain experience after tissue injury. Secondary hypersensitivity develops within undamaged tissue adjacent and distant to damaged sites. Spinal neuronal pools innervating regions of secondary hypersensitivity are dominated by descending facilitation that amplifies spinal inputs from unsensitized peripheral nociceptors. Cyclooxygenase-prostaglandin (PG) E2 signaling within the ventrolateral periaqueductal gray (vlPAG) is pronociceptive in naive and acutely inflamed animals, but its contributions in more prolonged inflammation and, importantly, secondary hypersensitivity remain unknown. In naive rats, PG EP3 receptor (EP3R) antagonism in vlPAG modulated noxious withdrawal reflex (EMG) thresholds to preferential C-nociceptor, but not A-nociceptor, activation and raised thermal withdrawal thresholds in awake animals. In rats with inflammatory arthritis, secondary mechanical and thermal hypersensitivity of the hindpaw developed and was associated with spinal sensitization to A-nociceptor inputs alone. In arthritic rats, blockade of vlPAG EP3R raised EMG thresholds to C-nociceptor activation in the area of secondary hypersensitivity to a degree equivalent to that evoked by the same manipulation in naive rats. Importantly, vlPAG EP3R blockade also affected responses to A-nociceptor activation, but only in arthritic animals. We conclude that vlPAG EP3R activity exerts an equivalent facilitation on the spinal processing of C-nociceptor inputs in naive and arthritic animals, but gains in effects on spinal A-nociceptor processing from a region of secondary hypersensitivity. Therefore, the spinal sensitization to A-nociceptor inputs associated with secondary hypersensitivity is likely to be at least partly dependent on descending prostanergic facilitation from the vlPAG. SIGNIFICANCE STATEMENT After tissue damage, sensitivity to painful stimulation develops in undamaged areas (secondary hypersensitivity). This is found in many painful conditions, particularly arthritis. The periaqueductal gray (PAG) is an important center that controls spinal nociceptive processing, on which secondary hypersensitivity depends. Prostaglandins (PGs) are mediators of inflammation with pronociceptive actions within the PAG under normal conditions. We find that secondary hindpaw hypersensitivity in arthritic rats results from spinal sensitization to peripheral A-nociceptor inputs. In the PAG of arthritic, but not naive, rats, there is enhanced control of spinal A-nociceptor processing through PG EP3 receptors. The descending facilitatory actions of intra-PAG PGs play a direct and central role in the maintenance of inflammatory secondary hypersensitivity, particularly relating to the processing of A-fiber nociceptive information.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Area Under Curve
- Arthritis/chemically induced
- Arthritis/complications
- Disease Models, Animal
- Freund's Adjuvant/toxicity
- Hyperalgesia/physiopathology
- Ketoprofen/pharmacology
- Male
- Nerve Fibers, Myelinated/physiology
- Nerve Fibers, Unmyelinated/physiology
- Neurons/drug effects
- Nitriles/pharmacology
- Nociception/drug effects
- Nociception/physiology
- Pain Measurement/methods
- Pain Threshold/physiology
- Periaqueductal Gray/drug effects
- Periaqueductal Gray/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Prostaglandin E, EP3 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Statistics, Nonparametric
- Sulfonamides/pharmacology
- Time Factors
Collapse
Affiliation(s)
- R A R Drake
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - J L Leith
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - F Almahasneh
- Arthritis Research UK Pain Centre and School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom, and
| | - J Martindale
- Neurosciences CEDD, GlaxoSmithKline, Harlow CM19 5AW, United Kingdom
| | - A W Wilson
- Neurosciences CEDD, GlaxoSmithKline, Harlow CM19 5AW, United Kingdom
| | - B Lumb
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - L F Donaldson
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom, Arthritis Research UK Pain Centre and School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom, and
| |
Collapse
|
17
|
Peters M, Zaquen N, D’Olieslaeger L, Bové H, Vanderzande D, Hellings N, Junkers T, Ethirajan A. PPV-Based Conjugated Polymer Nanoparticles as a Versatile Bioimaging Probe: A Closer Look at the Inherent Optical Properties and Nanoparticle–Cell Interactions. Biomacromolecules 2016; 17:2562-71. [DOI: 10.1021/acs.biomac.6b00574] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martijn Peters
- Institute for Materials Research, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Neomy Zaquen
- Institute for Materials Research, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Lien D’Olieslaeger
- Institute for Materials Research, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | | | - Dirk Vanderzande
- Institute for Materials Research, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
- Imec Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | | | - Tanja Junkers
- Institute for Materials Research, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
- Imec Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Anitha Ethirajan
- Institute for Materials Research, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
- Imec Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| |
Collapse
|
18
|
Gabriel ML, Braga FB, Cardoso MR, Lopes AC, Piatto VB, Souza AS. The association between pro- and anti-inflammatory cytokine polymorphisms and periventricular leukomalacia in newborns with hypoxic-ischemic encephalopathy. J Inflamm Res 2016; 9:59-67. [PMID: 27217792 PMCID: PMC4862342 DOI: 10.2147/jir.s103697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Periventricular leukomalacia (PVL) is a frequent consequence of hypoxic-ischemic injury. Functional cytokine gene variants that result in altered production of inflammatory (tumor necrosis factor-alpha [TNF-α] and interleukin-1beta [IL-1β]) or anti-inflammatory (interleukin-10 [IL-10]) cytokines may modify disease processes, including PVL. Objective The aim of this study was to evaluate if there is a relationship between the two proinflammatory polymorphisms (TNF-α-1031T/C and IL-1β-511C/T) and the anti-inflammatory polymorphism IL-10-1082G/A and PVL risk in Brazilian newborns with and without this injury. Materials and methods A cross-sectional case-control study performed at the Neonatal Intensive Care Unit of the Children’s Hospital and Maternity of the São José do Rio Preto Medical School (FAMERP). Fifty preterm and term newborns were examined as index cases and 50 term newborns as controls, of both sexes for both groups. DNA was extracted from peripheral blood leukocytes, and the sites that encompassed the three polymorphisms were amplified by polymerase chain reaction-restriction fragment length polymorphism. Results Gestational age ranged from 25 to 39 weeks, in the case group, and in the control group it ranged from 38 to 42.5 weeks (P<0.0001). Statistically significant association was found between TNF-α-1031T/C high expression genotype TC (odds ratio [OR], 2.495; 95% confidence interval [CI], 1.10–5.63; P=0.043) as well as between genotypes (TC + CC) (OR, 2.471; 95% CI, 1.10–5.55; P=0.044) and risk of PVL. Statistically significant association was found between IL-1β-511C/T high expression genotypes (CT + TT) (OR, 23.120; 95% CI, 1.31–409.4; P=0.003) and risk of PVL. Statistically significant association between IL-10-1082G/A high expression genotype GG (OR, 0.07407; 95% CI, 0.02–0.34; P<0.0001) as well as between IL-10-1082G high expression allele (OR, 0.5098; 95% CI, 0.29–0.91; P=0,030) and PVL reduced risk was observed. There was a statistically significant association between TC/CT/GA genotype combination and the risk of PVL (OR, 6.469; 95% CI, 2.00–20.92; P=0.001). Conclusion There is evidence of an association between the polymorphisms TNF-α-1031T/C, IL-1β-511C/T, and IL-10-1082G/A and PVL risk in this Brazilian newborn population studied.
Collapse
Affiliation(s)
- Marta Lúcia Gabriel
- Radiology Department, São José do Rio Preto Medical School, FAMERP, São Paulo, Brazil
| | | | | | - Ana Cláudia Lopes
- Morphology Department, São José do Rio Preto Medical School, FAMERP, São Paulo, Brazil
| | | | - Antônio Soares Souza
- Radiology Department, São José do Rio Preto Medical School, FAMERP, São Paulo, Brazil
| |
Collapse
|
19
|
Astrocytes Are Primed by Chronic Neurodegeneration to Produce Exaggerated Chemokine and Cell Infiltration Responses to Acute Stimulation with the Cytokines IL-1β and TNF-α. J Neurosci 2015; 35:8411-22. [PMID: 26041910 DOI: 10.1523/jneurosci.2745-14.2015] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microgliosis and astrogliosis are standard pathological features of neurodegenerative disease. Microglia are primed by chronic neurodegeneration such that toll-like receptor agonists, such as LPS, drive exaggerated cytokine responses on this background. However, sterile inflammatory insults are more common than direct CNS infection in the degenerating brain and these insults drive robust IL-1β and TNF-α responses. It is unclear whether these pro-inflammatory cytokines can directly induce exaggerated responses in the degenerating brain. We hypothesized that glial cells in the hippocampus of animals with chronic neurodegenerative disease (ME7 prion disease) would display exaggerated responses to central cytokine challenges. TNF-α or IL-1β were administered intrahippocampally to ME7-inoculated mice and normal brain homogenate-injected (NBH) controls. Both IL-1β and TNF-α produced much more robust IL-1β synthesis in ME7 than in NBH animals and this occurred exclusively in microglia. However, there was strong nuclear localization of the NFκB subunit p65 in the astrocyte population, associated with marked astrocytic synthesis of the chemokines CXCL1 and CCL2 in response to both cytokine challenges in ME7 animals. Conversely, very limited expression of these chemokines was apparent in NBH animals similarly challenged. Thus, astrocytes are primed in the degenerating brain to produce exaggerated chemokine responses to acute stimulation with pro-inflammatory cytokines. Furthermore, this results in markedly increased neutrophil, T-cell, and monocyte infiltration in the diseased brain. These data have significant implications for acute sterile inflammatory insults such as stroke and traumatic brain injury occurring on a background of aging or neurodegeneration.
Collapse
|
20
|
Wohleb ES, McKim DB, Sheridan JF, Godbout JP. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front Neurosci 2015; 8:447. [PMID: 25653581 PMCID: PMC4300916 DOI: 10.3389/fnins.2014.00447] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022] Open
Abstract
HIGHLIGHTSPsychological stress activates neuroendocrine pathways that alter immune responses.Stress-induced alterations in microglia phenotype and monocyte priming leads to aberrant peripheral and central inflammation.Elevated pro-inflammatory cytokine levels caused by microglia activation and recruitment of monocytes to the brain contribute to development and persistent anxiety-like behavior.Mechanisms that mediate interactions between microglia, endothelial cells, and macrophages and how these contribute to changes in behavior are discussed.Sensitization of microglia and re-distribution of primed monocytes are implicated in re-establishment of anxiety-like behavior. Psychological stress causes physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD), revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain and how dynamic interactions between microglia, endothelial cells, and brain macrophages lead to maladaptive behavioral responses.
Collapse
Affiliation(s)
- Eric S Wohleb
- Department of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| | - Daniel B McKim
- Division of Biosciences, The Ohio State University College of Dentistry Columbus, OH, USA ; Department of Neuroscience, The Ohio State University College of Medicine Columbus, OH, USA
| | - John F Sheridan
- Division of Biosciences, The Ohio State University College of Dentistry Columbus, OH, USA ; Institute for Behavioral Medicine Research, The Ohio State University College of Medicine Columbus, OH, USA ; Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University College of Medicine Columbus, OH, USA ; Institute for Behavioral Medicine Research, The Ohio State University College of Medicine Columbus, OH, USA ; Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine Columbus, OH, USA
| |
Collapse
|
21
|
Quan N. In-depth conversation: spectrum and kinetics of neuroimmune afferent pathways. Brain Behav Immun 2014; 40:1-8. [PMID: 24566385 PMCID: PMC6088807 DOI: 10.1016/j.bbi.2014.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 01/14/2023] Open
Abstract
Since my last review on neuroimmune communication afferents in 2008, this area has witnessed substantial growth. At a basic science level, numerous new and exciting phenomena have been described, adding both depth and complexity to the crosstalk between the immune system and the nervous system. At a translational level, accumulating evidence indicates neuroimmune interaction could be a contributing factor for many disease states, as well as an effective physiological mechanism that coordinates the activities of these two systems in healthy individuals or during tissue distress. Furthermore, new evidence suggests neuroimmune interactions are inherently dynamic: varying activities in either the nervous system or the immune system could impact interactions between them. In this review I will attempt to integrate multifarious, and sometimes disparate, findings into a modified conceptual framework that describes the concordance of neuroimmune communication through the cooperative connection between these two systems and the dysfunction that may arise when their inappropriate crosstalk occurs.
Collapse
Affiliation(s)
- Ning Quan
- Institute for Behavior Medicine Research, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
22
|
Jensen CJ, Massie A, De Keyser J. Immune players in the CNS: the astrocyte. J Neuroimmune Pharmacol 2013; 8:824-39. [PMID: 23821340 DOI: 10.1007/s11481-013-9480-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 05/26/2013] [Indexed: 12/20/2022]
Abstract
In the finely balanced environment of the central nervous system astrocytes, the most numerous cell type, play a role in regulating almost every physiological system. First found to regulate extracellular ions and pH, they have since been shown to regulate neurotransmitter levels, cerebral blood flow and energy metabolism. There is also growing evidence for an essential role of astrocytes in central immunity, which is the topic of this review. In the healthy state, the central nervous system is potently anti-inflammatory but under threat astrocytes readily respond to pathogens and to both sterile and pathogen-induced cell damage. In response, astrocytes take on some of the roles of immune cells, releasing cyto- and chemokines to influence effector cells, modulating the blood-brain barrier and forming glial scars. To date, much of the data supporting a role for astrocytes in immunity have been obtained from in vitro systems; however data from experimental models and clinical samples support the suggestion that astrocytes perform similar roles in more complex environments. This review will discuss some aspects of the role of astrocytes in central nervous system immunity.
Collapse
Affiliation(s)
- Cathy J Jensen
- Department of Neurology, Universitair Ziekenhuis Brussel, Center for Neurosciences, Vrije Universiteit Brussel-VUB, Brussels, Belgium.
| | | | | |
Collapse
|
23
|
Kitic M, Hochmeister S, Wimmer I, Bauer J, Misu T, Mader S, Reindl M, Fujihara K, Lassmann H, Bradl M. Intrastriatal injection of interleukin-1 beta triggers the formation of neuromyelitis optica-like lesions in NMO-IgG seropositive rats. Acta Neuropathol Commun 2013; 1:5. [PMID: 24252536 PMCID: PMC3776214 DOI: 10.1186/2051-5960-1-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neuromyelitis optica (NMO) is a severe, disabling disease of the central nervous system (CNS) characterized by the formation of astrocyte-destructive, neutrophil-dominated inflammatory lesions in the spinal cord and optic nerves. These lesions are initiated by the binding of pathogenic aquaporin 4 (AQP4)-specific autoantibodies to astrocytes and subsequent complement-mediated lysis of these cells. Typically, these lesions form in a setting of CNS inflammation, where the blood-brain barrier is open for the entry of antibodies and complement. However, it remained unclear to which extent pro-inflammatory cytokines and chemokines contribute to the formation of NMO lesions. To specifically address this question, we injected the cytokines interleukin-1 beta, tumor necrosis factor alpha, interleukin-6, interferon gamma and the chemokine CXCL2 into the striatum of NMO-IgG seropositive rats and analyzed the tissue 24 hours later by immunohistochemistry. RESULTS All injected cytokines and chemokines led to profound leakage of immunoglobulins into the injected hemisphere, but only interleukin-1 beta induced the formation of perivascular, neutrophil-infiltrated lesions with AQP4 loss and complement-mediated astrocyte destruction distant from the needle tract. Treatment of rat brain endothelial cells with interleukin-1 beta, but not with any other cytokine or chemokine applied at the same concentration and over the same period of time, caused profound upregulation of granulocyte-recruiting and supporting molecules. Injection of interleukin-1 beta caused higher numbers of blood vessels with perivascular, cellular C1q reactivity than any other cytokine tested. Finally, the screening of a large sample of CNS lesions from NMO and multiple sclerosis patients revealed large numbers of interleukin-1 beta-reactive macrophages/activated microglial cells in active NMO lesions but not in MS lesions with comparable lesion activity and location. CONCLUSIONS Our data strongly suggest that interleukin-1 beta released in NMO lesions and interleukin-1 beta-induced production/accumulation of complement factors (like C1q) facilitate neutrophil entry and BBB breakdown in the vicinity of NMO lesions, and might thus be an important secondary factor for lesion formation, possibly by paving the ground for rapid lesion growth and amplified immune cell recruitment to this site.
Collapse
Affiliation(s)
- Maja Kitic
- Department of Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, Vienna, A-1090, Austria
| | | | - Isabella Wimmer
- Department of Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, Vienna, A-1090, Austria
| | - Jan Bauer
- Department of Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, Vienna, A-1090, Austria
| | - Tatsuro Misu
- Departments of Multiple Sclerosis Therapeutics and Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi,Aobaku, Sendai, 980-8574, Japan
| | - Simone Mader
- Clinical Department of Neurology, Innsbruck Medical University, Anich0strasse 35, Innsbruck, A-6020, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Innsbruck Medical University, Anich0strasse 35, Innsbruck, A-6020, Austria
| | - Kazuo Fujihara
- Department of Neurology, Medical University Graz, Graz, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, Vienna, A-1090, Austria
| | - Monika Bradl
- Department of Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, Vienna, A-1090, Austria
| |
Collapse
|
24
|
Napolioni V, Ober-Reynolds B, Szelinger S, Corneveaux JJ, Pawlowski T, Ober-Reynolds S, Kirwan J, Persico AM, Melmed RD, Craig DW, Smith CJ, Huentelman MJ. Plasma cytokine profiling in sibling pairs discordant for autism spectrum disorder. J Neuroinflammation 2013; 10:38. [PMID: 23497090 PMCID: PMC3616926 DOI: 10.1186/1742-2094-10-38] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 02/19/2013] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE Converging lines of evidence point to the existence of immune dysfunction in autism spectrum disorder (ASD), which could directly affect several key neurodevelopmental processes. Previous studies have shown higher cytokine levels in patients with autism compared with matched controls or subjects with other developmental disorders. In the current study, we used plasma-cytokine profiling for 25 discordant sibling pairs to evaluate whether these alterations occur within families with ASD. METHODS Plasma-cytokine profiling was conducted using an array-based multiplex sandwich ELISA for simultaneous quantitative measurement of 40 unique targets. We also analyzed the correlations between cytokine levels and clinically relevant quantitative traits (Vineland Adaptive Behavior Scale in Autism (VABS) composite score, Social Responsiveness Scale (SRS) total T score, head circumference, and full intelligence quotient (IQ)). In addition, because of the high phenotypic heterogeneity of ASD, we defined four subgroups of subjects (those who were non-verbal, those with gastrointestinal issues, those with regressive autism, and those with a history of allergies), which encompass common and/or recurrent endophenotypes in ASD, and tested the cytokine levels in each group. RESULTS None of the measured parameters showed significant differences between children with ASD and their related typically developing siblings. However, specific target levels did correlate with quantitative clinical traits, and these were significantly different when the ASD subgroups were analyzed. It is notable that these differences seem to be attributable to a predisposing immunogenetic background, as no other significant differences were noticed between discordant sibling pairs. Interleukin-1β appears to be the cytokine most involved in quantitative traits and clinical subgroups of ASD. CONCLUSIONS In the present study, we found a lack of significant differences in plasma-cytokine levels between children with ASD and in their related non-autistic siblings. Thus, our results support the evidence that the immune profiles of children with autism do not differ from their typically developing siblings. However, the significant association of cytokine levels with the quantitative traits and the clinical subgroups analyzed suggests that altered immune responses may affect core feature of ASD.
Collapse
Affiliation(s)
- Valerio Napolioni
- Neurogenomics Division, The Translational Genomics Research Institute (TGen), 445 N Fifth Street, Phoenix, AZ 85004, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|