1
|
Shi M, Li Z, Tang Z, Zhou H, Huang X, Wei Y, Li X, Li X, Shi H, Qin D. Exploring the pathogenesis and treatment of PSD from the perspective of gut microbiota. Brain Res Bull 2024; 215:111022. [PMID: 38936669 DOI: 10.1016/j.brainresbull.2024.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Post-stroke depression (PSD) is a psychological disease that can occur following a stroke and is associated with serious consequences. Research on the pathogenesis and treatment of PSD is still in the infancy stage. Patients with PSD often exhibit gastrointestinal symptoms; therefore the role of gut microbiota in the pathophysiology and potential treatment effects of PSD has become a hot topic of research. In this review, describe the research on the pathogenesis and therapy of PSD. We also describe how the gut microbiota influences neurotransmitters, the endocrine system, energy metabolism, and the immune system. It was proposed that the gut microbiota is involved in the pathogenesis and treatment of PSD through the regulation of neurotransmitter levels, vagal signaling, hypothalamic-pituitary-adrenal axis activation and inhibition, hormone secretion and release, in addition to immunity and inflammation.
Collapse
Affiliation(s)
- Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Zhenmin Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Zhengxiu Tang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Haimei Zhou
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Xinyao Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Xiahuang Li
- The People's Hospital of Mengzi, The Affiliated Hospital of Yunnan University of Chinese Medicine, Mengzi Honghe, China.
| | - Hongling Shi
- Department of Rehabilitation Medicine, The Third People's Hospital of Yunnan Province, Kunming Yunnan, China.
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| |
Collapse
|
2
|
Ziaka M, Exadaktylos A. Gut-derived immune cells and the gut-lung axis in ARDS. Crit Care 2024; 28:220. [PMID: 38965622 PMCID: PMC11225303 DOI: 10.1186/s13054-024-05006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
The gut serves as a vital immunological organ orchestrating immune responses and influencing distant mucosal sites, notably the respiratory mucosa. It is increasingly recognized as a central driver of critical illnesses, with intestinal hyperpermeability facilitating bacterial translocation, systemic inflammation, and organ damage. The "gut-lung" axis emerges as a pivotal pathway, where gut-derived injurious factors trigger acute lung injury (ALI) through the systemic circulation. Direct and indirect effects of gut microbiota significantly impact immune responses. Dysbiosis, particularly intestinal dysbiosis, termed as an imbalance of microbial species and a reduction in microbial diversity within certain bodily microbiomes, influences adaptive immune responses, including differentiating T regulatory cells (Tregs) and T helper 17 (Th17) cells, which are critical in various lung inflammatory conditions. Additionally, gut and bone marrow immune cells impact pulmonary immune activity, underscoring the complex gut-lung interplay. Moreover, lung microbiota alterations are implicated in diverse gut pathologies, affecting local and systemic immune landscapes. Notably, lung dysbiosis can reciprocally influence gut microbiota composition, indicating bidirectional gut-lung communication. In this review, we investigate the pathophysiology of ALI/acute respiratory distress syndrome (ARDS), elucidating the role of immune cells in the gut-lung axis based on recent experimental and clinical research. This exploration aims to enhance understanding of ALI/ARDS pathogenesis and to underscore the significance of gut-lung interactions in respiratory diseases.
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic of Geriatric Medicine, Center of Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Raj ST, Bruce AW, Anbalagan M, Srinivasan H, Chinnappan S, Rajagopal M, Khanna K, Chandramoorthy HC, Mani RR. COVID-19 influenced gut dysbiosis, post-acute sequelae, immune regulation, and therapeutic regimens. Front Cell Infect Microbiol 2024; 14:1384939. [PMID: 38863829 PMCID: PMC11165100 DOI: 10.3389/fcimb.2024.1384939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic outbreak caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has garnered unprecedented global attention. It caused over 2.47 million deaths through various syndromes such as acute respiratory distress, hypercoagulability, and multiple organ failure. The viral invasion proceeds through the ACE2 receptor, expressed in multiple cell types, and in some patients caused serious damage to tissues, organs, immune cells, and the microbes that colonize the gastrointestinal tract (GIT). Some patients who survived the SARS-CoV-2 infection have developed months of persistent long-COVID-19 symptoms or post-acute sequelae of COVID-19 (PASC). Diagnosis of these patients has revealed multiple biological effects, none of which are mutually exclusive. However, the severity of COVID-19 also depends on numerous comorbidities such as obesity, age, diabetes, and hypertension and care must be taken with respect to other multiple morbidities, such as host immunity. Gut microbiota in relation to SARS-CoV-2 immunopathology is considered to evolve COVID-19 progression via mechanisms of biochemical metabolism, exacerbation of inflammation, intestinal mucosal secretion, cytokine storm, and immunity regulation. Therefore, modulation of gut microbiome equilibrium through food supplements and probiotics remains a hot topic of current research and debate. In this review, we discuss the biological complications of the physio-pathological effects of COVID-19 infection, GIT immune response, and therapeutic pharmacological strategies. We also summarize the therapeutic targets of probiotics, their limitations, and the efficacy of preclinical and clinical drugs to effectively inhibit the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Sterlin T. Raj
- Department of Molecular Biology, Ekka Diagnostics, Chennai, Tamil Nadu, India
| | - Alexander W. Bruce
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Muralidharan Anbalagan
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hemalatha Srinivasan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Sasikala Chinnappan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| | - Mogana Rajagopal
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| | - Kushagra Khanna
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Harish C. Chandramoorthy
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ravishankar Ram Mani
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Zhang DW, Lu JL, Dong BY, Fang MY, Xiong X, Qin XJ, Fan XM. Gut microbiota and its metabolic products in acute respiratory distress syndrome. Front Immunol 2024; 15:1330021. [PMID: 38433840 PMCID: PMC10904571 DOI: 10.3389/fimmu.2024.1330021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
The prevalence rate of acute respiratory distress syndrome (ARDS) is estimated at approximately 10% in critically ill patients worldwide, with the mortality rate ranging from 17% to 39%. Currently, ARDS mortality is usually higher in patients with COVID-19, giving another challenge for ARDS treatment. However, the treatment efficacy for ARDS is far from satisfactory. The relationship between the gut microbiota and ARDS has been substantiated by relevant scientific studies. ARDS not only changes the distribution of gut microbiota, but also influences intestinal mucosal barrier through the alteration of gut microbiota. The modulation of gut microbiota can impact the onset and progression of ARDS by triggering dysfunctions in inflammatory response and immune cells, oxidative stress, cell apoptosis, autophagy, pyroptosis, and ferroptosis mechanisms. Meanwhile, ARDS may also influence the distribution of metabolic products of gut microbiota. In this review, we focus on the impact of ARDS on gut microbiota and how the alteration of gut microbiota further influences the immune function, cellular functions and related signaling pathways during ARDS. The roles of gut microbiota-derived metabolites in the development and occurrence of ARDS are also discussed.
Collapse
Affiliation(s)
- Dong-Wei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Jia-Li Lu
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Bi-Ying Dong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Meng-Ying Fang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xue-Jun Qin
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Xian-Ming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Luchian ML, Higny J, Benoit M, Robaye B, Berners Y, Henry JP, Colle B, Xhaët O, Blommaert D, Droogmans S, Motoc AI, Cosyns B, Gabriel L, Guedes A, Demeure F. Unmasking Pandemic Echoes: An In-Depth Review of Long COVID's Unabated Cardiovascular Consequences beyond 2020. Diagnostics (Basel) 2023; 13:3368. [PMID: 37958264 PMCID: PMC10647305 DOI: 10.3390/diagnostics13213368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
At the beginning of 2020, coronavirus disease 2019 (COVID-19) emerged as a new pandemic, leading to a worldwide health crisis and overwhelming healthcare systems due to high numbers of hospital admissions, insufficient resources, and a lack of standardized therapeutic protocols. Multiple genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been detected since its first public declaration in 2020, some of them being considered variants of concern (VOCs) corresponding to several pandemic waves. Nevertheless, a growing number of COVID-19 patients are continuously discharged from hospitals, remaining symptomatic even months after their first episode of COVID-19 infection. Long COVID-19 or 'post-acute COVID-19 syndrome' emerged as the new pandemic, being characterized by a high variability of clinical manifestations ranging from cardiorespiratory and neurological symptoms such as chest pain, exertional dyspnoea or cognitive disturbance to psychological disturbances, e.g., depression, anxiety or sleep disturbance with a crucial impact on patients' quality of life. Moreover, Long COVID is viewed as a new cardiovascular risk factor capable of modifying the trajectory of current and future cardiovascular diseases, altering the patients' prognosis. Therefore, in this review we address the current definitions of Long COVID and its pathophysiology, with a focus on cardiovascular manifestations. Furthermore, we aim to review the mechanisms of acute and chronic cardiac injury and the variety of cardiovascular sequelae observed in recovered COVID-19 patients, in addition to the potential role of Long COVID clinics in the medical management of this new condition. We will further address the role of future research for a better understanding of the actual impact of Long COVID and future therapeutic directions.
Collapse
Affiliation(s)
- Maria-Luiza Luchian
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Julien Higny
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Martin Benoit
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Benoit Robaye
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Yannick Berners
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Jean-Philippe Henry
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Benjamin Colle
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Olivier Xhaët
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Dominique Blommaert
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Steven Droogmans
- Department of Cardiology, Centrum voor Hart-en Vaatziekten, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Andreea Iulia Motoc
- Department of Cardiology, Centrum voor Hart-en Vaatziekten, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Bernard Cosyns
- Department of Cardiology, Centrum voor Hart-en Vaatziekten, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Laurence Gabriel
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Antoine Guedes
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Fabian Demeure
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| |
Collapse
|
6
|
Doman M, Thy M, Dessajan J, Dlela M, Do Rego H, Cariou E, Ejzenberg M, Bouadma L, de Montmollin E, Timsit JF. Temperature control in sepsis. Front Med (Lausanne) 2023; 10:1292468. [PMID: 38020082 PMCID: PMC10644266 DOI: 10.3389/fmed.2023.1292468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Fever can be viewed as an adaptive response to infection. Temperature control in sepsis is aimed at preventing potential harms associated with high temperature (tachycardia, vasodilation, electrolyte and water loss) and therapeutic hypothermia may be aimed at slowing metabolic activities and protecting organs from inflammation. Although high fever (>39.5°C) control is usually performed in critically ill patients, available cohorts and randomized controlled trials do not support its use to improve sepsis prognosis. Finally, both spontaneous and therapeutic hypothermia are associated with poor outcomes in sepsis.
Collapse
Affiliation(s)
- Marc Doman
- Medical ICU, Paris Cité University– Bichat University Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Michael Thy
- Medical ICU, Paris Cité University– Bichat University Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
- Inserm UMR 1137 – IAME Team 5 – Decision Sciences in Infectious Diseases, Control and Care INSERM/Paris Diderot, Sorbonne Paris Cité University, Paris, France
| | - Julien Dessajan
- Medical ICU, Paris Cité University– Bichat University Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Mariem Dlela
- Medical ICU, Paris Cité University– Bichat University Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Hermann Do Rego
- Medical ICU, Paris Cité University– Bichat University Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Erwann Cariou
- Medical ICU, Paris Cité University– Bichat University Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Michael Ejzenberg
- Medical ICU, Paris Cité University– Bichat University Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Lila Bouadma
- Medical ICU, Paris Cité University– Bichat University Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
- Inserm UMR 1137 – IAME Team 5 – Decision Sciences in Infectious Diseases, Control and Care INSERM/Paris Diderot, Sorbonne Paris Cité University, Paris, France
| | - Etienne de Montmollin
- Medical ICU, Paris Cité University– Bichat University Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
- Inserm UMR 1137 – IAME Team 5 – Decision Sciences in Infectious Diseases, Control and Care INSERM/Paris Diderot, Sorbonne Paris Cité University, Paris, France
| | - Jean-François Timsit
- Medical ICU, Paris Cité University– Bichat University Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
- Inserm UMR 1137 – IAME Team 5 – Decision Sciences in Infectious Diseases, Control and Care INSERM/Paris Diderot, Sorbonne Paris Cité University, Paris, France
| |
Collapse
|
7
|
Bucci V, Ward DV, Bhattarai S, Rojas-Correa M, Purkayastha A, Holler D, Qu MD, Mitchell WG, Yang J, Fountain S, Zeamer A, Forconi CS, Fujimori G, Odwar B, Cawley C, Moormann AM, Wessolossky M, Maldonado-Contreras A. The intestinal microbiota predicts COVID-19 severity and fatality regardless of hospital feeding method. mSystems 2023; 8:e0031023. [PMID: 37548476 PMCID: PMC10469851 DOI: 10.1128/msystems.00310-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
SARS-CoV-2-positive patients exhibit gut and oral microbiome dysbiosis, which is associated with various aspects of COVID-19 disease (1-4). Here, we aim to identify gut and oral microbiome markers that predict COVID-19 severity in hospitalized patients, specifically severely ill patients compared to moderately ill ones. Moreover, we investigate whether hospital feeding (solid versus enteral), an important cofounder, influences the microbial composition of hospitalized COVID-19 patients. We used random forest classification machine learning models with interpretable secondary analyses. The gut, but not the oral microbiota, was a robust predictor of both COVID-19-related fatality and severity of hospitalized patients, with a higher predictive value than most clinical variables. In addition, perturbations of the gut microbiota due to enteral feeding did not associate with species that were predictive of COVID-19 severity. IMPORTANCE SARS-CoV-2 infection leads to wide-ranging, systemic symptoms with sometimes unpredictable morbidity and mortality. It is increasingly clear that the human microbiome plays an important role in how individuals respond to viral infections. Our study adds to important literature about the associations of gut microbiota and severe COVID-19 illness during the early phase of the pandemic before the availability of vaccines. Increased understanding of the interplay between microbiota and SARS-CoV-2 may lead to innovations in diagnostics, therapies, and clinical predictions.
Collapse
Affiliation(s)
- Vanni Bucci
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Doyle V. Ward
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Shakti Bhattarai
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Mayra Rojas-Correa
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Ayan Purkayastha
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Devon Holler
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Ming Da Qu
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - William G. Mitchell
- Department of Internal Medicine/Pediatrics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jason Yang
- Department of Medicine - Internal Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Samuel Fountain
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Abigail Zeamer
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Catherine S. Forconi
- Department of Medicine - Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Gavin Fujimori
- Department of Medicine - Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Boaz Odwar
- Department of Medicine - Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Caitlin Cawley
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Ann M. Moormann
- Department of Medicine - Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Mireya Wessolossky
- Department of Medicine - Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Ana Maldonado-Contreras
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
8
|
Valdetaro L, Thomasi B, Ricciardi MC, Santos KDM, Coelho-Aguiar JDM, Tavares-Gomes AL. Enteric nervous system as a target and source of SARS-CoV-2 and other viral infections. Am J Physiol Gastrointest Liver Physiol 2023; 325:G93-G108. [PMID: 37253656 PMCID: PMC10390051 DOI: 10.1152/ajpgi.00229.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/02/2023] [Accepted: 05/29/2023] [Indexed: 06/01/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has been demonstrated to affect several systems of the human body, including the gastrointestinal and nervous systems. The enteric nervous system (ENS) is a division of the autonomic nervous system that extends throughout the gut, regulates gastrointestinal function, and is therefore involved in most gut dysfunctions, including those resulting from many viral infections. Growing evidence highlights enteric neural cells and microbiota as important players in gut inflammation and dysfunction. Furthermore, the ENS and gastrointestinal immune system work together establishing relevant neuroimmune interactions during both health and disease. In recent years, gut-driven processes have also been implicated as players in systemic inflammation and in the initiation and propagation of several central nervous system pathologies, which seem to be hallmarks of COVID-19. In this review, we aim to describe evidence of the gastrointestinal and ENS infection with a focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We discuss here viral-induced mechanisms, neuroplasticity, and neuroinflammation to call attention to the enteric neuroglial network as a nervous system with a sensitive and crucial position to be not only a target of the new coronavirus but also a way in and trigger of COVID-19-related symptoms.
Collapse
Affiliation(s)
- Luisa Valdetaro
- Postgraduate Program in Neuroscience, Neurobiology Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, United States
| | - Beatriz Thomasi
- Postgraduate Program in Neuroscience, Neurobiology Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| | - Maria Carolina Ricciardi
- Postgraduate Program in Neuroscience, Neurobiology Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Karoline de Melo Santos
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Lúcia Tavares-Gomes
- Postgraduate Program in Neuroscience, Neurobiology Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Hawkings MJ, Vaselli NM, Charalampopoulos D, Brierley L, Elliot AJ, Buchan I, Hungerford D. A Systematic Review of the Prevalence of Persistent Gastrointestinal Symptoms and Incidence of New Gastrointestinal Illness after Acute SARS-CoV-2 Infection. Viruses 2023; 15:1625. [PMID: 37631968 PMCID: PMC10459193 DOI: 10.3390/v15081625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
It is known that SARS-CoV-2 infection can result in gastrointestinal symptoms. For some, these symptoms may persist beyond acute infection, in what is known as 'post-COVID syndrome'. We conducted a systematic review to examine the prevalence of persistent gastrointestinal symptoms and the incidence of new gastrointestinal illnesses following acute SARS-CoV-2 infection. We searched the scientific literature using MedLine, SCOPUS, Europe PubMed Central and medRxiv from December 2019 to July 2023. Two reviewers independently identified 45 eligible articles, which followed participants for various gastrointestinal outcomes after acute SARS-CoV-2 infection. The study quality was assessed using the Joanna Briggs Institute Critical Appraisal Tools. The weighted pooled prevalence for persistent gastrointestinal symptoms of any nature and duration was 10.8% compared with 4.9% in healthy controls. For seven studies at low risk of methodological bias, the symptom prevalence ranged from 0.2% to 24.1%, with a median follow-up time of 18 weeks. We also identified a higher risk for future illnesses such as irritable bowel syndrome, dyspepsia, hepatic and biliary disease, liver disease and autoimmune-mediated illnesses such as inflammatory bowel disease and coeliac disease in historically SARS-CoV-2-exposed individuals. Our review has shown that, from a limited pool of mostly low-quality studies, previous SARS-CoV-2 exposure may be associated with ongoing gastrointestinal symptoms and the development of functional gastrointestinal illness. Furthermore, we show the need for high-quality research to better understand the SARS-CoV-2 association with gastrointestinal illness, particularly as population exposure to enteric infections returns to pre-COVID-19-restriction levels.
Collapse
Affiliation(s)
- Michael J. Hawkings
- Department of Public Health, Policy & Systems, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK
- National Institute for Health and Care Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK; (N.M.V.)
| | - Natasha Marcella Vaselli
- National Institute for Health and Care Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK; (N.M.V.)
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK
| | - Dimitrios Charalampopoulos
- Department of Public Health, Policy & Systems, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK
| | - Liam Brierley
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK
| | - Alex J. Elliot
- National Institute for Health and Care Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK; (N.M.V.)
- Real-Time Syndromic Surveillance Team, Field Services, Health Protection Operations, UK Health Security Agency, Birmingham B2 4BH, UK
| | - Iain Buchan
- Department of Public Health, Policy & Systems, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK
- National Institute for Health and Care Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK; (N.M.V.)
| | - Daniel Hungerford
- National Institute for Health and Care Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK; (N.M.V.)
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK
| |
Collapse
|
10
|
Ticinesi A, Nouvenne A, Cerundolo N, Parise A, Meschi T. Accounting Gut Microbiota as the Mediator of Beneficial Effects of Dietary (Poly)phenols on Skeletal Muscle in Aging. Nutrients 2023; 15:nu15102367. [PMID: 37242251 DOI: 10.3390/nu15102367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenia, the age-related loss of muscle mass and function increasing the risk of disability and adverse outcomes in older people, is substantially influenced by dietary habits. Several studies from animal models of aging and muscle wasting indicate that the intake of specific polyphenol compounds can be associated with myoprotective effects, and improvements in muscle strength and performance. Such findings have also been confirmed in a smaller number of human studies. However, in the gut lumen, dietary polyphenols undergo extensive biotransformation by gut microbiota into a wide range of bioactive compounds, which substantially contribute to bioactivity on skeletal muscle. Thus, the beneficial effects of polyphenols may consistently vary across individuals, depending on the composition and metabolic functionality of gut bacterial communities. The understanding of such variability has recently been improved. For example, resveratrol and urolithin interaction with the microbiota can produce different biological effects according to the microbiota metabotype. In older individuals, the gut microbiota is frequently characterized by dysbiosis, overrepresentation of opportunistic pathogens, and increased inter-individual variability, which may contribute to increasing the variability of biological actions of phenolic compounds at the skeletal muscle level. These interactions should be taken into great consideration for designing effective nutritional strategies to counteract sarcopenia.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Antonio Nouvenne
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
11
|
Zhang F, Lau RI, Liu Q, Su Q, Chan FKL, Ng SC. Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications. Nat Rev Gastroenterol Hepatol 2023; 20:323-337. [PMID: 36271144 PMCID: PMC9589856 DOI: 10.1038/s41575-022-00698-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 01/14/2023]
Abstract
The gastrointestinal tract is involved in coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The gut microbiota has important roles in viral entry receptor angiotensin-converting enzyme 2 (ACE2) expression, immune homeostasis, and crosstalk between the gut and lungs, the 'gut-lung axis'. Emerging preclinical and clinical studies indicate that the gut microbiota might contribute to COVID-19 pathogenesis and disease outcomes; SARS-CoV-2 infection was associated with altered intestinal microbiota and correlated with inflammatory and immune responses. Here, we discuss the cutting-edge evidence on the interactions between SARS-CoV-2 infection and the gut microbiota, key microbial changes in relation to COVID-19 severity and host immune dysregulations with the possible underlying mechanisms, and the conceivable consequences of the pandemic on the human microbiome and post-pandemic health. Finally, potential modulatory strategies of the gut microbiota are discussed. These insights could shed light on the development of microbiota-based interventions for COVID-19.
Collapse
Affiliation(s)
- Fen Zhang
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Raphaela I Lau
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Qin Liu
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Qi Su
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China.
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China.
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China.
| |
Collapse
|
12
|
Zhang D, Zhou Y, Ma Y, Chen P, Tang J, Yang B, Li H, Liang M, Xue Y, Liu Y, Zhang J, Wang X. Gut Microbiota Dysbiosis Correlates With Long COVID-19 at One-Year After Discharge. J Korean Med Sci 2023; 38:e120. [PMID: 37069814 PMCID: PMC10111044 DOI: 10.3346/jkms.2023.38.e120] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/04/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Long coronavirus disease 2019 (COVID-19) in recovered patients (RPs) is gradually recognized by more people. However, how long it will last and the underlining mechanism remains unclear. METHODS We conducted a prospective follow-up study to evaluate the long-term symptoms and clinical indices of RPs at one-year after discharge from Union Hospital, Wuhan, China between December 2020 to May 2021. We also performed the 16S rRNA sequencing of stool samples from RPs and healthy controls (HCs) and analyzed the correlation between the gut microbiota and long COVID-19. RESULTS In total, 187 RPs were enrolled, among them, 84 (44.9%) RPs reported long COVID-19 symptoms at one-year after discharge. The most common long-term symptoms were cardiopulmonary symptoms, including chest tightness after activity (39/187, 20.9%), palpitations on exercise (27/187, 14.4%), sputum (21/187, 11.2%), cough (15/187, 8.0%) and chest pain (13/187, 7.0%), followed by systemic symptoms including fatigue (34/187, 18.2%) and myalgia (20/187, 10.7%), and digestive symptoms including constipation (14/187, 7.5%), anorexia (13/187, 7.0%), and diarrhea (8/187, 4.3%). Sixty-six (35.9%) RPs presented either anxiety or depression (42/187 [22.8%] and 53/187 [28.8%] respectively), and the proportion of anxiety or depression in the long symptomatic group was significantly higher than that in the asymptomatic group (41/187 [50.6%] vs. 25/187 [24.3%]). Compared with the asymptomatic group, scores of all nine 36-Item Short Form General Health Survey domains were lower in the symptomatic group (all P < 0.05). One hundred thirty RPs and 32 HCs (non-severe acute respiratory syndrome coronavirus 2 infected subjects) performed fecal sample sequencing. Compared with HCs, symptomatic RPs had obvious gut microbiota dysbiosis including significantly reduced bacterial diversities and lower relative abundance of short-chain fatty acids (SCFAs)-producing salutary symbionts such as Eubacterium_hallii_group, Subdoligranulum, Ruminococcus, Dorea, Coprococcus, and Eubacterium_ventriosum_group. Meanwhile, the relative abundance of Eubacterium_hallii_group, Subdoligranulum, and Ruminococcus showed decreasing tendencies between HCs, the asymptomatic group, and the symptomatic group. CONCLUSION This study demonstrated the presence of long COVID-19 which correlates with gut microbiota dysbiosis in RPs at one-year after discharge, indicating gut microbiota may play an important role in long COVID-19.
Collapse
Affiliation(s)
- Dongmei Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaya Zhou
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanling Ma
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Chen
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Tang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bohan Yang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Li
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyuan Liang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - YuE Xue
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Liu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianchu Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaorong Wang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Ancona G, Alagna L, Alteri C, Palomba E, Tonizzo A, Pastena A, Muscatello A, Gori A, Bandera A. Gut and airway microbiota dysbiosis and their role in COVID-19 and long-COVID. Front Immunol 2023; 14:1080043. [PMID: 36969243 PMCID: PMC10030519 DOI: 10.3389/fimmu.2023.1080043] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
The gut microbiota plays a crucial role in human health and disease. Gut dysbiosis is known to be associated with increased susceptibility to respiratory diseases and modifications in the immune response and homeostasis of the lungs (the so-called gut-lung axis). Furthermore, recent studies have highlighted the possible role of dysbiosis in neurological disturbances, introducing the notion of the "gut-brain axis." During the last 2 years, several studies have described the presence of gut dysbiosis during coronavirus disease 2019 (COVID-19) and its relationship with disease severity, SARS-CoV-2 gastrointestinal replication, and immune inflammation. Moreover, the possible persistence of gut dysbiosis after disease resolution may be linked to long-COVID syndrome and particularly to its neurological manifestations. We reviewed recent evidence on the association between dysbiosis and COVID-19, investigating the possible epidemiologic confounding factors like age, location, sex, sample size, the severity of disease, comorbidities, therapy, and vaccination status on gut and airway microbial dysbiosis in selected studies on both COVID-19 and long-COVID. Moreover, we analyzed the confounding factors strictly related to microbiota, specifically diet investigation and previous use of antibiotics/probiotics, and the methodology used to study the microbiota (α- and β-diversity parameters and relative abundance tools). Of note, only a few studies focused on longitudinal analyses, especially for long-term observation in long-COVID. Lastly, there is a lack of knowledge regarding the role of microbiota transplantation and other therapeutic approaches and their possible impact on disease progression and severity. Preliminary data seem to suggest that gut and airway dysbiosis might play a role in COVID-19 and in long-COVID neurological symptoms. Indeed, the development and interpretation of these data could have important implications for future preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Giuseppe Ancona
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Alagna
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Alteri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Multimodal Research Area, Bambino Gesù Children Hospital (IRCCS), Rome, Italy
| | - Emanuele Palomba
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Anna Tonizzo
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Andrea Pastena
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| |
Collapse
|
14
|
SeyedAlinaghi S, Afzalian A, Pashaei Z, Varshochi S, Karimi A, Mojdeganlou H, Mojdeganlou P, Razi A, Ghanadinezhad F, Shojaei A, Amiri A, Dashti M, Ghasemzadeh A, Dadras O, Mehraeen E, Afsahi AM. Gut microbiota and COVID-19: A systematic review. Health Sci Rep 2023; 6:e1080. [PMID: 36721396 PMCID: PMC9881458 DOI: 10.1002/hsr2.1080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Background and Aims Alteration in humans' gut microbiota was reported in patients infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The gut and upper respiratory tract (URT) microbiota harbor a dynamic and complex population of microorganisms and have strong interaction with host immune system homeostasis. However, our knowledge about microbiota and its association with SARS-CoV-2 is still limited. We aimed to systematically review the effects of gut microbiota on the SARS-CoV-2 infection and its severity and the impact that SARS-CoV-2 could have on the gut microbiota. Methods We searched the keywords in the online databases of Web of Science, Scopus, PubMed, and Cochrane on December 31, 2021. After duplicate removal, we performed the screening process in two stages; title/abstract and then full-text screening. The data of the eligible studies were extracted into a pre-designed word table. This study adhered to the PRISMA checklist and Newcastle-Ottawa Scale Bias Assessment tool. Results Sixty-three publications were included in this review. Our study shows that among COVID-19 patients, particularly moderate to severe cases, the gut and lung microbiota was different compared to healthy individuals. In addition, the severity, and viral load of COVID-19 disease would probably also be influenced by the gut, and lung microbiota's composition. Conclusion Our study concludes that there was a significant difference in the composition of the URT, and gut microbiota in COVID-19 patients compared to the general healthy individuals, with an increase in opportunistic pathogens. Further, research is needed to investigate the probable bidirectional association of COVID-19 and human microbiome.
Collapse
Affiliation(s)
- SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Arian Afzalian
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Zahra Pashaei
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Sanaz Varshochi
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Amirali Karimi
- School of MedicineTehran University of Medical SciencesTehranIran
| | | | | | - Armin Razi
- School of MedicineTehran University of Medical SciencesTehranIran
| | | | - Alireza Shojaei
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Ava Amiri
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Mohsen Dashti
- Department of RadiologyTabriz University of Medical SciencesTabrizIran
| | | | - Omid Dadras
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
- Department of Global Public Health and Primary CareUniversity of BergenBergenNorway
| | - Esmaeil Mehraeen
- Department of Health Information TechnologyKhalkhal University of Medical SciencesKhalkhalIran
| | - Amir Masoud Afsahi
- Department of RadiologyUniversity of California, San Diego (UCSD)CaliforniaUSA
| |
Collapse
|
15
|
Hoque MN, Rahman MS, Sarkar MMH, Habib MA, Akter S, Banu TA, Goswami B, Jahan I, Hossain MA, Khan MS, Islam T. Transcriptome analysis reveals increased abundance and diversity of opportunistic fungal pathogens in nasopharyngeal tract of COVID-19 patients. PLoS One 2023; 18:e0278134. [PMID: 36656835 PMCID: PMC9851516 DOI: 10.1371/journal.pone.0278134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/09/2022] [Indexed: 01/20/2023] Open
Abstract
We previously reported that SARS-CoV-2 infection reduces human nasopharyngeal commensal microbiomes (bacteria, archaea and commensal respiratory viruses) with inclusion of pathobionts. This study aimed to assess the possible changes in the abundance and diversity of resident mycobiome in the nasopharyngeal tract (NT) of humans due to SARS-CoV-2 infections. Twenty-two (n = 22) nasopharyngeal swab samples (including COVID-19 = 8, Recovered = 7, and Healthy = 7) were collected for RNA-sequencing followed by taxonomic profiling of mycobiome. Our analyses indicate that SARS-CoV-2 infection significantly increased (p < 0.05, Wilcoxon test) the population and diversity of fungi in the NT with inclusion of a high proportion of opportunistic pathogens. We detected 863 fungal species including 533, 445, and 188 species in COVID-19, Recovered, and Healthy individuals, respectively that indicate a distinct mycobiome dysbiosis due to the SARS-CoV-2 infection. Remarkably, 37% of the fungal species were exclusively associated with SARS-CoV-2 infection, where S. cerevisiae (88.62%) and Phaffia rhodozyma (10.30%) were two top abundant species. Likewise, Recovered humans NT samples were predominated by Aspergillus penicillioides (36.64%), A. keveii (23.36%), A. oryzae (10.05%) and A. pseudoglaucus (4.42%). Conversely, Nannochloropsis oceanica (47.93%), Saccharomyces pastorianus (34.42%), and S. cerevisiae (2.80%) were the top abundant fungal species in Healthy controls nasal swabs. Importantly, 16% commensal fungal species found in the Healthy controls were not detected in either COVID-19 patients or when they were cured from COVID-19 (Recovered). We also detected several altered metabolic pathways correlated with the dysbiosis of fungal mycobiota in COVID-19 patients. Our results suggest that SARS-CoV-2 infection causes significant dysbiosis of mycobiome and related metabolic functions possibly play a determining role in the progression of SARS-CoV-2 pathogenesis. These findings might be helpful for developing mycobiome-based diagnostics, and also devising appropriate therapeutic regimens including antifungal drugs for prevention and control of concurrent fungal coinfections in COVID-19 patients.
Collapse
Affiliation(s)
- M. Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - M. Shaminur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| | | | - Md Ahashan Habib
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Shahina Akter
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Tanjina Akhtar Banu
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Barna Goswami
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Iffat Jahan
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - M. Anwar Hossain
- Jashore Unive rsity of Science and Technology, Jashore, Bangladesh
| | - M. Salim Khan
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), BSMRAU, Gazipur, Bangladesh
| |
Collapse
|
16
|
Wang M, Zhang Y, Li C, Chang W, Zhang L. The relationship between gut microbiota and COVID-19 progression: new insights into immunopathogenesis and treatment. Front Immunol 2023; 14:1180336. [PMID: 37205106 PMCID: PMC10185909 DOI: 10.3389/fimmu.2023.1180336] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a global health crisis. Increasing evidence underlines the key role of competent immune responses in resisting SARS-CoV-2 infection and manifests the disastrous consequence of host immune dysregulation. Elucidating the mechanisms responsible for deregulated host immunity in COVID-19 may provide a theoretical basis for further research on new treatment modalities. Gut microbiota comprises trillions of microorganisms colonizing the human gastrointestinal tract and has a vital role in immune homeostasis and the gut-lung crosstalk. Particularly, SARS-CoV-2 infection can lead to the disruption of gut microbiota equilibrium, a condition called gut dysbiosis. Due to its regulatory effect on host immunity, gut microbiota has recently received considerable attention in the field of SARS-CoV-2 immunopathology. Imbalanced gut microbiota can fuel COVID-19 progression through production of bioactive metabolites, intestinal metabolism, enhancement of the cytokine storm, exaggeration of inflammation, regulation of adaptive immunity and other aspects. In this review, we provide an overview of the alterations in gut microbiota in COVID-19 patients, and their effects on individuals' susceptibility to viral infection and COVID-19 progression. Moreover, we summarize currently available data on the critical role of the bidirectional regulation between intestinal microbes and host immunity in SARS-CoV-2-induced pathology, and highlight the immunomodulatory mechanisms of gut microbiota contributing to COVID-19 pathogenesis. In addition, we discuss the therapeutic benefits and future perspectives of microbiota-targeted interventions including faecal microbiota transplantation (FMT), bacteriotherapy and traditional Chinese medicine (TCM) in COVID-19 treatment.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Man Wang, ; Chunmei Li,
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Chunmei Li
- Department of Radiology, Qingdao Municipal Hospital, Qingdao, China
- *Correspondence: Man Wang, ; Chunmei Li,
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Paul D, Nedelcu AM. The underexplored links between cancer and the internal body climate: Implications for cancer prevention and treatment. Front Oncol 2022; 12:1040034. [PMID: 36620608 PMCID: PMC9815514 DOI: 10.3389/fonc.2022.1040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
In order to effectively manage and cure cancer we should move beyond the general view of cancer as a random process of genetic alterations leading to uncontrolled cell proliferation or simply a predictable evolutionary process involving selection for traits that increase cell fitness. In our view, cancer is a systemic disease that involves multiple interactions not only among cells within tumors or between tumors and surrounding tissues but also with the entire organism and its internal "milieu". We define the internal body climate as an emergent property resulting from spatial and temporal interactions among internal components themselves and with the external environment. The body climate itself can either prevent, promote or support cancer initiation and progression (top-down effect; i.e., body climate-induced effects on cancer), as well as be perturbed by cancer (bottom-up effect; i.e., cancer-induced body climate changes) to further favor cancer progression and spread. This positive feedback loop can move the system towards a "cancerized" organism and ultimately results in its demise. In our view, cancer not only affects the entire system; it is a reflection of an imbalance of the entire system. This model provides an integrated framework to study all aspects of cancer as a systemic disease, and also highlights unexplored links that can be altered to both prevent body climate changes that favor cancer initiation, progression and dissemination as well as manipulate or restore the body internal climate to hinder the success of cancer inception, progression and metastasis or improve therapy outcomes. To do so, we need to (i) identify cancer-relevant factors that affect specific climate components, (ii) develop 'body climate biomarkers', (iii) define 'body climate scores', and (iv) develop strategies to prevent climate changes, stop or slow the changes, or even revert the changes (climate restoration).
Collapse
Affiliation(s)
- Doru Paul
- Weill Cornell Medicine, New York, NY, United States
| | - Aurora M. Nedelcu
- Biology Department, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
18
|
Vakili K, Fathi M, Yaghoobpoor S, Sayehmiri F, Nazerian Y, Nazerian A, Mohamadkhani A, Khodabakhsh P, Réus GZ, Hajibeygi R, Rezaei-Tavirani M. The contribution of gut-brain axis to development of neurological symptoms in COVID-19 recovered patients: A hypothesis and review of literature. Front Cell Infect Microbiol 2022; 12:983089. [PMID: 36619768 PMCID: PMC9815719 DOI: 10.3389/fcimb.2022.983089] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2022] Open
Abstract
The gut microbiota undergoes significant alterations in response to viral infections, particularly the novel SARS-CoV-2. As impaired gut microbiota can trigger numerous neurological disorders, we suggest that the long-term neurological symptoms of COVID-19 may be related to intestinal microbiota disorders in these patients. Thus, we have gathered available information on how the virus can affect the microbiota of gastrointestinal systems, both in the acute and the recovery phase of the disease, and described several mechanisms through which this gut dysbiosis can lead to long-term neurological disorders, such as Guillain-Barre syndrome, chronic fatigue, psychiatric disorders such as depression and anxiety, and even neurodegenerative diseases such as Alzheimer's and Parkinson's disease. These mechanisms may be mediated by inflammatory cytokines, as well as certain chemicals such as gastrointestinal hormones (e.g., CCK), neurotransmitters (e.g., 5-HT), etc. (e.g., short-chain fatty acids), and the autonomic nervous system. In addition to the direct influences of the virus, repurposed medications used for COVID-19 patients can also play a role in gut dysbiosis. In conclusion, although there are many dark spots in our current knowledge of the mechanism of COVID-19-related gut-brain axis disturbance, based on available evidence, we can hypothesize that these two phenomena are more than just a coincidence and highly recommend large-scale epidemiologic studies in the future.
Collapse
Affiliation(s)
- Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Nazerian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ashraf Mohamadkhani
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gislaine Z. Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ramtin Hajibeygi
- Department of Cardiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Zhu T, Jin J, Chen M, Chen Y. The impact of infection with COVID-19 on the respiratory microbiome: A narrative review. Virulence 2022; 13:1076-1087. [PMID: 35763685 PMCID: PMC9794016 DOI: 10.1080/21505594.2022.2090071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has affected millions of individuals with various implications. Consistent with the crucial role of the microbiome in determining health and disease in humans, various studies have investigated the gut and respiratory microbiome effect on the COVID-19. Microbiota dysbiosis might support the entry, replication, and establishment of SARS-CoV-2 infection by modulating various mechanisms. One of the main mechanisms that the modulation of respiratory microbiota composition during the COVID-19 infection affects the magnitude of the disease is changes in innate and acquired immune responses, including inflammatory markers and cytokines and B- and T-cells. The diversity of respiratory microbiota in COVID-19 patients is controversial; some studies reported low microbial diversity, while others found high diversity, suggesting the role of respiratory microbiota in this disease. Modulating microbiota diversity and profile by supplementations and nutrients can be applied prophylactic and therapeutic in combating COVID-19. Here, we discussed the lung microbiome dysbiosis during various lung diseases and its interaction with immune cells, focusing on COVID-19.
Collapse
Affiliation(s)
- Taiping Zhu
- Internal Medicine Department, Chun’an Maternal and Child Health Hospital, Hangzhou, Zhejiang, China
| | - Jun Jin
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Minhua Chen
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China,CONTACT Minhua Chen
| | - Yingjun Chen
- Department of Infectious Diseases, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
20
|
Li Q, Li N, Cai W, Xiao M, Liu B, Zeng F. Fermented natural product targeting gut microbiota regulate immunity and anti-inflammatory activity: A possible way to prevent COVID-19 in daily diet. J Funct Foods 2022; 97:105229. [PMID: 36034155 PMCID: PMC9393180 DOI: 10.1016/j.jff.2022.105229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Low immune function makes the body vulnerable to being invaded by external bacteria or viruses, causing influenza and inflammation of various organs, and this trend is shifting to the young and middle-aged group. It has been pointed out that natural products fermented by probiotic have benign changes about their active ingredients in some studies, and it have shown strong nutritional value in anti-oxidation, anti-aging, regulating lipid metabolism, anti-inflammatory and improving immunity. In recent years, the gut microbiota plays a key role and has been extensively studied in improving immunity and anti-inflammation activity. By linking the relationship between natural products fermented by probiotic, gut microbiota, immunity, and inflammation, this review presents the modulating effects of probiotics and their fermented natural products on the body, including immunity-enhancing and anti-inflammatory activities by modulating gut microbiota, and it is discussed that the current understanding of its molecular mechanisms. It may become a possible way to prevent COVID-19 through consuming natural products fermented by probiotic in our daily diet.
Collapse
Affiliation(s)
- Quancen Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenwen Cai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meifang Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
21
|
Ke S, Weiss ST, Liu YY. Dissecting the role of the human microbiome in COVID-19 via metagenome-assembled genomes. Nat Commun 2022; 13:5235. [PMID: 36068270 PMCID: PMC9446638 DOI: 10.1038/s41467-022-32991-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/24/2022] [Indexed: 11/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), primarily a respiratory disease caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is often accompanied by gastrointestinal symptoms. However, little is known about the relation between the human microbiome and COVID-19, largely due to the fact that most previous studies fail to provide high taxonomic resolution to identify microbes that likely interact with SARS-CoV-2 infection. Here we used whole-metagenome shotgun sequencing data together with assembly and binning strategies to reconstruct metagenome-assembled genomes (MAGs) from 514 COVID-19 related nasopharyngeal and fecal samples in six independent cohorts. We reconstructed a total of 11,584 medium-and high-quality microbial MAGs and obtained 5403 non-redundant MAGs (nrMAGs) with strain-level resolution. We found that there is a significant reduction of strain richness for many species in the gut microbiome of COVID-19 patients. The gut microbiome signatures can accurately distinguish COVID-19 cases from healthy controls and predict the progression of COVID-19. Moreover, we identified a set of nrMAGs with a putative causal role in the clinical manifestations of COVID-19 and revealed their functional pathways that potentially interact with SARS-CoV-2 infection. Finally, we demonstrated that the main findings of our study can be largely validated in three independent cohorts. The presented results highlight the importance of incorporating the human gut microbiome in our understanding of SARS-CoV-2 infection and disease progression.
Collapse
Affiliation(s)
- Shanlin Ke
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Zeinali T, Faraji N, Joukar F, Khan Mirzaei M, Kafshdar Jalali H, Shenagari M, Mansour-Ghanaei F. Gut bacteria, bacteriophages, and probiotics: Tripartite mutualism to quench the SARS-CoV2 storm. Microb Pathog 2022; 170:105704. [PMID: 35948266 PMCID: PMC9357283 DOI: 10.1016/j.micpath.2022.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Patients with SARS-CoV-2 infection, exhibit various clinical manifestations and severity including respiratory and enteric involvements. One of the main reasons for death among covid-19 patients is excessive immune responses directed toward cytokine storm with a low chance of recovery. Since the balanced gut microbiota could prepare health benefits by protecting against pathogens and regulating immune homeostasis, dysbiosis or disruption of gut microbiota could promote severe complications including autoimmune disorders; we surveyed the association between the imbalanced gut bacteria and the development of cytokine storm among COVID-19 patients, also the impact of probiotics and bacteriophages on the gut bacteria community to alleviate cytokine storm in COVID-19 patients. In present review, we will scrutinize the mechanism of immunological signaling pathways which may trigger a cytokine storm in SARS-CoV2 infections. Moreover, we are explaining in detail the possible immunological signaling pathway-directing by the gut bacterial community. Consequently, the specific manipulation of gut bacteria by using probiotics and bacteriophages for alleviation of the cytokine storm will be investigated. The tripartite mutualistic cooperation of gut bacteria, probiotics, and phages as a candidate prophylactic or therapeutic approach in SARS-CoV-2 cytokine storm episodes will be discussed at last.
Collapse
Affiliation(s)
- Tahereh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Faraji
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Center Munich and Technical University of Munich, 85764, Neuherberg, Germany
| | - Hossnieh Kafshdar Jalali
- Department of Microbiology, Faculty of Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Mohammad Shenagari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Caspian Digestive Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
23
|
Zhang CY, Liu S, Yang M. Crosstalk between gut microbiota and COVID-19 impacts pancreatic cancer progression. World J Gastrointest Oncol 2022; 14:1456-1468. [PMID: 36160747 PMCID: PMC9412935 DOI: 10.4251/wjgo.v14.i8.1456] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common causes of cancer-associated death worldwide, with a low rate of 5-year survival. Currently, the pathogenesis of PC is complicated, with no efficient therapy. Coronavirus disease 2019 (COVID-19) disease caused by severe acute respiratory syndrome coronavirus 2 further exacerbates the challenge of patients with PC. The alteration of gut microbiota caused by COVID-19 infection may impact PC progression in patients via immune regulation. The expression of inflammatory immune mediators such as interleukin (IL)-6, IL-8, and IL-10 has been found to increase in both PC and COVID-19 patients, which is associated with the disease severity and prognostic outcome. Gut microbiome serves as a critical connector between viral infection and PC. It can regulate host systemic immune response and impact the efficacy of immunotherapy. Here, we first demonstrated the features of inflammatory cytokines in both diseases and their impact on disease outcomes. Then, we demonstrated the importance of immunotherapeutic strategies. This includes the immune modulation that targets a single or dual receptors using a single agent or their combinations for the treatment of PC in patients who get infected with COVID-19. Additionally, we explored the possibility of managing the disease by regulating gut microbiome. Overall, modulation of the lung-gut-pancreases axis can boost anti-cancer immunotherapy and reduce adverse prognostic outcomes.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
24
|
Zhang F, Ng SC. Reply. Gastroenterology 2022; 163:337-338. [PMID: 35367195 PMCID: PMC8968176 DOI: 10.1053/j.gastro.2022.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/02/2022]
|
25
|
Gut Microbiota Disruption in COVID-19 or Post-COVID Illness Association with severity biomarkers: A Possible Role of Pre / Pro-biotics in manipulating microflora. Chem Biol Interact 2022; 358:109898. [PMID: 35331679 PMCID: PMC8934739 DOI: 10.1016/j.cbi.2022.109898] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus disease (COVID-19), a coronavirus-induced illness attributed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, is thought to have first emerged on November 17, 2019. According to World Health Organization (WHO). COVID-19 has been linked to 379,223,560 documented occurrences and 5,693,245 fatalities globally as of 1st Feb 2022. Influenza A virus that has also been discovered diarrhea and gastrointestinal discomfort was found in the infected person, highlighting the need of monitoring them for gastro intestinal tract (GIT) symptoms regardless of whether the sickness is respiration related. The majority of the microbiome in the intestines is Firmicutes and Bacteroidetes, while Bacteroidetes, Proteobacteria, and Firmicutes are found in the lungs. Although most people overcome SARS-CoV-2 infections, many people continue to have symptoms months after the original sickness, called Long-COVID or Post COVID. The term "post-COVID-19 symptoms" refers to those that occur with or after COVID-19 and last for more than 12 weeks (long-COVID-19). The possible understanding of biological components such as inflammatory, immunological, metabolic activity biomarkers in peripheral blood is needed to evaluate the study. Therefore, this article aims to review the informative data that supports the idea underlying the disruption mechanisms of the microbiome of the gastrointestinal tract in the acute COVID-19 or post-COVID-mediated elevation of severity biomarkers.
Collapse
|
26
|
Malnutrition Increases Hospital Length of Stay and Mortality among Adult Inpatients with COVID-19. Nutrients 2022; 14:nu14061310. [PMID: 35334967 PMCID: PMC8949069 DOI: 10.3390/nu14061310] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022] Open
Abstract
Background: Malnutrition has been linked to adverse health economic outcomes. There is a paucity of data on malnutrition in patients admitted with COVID-19. Methods: This is a retrospective cohort study consisting of 4311 COVID-19 adult (18 years and older) inpatients at 5 Johns Hopkins-affiliated hospitals between 1 March and 3 December 2020. Malnourishment was identified using the malnutrition universal screening tool (MUST), then confirmed by registered dietitians. Statistics were conducted with SAS v9.4 (Cary, NC, USA) software to examine the effect of malnutrition on mortality and hospital length of stay among COVID-19 inpatient encounters, while accounting for possible covariates in regression analysis predicting mortality or the log-transformed length of stay. Results: COVID-19 patients who were older, male, or had lower BMIs had a higher likelihood of mortality. Patients with malnutrition were 76% more likely to have mortality (p < 0.001) and to have a 105% longer hospital length of stay (p < 0.001). Overall, 12.9% (555/4311) of adult COVID-19 patients were diagnosed with malnutrition and were associated with an 87.9% increase in hospital length of stay (p < 0.001). Conclusions: In a cohort of COVID-19 adult inpatients, malnutrition was associated with a higher likelihood of mortality and increased hospital length of stay.
Collapse
|
27
|
Shahrbaf MA, Hassan M, Vosough M. COVID-19 and hygiene hypothesis: increment of the inflammatory bowel diseases in next generation? Expert Rev Gastroenterol Hepatol 2022; 16:1-3. [PMID: 34919489 DOI: 10.1080/17474124.2022.2020647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Amin Shahrbaf
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Research and Development Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Clinical Research Center (KFC) and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Clinical Research Center (KFC) and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
28
|
Diarrheal disease and gut microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:149-177. [DOI: 10.1016/bs.pmbts.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Rodriguez JAM, Bifano M, Roca Goma E, Plasencia CM, Torralba AO, Font MS, Millán PR. Effect and Tolerability of a Nutritional Supplement Based on a Synergistic Combination of β-Glucans and Selenium- and Zinc-Enriched Saccharomyces cerevisiae (ABB C1 ®) in Volunteers Receiving the Influenza or the COVID-19 Vaccine: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2021; 13:nu13124347. [PMID: 34959898 PMCID: PMC8708701 DOI: 10.3390/nu13124347] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
A single-center, randomized, double-blind, placebo-controlled study was conducted in 72 volunteers who received a synergistic combination of yeast-based ingredients with a unique β-1,3/1,6-glucan complex and a consortium of heat-treated probiotic Saccharomyces cerevisiae rich in selenium and zinc (ABB C1®) or placebo on the next day after getting vaccinated against influenza (Chiromas®) (n = 34) or the COVID-19 (Comirnaty®) (n = 38). The duration of treatment was 30 and 35 days for the influenza and COVID-19 vaccine groups, respectively. Mean levels of CD4+T cells increased from 910.7 at baseline to 1000.2 cells/µL after the second dose of the COVID-19 vaccine in the ABB C1® group, whereas there was a decrease from 1055.1 to 929.8 cells/µL in the placebo group. Changes of CD3+T and CD8+T lymphocytes showed a similar trend. In the COVID-19 cohort, the increases in both IgG and IgM were higher in the ABB C1® supplement than in the placebo group. Serum levels of selenium and zinc showed a higher increase in subjects treated with the active product than in those receiving placebo. No serious adverse events related to ABB C1® or tolerance issues were reported. The study findings validate the capacity of the ABB C1® product to stimulate trained immunity.
Collapse
Affiliation(s)
- Julián Andrés Mateus Rodriguez
- Hospital Mare de Déu de la Mercè, Hermanas Hospitalarias, 08042 Barcelona, Spain; (M.B.); (C.M.P.); (A.O.T.); (M.S.F.); (P.R.M.)
- Clinica Nostra Senyora del Remei, 08024 Barcelona, Spain
- CBC Isabel Roig, 08030 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-4275250
| | - Mónica Bifano
- Hospital Mare de Déu de la Mercè, Hermanas Hospitalarias, 08042 Barcelona, Spain; (M.B.); (C.M.P.); (A.O.T.); (M.S.F.); (P.R.M.)
| | - Elvira Roca Goma
- Unitat Polivalent Barcelona Nord, Hermanas Hospitalarias, 08035 Barcelona, Spain;
| | - Carlos Méndez Plasencia
- Hospital Mare de Déu de la Mercè, Hermanas Hospitalarias, 08042 Barcelona, Spain; (M.B.); (C.M.P.); (A.O.T.); (M.S.F.); (P.R.M.)
| | - Anna Olivé Torralba
- Hospital Mare de Déu de la Mercè, Hermanas Hospitalarias, 08042 Barcelona, Spain; (M.B.); (C.M.P.); (A.O.T.); (M.S.F.); (P.R.M.)
| | - Mercè Santó Font
- Hospital Mare de Déu de la Mercè, Hermanas Hospitalarias, 08042 Barcelona, Spain; (M.B.); (C.M.P.); (A.O.T.); (M.S.F.); (P.R.M.)
| | - Pedro Roy Millán
- Hospital Mare de Déu de la Mercè, Hermanas Hospitalarias, 08042 Barcelona, Spain; (M.B.); (C.M.P.); (A.O.T.); (M.S.F.); (P.R.M.)
| |
Collapse
|
30
|
Snapshot of COVID-19 superinfections in Marseille hospitals: where are the common pathogens? Epidemiol Infect 2021; 150:e195. [PMID: 36345840 PMCID: PMC9744451 DOI: 10.1017/s0950268822001704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Episodes of bacterial superinfections have been well identified for several respiratory viruses, notably influenza. In this retrospective study, we compared the frequency of superinfections in COVID-19 patients to those found in influenza-positive patients, and to controls without viral infection. We included 42 468 patients who had been diagnosed with COVID-19 and 266 261 subjects who had tested COVID-19 negative between 26 February 2020 and 1 May 2021. In addition, 4059 patients were included who had tested positive for the influenza virus between 1 January 2017 and 31 December 2019. Bacterial infections in COVID-19 patients were more frequently healthcare-associated, and acquired in ICUs, were associated with longer ICU stays, and occurred in older and male patients when compared to controls and to influenza patients (P < 0.0001 for all). The most common pathogens proved to be less frequent in COVID-19 patients, including fewer cases of bacteraemia involving E. coli (P < 0.0001) and Klebsiella pneumoniae (P = 0.027) when compared to controls. In respiratory specimens Haemophilus influenzae (P < 0.0001) was more frequent in controls, while Streptococcus pneumoniae (P < 0.0001) was more frequent in influenza patients. Likewise, species associated with nosocomial transmission, such as Pseudomonas aeruginosa and Staphylococcus epidermidis, were more frequent among COVID-19 patients. Finally, we observed a high frequency of Enterococcus faecalis bacteraemia among COVID-19 patients, which were mainly ICU-acquired and associated with a longer timescale to acquisition.
Collapse
|
31
|
Baradaran Ghavami S, Pourhamzeh M, Farmani M, Keshavarz H, Shahrokh S, Shpichka A, Asadzadeh Aghdaei H, Hakemi-Vala M, Hossein-khannazer N, Timashev P, Vosough M. Cross-talk between immune system and microbiota in COVID-19. Expert Rev Gastroenterol Hepatol 2021; 15:1281-1294. [PMID: 34654347 PMCID: PMC8567289 DOI: 10.1080/17474124.2021.1991311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/06/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Human gut microbiota plays a crucial role in providing protective responses against pathogens, particularly by regulating immune system homeostasis. There is a reciprocal interaction between the gut and lung microbiota, called the gut-lung axis (GLA). Any alteration in the gut microbiota or their metabolites can cause immune dysregulation, which can impair the antiviral activity of the immune system against respiratory viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. AREAS COVERED This narrative review mainly outlines emerging data on the mechanisms underlying the interactions between the immune system and intestinal microbial dysbiosis, which is caused by an imbalance in the levels of essential metabolites. The authors will also discuss the role of probiotics in restoring the balance of the gut microbiota and modulation of cytokine storm. EXPERT OPINION Microbiota-derived signals regulate the immune system and protect different tissues during severe viral respiratory infections. The GLA's equilibration could help manage the mortality and morbidity rates associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Hediye Keshavarz
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Shabnam Shahrokh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Mojdeh Hakemi-Vala
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
32
|
Abstract
The intestinal microbiome influences host health, and its responsiveness to diet and disease is increasingly well studied. However, our understanding of the factors driving microbiome variation remain limited. Temperature is a core factor that controls microbial growth, but its impact on the microbiome remains to be fully explored. Although commonly assumed to be a constant 37°C, normal body temperatures vary across the animal kingdom, while individual body temperature is affected by multiple factors, including circadian rhythm, age, environmental temperature stress, and immune activation. Changes in body temperature via hypo- and hyperthermia have been shown to influence the gut microbiota in a variety of animals, with consistent effects on community diversity and stability. It is known that temperature directly modulates the growth and virulence of gastrointestinal pathogens; however, the effect of temperature on gut commensals is not well studied. Further, body temperature can influence other host factors, such as appetite and immunity, with indirect effects on the microbiome. In this minireview, we discuss the evidence linking body temperature and the intestinal microbiome and their implications for microbiome function during hypothermia, heat stress, and fever.
Collapse
Affiliation(s)
- Kelsey E. Huus
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
Linking the gut microbiota to persistent symptoms in survivors of COVID-19 after discharge. J Microbiol 2021; 59:941-948. [PMID: 34382150 PMCID: PMC8356893 DOI: 10.1007/s12275-021-1206-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/22/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022]
Abstract
Several follow-up studies have found that COVID-19 (coronavirus disease 2019) patients had persistent symptoms after discharge. Gut microbiota play an important role in human health and immune responses. Therefore, this study investigated the gut microbiota of recovered COVID-19 patients and the correlations between gut microbiota and persistent symptoms after discharge. Stool samples were collected from 15 recovered healthcare workers (HCWs) with COVID-19 at three months after discharge, in addition, stool samples were collected from 14 healthy controls (HCs) to perform 16S rRNA gene sequencing between May and July 2020. Compared with HCs, recovered HCWs had reduced bacterial diversity at three months after discharge, with a significantly higher relative abundance of opportunistic pathogens, and a significantly lower relative abundance of beneficial bacteria. In addition, Escherichia unclassified was positively correlated with persistent symptoms at three months after discharge, including fatigue (r = 0.567, p = 0.028), chest tightness after activity (r = 0.687, p = 0.005), and myalgia (r = 0.523, p = 0.045). Intestinibacter bartlettii was positively correlated with anorexia (r = 0.629, p = 0.012) and fatigue (r = 0.545, p = 0.036). However, Faecalibacterium prausnitzii was negatively correlated with chest tightness after activity (r = -0.591, p = 0.02), and Intestinimonas butyriciproducens was negatively correlated with cough (r = -0.635, p = 0.011). In conclusion, the gut microbiota of recovered HCWs with COVID-19 at three months after discharge was different from that of HCs, and altered gut microbiota was correlated with persistent symptoms after discharge, highlighting that gut microbiota may play an important role in the recovery of patients with COVID-19.
Collapse
|