1
|
Han S, Ren J, Li Z, Wen J, Jiang B, Wei X. Deactivation of dorsal CA1 pyramidal neurons projecting to medial prefrontal cortex contributes to neuropathic pain and short-term memory impairment. Pain 2024; 165:1044-1059. [PMID: 37889600 DOI: 10.1097/j.pain.0000000000003100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/06/2023] [Indexed: 10/29/2023]
Abstract
ABSTRACT Neuropathic pain after peripheral nerve injury is a multidimensional experience that includes sensory, affective, and cognitive components that interact with one another. Hypoexcitation of the medial prefrontal cortex (mPFC) was observed in mice with peripheral nerve injury, but the changes in neural inputs onto the mPFC have not been completely explored. Here, we report that the neural terminals from the dorsal hippocampus CA1 (dCA1) form excitatory connection with layer 5 pyramidal neurons in the prelimbic area (PrL) of the mPFC. Spared nerve injury (SNI) induced a reduction in the intrinsic excitability of dCA1 pyramidal neurons innervating the PrL and impairment in excitatory synaptic transmission onto dCA1 pyramidal cells. Specifically, activating the neural circuit from dCA1 to mPFC alleviated neuropathic pain behaviors and improved novel object recognition ability in SNI mice, whereas deactivating this pathway in naïve animals recapitulated tactile allodynia and memory deficits. These results indicated that hypoactivity in dCA1 pyramidal cells after SNI in turn deactivated layer 5 pyramidal neurons in PrL and ultimately caused pain hypersensitivity and memory deficits.
Collapse
Affiliation(s)
- Shuang Han
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiale Ren
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ziming Li
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junjian Wen
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuhong Wei
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Abreu-Mendes P, Dias D, Magno F, Silva G, Rodrigues-Fonseca J, Dinis P, Cruz F, Almeida Pinto R. A Pilot Study of Functional Brain Magnetic Resonance Imaging in BPS/IC Patients: Evidence of Central Sensitization. UROLOGY RESEARCH & PRACTICE 2024; 50:53-57. [PMID: 39115335 PMCID: PMC11059973 DOI: 10.5152/tud.2024.23209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/16/2024] [Indexed: 08/12/2024]
Abstract
Bladder pain syndrome/Interstitial cystitis (BPS/IC) is characterized by increased activity in bladder afferent pathways, recruitment of silent nociceptive neurons, and sensitization of the brain areas responsible for pain amplification. Default mode network (DMN) is a set of regions activated during the resting state, which reflect the brain's intrinsic activity. Conversely, the sensorimotor network (SMN) plays a key role in structural neuroplasticity. This study aimed to evaluate DMN and SMN activity in BPS/IC patients, both with and without bladder noxious stimulus, using functional brain magnetic resonance imaging (MRI). Six BPS/IC female patients underwent 3 Tesla fMRI brain scanners. Acquisitions consisted of 10-minute blood oxygen level-dependent echo-planar imaging. The first acquisition was with an empty bladder, painless, and the second was with suprapubic pain. Data were processed using the independent component analysis method with the MELODIC tool from the functional brain MRI of the Brain Software Library (FSL). A semi-quantitative analysis was performed afterward. The patients' age was 42.6 ± 5 years, pain intensity was 7 ± 0.7 (0-10), day and night frequency were 9.2 ± 2.2 and 2.8 ± 1.0, and maximal bladder capacity was 260 ± 54 mL. One patient was unable to complete the study. All patients showed a comparable DMN activation in both empty and full bladder states, and all presented high SMN activation whether the bladder was empty or full. The activation of DMN at both bladder states, empty and full, and constant SMN activation without and with pain supports the role of these networks in BPS/IC. Similar findings have been reported in other chronic pain syndromes.
Collapse
Affiliation(s)
- Pedro Abreu-Mendes
- Department of Urology, Centro Hospitalar e Universitário de São João, Porto, Portugal
- Department of Surgery and Physiology, University of Porto, Faculty of Medicine, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Diogo Dias
- Department of Urology, Centro Hospitalar e Universitário de São João, Porto, Portugal
| | - Francisca Magno
- Department of Gynecology and Obstetrics, Maternidade Alfredo da Costa, Lisbon, Portugal
| | - Guilherme Silva
- Department of Neuroradiology, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - José Rodrigues-Fonseca
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Paulo Dinis
- Department of Urology, Centro Hospitalar e Universitário de São João, Porto, Portugal
- Department of Surgery and Physiology, University of Porto, Faculty of Medicine, Porto, Portugal
| | - Francisco Cruz
- Department of Urology, Centro Hospitalar e Universitário de São João, Porto, Portugal
- Department of Surgery and Physiology, University of Porto, Faculty of Medicine, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Rui Almeida Pinto
- Department of Urology, Centro Hospitalar e Universitário de São João, Porto, Portugal
- Department of Surgery and Physiology, University of Porto, Faculty of Medicine, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Mandloi S, Syed M, Shoraka O, Ailes I, Kang KC, Sathe A, Heller J, Thalheimer S, Mohamed FB, Sharan A, Harrop J, Krisa L, Matias C, Alizadeh M. The role of the insula in chronic pain following spinal cord injury: A resting-state fMRI study. J Neuroimaging 2023; 33:781-791. [PMID: 37188633 DOI: 10.1111/jon.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Spinal cord injury (SCI) results in the loss of motor and sensory function from disconnections between efferent and afferent pathways. Most SCI patients are affected with chronic neuropathic pain, but there is a paucity of data concerning neuroplastic changes following SCI. Chronic pain disrupts default networks and is associated with abnormal insular connectivity. The posterior insula (PI) is associated with the degree of pain and intensity of pain. The anterior insula (AI) is related to signal changes. Comprehension of SCI pain mechanisms is essential to elucidate effective treatment options. METHODS This study examines the insular gyri functional connectivity (FC) of seven (five male, two female) SCI participants with moderate-severe chronic pain compared to 10 (five male, five female) healthy controls (HC). All subjects had 3-Tesla MRI performed and resting-state functional MRI (fMRI) was acquired. FC metrics were obtained from the comparisons of resting-state fMRI among our various groups. A seed-to-voxel analysis was pursued, encompassing six gyri of the insula. For multiple comparisons, a correction was applied with a significance level of p < .05. RESULTS There were significant differences in FC of the insula between SCI participants with chronic pain compared with HC. In the SCI participants, there was hyperconnectivity of the AI and PI to the frontal pole. In addition, there was increased FC noted between the PI and the anterior cingulate cortex. Hyperconnectivity was also observed between the AI and the occipital cortex. CONCLUSIONS These findings illustrate that there is a complex hyperconnectivity and modulation of pain pathways after traumatic SCI.
Collapse
Affiliation(s)
- Shreya Mandloi
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mashaal Syed
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Omid Shoraka
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Isaiah Ailes
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ki Chang Kang
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Anish Sathe
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joshua Heller
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sara Thalheimer
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Feroze B Mohamed
- Thomas Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ashwini Sharan
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James Harrop
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Laura Krisa
- Department of Physical Therapy, Jefferson College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Caio Matias
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mahdi Alizadeh
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Thomas Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Akbari E, Beheshti F, Zarmehri HA, Mousavi SY, Gholami M, Ahmadi-Soleimani SM. Comparative investigation of analgesic tolerance to taurine, sodium salicylate and morphine: Involvement of peripheral muscarinic receptors. Neurosci Lett 2023; 795:137041. [PMID: 36586531 DOI: 10.1016/j.neulet.2022.137041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Nowadays various analgesic medications are used for the management of acute and chronic pain. Among these opioid and non-steroidal anti-inflammatory drugs stand in the first line of therapy, however, prolonged administration of these substance is generally challenged by development of analgesic tolerance in patients. Therefore, it is highly valuable to find new pharmacological strategies for prolonged therapeutic procedures. In this respect, Taurine, a free amino acid, has been shown to induce significant analgesia at both spinal and peripheral levels through cholinergic mechanisms. In the present study, we used hot-plate analgesic test to investigate how taurine either as a single medication or in combination with sodium salicylate and morphine may affect both acute response to pain and development of analgesic tolerance. The effect of taurine was also tested on morphine withdrawal syndrome. Hyoscine butyl bromide was used to assess the role of muscarinic receptors in taurine-mediated effects. Finally, biochemical assay was done to reveal how the activity of brain acetylcholinesterase may change in relation with muscarinic receptor activity. Results indicated that acute administration of taurine-sodium salicylate combination causes more potent analgesia compared to the use of tau (but not SS alone) and this seems to be mediated via activity of muscarinic receptors in peripheral nervous system. Furthermore, the effect of this combination undergoes less analgesic tolerance during time. Combination of taurine and morphine is an effective strategy to attenuate both morphine analgesic tolerance and dependence and this also seems to depend on activity of muscarinic receptors, however through differential cellular mechanisms.
Collapse
Affiliation(s)
- Elham Akbari
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Deparment of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Deparment of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hassan Azhdari Zarmehri
- Deparment of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Seyed Yousof Mousavi
- Neuroscience Research Center, Kavosh Educational-Research Institute, Kabul, Afghanistan
| | - Masoumeh Gholami
- Deparment of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Department of Physiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - S Mohammad Ahmadi-Soleimani
- Deparment of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
5
|
Huynh V, Lütolf R, Rosner J, Luechinger R, Curt A, Kollias S, Michels L, Hubli M. Descending pain modulatory efficiency in healthy subjects is related to structure and resting connectivity of brain regions. Neuroimage 2021; 247:118742. [PMID: 34863962 DOI: 10.1016/j.neuroimage.2021.118742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
The descending pain modulatory system in humans is commonly investigated using conditioned pain modulation (CPM). Whilst variability in CPM efficiency, i.e., inhibition and facilitation, is normal in healthy subjects, exploring the inter-relationship between brain structure, resting-state functional connectivity (rsFC) and CPM readouts will provide greater insight into the underlying CPM efficiency seen in healthy individuals. Thus, this study combined CPM testing, voxel-based morphometry (VBM) and rsFC to identify the neural correlates of CPM in a cohort of healthy subjects (n =40), displaying pain inhibition (n = 29), facilitation (n = 10) and no CPM effect (n = 1). Clusters identified in the VBM analysis were implemented in the rsFC analysis alongside key constituents of the endogenous pain modulatory system. Greater pain inhibition was related to higher volume of left frontal cortices and stronger rsFC between the motor cortex and periaqueductal grey. Conversely, weaker pain inhibition was related to higher volume of the right frontal cortex - coupled with stronger rsFC to the primary somatosensory cortex, and rsFC between the amygdala and posterior insula. Overall, healthy subjects showed higher volume and stronger rsFC of brain regions involved with descending modulation, while the lateral and medial pain systems were related to greater pain inhibition and facilitation during CPM, respectively. These findings reveal structural alignments and functional interactions between supraspinal areas involved in CPM efficiency. Ultimately understanding these underlying variations and how they may become affected in chronic pain conditions, will advance a more targeted subgrouping in pain patients for future cross-sectional studies investigating endogenous pain modulation.
Collapse
Affiliation(s)
- Vincent Huynh
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland; Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland.
| | - Robin Lütolf
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Roger Luechinger
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland
| | - Spyros Kollias
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Lars Michels
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland
| |
Collapse
|
6
|
Liu TH, Wang Z, Xie F, Liu YQ, Lin Q. Contributions of aversive environmental stress to migraine chronification: Research update of migraine pathophysiology. World J Clin Cases 2021; 9:2136-2145. [PMID: 33850932 PMCID: PMC8017499 DOI: 10.12998/wjcc.v9.i9.2136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Clinical studies have suggested that internal and/or external aversive cues may produce a negative affective-motivational component whereby maladaptive responses (plasticity) of dural afferent neurons are initiated contributing to migraine chronification. However, pathophysiological processes and neural circuitry involved in aversion (unpleasantness)-producing migraine chronification are still evolving. An interdisciplinary team conducted this narrative review aimed at reviewing neuronal plasticity for developing migraine chronicity and its relevant neurocircuits and providing the most cutting-edge information on neuronal mechanisms involved in the processing of affective aspects of pain and the role of unpleasantness evoked by internal and/or external cues in facilitating the chronification process of migraine headache. Thus, information presented in this review promotes the understanding of the pathophysiology of chronic migraine and contribution of unpleasantness (aversion) to migraine chronification. We hope that it will bring clinicians’ attention to how the maladaptive neuroplasticity of the emotion brain in the aversive environment produces a significant impact on the chronification of migraine headache, which will in turn lead to new therapeutic strategies for this type of pain.
Collapse
Affiliation(s)
- Tang-Hua Liu
- Department of Algology, The Third People's Hospital of Yibin, Yibin 644000, Sichuan Province, China
| | - Zhen Wang
- Department of Psychology, University of Texas at Arlington, Arlington, TX 76019, United States
| | - Fang Xie
- Department of Algology, The Third People's Hospital of Yibin, Yibin 644000, Sichuan Province, China
| | - Yan-Qing Liu
- Department of Algology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qing Lin
- Department of Psychology, University of Texas at Arlington, Arlington, TX 76019, United States
| |
Collapse
|
7
|
Cortical Modulation of Nociception. Neuroscience 2021; 458:256-270. [PMID: 33465410 DOI: 10.1016/j.neuroscience.2021.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/28/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Nociception is the neuronal process of encoding noxious stimuli and could be modulated at peripheral, spinal, brainstem, and cortical levels. At cortical levels, several areas including the anterior cingulate cortex (ACC), prefrontal cortex (PFC), ventrolateral orbital cortex (VLO), insular cortex (IC), motor cortex (MC), and somatosensory cortices are involved in nociception modulation through two main mechanisms: (i) a descending modulatory effect at spinal level by direct corticospinal projections or mostly by activation of brainstem structures (i.e. periaqueductal grey matter (PAG), locus coeruleus (LC), the nucleus of raphe (RM) and rostroventral medulla (RVM)); and by (ii) cortico-cortical or cortico-subcortical interactions. This review summarizes evidence related to the participation of the aforementioned cortical areas in nociception modulation and different neurotransmitters or neuromodulators that have been studied in each area. Besides, we point out the importance of considering intracortical neuronal populations and receptors expression, as well as, nociception-induced cortical changes, both functional and connectional, to better understand this modulatory effect. Finally, we discuss the possible mechanisms that could potentiate the use of cortical stimulation as a promising procedure in pain alleviation.
Collapse
|
8
|
CB1-cannabinoid-, TRPV1-vanilloid- and NMDA-glutamatergic-receptor-signalling systems interact in the prelimbic cerebral cortex to control neuropathic pain symptoms. Brain Res Bull 2020; 165:118-128. [DOI: 10.1016/j.brainresbull.2020.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 12/28/2022]
|
9
|
Oliva V, Gregory R, Davies WE, Harrison L, Moran R, Pickering AE, Brooks JCW. Parallel cortical-brainstem pathways to attentional analgesia. Neuroimage 2020; 226:117548. [PMID: 33186712 PMCID: PMC7836236 DOI: 10.1016/j.neuroimage.2020.117548] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 01/04/2023] Open
Abstract
Pain demands attention, yet pain can be reduced by focusing attention elsewhere. The neural processes involved in this robust psychophysical phenomenon, attentional analgesia, are still being defined. Our previous fMRI study linked activity in the brainstem triad of locus coeruleus (LC), rostral ventromedial medulla (RVM) and periaqueductal grey (PAG) with attentional analgesia. Here we identify and model the functional interactions between these regions and the cortex in healthy human subjects (n = 57), who received painful thermal stimuli whilst simultaneously performing a visual attention task. RVM activity encoded pain intensity while contralateral LC activity correlated with attentional analgesia. Psycho-Physiological Interaction analysis and Dynamic Causal Modelling identified two parallel paths between forebrain and brainstem. These connections are modulated by attentional demand: a bidirectional anterior cingulate cortex (ACC) - right-LC loop, and a top-down influence of task on ACC-PAG-RVM. By recruiting discrete brainstem circuits, the ACC is able to modulate nociceptive input to reduce pain in situations of conflicting attentional demand.
Collapse
Affiliation(s)
- Valeria Oliva
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Rob Gregory
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Anaesthesia, Pain and Critical Care Sciences, Bristol Medical School, University Hospitals Bristol, Bristol BS2 8HW, United Kingdom
| | - Wendy-Elizabeth Davies
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Anaesthesia, Pain and Critical Care Sciences, Bristol Medical School, University Hospitals Bristol, Bristol BS2 8HW, United Kingdom
| | - Lee Harrison
- School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, United Kingdom
| | - Rosalyn Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, United Kingdom
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Anaesthesia, Pain and Critical Care Sciences, Bristol Medical School, University Hospitals Bristol, Bristol BS2 8HW, United Kingdom
| | - Jonathan C W Brooks
- School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, United Kingdom.
| |
Collapse
|
10
|
Salience network functional connectivity is spatially heterogeneous across sensorimotor cortex in healthy humans. Neuroimage 2020; 221:117177. [PMID: 32702484 PMCID: PMC8462097 DOI: 10.1016/j.neuroimage.2020.117177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/08/2020] [Accepted: 07/14/2020] [Indexed: 11/30/2022] Open
Abstract
The salience network is responsive during a range of conditions requiring immediate behavioral responses, including pain processing. Resting-state functional connectivity of the salience network to the sensorimotor cortex is altered in chronic pain. However, little is understood about their fundamental communication in the absence of pain. In this study, we mapped salience network resting-state functional connectivity across sensorimotor cortex in healthy individuals. Using electromyography and task-based functional magnetic resonance imaging (fMRI), we first localized distinct regions-of-interest across sensorimotor cortex in medial (gluteal), intermediate (shoulder), and lateral (hand) areas. We then used resting-state fMRI for two cohorts (primary and replication) of healthy individuals from public repositories to map salience network resting-state functional connectivity across sensorimotor cortex. Both the primary and replication cohorts exhibited significant heterogeneity in salience network resting-state functional connectivity across the sensorimotor regions-of-interest. Using a cortical flatmap to visualize the entire sensorimotor surface, we observed similar heterogeneity in both cohorts. In general, the somatotopic representation of proximal body regions (trunk/face) had higher salience network resting-state functional connectivity compared to distal body regions (upper/lower limbs). We conclude that sensorimotor cortex is spatially heterogeneous in its interaction with the salience network in healthy individuals.
Collapse
|
11
|
Rahal L, Thibaut M, Rivals I, Claron J, Lenkei Z, Sitt JD, Tanter M, Pezet S. Ultrafast ultrasound imaging pattern analysis reveals distinctive dynamic brain states and potent sub-network alterations in arthritic animals. Sci Rep 2020; 10:10485. [PMID: 32591574 PMCID: PMC7320008 DOI: 10.1038/s41598-020-66967-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 05/29/2020] [Indexed: 01/20/2023] Open
Abstract
Chronic pain pathologies, which are due to maladaptive changes in the peripheral and/or central nervous systems, are debilitating diseases that affect 20% of the European adult population. A better understanding of the mechanisms underlying this pathogenesis would facilitate the identification of novel therapeutic targets. Functional connectivity (FC) extracted from coherent low-frequency hemodynamic fluctuations among cerebral networks has recently brought light on a powerful approach to study large scale brain networks and their disruptions in neurological/psychiatric disorders. Analysis of FC is classically performed on averaged signals over time, but recently, the analysis of the dynamics of FC has also provided new promising information. Keeping in mind the limitations of animal models of persistent pain but also the powerful tool they represent to improve our understanding of the neurobiological basis of chronic pain pathogenicity, this study aimed at defining the alterations in functional connectivity, in a clinically relevant animal model of sustained inflammatory pain (Adjuvant-induced Arthritis) in rats by using functional ultrasound imaging, a neuroimaging technique with a unique spatiotemporal resolution (100 μm and 2 ms) and sensitivity. Our results show profound alterations of FC in arthritic animals, such as a subpart of the somatomotor (SM) network, occurring several weeks after the beginning of the disease. Also, we demonstrate for the first time that dynamic functional connectivity assessed by ultrasound can provide quantitative and robust information on the dynamic pattern that we define as brain states. While the main state consists of an overall synchrony of hemodynamic fluctuations in the SM network, arthritic animal spend statistically more time in two other states, where the fluctuations of the primary sensory cortex of the inflamed hind paws show asynchrony with the rest of the SM network. Finally, correlating FC changes with pain behavior in individual animals suggest links between FC alterations and either the cognitive or the emotional aspects of pain. Our study introduces fUS as a new translational tool for the enhanced understanding of the dynamic pain connectome and brain plasticity in a major preclinical model of chronic pain.
Collapse
Affiliation(s)
- Line Rahal
- Laboratory of Brain Plasticity, ESPCI Paris, PSL Research University, CNRS UMR 8249, 10 rue Vauquelin, 75005, Paris, France
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Paris, France
| | - Miguel Thibaut
- Laboratory of Brain Plasticity, ESPCI Paris, PSL Research University, CNRS UMR 8249, 10 rue Vauquelin, 75005, Paris, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, UMRS 1158, 10 rue Vauquelin, 75005, Paris, France
| | - Julien Claron
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Paris, France
| | - Zsolt Lenkei
- Laboratory of Brain Plasticity, ESPCI Paris, PSL Research University, CNRS UMR 8249, 10 rue Vauquelin, 75005, Paris, France
- Center of Psychiatry and Neurosciences, INSERM U894, 102 rue de la Santé, 75014, Paris, France
| | - Jacobo D Sitt
- Institut du Cerveau et de la Moelle, INSERM U1127, CNRS UMR 7225, Sorbonne University, UPMC Univ Paris 06 UMR, S 1127, Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Paris, France
| | - Sophie Pezet
- Laboratory of Brain Plasticity, ESPCI Paris, PSL Research University, CNRS UMR 8249, 10 rue Vauquelin, 75005, Paris, France.
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Paris, France.
| |
Collapse
|
12
|
Cha M, Lee KH, Lee BH. Astroglial changes in the zona incerta in response to motor cortex stimulation in a rat model of chronic neuropathy. Sci Rep 2020; 10:943. [PMID: 31969638 PMCID: PMC6976635 DOI: 10.1038/s41598-020-57797-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
Although astrocytes are known to regulate synaptic transmission and affect new memory formation by influencing long-term potentiation and functional synaptic plasticity, their role in pain modulation is poorly understood. Motor cortex stimulation (MCS) has been used to reduce neuropathic pain through the incertothalamic pathway, including the primary motor cortex (M1) and the zona incerta (ZI). However, there has been no in-depth study of these modulatory effects and region-specific changes in neural plasticity. In this study, we investigated the effects of MCS-induced pain modulation as well as the relationship between the ZI neuroplasticity and MCS-induced pain alleviation in neuropathic pain (NP). MCS-induced threshold changes were evaluated after daily MCS. Then, the morphological changes of glial cells were compared by tissue staining. In order to quantify the neuroplasticity, MAP2, PSD95, and synapsin in the ZI and M1 were measured and analyzed with western blot. In behavioral test, repetitive MCS reduced NP in nerve-injured rats. We also observed recovered GFAP expression in the NP with MCS rats. In the NP with sham MCS rats, increased CD68 level was observed. In the NP with MCS group, increased mGluR1 expression was observed. Analysis of synaptogenesis-related molecules in the M1 and ZI revealed that synaptic changes occured in the M1, and increased astrocytes in the ZI were more closely associated with pain alleviation after MCS. Our findings suggest that MCS may modulate the astrocyte activities in the ZI and synaptic changes in the M1. Our results may provide new insight into the important and numerous roles of astrocytes in the formation and function.
Collapse
Affiliation(s)
- Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan, 47011, Republic of Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Brain Korea 21 PLUS Project for Medical Science, Brain Research Institute, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
13
|
Liu Q, Zeng XC, Jiang XM, Zhou ZH, Hu XF. Altered Brain Functional Hubs and Connectivity Underlie Persistent Somatoform Pain Disorder. Front Neurosci 2019; 13:415. [PMID: 31114477 PMCID: PMC6502961 DOI: 10.3389/fnins.2019.00415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
This study investigated the degree of brain functional impairment in persistent somatoform pain disorder (PSPD) by examining changes in the patterns of brain functional hubs. Resting-state functional magnetic resonance imaging was performed in 21 PSPD patients with headache as the main symptom and 17 sex- and age-matched healthy controls. Degree centrality (DC) analysis as well as the connectivity among these hubs by functional connectivity (FC) analysis and Granger causality analysis (GCA) were performed to characterize abnormal brain networks in PSPD (Gaussian random field corrected: P < 0.001, Z > 3.09). The relationships between DC and connectivity and clinical parameters were also examined. DC values in the bilateral inferior occipital gyrus (IOG), bilateral calcarine fissure (CAL), and left paracentral lobule (PCL) and FC values of right IOG–left CAL, right IOG–right CAL, right IOG–left IOG, left CAL–right CAL, left CAL–left IOG, left CAL–left PCL, right CAL–left PCL, and left IOG–left PCL were lower in PSPD patients as compared to controls. A negative causal effect from the left CAL to the left paracentral lobule and a positive effect from the right CAL to the right IOG were observed in PSPD patients. Abnormal DC, FC, and signed-path coefficients in PSPD patients were negatively correlated with self-rating anxiety and depression scale scores. These results indicate that altered functional hubs and connectivity patterns in the somatosensory cortex may reflect emotional disturbance in PSPD patients.
Collapse
Affiliation(s)
- Qu Liu
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xian-Chun Zeng
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiao-Mei Jiang
- Department of Centre for Disease Prevention and Control, Chengdu Military Region, Chengdu, China
| | - Zhen-Hua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiao-Fei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
14
|
Affiliation(s)
- Jing Wang
- Key Laboratory of Orthopedics Disease of Gansu Province, the Second Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| |
Collapse
|
15
|
Chen X, Chen Z, Dong Z, Liu M, Yu S. Morphometric changes over the whole brain in caffeine-containing combination-analgesic-overuse headache. Mol Pain 2018; 14:1744806918778641. [PMID: 29877133 PMCID: PMC5992799 DOI: 10.1177/1744806918778641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Objective To investigate brain morphometric changes in medication-overuse headache with excessive intake of caffeine-containing combination analgesics. Materials and methods We recruited 32 medication-overuse headache patients overusing caffeine-containing combination analgesics and 26 normal controls with matched sex and age. Magnetic resonance T1-weighted images were processed by automatic volume algorithm of brain regions over the whole brain according to the neuromorphometrics template. We explored the volume differences between groups and correlation with clinical variables. Results Medication-overuse headache patients demonstrated decreased volume in cerebellum, optic chiasm, and increased volume in right lateral orbital gyrus, left calcarine, bilateral middle occipital gyrus, right superior parietal lobe, and right temporal transverse gyrus compared with normal controls. The increased volume was primarily contributed by patients of lower headache frequency (10–20 days/month) and with no psychological comorbidities. In regression analyses, the volume of bilateral middle occipital gyrus had negative association with migraine duration, and the volume of right lateral orbital gyrus and right superior parietal lobe was negatively correlated with number of medications per month. Conclusions Volume changes of brain regions involved in affective and cognitive processing, visual and auditory perception, and pain sensory/discrimination suggested a particular role of those regions in the pathogenesis of medication-overuse headache overusing caffeine-containing combination analgesics. Morphometric changes in multiple visual processing areas and volume gain in lower headache frequency and less anxiety and depression may be specific features related to overusing caffeine-containing combination analgesics.
Collapse
Affiliation(s)
- Xiaoyan Chen
- 1 Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Zhiye Chen
- 1 Department of Neurology, Chinese PLA General Hospital, Beijing, China.,2 Department of Radiology, Chinese PLA General Hospital, Beijing, China.,3 Department of Radiology, Hainan Branch of Chinese PLA General Hospital, Hainan, China
| | - Zhao Dong
- 1 Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Mengqi Liu
- 2 Department of Radiology, Chinese PLA General Hospital, Beijing, China.,3 Department of Radiology, Hainan Branch of Chinese PLA General Hospital, Hainan, China
| | - Shengyuan Yu
- 1 Department of Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Granato A, Fantini J, Monti F, Furlanis G, Musho Ilbeh S, Semenic M, Manganotti P. Dramatic placebo effect of high frequency repetitive TMS in treatment of chronic migraine and medication overuse headache. J Clin Neurosci 2018; 60:96-100. [PMID: 30316627 DOI: 10.1016/j.jocn.2018.09.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/26/2018] [Indexed: 01/03/2023]
Abstract
Chronic migraine (CM) is often associated with medication overuse headache (MOH). Few small trials have been conducted on Transcranial Magnetic Stimulation for CM treatment, but results are conflicting. Aim of the study was to investigate the effects of high frequency of repetitive Transcranial Magnetic Stimulation (hf-rTMS) in the dorsolateral prefrontal cortex combined with strongly suggesting to avoid medications overuse in patients suffering with CM and MOH. A six-month single-centre perspective randomized double-blinded study was conducted at the Headache Centre of Trieste. Patients suffering with CM and MOH were randomly enrolled in two groups to receive active hf-rTMS in DLPFC or sham hf-rTMS. Headache days (HD), headache hours (HH) and symptomatic drug intake (SDI) were recorded for 30 days before the beginning of stimulation (T0) and during the three following months (T3). Disability (MIDAS score) was evaluated at T0 and at the three-month follow-up visit. The primary outcome was the evaluation of reduction of HD. Reduction of SDI, HH and disability were considered as secondary outcomes. Out of 26 patients enrolled, 14 completed the study, 7 underwent hf-rTMS and 7 sham-TMS. There were no significant differences between groups at T0 in demographic data and headache measures. Mean number of HD, HH, SDI, and MIDAS similarly reduced in the two groups. Our study failed in demonstrating that hf-rTMS with detoxification advice could be better than detoxification advice alone in CM treatment. hf-rTMS carries a high potential of inducing placebo effect and this can be usefully leveraged to enhance patients' coping strategies.
Collapse
Affiliation(s)
- Antonio Granato
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, Italy.
| | - Jacopo Fantini
- Neurology Unit, Santa Maria degli Angeli Hospital AAS5, Pordenone, Italy
| | - Fabrizio Monti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, Italy
| | - Giovanni Furlanis
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, Italy.
| | | | - Mauro Semenic
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, Italy
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, Italy
| |
Collapse
|
17
|
Sloan G, Shillo P, Selvarajah D, Wu J, Wilkinson ID, Tracey I, Anand P, Tesfaye S. A new look at painful diabetic neuropathy. Diabetes Res Clin Pract 2018; 144:177-191. [PMID: 30201394 DOI: 10.1016/j.diabres.2018.08.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
Abstract
The prevalence of diabetes mellitus and its chronic complications continue to increase alarmingly. Consequently, the massive expenditure on diabetic distal symmetrical polyneuropathy (DSPN) and its sequelae, will also likely rise. Up to 50% of patients with diabetes develop DSPN, and about 20% develop neuropathic pain (painful-DSPN). Painful-DSPN can cast a huge burden on sufferers' lives with increased rates of unemployment, mental health disorders and physical co-morbidities. Unfortunately, due to limited understanding of the mechanisms leading to painful-DSPN, current treatments remain inadequate. Recent studies examining the pathophysiology of painful-DSPN have identified maladaptive alterations at the level of both the peripheral and central nervous systems. Additionally, genetic studies have suggested that patients with variants of voltage gated sodium channels may be more at risk of developing neuropathic pain in the presence of a disease trigger such as diabetes. We review the recent advances in genetics, skin biopsy immunohistochemistry and neuro-imaging, which have the potential to further our understanding of the condition, and identify targets for new mechanism based therapies.
Collapse
Affiliation(s)
- Gordon Sloan
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Pallai Shillo
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Dinesh Selvarajah
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Jing Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Iain D Wilkinson
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Irene Tracey
- FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Praveen Anand
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
18
|
Xie YF, Wang J, Bonin RP. Optogenetic exploration and modulation of pain processing. Exp Neurol 2018; 306:117-121. [PMID: 29729250 DOI: 10.1016/j.expneurol.2018.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/21/2018] [Accepted: 05/01/2018] [Indexed: 12/26/2022]
Abstract
Intractable pain is the single most common cause of disability, affecting more than 20% of the population world-wide. There is accordingly a global effort to decipher how changes in nociceptive processing in the peripheral and central nervous systems contribute to the onset and maintenance of chronic pain. The past several years have brought rapid progress in the adaptation of optogenetic approaches to study and manipulate the activity of sensory afferents and spinal cord neurons in freely behaving animals, and to investigate cortical processing and modulation of pain responses. This review discusses methodological advances that underlie this recent progress, and discusses practical considerations for the optogenetic modulation of nociceptive sensory processing.
Collapse
Affiliation(s)
- Yu-Feng Xie
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada.
| | - Jing Wang
- The Department of Osteoporosis, the People's Hospital of Baoan District, Shenzhen, Guangdong Province, China
| | - Robert P Bonin
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada.
| |
Collapse
|
19
|
Mansour ZM, Martin LE, Lepping RJ, Kanaan SF, Brooks WM, Yeh HW, Sharma NK. Brain Response to Non-Painful Mechanical Stimulus to Lumbar Spine. Brain Sci 2018; 8:brainsci8030041. [PMID: 29494490 PMCID: PMC5870359 DOI: 10.3390/brainsci8030041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 12/17/2022] Open
Abstract
Pressure application to the lumbar spine is an important assessment and treatment method of low back pain. However, few studies have characterized brain activation patterns in response to mechanical pressure. The objective of this study was to map brain activation associated with various levels of mechanical pressure to the lumbar spine in healthy subjects. Fifteen healthy subjects underwent functional magnetic resonance imaging (fMRI) scanning while mechanical pressure was applied to their lumbar spine with a custom-made magnetic resonance imaging (MRI)-compatible pressure device. Each subject received three levels of pressure (low/medium/high) based on subjective ratings determined prior to the scan using a block design (pressure/rest). Pressure rating was assessed with an 11-point scale (0 = no touch; 10 = max pain-free pressure). Brain activation differences between pressure levels and rest were analyzed. Subjective pressure ratings were significantly different across pressure levels (p < 0.05). The overall brain activation pattern was not different across pressure levels (all p > 0.05). However, the overall effect of pressure versus rest showed significant decreases in brain activation in response to the mechanical stimulus in regions associated with somatosensory processing including the precentral gyri, left hippocampus, left precuneus, left medial frontal gyrus, and left posterior cingulate. There was increase in brain activation in the right inferior parietal lobule and left cerebellum. This study offers insight into the neural mechanisms that may relate to manual mobilization intervention used for managing low back pain.
Collapse
Affiliation(s)
- Zaid M Mansour
- Department of Physical and Occupational Therapy, Hashemite University, Zarqa 13115, Jordan.
| | - Laura E Martin
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Department of Preventive Medicine and Public Health, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Rebecca J Lepping
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Saddam F Kanaan
- Department of Rehabilitation Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - William M Brooks
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Hung-Wen Yeh
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK 74136, USA.
| | - Neena K Sharma
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
20
|
Wang Y, Fang JL, Cui B, Liu J, Song P, Lang C, Bao Y, Sun R, Xu C, Ding X, Yan Z, Yan Y, Kong Q, Kong J. The functional and structural alterations of the striatum in chronic spontaneous urticaria. Sci Rep 2018; 8:1725. [PMID: 29379058 PMCID: PMC5789061 DOI: 10.1038/s41598-018-19962-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/11/2018] [Indexed: 12/16/2022] Open
Abstract
The brain has long been known to be the regulation center of itch, but the neuropathology of chronic itch, such as chronic spontaneous urticaria (CSU), remains unclear. Thus, we aimed to explore the brain areas involved in the pathophysiology of CSU in hopes that our results may provide valuable insights into the treatment of chronic itch conditions. 40 CSU patients and 40 healthy controls (HCs) were recruited. Urticaria activity scores 7 (UAS7) were collected to evaluate patient’s clinical symptoms. Amplitude of low frequency fluctuations (ALFF), voxel-based morphometry (VBM), and seed-based resting-state functional connectivity (rs-FC) analysis were used to assess brain activity and related plasticity. Compared with HCs, CSU patients exhibited 1) higher ALFF values in the right ventral striatum / putamen, which were positively associated with clinical symptoms as measured by UAS7; 2) gray matter volume (GMV) increase in the right ventral striatum and putamen; and 3) decreased rs-FC between the right ventral striatum and the right occipital cortex and between the right putamen and the left precentral gyrus. Using multiple-modality brain imaging tools, we demonstrated the dysfunction of the striatum in CSU. Our results may provide valuable insights into the neuropathology and development of chronic itch.
Collapse
Affiliation(s)
- Yuming Wang
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA.
| | - Ji-Liang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Bingnan Cui
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jiao Liu
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA.,National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Ping Song
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Courtney Lang
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Yan Bao
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruirui Sun
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Chenchen Xu
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xu Ding
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhifang Yan
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yuhe Yan
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qian Kong
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
21
|
Zhao Z, Huang T, Tang C, Ni K, Pan X, Yan C, Fan X, Xu D, Luo Y. Altered resting-state intra- and inter- network functional connectivity in patients with persistent somatoform pain disorder. PLoS One 2017; 12:e0176494. [PMID: 28453543 PMCID: PMC5409184 DOI: 10.1371/journal.pone.0176494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/11/2017] [Indexed: 11/18/2022] Open
Abstract
Patients with persistent somatoform pain disorder (PSPD) usually experience various functional impairments in pain, emotion, and cognition, which cannot be fully explained by a physiological process or a physical disorder. However, it is still not clear for the mechanism underlying the pathogenesis of PSPD. The present study aimed to explore the intra- and inter-network functional connectivity (FC) differences between PSPD patients and healthy controls (HCs). Functional magnetic resonance imaging (fMRI) was performed in 13 PSPD patients and 23 age- and gender-matched HCs. We used independent component analysis on resting-state fMRI data to calculate intra- and inter-network FCs, and we used the two-sample t-test to detect the FC differences between groups. Spearman correlation analysis was employed to evaluate the correlations between FCs and clinical assessments. As compared to HCs, PSPD patients showed decreased coactivations in the right superior temporal gyrus within the anterior default-mode network and the anterior cingulate cortex within the salience network, and increased coactivations in the bilateral supplementary motor areas within the sensorimotor network and both the left posterior cingulate cortex and the medial prefrontal cortex within the anterior default-mode network. In addition, we found that the PSPD patients showed decreased FNCs between sensorimotor network and audio network as well as visual network, between default-mode network and executive control network as well as audio network and between salience network and executive control network as well as right frontoparietal network, and increased FNCs between sensorimotor network and left frontoparietal network, salience network as well as cerebellum network, which were negatively correlated with the clinical assessments in PSPD patients. Our findings suggest that PSPD patients experience large-scale reorganization at the level of the functional networks, which suggests a possible mechanism underlying the pathogenesis of PSPD.
Collapse
Affiliation(s)
- Zhiyong Zhao
- MOE & Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), Institute of Cognitive Neuroscience, Shanghai Key Laboratory of Magnetic Resonance Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| | - Tianming Huang
- Department of General Psychiatry, Shanghai Changning Mental Health Center, Shanghai, China
| | - Chaozheng Tang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Kaiji Ni
- Department of Psychiatry, HongKou District Mental Health Center of Shanghai, Shanghai, China
| | - Xiandi Pan
- Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai, China
| | - Chao Yan
- Shanghai Key Laboratory of Brain Functional Genomics (MOE & STCSM), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xiaoduo Fan
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Dongrong Xu
- MRI Unit, New York State Psychiatric Institute and Columbia University, New York, NY, United States of America
| | - Yanli Luo
- Department of Psychological Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
22
|
Scheich B, Vincze P, Szőke É, Borbély É, Hunyady Á, Szolcsányi J, Dénes Á, Környei Z, Gaszner B, Helyes Z. Chronic stress-induced mechanical hyperalgesia is controlled by capsaicin-sensitive neurones in the mouse. Eur J Pain 2017; 21:1417-1431. [PMID: 28444833 DOI: 10.1002/ejp.1043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2017] [Indexed: 11/06/2022]
Abstract
BACKGROUND Clinical studies demonstrated peripheral nociceptor deficit in stress-related chronic pain states, such as fibromyalgia. The interactions of stress and nociceptive systems have special relevance in chronic pain, but the underlying mechanisms including the role of specific nociceptor populations remain unknown. We investigated the role of capsaicin-sensitive neurones in chronic stress-related nociceptive changes. METHOD Capsaicin-sensitive neurones were desensitized by the capsaicin analogue resiniferatoxin (RTX) in CD1 mice. The effects of desensitization on chronic restraint stress (CRS)-induced responses were analysed using behavioural tests, chronic neuronal activity assessment in the central nervous system with FosB immunohistochemistry and peripheral cytokine concentration measurements. RESULTS Chronic restraint stress induced mechanical and cold hypersensitivity and increased light preference in the light-dark box test. Open-field and tail suspension test activities were not altered. Adrenal weight increased, whereas thymus and body weights decreased in response to CRS. FosB immunopositivity increased in the insular cortex, dorsomedial hypothalamic and dorsal raphe nuclei, but not in the spinal cord dorsal horn after the CRS. CRS did not affect the cytokine concentrations of hindpaw tissues. Surprisingly, RTX pretreatment augmented stress-induced mechanical hyperalgesia, abolished light preference and selectively decreased the CRS-induced neuronal activation in the insular cortex. RTX pretreatment alone increased the basal noxious heat threshold without influencing the CRS-evoked cold hyperalgesia and augmented neuronal activation in the somatosensory cortex and interleukin-1α and RANTES production. CONCLUSIONS Chronic restraint stress induces hyperalgesia without major anxiety, depression-like behaviour or peripheral inflammatory changes. Increased stress-induced mechanical hypersensitivity in RTX-pretreated mice is presumably mediated by central mechanisms including cortical plastic changes. SIGNIFICANCE These are the first data demonstrating the complex interactions between capsaicin-sensitive neurones and chronic stress and their impact on nociception. Capsaicin-sensitive neurones are protective against stress-induced mechanical hyperalgesia by influencing neuronal plasticity in the brain.
Collapse
Affiliation(s)
- B Scheich
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - P Vincze
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - É Szőke
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.,MTA-PTE NAP B Chronic Pain Research Group, Pécs, Hungary
| | - É Borbély
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Á Hunyady
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - J Szolcsányi
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.,PharmInVivo Ltd., Pécs, Hungary
| | - Á Dénes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zs Környei
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - B Gaszner
- Department of Anatomy, University of Pécs Medical School, Hungary
| | - Zs Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.,MTA-PTE NAP B Chronic Pain Research Group, Pécs, Hungary.,PharmInVivo Ltd., Pécs, Hungary
| |
Collapse
|
23
|
GABA acting on GABAB receptors located in a medullary pain facilitatory area enhances nociceptive behaviors evoked by intraplantar formalin injection. Pain 2016; 156:1555-1565. [PMID: 25932688 DOI: 10.1097/j.pain.0000000000000203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The dorsal reticular nucleus (DRt) plays a key role in facilitation of nociceptive transmission at the spinal cord. In this study, we evaluated the mechanisms involved in GABA-mediated control of the DRt focusing on the role of local GABAB receptors. First, we used in vivo microdialysis to study the release of GABA in the DRt during the course of the formalin test. An increase of GABA levels in comparison with baseline values was detected in the second phase of the test. Because we previously showed that GABAB receptors are expressed by opioidergic DRt neurons, which respond to nociceptive stimuli and inhibit spinally projecting DRt neurons involved in descending pronociception, we then interfered with local GABAB receptors using gene transfer and pharmacological approaches. Lentiviral-mediated knockdown of GABAB1a expression decreased nociceptive responses during the second phase of the test. Local administration of the GABAB receptor antagonist CGP 35348 also decreased nociceptive responses in the second phase of the test, whereas the opposite was detected after injection of the GABAB agonist baclofen. Finally, we determined the GABAergic afferents of the DRt, namely those arising from its main brain afferents, which are located at the telencephalon and diencephalon. For that purpose, we combined retrograde tract-tracing from the DRt with immunodetection of glutamate decarboxylase, the GABA-synthesizing enzyme. The higher numbers of retrogradely labelled glutamate decarboxylase-immunoreactive neurons were located at insular, somatosensory, and motor cortices. Collectively, the results suggest that GABA acting on GABAB receptors may enhance pain facilitation from the DRt during inflammatory pain.
Collapse
|
24
|
Altered Spontaneous Activity in Patients with Persistent Somatoform Pain Disorder Revealed by Regional Homogeneity. PLoS One 2016; 11:e0151360. [PMID: 26977802 PMCID: PMC4792417 DOI: 10.1371/journal.pone.0151360] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/27/2016] [Indexed: 12/05/2022] Open
Abstract
Persistent somatoform pain disorder (PSPD) is a mental disorder un-associated with any somatic injury and can cause severe somatosensory and emotional impairments in patients. However, so far, the neuro-pathophysiological mechanism of the functional impairments in PSPD is still unclear. The present study assesses the difference in regional spontaneous activity between PSPD and healthy controls (HC) during a resting state, in order to elucidate the neural mechanisms underlying PSPD. Resting-state functional Magnetic Resonance Imaging data were obtained from 13 PSPD patients and 23 age- and gender-matched HC subjects in this study. Kendall’s coefficient of concordance was used to measure regional homogeneity (ReHo), and a two-sample t-test was subsequently performed to investigate the ReHo difference between PSPD and HC. Additionally, the correlations between the mean ReHo of each survived area and the clinical assessments were further analyzed. Compared with the HC group, patients with PSPD exhibited decreased ReHo in the bilateral primary somatosensory cortex, posterior cerebellum, and occipital lobe, while increased ReHo in the prefrontal cortex (PFC) and default mode network (including the medial PFC, right inferior parietal lobe (IPL), and left supramarginal gyrus). In addition, significant positive correlations were found between the mean ReHo of both right IPL and left supramarginal gyrus and participants’ Self-Rating Anxiety Scale (SAS) scores, and between the mean ReHo of the left middle frontal gyrus and Visual Analogue Scale (VAS) scores. Our results suggest that abnormal spontaneous brain activity in specific brain regions during a resting state may be associated with the dysfunctions in pain, memory and emotional processing commonly observed in patients with PSPD. These findings help us to understand the neural mechanisms underlying PSPD and suggest that the ReHo metric could be used as a clinical marker for PSPD.
Collapse
|
25
|
Changes in functional connectivity of pain modulatory systems in women with primary dysmenorrhea. Pain 2016; 157:92-102. [DOI: 10.1097/j.pain.0000000000000340] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
The role of nicotinic acetylcholine and opioid systems of the ventral orbital cortex in modulation of formalin-induced orofacial pain in rats. Eur J Pharmacol 2015; 758:147-52. [DOI: 10.1016/j.ejphar.2015.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 12/16/2022]
|
27
|
Hamzeh-Gooshchi N, Tamaddonfard E, Farshid AA. Effects of microinjection of histamine into the anterior cingulate cortex on pain-related behaviors induced by formalin in rats. Pharmacol Rep 2015; 67:593-9. [DOI: 10.1016/j.pharep.2014.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/25/2014] [Accepted: 12/30/2014] [Indexed: 11/16/2022]
|
28
|
Reis GM, Fais RS, Prado WA. The antinociceptive effect of stimulating the retrosplenial cortex in the rat tail-flick test but not in the formalin test involves the rostral anterior cingulate cortex. Pharmacol Biochem Behav 2015; 131:112-8. [DOI: 10.1016/j.pbb.2015.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
|
29
|
Abstract
Pain is an important protective system that alerts organisms to actual or possible tissue damage. However, a variety of pathologies can lead to chronic pain that is no longer beneficial. Lesions or diseases of the somatosensory nervous system cause intractable neuropathic pain that occasionally lasts even after the original pathology subsides. Chronic inflammatory diseases like arthritis are also associated with severe pain. Because conventional analgesics such as non-steroidal anti-inflammatory drugs and opioids have limited efficacy and/or severe adverse events associated with long-term use, chronic pain remains a major problem in clinical practice. Recently, causal roles of microRNAs in chronic pain and their therapeutic potential have been emerging. microRNA expressions are altered not only at the primary origin of pain, but also along the somatosensory pathways. Notably, microRNA expressions are differentially affected depending on the causes of chronic pain. This chapter summarizes current insights into the roles of microRNAs in pain based on the underlying pathologies.
Collapse
Affiliation(s)
- Atsushi Sakai
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Hidenori Suzuki
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
30
|
Gerdle B, Ghafouri B, Ernberg M, Larsson B. Chronic musculoskeletal pain: review of mechanisms and biochemical biomarkers as assessed by the microdialysis technique. J Pain Res 2014; 7:313-26. [PMID: 24966693 PMCID: PMC4062547 DOI: 10.2147/jpr.s59144] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chronic musculoskeletal pain conditions are multifaceted, and approximately 20% of the adult population lives with severe chronic pain, with a higher prevalence in women and in lower income groups. Chronic pain is influenced by and interacts with physical, emotional, psychological, and social factors, and a biopsychosocial framework is increasingly applied in clinical practice. However, there is still a lack of assessment procedures based on the activated neurobiological pain mechanisms (ie, the biological part of the biopsychosocial model of pain), which may be a necessary step for further optimizing outcomes after treatments for patients with chronic pain. It has been suggested that chronic pain conditions are mainly driven by alterations in the central nervous system with little or no peripheral stimuli or nociception. In contrast, other authors argue that such central alterations are driven by peripheral alterations and nociceptive input. Microdialysis is an in vivo method for studying local tissue alterations and allows for sampling of substances in the interstitium of the muscle, where nociceptor free nerve endings are found close to the muscle fibers. The extracellular matrix plays a key role in physiologic functions of cells, including the primary afferent nociceptor. The present review mainly concerns the results of microdialysis studies and how they can contribute to the understanding of activated peripheral nociceptive and pain mechanisms in humans with chronic pain. The primary aim was to review molecular studies using microdialysis for the investigation of human chronic muscle pain, ie, chronic masticatory muscle pain, chronic trapezius myalgia, chronic whiplash-associated disorders, and chronic widespread pain/fibromyalgia syndrome. Several studies clearly showed elevated levels of serotonin, glutamate, lactate, and pyruvate in localized chronic myalgias and may be potential biomarkers. These results indicate that peripheral muscle alterations are parts of the activated pain mechanisms in common chronic pain conditions. Muscle alterations have been reported in fibromyalgia syndrome and chronic widespread pain, but more studies are needed before definite conclusions can be drawn. For other substances, results are inconclusive across studies and patient groups.
Collapse
Affiliation(s)
- Björn Gerdle
- Rehabilitation Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden ; Pain and Rehabilitation Centre, County Council of Östergötland, Linköping, Sweden
| | - Bijar Ghafouri
- Rehabilitation Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden ; Rehabilitation Medicine, Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Malin Ernberg
- Department of Dental Medicine, Section of Orofacial Pain and Jaw Function, Karolinska Institutet, Huddinge, Sweden
| | - Britt Larsson
- Rehabilitation Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden ; Pain and Rehabilitation Centre, County Council of Östergötland, Linköping, Sweden
| |
Collapse
|