1
|
Prabha PH, Chandrasekhar K, Valipay SK. Combination of transcranial magnetic stimulation with guided imagery for treating OCD in an adolescent girl. Indian J Psychiatry 2024; 66:672-673. [PMID: 39257505 PMCID: PMC11382754 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_676_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/22/2024] [Accepted: 06/16/2024] [Indexed: 09/12/2024] Open
Affiliation(s)
- P Himaja Prabha
- Department of Psychology, Asha Neuromodulation Clinic, Hyderabad, Telangana, India
| | | | | |
Collapse
|
2
|
Stiede JT, Spencer SD, Onyeka O, Mangen KH, Church MJ, Goodman WK, Storch EA. Obsessive-Compulsive Disorder in Children and Adolescents. Annu Rev Clin Psychol 2024; 20:355-380. [PMID: 38100637 DOI: 10.1146/annurev-clinpsy-080822-043910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Obsessive-compulsive disorder (OCD) in children and adolescents is a neurobehavioral condition that can lead to functional impairment in multiple domains and decreased quality of life. We review the clinical presentation, diagnostic considerations, and common comorbidities of pediatric OCD. An overview of the biological and psychological models of OCD is provided along with a discussion of developmental considerations in youth. We also describe evidence-based treatments for OCD in childhood and adolescence, including cognitive behavioral therapy (CBT) with exposure and response prevention (ERP) and pharmacotherapy. Finally, research evaluating the delivery of CBT in different formats and modalities is discussed, and we conclude with suggestions for future research directions.
Collapse
Affiliation(s)
- Jordan T Stiede
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| | - Samuel D Spencer
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| | - Ogechi Onyeka
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| | - Katie H Mangen
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| | - Molly J Church
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| | - Wayne K Goodman
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| | - Eric A Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
3
|
Chu L, Wu Y, Yin J, Zhang K, Zhong Y, Fan X, Wang G. Neurotransmitter system gene variants as biomarkers for the therapeutic efficacy of rTMS and SSRIs in obsessive-compulsive disorder. Front Psychiatry 2024; 15:1350978. [PMID: 38840948 PMCID: PMC11150660 DOI: 10.3389/fpsyt.2024.1350978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Purpose This study aims to examine the potential influence of RS4680 (COMT), RS16965628 (SLC6A4), and RS1019385 (GRIN2B) polymorphisms on the therapeutic response to repetitive transcranial magnetic stimulation (rTMS) and selective serotonin reuptake inhibitors (SSRIs) in individuals with obsessive-compulsive disorder (OCD). Patients and methods Thirty-six untreated outpatients diagnosed with OCD were recruited and allocated to active or sham rTMS groups for two weeks. The mean age of the participants was 31.61, with 17 males (47.22%) and 19 females (52.78%). Peripheral blood samples (5 mL) were collected from each participant using ethylenediaminetetraacetic acid (EDTA) vacuum tubes for genotyping purposes, clinical evaluation was taken place at baseline and second week. Results The A allele of RS4680, C allele of RS16965628, and GG allele of RS1019385 were identified as potential bio-markers for predicting treatment response to OCD treatments (rTMS & SSRIs). Conclusion Those genes may serve as bio-markers for the combined treatment of rTMS and SSRIs in OCD. The finding hold promise for further research and the potential implementation of precision treatment of OCD. Clinical trial registration https://www.chictr.org.cn, identifier ChiCTR1900023641.
Collapse
Affiliation(s)
- Lingjun Chu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Yidan Wu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Jiajun Yin
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Kai Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, Anhui, China
| | - Yiwen Zhong
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Xiwang Fan
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Guoqiang Wang
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Mudunuru AK, Reddy MS, Valipay K, A BS, M M, N C, K C, Gundugurti PR. The Clinical Efficacy of Accelerated Deep Repetitive Transcranial Magnetic Stimulation in Depression and Obsessive-Compulsive Disorder: Multi-centric Real-World Observational Data. Cureus 2024; 16:e60895. [PMID: 38836152 PMCID: PMC11148627 DOI: 10.7759/cureus.60895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
Background Of late, the interest in accelerated treatment protocols in repetitive transcranial magnetic stimulation (TMS) for the treatment of depression and obsessive-compulsive disorder (OCD) has been gaining momentum. Studies have already found that the patterned theta burst stimulation is non-inferior to the standard high-frequency stimulation in treating depression. The objective of the present study was to evaluate the clinical efficacy of a customized accelerated combination TMS naturalistic setting. Methods Retrospective analysis of pre and post-deep repetitive TMS responses in depression and OCD patients was performed. About 391 Depression and 239 OCD patients' data was analyzed. Customized treatment protocols consisted of twice daily high-frequency stimulations intervened by one theta burst stimulation. The outcome measures were a day six score in depression and a day 10 score in OCD, compared to day one baseline scores. Results The overall response rate in depression was 60.86%, estimated as a >50% reduction in the Hamilton Depression Rating Scale (HAM-D) 21 items score, and 62.76% in OCD, estimated as a >35% reduction in the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) score. The mean reduction of YBOCS and HAM-D was statistically significant at p<0.0001 (Mann-Whitney U test statistic=9442.5, z=12.66 for YBOCS and 16673.5, z=18.92 for HAM-D). Corresponding effect size estimations revealed Cohen's d value of 1.40 and 1.59, respectively. Conclusions The response rates achieved at day six and day 10 in depression and OCD, respectively, were comparable to previous studies employing standard treatment protocols. The accelerated protocol produced satisfactory short-term clinical outcomes that were effective in the early management of the illness without any serious adverse effects.
Collapse
Affiliation(s)
- Aswin K Mudunuru
- Non-Invasive Brain Stimulation, Asha Neuromodulation Clinics, Hyderabad, IND
| | - M S Reddy
- Psychiatry, Asha Hospital, Hyderabad, IND
| | | | - Balaji S A
- Psychiatry, Asha Neuromodulation Clinic, Hyderabad, IND
| | - Madhiha M
- Psychiatry, Asha Neuromodulation Clinic, Bengaluru, IND
| | - Chandresh N
- Psychiatry, Asha Neuromodulation Clinic, Hyderabad, IND
| | | | | |
Collapse
|
5
|
Ramakrishnan D, Farhat LC, Vattimo EFQ, Levine JLS, Johnson JA, Artukoglu BB, Landeros-Weisenberger A, Zangen A, Pelissolo A, de B Pereira CA, Rück C, Costa DLC, Mataix-Cols D, Shannahoff-Khalsa D, Tolin DF, Zarean E, Meyer E, Hawken ER, Storch EA, Andersson E, Miguel EC, Maina G, Leckman JF, Sarris J, March JS, Diniz JB, Kobak K, Mallet L, Vulink NCC, Amiaz R, Fernandes RY, Shavitt RG, Wilhelm S, Golshan S, Tezenas du Montcel S, Erzegovesi S, Baruah U, Greenberg WM, Kobayashi Y, Bloch MH. An evaluation of treatment response and remission definitions in adult obsessive-compulsive disorder: A systematic review and individual-patient data meta-analysis. J Psychiatr Res 2024; 173:387-397. [PMID: 38598877 DOI: 10.1016/j.jpsychires.2024.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
INTRODUCTION Expert consensus operationalized treatment response and remission in obsessive-compulsive disorder (OCD) as a Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) reduction ≥35% and score ≤12 with ≤2 on Clinical Global Impressions Improvement (CGI-I) and Severity (CGI-S) scales, respectively. However, there has been scant empirical evidence supporting these definitions. METHODS We conducted a systematic review and an individual participant data meta-analysis of randomized-controlled trials (RCTs) in adults with OCD to determine optimal Y-BOCS thresholds for response and remission. We estimated pooled sensitivity/specificity for each percent reduction threshold (response) or posttreatment score (remission) to determine response and remission defined by a CGI-I and CGI-S ≤ 2, respectively. RESULTS Individual participant data from 25 of 94 eligible RCTs (1235 participants) were included. The optimal threshold for response was ≥30% Y-BOCS reduction and for remission was ≤15 posttreatment Y-BOCS. However, differences in sensitivity and specificity between the optimal and nearby thresholds for response and remission were small with some uncertainty demonstrated by the confidence ellipses. CONCLUSION While the empirically derived Y-BOCS thresholds in our meta-analysis differ from expert consensus, given the predominance of data from more recent trials of OCD, which involved more refractory participants and novel treatment modalities as opposed to first-line therapies, we recommend the continued use of the consensus definitions.
Collapse
Affiliation(s)
| | - Luis C Farhat
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Edoardo F Q Vattimo
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - Jessica A Johnson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Bekir B Artukoglu
- Department of Child and Adolescent Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | | | - Abraham Zangen
- Department of Life Sciences and the Zelman Center for Neuroscience, Ben Gurion University, Be'er Sheva, Israel
| | - Antoine Pelissolo
- Psychiatry Department, Henri-Mondor University Hospitals, Faculty of Medicine, Créteil, France
| | - Carlos A de B Pereira
- Mathematics and Statistics Institute, Statistics Department, University of São Paulo, São Paulo, Brazil
| | - Christian Rück
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel L C Costa
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - David Mataix-Cols
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden
| | - David Shannahoff-Khalsa
- The Research Group for Mind-Body Dynamics, BioCircuits Institute and Center for Integrative Medicine, University of California San Diego, CA, USA; The Khalsa Foundation for Medical Science, Del Mar, CA, USA
| | - David F Tolin
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; The Institute of Living, Hartford, CT, USA
| | - Elham Zarean
- Department of Psychiatry, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elisabeth Meyer
- Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Emily R Hawken
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Eric A Storch
- Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Erik Andersson
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden
| | - Euripedes C Miguel
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Giuseppe Maina
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - James F Leckman
- Child Study Center, Department of Pediatrics and Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jerome Sarris
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; NICM Health Research Institute, Western Sydney University, NSW, Australia
| | - John S March
- Department of Psychiatry and Behavioral Sciences, Duke School of Medicine, Durham, NC, USA
| | - Juliana B Diniz
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - Luc Mallet
- Medical-University Department of Psychiatry and Addictology, Henri Mondor - Albert Chenevier University Hospitals, Créteil, France
| | - Nienke C C Vulink
- The Rudolf Magnus Institute of Neuroscience, Department of Psychiatry, University Medical Center Utrecht (UMCU), Utrecht, the Netherlands
| | | | - Rodrigo Yacubian Fernandes
- The National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Roseli G Shavitt
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Sabine Wilhelm
- OCD and Related Disorders Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shahrokh Golshan
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Sophie Tezenas du Montcel
- Sorbonne Universite, Institut du Cerveau Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Inria Aramis project-team, Paris, France
| | - Stefano Erzegovesi
- Department of Neurosciences, Eating Disorders Unit, IRCCS San Raffaele, Milano, Italy
| | - Upasana Baruah
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Yuki Kobayashi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Michael H Bloch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Walker NC, Philip NS, Kozel FA, Yesavage JA, Madore MR. Effectiveness of Prefrontal Transcranial Magnetic Stimulation for Depression in Older US Military Veterans. Am J Geriatr Psychiatry 2024; 32:315-325. [PMID: 37973487 PMCID: PMC11231732 DOI: 10.1016/j.jagp.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE While typical aging is associated with decreased cortical volume, major depressive disorder (MDD) and posttraumatic stress disorder (PTSD) likely exacerbates this process. Cerebral atrophy leads to increased coil-to-cortex distance and when using transcranial magnetic stimulation (TMS), potentially reducing effectiveness in older adults. METHODS Data from a large-scale quality improvement project was used. Included veterans eligible for TMS and completed TMS treatment. Age was assessed as a predictive factor of depression outcomes after TMS treatment among veterans. Secondary analyses examined the impact of age on 1) MDD response and remission and 2) MDD change within MDD-only verses comorbid MDD and PTSD groups. RESULTS The entire sample included 471 veterans. Primary analysis revealed age as a negative predictor of depression outcomes (p = 0.019). Secondary analyses found age to be a significant predictor of remission (p = 0.004), but not clinical response. Age was not a predictive factor in depression outcomes between those with MDD-only compared to MDD+PTSD. CONCLUSIONS Increased age predicts greater MDD symptom reduction after TMS. Although age did not predict response rates, it did predict increased rates of remission in veterans. Age did not differentially predict depression outcomes between those with or without PTSD. The sample size was sufficient to discern a difference in efficaciousness, and limitations were those inherent to registry studies in veterans. This data indicates that TMS can be an important treatment option for older individuals.
Collapse
Affiliation(s)
- Nicole C Walker
- Mental Illness Research, Education, and Clinical Center, VA Palo Alto Healthcare System (NCW, JAY, MRM), Palo Alto, CA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (NCW, JAY, MRM), CA
| | - Noah S Philip
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System (NSP), Providence, RI; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University (NSP), Providence, RI
| | - F Andrew Kozel
- Department of Behavioral Sciences and Social Medicine, Florida State University (FAK), Tallahassee, FL
| | - Jerome A Yesavage
- Mental Illness Research, Education, and Clinical Center, VA Palo Alto Healthcare System (NCW, JAY, MRM), Palo Alto, CA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (NCW, JAY, MRM), CA
| | - Michelle R Madore
- Mental Illness Research, Education, and Clinical Center, VA Palo Alto Healthcare System (NCW, JAY, MRM), Palo Alto, CA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (NCW, JAY, MRM), CA.
| |
Collapse
|
7
|
Mattioli F, Maglianella V, D'Antonio S, Trimarco E, Caligiore D. Non-invasive brain stimulation for patients and healthy subjects: Current challenges and future perspectives. J Neurol Sci 2024; 456:122825. [PMID: 38103417 DOI: 10.1016/j.jns.2023.122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Non-invasive brain stimulation (NIBS) techniques have a rich historical background, yet their utilization has witnessed significant growth only recently. These techniques encompass transcranial electrical stimulation and transcranial magnetic stimulation, which were initially employed in neuroscience to explore the intricate relationship between the brain and behaviour. However, they are increasingly finding application in research contexts as a means to address various neurological, psychiatric, and neurodegenerative disorders. This article aims to fulfill two primary objectives. Firstly, it seeks to showcase the current state of the art in the clinical application of NIBS, highlighting how it can improve and complement existing treatments. Secondly, it provides a comprehensive overview of the utilization of NIBS in augmenting the brain function of healthy individuals, thereby enhancing their performance. Furthermore, the article delves into the points of convergence and divergence between these two techniques. It also addresses the existing challenges and future prospects associated with NIBS from ethical and research standpoints.
Collapse
Affiliation(s)
- Francesco Mattioli
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy; School of Computing, Electronics and Mathematics, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Valerio Maglianella
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Sara D'Antonio
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Emiliano Trimarco
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Daniele Caligiore
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy; Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy.
| |
Collapse
|
8
|
Fazeli A, Zolghadriha A, Pirzeh R, Fatehi Chenar A, Dadashi M. Comparing the effectiveness of CBT and low-frequency rTMS in reducing symptom severity and depression and improving working memory in adults with OCD: a clinical trial. Int J Neurosci 2023:1-12. [PMID: 37938152 DOI: 10.1080/00207454.2023.2279500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVE This study aims to compare the effectiveness of cognitive-behavioral therapy (CBT) and low-frequency (LF) repetitive transcranial magnetic stimulation (rTMS) in reducing symptom severity and depression and improving working memory in adults with obsessive-compulsive disorder (OCD). METHODS This is a randomized clinical trial conducted on 24 adults with OCD, randomly assigned into two groups of CBT (n = 12, received CBT with exposure and response prevention (ERP) individually at 20 sessions) and rTMS (n = 12, received LF (1-Hz) rTMS over the right dorsolateral prefrontal cortex (DLPFC) at 10 sessions). They completed the Yale-Brown Obsessive Compulsive Scale, the Hamilton Depression Rating Scale, and two N-Back tasks before, immediately, and 1 month after interventions. RESULTS Results showed a significant difference between the two methods in reducing the severity of OCD symptoms (p < 0.05) and depression (p = 0.002) immediately after interventions where the CBT with ERP was more effective, but no significant difference was found in terms of working memory (p > 0.05). No significant difference was found between groups in any study variables 1 month after interventions. CONCLUSION Individual CBT with ERP is superior to LF rTMS for reducing the severity of symptoms and depression in OCD patients. However, there is no difference between them in improving working memory.
Collapse
Affiliation(s)
- Arash Fazeli
- Department of Psychology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ahmad Zolghadriha
- Department of Psychiatry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Pirzeh
- Department of Psychiatry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Atefeh Fatehi Chenar
- Department of Psychology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohsen Dadashi
- Department of Clinical Psychology, Social Determinants of Health Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
9
|
Rivas-Grajales AM, Barbour T, Camprodon JA, Kritzer MD. The Impact of Sex Hormones on Transcranial Magnetic Stimulation Measures of Cortical Excitability: A Systematic Review and Considerations for Clinical Practice. Harv Rev Psychiatry 2023; 31:114-123. [PMID: 37171472 PMCID: PMC10264142 DOI: 10.1097/hrp.0000000000000366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
ABSTRACT Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising alternative for the treatment of major depressive disorder (MDD), although its clinical effectiveness varies substantially. The effects of sex hormone fluctuations on cortical excitability have been identified as potential factors that can explain this variability. However, data on how sex hormone changes affect clinical response to rTMS is limited. To address this gap, we reviewed the literature examining the effects of sex hormones and hormonal treatments on transcranial magnetic stimulation (TMS) measures of cortical excitability. Results show that variations of endogenous estrogen, testosterone, and progesterone have modulatory effects on TMS-derived measures of cortical excitability. Specifically, higher levels of estrogen and testosterone were associated with greater cortical excitability, while higher progesterone was associated with lower cortical excitability. This highlights the importance of additional investigation into the effects of hormonal changes on rTMS outcomes and circuit-specific physiological variables. These results call for TMS clinicians to consider performing more frequent motor threshold (MT) assessments in patients receiving high doses of estrogen, testosterone, and progesterone in cases such as in vitro fertilization, hormone replacement therapy, and gender-affirming hormonal treatments. It may also be important to consider physiological hormonal fluctuations and their impact on depressive symptoms and the MT when treating female patients with rTMS.
Collapse
Affiliation(s)
- Ana Maria Rivas-Grajales
- From the Department of Psychiatry, Boston Medical Center, Boston University School of Medicine, Boston, MA (Dr. Rivas-Grajales); Department of Psychiatry, Division of Behavioral Neurology and Neuropsychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA (Drs. Barbour, Camprodon, Kritzer); Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA (Drs. Camprodon, Kritzer)
| | | | | | | |
Collapse
|
10
|
Luo G, Wang S, Yao S, Quan D, Guo G, Gao J, Zheng H. Direct changes of neurometabolic concentrations in the pregenual anterior cingulate cortex among obsessive-compulsive patients after repetitive transcranial magnetic stimulation treatment. J Affect Disord 2023; 333:79-85. [PMID: 37080494 DOI: 10.1016/j.jad.2023.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND AND AIM Although Repetitive Transcranial Magnetic Stimulation (rTMS) is a promising new noninvasive brain stimulation therapy, its underlying mechanisms of action remain unknown. OCD patients exhibit impaired response control and attention shifting, which is linked to some brain areas such as anterior cingulate cortex and basal ganglia. OCD patients also display altered neurometabolic concentrations in cortical cortical-striatal-thalamic-cortical (CSTC). In this study, we aimed to elucidate efficacy of rTMS treatment in alleviating related symptoms and pregenual anterior cingulate cortex (pACC) neurometabolites. METHODS OCD patients were randomly divided into either drug (n = 23) or drug + rTMS (n = 29) groups, and those in the latter group subjected to 4-week rTMS treatment. All participants were visited twice, at baseline and follow-up after four weeks. During both visits, all patients were subjected to 1H-MRS, then Yale-Brown Obsessive Compulsive Scale (Y-BOCS) and the Global Assessment Function (GAF) used to assess severity of obsessive-compulsive symptoms. We also evaluated synchronous anxiety and depression by Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI), Hamilton Anxiety Scale (HAM-A) and Hamilton Depression Scale (HAM-D). RESULTS After 4 weeks of treatment, patients in the Drug + rTMS group displayed significantly lower Y-BOCS (p = 0.038), BDI (p = 0.009), HAM-D (p = 0.013), HAM-A (p = 0.012) scores than their counterparts in the Drug group. Conversely, patients in the Drug + rTMS group had significantly higher tNAA concentrations (p = 0.030) than those in the Drug group. Notably, the Drug + rTMS group exhibited higher, but insignificant Glu (p = 0.055) and Glx (p = 0.068) concentrations compared to the Drug group. Partial correlation analysis revealed a significant negative correlation between post HAM-A scores and 4-week change of pACC glutamate levels in the Drug + rTMS group (r = -0.434, p = 0.02). CONCLUSION rTMS treatment is an efficacious treatment therapy for OCD, mainly by inducing changes in neurometabolites.
Collapse
Affiliation(s)
- Guowei Luo
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Shantou University Medical College, Shantou, China
| | - Shibin Wang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Siyu Yao
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Dongming Quan
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guangquan Guo
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Junling Gao
- Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Huirong Zheng
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; South China University of Technology School of Medicine, Guangzhou, China; Shantou University Medical College, Shantou, China.
| |
Collapse
|
11
|
Fineberg NA, Cinosi E, Smith MVA, Busby AD, Wellsted D, Huneke NTM, Garg K, Aslan IH, Enara A, Garner M, Gordon R, Hall N, Meron D, Robbins TW, Wyatt S, Pellegrini L, Baldwin DS. Feasibility, acceptability and practicality of transcranial stimulation in obsessive compulsive symptoms (FEATSOCS): A randomised controlled crossover trial. Compr Psychiatry 2023; 122:152371. [PMID: 36709558 DOI: 10.1016/j.comppsych.2023.152371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a non-invasive form of neurostimulation with potential for development as a self-administered intervention. It has shown promise as a safe and effective treatment for obsessive compulsive disorder (OCD) in a small number of studies. The two most favourable stimulation targets appear to be the left orbitofrontal cortex (L-OFC) and the supplementary motor area (SMA). We report the first study to test these targets head-to-head within a randomised sham-controlled trial. Our aim was to inform the design of future clinical research studies, by focussing on the acceptability and safety of the intervention, feasibility of recruitment, adherence to and tolerability of tDCS, and the size of any treatment-effect. METHODS FEATSOCS was a randomised, double-blind, sham-controlled, cross-over, multicentre study. Twenty adults with DSM-5-defined OCD were randomised to treatment, comprising three courses of clinic-based tDCS (SMA, L-OFC, Sham), randomly allocated and delivered in counterbalanced order. Each course comprised four 20-min 2 mA stimulations, delivered over two consecutive days, separated by a 'washout' period of at least four weeks. Assessments were carried out by raters who were blind to stimulation-type. Clinical outcomes were assessed before, during, and up to four weeks after stimulation. Patient representatives with lived experience of OCD were actively involved at all stages. RESULTS Clinicians showed willingness to recruit participants and recruitment to target was achieved. Adherence to treatment and study interventions was generally good, with only two dropouts. There were no serious adverse events, and adverse effects which did occur were transient and mostly mild in intensity. Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) scores were numerically improved from baseline to 24 h after the final stimulation across all intervention groups but tended to worsen thereafter. The greatest effect size was seen in the L-OFC arm, (Cohen's d = -0.5 [95% CI -1.2 to 0.2] versus Sham), suggesting this stimulation site should be pursued in further studies. Additional significant sham referenced improvements in secondary outcomes occurred in the L-OFC arm, and to a lesser extent with SMA stimulation. CONCLUSIONS tDCS was acceptable, practicable to apply, well-tolerated and appears a promising potential treatment for OCD. The L-OFC represents the most promising target based on clinical changes, though the effects on OCD symptoms were not statistically significant compared to sham. SMA stimulation showed lesser signs of promise. Further investigation of tDCS in OCD is warranted, to determine the optimal stimulation protocol (current, frequency, duration), longer-term effectiveness and brain-based mechanisms of effect. If efficacy is substantiated, consideration of home-based approaches represents a rational next step. TRIAL REGISTRATION ISRCTN17937049. https://doi.org/10.1186/ISRCTN17937049.
Collapse
Affiliation(s)
- Naomi A Fineberg
- Hertfordshire Partnership NHS University Foundation Trust, Highly Specialised OCD and BDD Service, Rosanne House, Parkway, Welwyn Garden City, Hertfordshire, UK; School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, UK; Clinical Medical School, University of Cambridge, UK
| | - Eduardo Cinosi
- Hertfordshire Partnership NHS University Foundation Trust, Highly Specialised OCD and BDD Service, Rosanne House, Parkway, Welwyn Garden City, Hertfordshire, UK; School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, UK
| | - Megan V A Smith
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, UK.
| | - Amanda D Busby
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, UK
| | - David Wellsted
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, UK
| | - Nathan T M Huneke
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK; Southern Health NHS Foundation Trust, Tatchbury Mount, Southampton, UK
| | - Kabir Garg
- The Lishman Unit, South London and Maudsley NHS Foundation Trust, UK
| | - Ibrahim H Aslan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Arun Enara
- Camden and Islington NHS Foundation Trust, London, UK
| | - Matthew Garner
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK; School of Psychology, University of Southampton, Southampton, UK
| | - Robert Gordon
- Southern Health NHS Foundation Trust, Tatchbury Mount, Southampton, UK
| | - Natalie Hall
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, UK
| | - Daniel Meron
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK; Somerset NHS Foundation Trust, Taunton, Somerset, UK
| | | | - Solange Wyatt
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, UK
| | - Luca Pellegrini
- Hertfordshire Partnership NHS University Foundation Trust, Highly Specialised OCD and BDD Service, Rosanne House, Parkway, Welwyn Garden City, Hertfordshire, UK; School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, UK
| | - David S Baldwin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK; Southern Health NHS Foundation Trust, Tatchbury Mount, Southampton, UK; University Department of Psychiatry and Mental Health, University of Cape Town, South Africa
| |
Collapse
|
12
|
Gogulski J, Ross JM, Talbot A, Cline CC, Donati FL, Munot S, Kim N, Gibbs C, Bastin N, Yang J, Minasi C, Sarkar M, Truong J, Keller CJ. Personalized Repetitive Transcranial Magnetic Stimulation for Depression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:351-360. [PMID: 36792455 DOI: 10.1016/j.bpsc.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Personalized treatments are gaining momentum across all fields of medicine. Precision medicine can be applied to neuromodulatory techniques, in which focused brain stimulation treatments such as repetitive transcranial magnetic stimulation (rTMS) modulate brain circuits and alleviate clinical symptoms. rTMS is well tolerated and clinically effective for treatment-resistant depression and other neuropsychiatric disorders. Despite its wide stimulation parameter space (location, angle, pattern, frequency, and intensity can be adjusted), rTMS is currently applied in a one-size-fits-all manner, potentially contributing to its suboptimal clinical response (∼50%). In this review, we examine components of rTMS that can be optimized to account for interindividual variability in neural function and anatomy. We discuss current treatment options for treatment-resistant depression, the neural mechanisms thought to underlie treatment, targeting strategies, stimulation parameter selection, and adaptive closed-loop treatment. We conclude that a better understanding of the wide and modifiable parameter space of rTMS will greatly improve the clinical outcome.
Collapse
Affiliation(s)
- Juha Gogulski
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; HUS Diagnostic Center, Clinical Neurophysiology, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jessica M Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California
| | - Austin Talbot
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California
| | - Christopher C Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California
| | - Francesco L Donati
- Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Saachi Munot
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California
| | - Naryeong Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California
| | - Ciara Gibbs
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Nikita Bastin
- Department of Radiology and Orthopedics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica Yang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California
| | - Christopher Minasi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California
| | - Manjima Sarkar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California
| | - Jade Truong
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California.
| |
Collapse
|
13
|
Transcranial Magnetic Stimulation in Obsessive-Compulsive Disorder. Psychiatr Clin North Am 2023; 46:133-166. [PMID: 36740349 DOI: 10.1016/j.psc.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Obsessive-compulsive disorder (OCD) patients need novel therapeutic interventions since most experience residual symptoms despite treatment. Converging evidence suggest that OCD involves dysfunction of limbic cortico-striato-thalamo-cortical loops, including the medial prefrontal cortex (mPFC) and dorsal anterior cingulate cortex (dACC), that tends to normalize with successful treatment. Recently, three repetitive transcranial magnetic stimulation (rTMS) coils were FDA-cleared for treatment-refractory OCD. This review presents on-label and off-label clinical evidence and relevant physical characteristics of the three coils. The Deep TMS™ H7 Coil studies' point to efficacy of mPFC-dACC stimulation, while no clear target stems from the small heterogenous D-B80 and figure-8 coils studies.
Collapse
|
14
|
Suhas S, Malo PK, Kumar V, Issac TG, Chithra NK, Bhaskarapillai B, Reddy YCJ, Rao NP. Treatment strategies for serotonin reuptake inhibitor-resistant obsessive-compulsive disorder: A network meta-analysis of randomised controlled trials. World J Biol Psychiatry 2023; 24:162-177. [PMID: 35615998 DOI: 10.1080/15622975.2022.2082525] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Treatment-resistant obsessive-compulsive disorder is a chronic debilitating illness. We conducted a network meta-analysis [NMA] to compare the efficacy of all interventions in SRI-resistant OCD from published Randomised controlled trials [RCT]. METHODS We performed an NMA of RCTs in SRI resistant OCD from all modalities of treatments; pharmacological, psychological, neuromodulation, neurosurgery including deep brain stimulation. The design-by-treatment interaction inconsistency model within the frequentist framework was adopted with a change in Yale-Brown Obsessive-Compulsive Scale score as the primary outcome. We conducted sensitivity analyses excluding studies examining neurosurgical interventions, deep brain stimulation, studies in the paediatric population, and studies from a single geographical region. We also conducted analyses of interventions categorised into treatment groups. RESULTS 55 RCTs examining 19 treatments or placebo involving 2011 participants were included in the NMA. Ondansetron [Standardised mean difference -2.01 (95% CI: -3.19, -0.83)], deep TMS [- 1.95 (-3.25, -0.65)], therapist administered Cognitive Behavioural Therapy [CBT-TA] [-1.46 (-2.93, 0.01)] and aripiprazole [-1.36 (-2.56, -0.17)] were ranked as the best four treatments on using the Surface Under the Cumulative Ranking [SUCRA] percentage values (85.4%, 83.2%, 80.3%, 67.9% respectively). While all four interventions had large effect sizes, CBT[TA] narrowly missed statistical significance in our analysis. In sensitivity analyses, deep TMS was ranked as the best treatment strategy for SRI-resistant OCD. The small number of subjects in individual studies, higher confidence interval limits, and wider prediction interval for most agents warrant a cautious interpretation. CONCLUSIONS Considering the principal analysis and sensitivity analyses together, deep TMS, ondansetron, CBT[TA], and aripiprazole may be considered a first-line intervention for SRI-resistant OCD in adults. OTHER This work was not funded. The NMA has been registered with PROSPERO, [Registration number: CRD42020173589].
Collapse
Affiliation(s)
- Satish Suhas
- Department of Psychiatry, National Institute of Mental Health and Neurosciences [NIMHANS], Bangalore, India
| | - Palash Kumar Malo
- Department of Biostatistics, National Institute of Mental Health and Neurosciences [NIMHANS], Bangalore, India
| | - Vijay Kumar
- Department of Psychiatry, National Institute of Mental Health and Neurosciences [NIMHANS], Bangalore, India
| | - Thomas Gregor Issac
- Department of Psychiatry, National Institute of Mental Health and Neurosciences [NIMHANS], Bangalore, India
| | - Nellai K Chithra
- Department of Psychiatry, National Institute of Mental Health and Neurosciences [NIMHANS], Bangalore, India
| | - Binukumar Bhaskarapillai
- Department of Biostatistics, National Institute of Mental Health and Neurosciences [NIMHANS], Bangalore, India
| | - Y C Janardhan Reddy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences [NIMHANS], Bangalore, India
| | - Naren P Rao
- Department of Psychiatry, National Institute of Mental Health and Neurosciences [NIMHANS], Bangalore, India
| |
Collapse
|
15
|
Khedr EM, Elbeh K, Saber M, Abdelrady Z, Abdelwarith A. A double blind randomized clinical trial of the effectiveness of low frequency rTMS over right DLPFC or OFC for treatment of obsessive-compulsive disorder. J Psychiatr Res 2022; 156:122-131. [PMID: 36244200 DOI: 10.1016/j.jpsychires.2022.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
We compared the effectiveness of low frequency repetitive transcranial magnetic stimulation over right dorsolateral prefrontal cortex (DLPFC), right orbitofrontal cortex (OFC) and sham for treatment of obsessive-compulsive disorder (OCD) and sought to determine possible predictors of effective treatment. Sixty OCD patients participated and were randomly allocated to one of the 3 treatment groups. Treatment was administered daily for 10 days. Assessments were made at the beginning and end of therapy as well as three months later using the Yale-Brown obsessive compulsive scale (Y-BOCS), Hamilton Anxiety Rating Scale (HAM-A), Beck Depression Inventory (BDI), and Clinical Global Impression - Severity scale (CGI-S). There were no significant demographic or clinical differences between the groups at baseline. One-way repeated measures ANOVA showed that participants in all 3 groups improved their scores on all rating scales following treatment. A two-way repeated measures ANOVA revealed a significant time and group interaction due to the fact that both active treatment groups outperformed the sham group, although there was no significant difference between the two. Percent improvement had significant negative correlations with the following factors: duration of illness, baseline Y-BOCS, HAM-A, and BDI. We conclude that rTMS over either right DLPFC or OFC has a therapeutic effect on OCD symptoms. Patients with lower Y-BOCS and fewer comorbidities responded best to rTMS.
Collapse
Affiliation(s)
- Eman M Khedr
- Department of Neurology and Psychiatry, Assiut University, Assiut, Egypt; Department of Neuropsychiatry, Aswan University, Aswan, Egypt.
| | - Khaled Elbeh
- Department of Neurology and Psychiatry, Assiut University, Assiut, Egypt
| | - Mostafa Saber
- Department of Neuropsychiatry, Aswan University, Aswan, Egypt
| | | | | |
Collapse
|
16
|
Guo Q, Wang K, Han H, Li P, Cheng J, Zhu J, Wang Z, Fan Q. Continuous theta burst stimulation over the bilateral supplementary motor area in obsessive-compulsive disorder treatment: A clinical randomized single-blind sham-controlled trial. Eur Psychiatry 2022; 65:e64. [PMID: 36203323 PMCID: PMC9641651 DOI: 10.1192/j.eurpsy.2022.2323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) can cause substantial damage to quality of life. Continuous theta burst stimulation (cTBS) is a promising treatment for OCD patients with the advantages of safety and noninvasiveness. OBJECTIVE The present study aimed to evaluate the treatment efficacy of cTBS over the bilateral supplementary motor area (SMA) for OCD patients with a single-blind, sham-controlled design. METHODS Fifty-four OCD patients were randomized to receive active or sham cTBS treatment over the bilateral SMA for 4 weeks (five sessions per week, 20 sessions in total). Patients were assessed at baseline (week 0), the end of treatment (week 4), and follow-up (week 8). Clinical scales included the YBOCS, HAMD24, HAMA14, and OBQ44. Three behavioral tests were also conducted to explore the effect of cTBS on response inhibition and decision-making in OCD patients. RESULTS The treatment response rates were not significantly different between the two groups at week 4 (active: 23.1% vs. sham: 16.7%, p = 0.571) and week 8 (active: 26.9% vs. sham: 16.7%, p = 0.382). Depression and anxiety improvements were significantly different between the two groups at week 4 (HAMD24: F = 4.644, p = 0.037; HAMA14: F = 5.219, p = 0.028). There was no significant difference between the two groups in the performance of three behavioral tests. The treatment satisfaction and dropout rates were not significantly different between the two groups. CONCLUSIONS The treatment of cTBS over the bilateral SMA was safe and tolerable, and it could significantly improve the depression and anxiety of OCD patients but was not enough to improve OCD symptoms in this study.
Collapse
Affiliation(s)
- Qihui Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaifeng Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiqin Han
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Puyu Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayue Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjuan Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China,Authors for correspondence: Zhen Wang and Qing Fan, E-mails: ;
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China,Authors for correspondence: Zhen Wang and Qing Fan, E-mails: ;
| |
Collapse
|
17
|
Dyason KM, Farrell LJ, Manning EE, Grisham JR, Perkes IE. Falling through the cracks in science and clinical service - A call to action for people with OCD. Aust N Z J Psychiatry 2022; 56:1213-1216. [PMID: 36112855 DOI: 10.1177/00048674221125595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Katelyn M Dyason
- Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW, Australia.,Department of Psychological Medicine, Sydney Children's Hospitals Network, Randwick, NSW, Australia
| | - Lara J Farrell
- School of Applied Psychology, Griffith Centre for Mental Health, Griffith University, Gold Coast, NSW, Australia
| | - Elizabeth E Manning
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Jessica R Grisham
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Iain E Perkes
- Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW, Australia.,Department of Psychological Medicine, Sydney Children's Hospitals Network, Randwick, NSW, Australia.,Paediatrics and Children's Health, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
18
|
Menardi A, Dotti L, Ambrosini E, Vallesi A. Transcranial magnetic stimulation treatment in Alzheimer's disease: a meta-analysis of its efficacy as a function of protocol characteristics and degree of personalization. J Neurol 2022; 269:5283-5301. [PMID: 35781536 PMCID: PMC9468063 DOI: 10.1007/s00415-022-11236-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/06/2022]
Abstract
Alzheimer's disease (AD) represents the most common type of neurodegenerative disorder. Although our knowledge on the causes of AD remains limited and no curative treatments are available, several interventions have been proposed in trying to improve patients' symptomatology. Among those, transcranial magnetic stimulation (TMS) has been shown a promising, safe and noninvasive intervention to improve global cognitive functioning. Nevertheless, we currently lack agreement between research studies on the optimal stimulation protocol yielding the highest efficacy in these patients. To answer this query, we conducted a systematic literature search in PubMed, PsycINFO and Scopus databases and meta-analysis of studies published in the last 10 years (2010-2021) according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Differently from prior published meta-analytic work, we investigated whether protocols that considered participants-specific neuroimaging scans for the selection of individualized stimulation targets held more successful outcomes compared to those relying on a generalized targeting selection criteria. We then compared the effect sizes of subsets of studies based on additional protocol characteristics (frequency, duration of intervention, number of stimulation sites, use of concomitant cognitive training and patients' educational level). Our results confirm TMS efficacy in improving global cognitive functioning in mild-to-moderate AD patients, but also highlight the flaws of current protocols characteristics, including a possible lack of sufficient personalization in stimulation protocols.
Collapse
Affiliation(s)
- Arianna Menardi
- Department of Neuroscience, University of Padova, 35121, Padua, Italy.
- Padova Neuroscience Center, University of Padova, Padua, Italy.
| | - Lisa Dotti
- Department of General Psychology, University of Padova, Padua, Italy
| | - Ettore Ambrosini
- Department of Neuroscience, University of Padova, 35121, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
- Department of General Psychology, University of Padova, Padua, Italy
| | - Antonino Vallesi
- Department of Neuroscience, University of Padova, 35121, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
19
|
Coenen VA, Schlaepfer TE, Sajonz BEA, Reinacher PC, Döbrössy MD, Reisert M. "The Heart Asks Pleasure First"-Conceptualizing Psychiatric Diseases as MAINTENANCE Network Dysfunctions through Insights from slMFB DBS in Depression and Obsessive-Compulsive Disorder. Brain Sci 2022; 12:438. [PMID: 35447971 PMCID: PMC9028695 DOI: 10.3390/brainsci12040438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
More than a decade ago, deep brain stimulation (DBS) of the superolateral medial forebrain bundle (slMFB), as part of the greater MFB system, had been proposed as a putative yet experimental treatment strategy for therapy refractory depression (TRD) and later for obsessive-compulsive disorders (OCD). Antidepressant and anti-OCD efficacy have been shown in open case series and smaller trials and were independently replicated. The MFB is anato-physiologically confluent with the SEEKING system promoting euphoric drive, reward anticipation and reward; functions realized through the mesocorticolimbic dopaminergic system. Growing clinical experience concerning surgical and stimulation aspects from a larger number of patients shows an MFB functionality beyond SEEKING and now re-informs the scientific rationale concerning the MFB's (patho-) physiology. In this white paper, we combine observations from more than 75 cases of slMFB DBS. We integrate these observations with a selected literature review to provide a new neuroethological view on the MFB. We here formulate a re-interpretation of the MFB as the main structure of an integrated SEEKING/MAINTENANCE circuitry, allowing for individual homeostasis and well-being through emotional arousal, basic and higher affect valence, bodily reactions, motor programing, vigor and flexible behavior, as the basis for the antidepressant and anti-OCD efficacy.
Collapse
Affiliation(s)
- Volker A. Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Center for Deep Brain Stimulation, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany
| | - Thomas E. Schlaepfer
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Center for Deep Brain Stimulation, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Department of Interventional Biological Psychiatry, Medical Center of University of Freiburg, 79106 Freiburg, Germany
| | - Bastian E. A. Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Fraunhofer Institute for Laser Technology (ILT), 52074 Aachen, Germany
| | - Máté D. Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center of University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
20
|
Di Ponzio M, Makris N, Tenerini C, Grassi E, Ragone S, Pallanti S. rTMS investigation of resistant Obsessive-Compulsive Related Disorders: Efficacy of targeting the reward system. Front Psychiatry 2022; 13:1035469. [PMID: 36819945 PMCID: PMC9937025 DOI: 10.3389/fpsyt.2022.1035469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Repetitive Transcranial Magnetic Stimulation (rTMS) is not only a therapeutic option but also an investigational tool to explore circuits and subjective dimensions in pathological conditions. Obsessive-Compulsive Related Disorders (OCRDs) shared similarities with Substance Use Disorder (SUD), suggesting the involvement of the reward system. This study aimed to verify the efficacy of targeting the reward system with rTMS in OCRDs. METHODS Patients with trichotillomania, hoarding disorder and skin picking disorder were treated with rTMS over the left DorsoLateral PreFrontal Cortex (DLPFC) at 15 Hz, targeting the reward system via the connection with the nucleus accumbens and the ventral tegmental area. All patients were administered with psychometric scales assessing depression symptoms and severity of OCRDs symptoms at the baseline, at the end of the treatment and a 1-month follow-up. RESULTS Analysis of the results showed a reduction in symptom severity at the end of the treatment in all three groups (p < 0.0001) as well as a reduction in depression symptoms (p < 0.01). Improvements at 1-month follow-up were maintained only in younger patients. Indeed, when changes in scores at the follow-up were analyzed separately for younger (<30 years) and older patients (>60 years), the elderly showed again an increase in symptoms severity, suggesting that the stability of TMS effects over time reduces with age, possibly as an effect of age-related reduction in brain plasticity. DISCUSSION This study adopted with promising results a protocol (15 Hz over the left DLPFC) targeting the reward system, typically employed in addictions. These results can be in line with the view of OCRDs as behavioral addictions, suggesting the implication of common circuits, such as the reward system, in the mechanisms at the basis of these disorders.
Collapse
Affiliation(s)
| | - Nikos Makris
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Center for Morphometric Analysis, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, United States.,Department of Neurology, Center for Morphometric Analysis, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, United States.,Department of Anatomy and Neurobiology, Boston University Medical School, Boston, MA, United States
| | | | | | | | - Stefano Pallanti
- Institute for Neuroscience, Florence, Italy.,Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
21
|
Carmi L, Tendler A, Bystritsky A, Hollander E, Blumberger DM, Daskalakis J, Ward H, Lapidus K, Goodman W, Casuto L, Feifel D, Barnea-Ygael N, Roth Y, Zangen A, Zohar J. Efficacy and Safety of Deep Transcranial Magnetic Stimulation for Obsessive-Compulsive Disorder: A Prospective Multicenter Randomized Double-Blind Placebo-Controlled Trial. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:152-159. [PMID: 35746941 PMCID: PMC9063595 DOI: 10.1176/appi.focus.20103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/18/2019] [Accepted: 03/12/2019] [Indexed: 01/03/2023]
Abstract
(Appeared originally in American Journal of Psychiatry 2019; 176:931-938) Reprinted with permission from American Psychiatric Association Publishing.
Collapse
|
22
|
Cerebellum and Neurorehabilitation in Emotion with a Focus on Neuromodulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:285-299. [DOI: 10.1007/978-3-030-99550-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
23
|
Nikayin S, Taylor JJ, Ostroff RB. Advanced training in interventional psychiatry. J Neurol Sci 2021; 434:120093. [PMID: 34974201 DOI: 10.1016/j.jns.2021.120093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/03/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
Interventional Psychiatry is an emerging subspecialty that treats patients with disorders resistant to routine measures by employing advanced treatment modalities and procedures that require expertise beyond the training provided in a general psychiatric residency. Interventional psychiatrists thus require advanced technical, psychiatric, and general medical training and expertise to be able to provide these treatments in a safe and effective manner. In this article, we will discuss our take on the definition of interventional psychiatry, review the modalities included in this field, and suggest training requirements for an interventional psychiatrist. We will also share our experience in providing advanced interventional psychiatry training as a chief residency or fellowship at the Yale New Haven Psychiatric Hospital.
Collapse
Affiliation(s)
- Sina Nikayin
- Yale University School of Medicine; 184 Liberty St., New Haven, CT, United States of America.
| | - Joseph J Taylor
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America.
| | - Robert B Ostroff
- Yale University School of Medicine, 184 Liberty St., New Haven, CT, United States of America.
| |
Collapse
|
24
|
Cinosi E, Adam D, Aslan I, Baldwin D, Chillingsworth K, Enara A, Gale T, Garg K, Garner M, Gordon R, Hall N, Huneke NTM, Kucukterzi-Ali S, McCarthy J, Meron D, Monji-Patel D, Mooney R, Robbins T, Smith M, Sireau N, Wellsted D, Wyatt S, Fineberg NA. Feasibility and acceptability of transcranial stimulation in obsessive-compulsive symptoms (FEATSOCS): study protocol for a randomised controlled trial of transcranial direct current stimulation (tDCS) in obsessive-compulsive disorder (OCD). Pilot Feasibility Stud 2021; 7:213. [PMID: 34872621 PMCID: PMC8646008 DOI: 10.1186/s40814-021-00945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder which often proves refractory to current treatment approaches. Transcranial direct current stimulation (tDCS), a noninvasive form of neurostimulation, with potential for development as a self-administered intervention, has shown potential as a safe and efficacious treatment for OCD in a small number of trials. The two most promising stimulation sites are located above the orbitofrontal cortex (OFC) and the supplementary motor area (SMA). METHODS The aim of this feasibility study is to inform the development of a definitive trial, focussing on the acceptability, safety of the intervention, feasibility of recruitment, adherence and tolerability to tDCS and study assessments and the size of the treatment effect. To this end, we will deliver a double-blind, sham-controlled, crossover randomised multicentre study in 25 adults with OCD. Each participant will receive three courses of tDCS (SMA, OFC and sham), randomly allocated and given in counterbalanced order. Each course comprises four 20-min stimulations, delivered over two consecutive days, separated by at least 4 weeks' washout period. We will collect information about recruitment, study conduct and tDCS delivery. Blinded raters will assess clinical outcomes before, during and up to 4 weeks after stimulation using validated scales. We will include relevant objective neurocognitive tasks, testing cognitive flexibility, motor disinhibition, cooperation and habit learning. DISCUSSION We will analyse the magnitude of the effect of the interventions on OCD symptoms alongside the standard deviation of the outcome measure, to estimate effect size and determine the optimal stimulation target. We will also measure the duration of the effect of stimulation, to provide information on spacing treatments efficiently. We will evaluate the usefulness and limitations of specific neurocognitive tests to determine a definitive test battery. Additionally, qualitative data will be collected from participants to better understand their experience of taking part in a tDCS intervention, as well as the impact on their overall quality of life. These clinical outcomes will enable the project team to further refine the methodology to ensure optimal efficiency in terms of both delivering and assessing the treatment in a full-scale trial. TRIAL REGISTRATION ISRCTN17937049 . (date applied 08/07/2019). Recruitment (ongoing) began 23rd July 2019 and is anticipated to complete 30th April 2021.
Collapse
Affiliation(s)
- Eduardo Cinosi
- Highly Specialised OCD and BDD Service, Hertfordshire Partnership NHS University Foundation Trust, Rosanne House, Parkway, Welwyn Garden City, Hertfordshire, UK.
- University of Hertfordshire, Hertfordshire, UK.
| | - David Adam
- ORCHARD-Advancing Global OCD Research Charity, Cambridge, UK
| | - Ibrahim Aslan
- Faculty of Medicine, Clinical and Experimental Sciences (CNS and Psychiatry), University of Southampton, Southampton, UK
| | - David Baldwin
- Faculty of Medicine, Clinical and Experimental Sciences (CNS and Psychiatry), University of Southampton, Southampton, UK
| | - Kieran Chillingsworth
- Faculty of Medicine, Clinical and Experimental Sciences (CNS and Psychiatry), University of Southampton, Southampton, UK
| | - Arun Enara
- Highly Specialised OCD and BDD Service, Hertfordshire Partnership NHS University Foundation Trust, Rosanne House, Parkway, Welwyn Garden City, Hertfordshire, UK
| | - Tim Gale
- Highly Specialised OCD and BDD Service, Hertfordshire Partnership NHS University Foundation Trust, Rosanne House, Parkway, Welwyn Garden City, Hertfordshire, UK
- University of Hertfordshire, Hertfordshire, UK
| | - Kabir Garg
- Highly Specialised OCD and BDD Service, Hertfordshire Partnership NHS University Foundation Trust, Rosanne House, Parkway, Welwyn Garden City, Hertfordshire, UK
| | - Matthew Garner
- Faculty of Medicine, Clinical and Experimental Sciences (CNS and Psychiatry), University of Southampton, Southampton, UK
| | - Robert Gordon
- Southern Health NHS Foundation Trust, Southampton, UK
| | | | - Nathan T M Huneke
- Faculty of Medicine, Clinical and Experimental Sciences (CNS and Psychiatry), University of Southampton, Southampton, UK
- Southern Health NHS Foundation Trust, Southampton, UK
| | - Sonay Kucukterzi-Ali
- Highly Specialised OCD and BDD Service, Hertfordshire Partnership NHS University Foundation Trust, Rosanne House, Parkway, Welwyn Garden City, Hertfordshire, UK
- University of Hertfordshire, Hertfordshire, UK
| | | | - Daniel Meron
- Faculty of Medicine, Clinical and Experimental Sciences (CNS and Psychiatry), University of Southampton, Southampton, UK
- Somerset NHS Foundation Trust, Taunton, UK
| | - Deela Monji-Patel
- Highly Specialised OCD and BDD Service, Hertfordshire Partnership NHS University Foundation Trust, Rosanne House, Parkway, Welwyn Garden City, Hertfordshire, UK
- University of Hertfordshire, Hertfordshire, UK
| | | | - Trevor Robbins
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Megan Smith
- University of Hertfordshire, Hertfordshire, UK
| | - Nick Sireau
- ORCHARD-Advancing Global OCD Research Charity, Cambridge, UK
| | | | | | - Naomi A Fineberg
- Highly Specialised OCD and BDD Service, Hertfordshire Partnership NHS University Foundation Trust, Rosanne House, Parkway, Welwyn Garden City, Hertfordshire, UK
- University of Hertfordshire, Hertfordshire, UK
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Baliga SP, Mehta UM. A Review of Studies Leveraging Multimodal TMS-fMRI Applications in the Pathophysiology and Treatment of Schizophrenia. Front Hum Neurosci 2021; 15:662976. [PMID: 34421559 PMCID: PMC8372850 DOI: 10.3389/fnhum.2021.662976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
The current review provides an overview of the existing literature on multimodal transcranial magnetic stimulation, and functional magnetic resonance imaging (TMS/fMRI) studies in individuals with schizophrenia and discusses potential future avenues related to the same. Multimodal studies investigating pathophysiology have explored the role of abnormal thalamic reactivity and have provided further evidence supporting the hypothesis of schizophrenia as a disorder of aberrant connectivity and cortical plasticity. Among studies examining treatment, low-frequency rTMS for the management of persistent auditory verbal hallucinations (AVH) was the most studied. While multimodal TMS/fMRI studies have provided evidence of involvement of local speech-related and distal networks on stimulation of the left temporoparietal cortex, current evidence does not suggest the superiority of fMRI based neuronavigation over conventional methods or of active rTMS over sham for treatment of AVH. Apart from these, preliminary findings suggest a role of rTMS in treating deficits in neurocognition, social cognition, and self-agency. However, most of these studies have only examined medication-resistant symptoms and have methodological concerns arising from small sample sizes and short treatment protocols. That being said, combining TMS with fMRI appears to be a promising approach toward elucidating the pathophysiology of schizophrenia and could also open up a possibility toward developing personalized treatment for its persistent and debilitating symptoms.
Collapse
Affiliation(s)
- Sachin Pradeep Baliga
- Department of Psychiatry, TN Medical College and BYL Nair Charitable Hospital, Mumbai, India
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
26
|
Stone KD, Dimitropoulos G, MacMaster FP. Food for Thought: A Dissonance Between Healthcare Utilization Costs and Research Funding for Eating Disorders in Canada. JOURNAL OF THE CANADIAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY = JOURNAL DE L'ACADEMIE CANADIENNE DE PSYCHIATRIE DE L'ENFANT ET DE L'ADOLESCENT 2021; 30:197-203. [PMID: 34381512 PMCID: PMC8315219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/15/2021] [Indexed: 06/13/2023]
Abstract
In this commentary, we present the premise that, in Canada, mental illness research specific to eating disorders is underfunded, and many Canadians are suffering the consequences of this underinvestment. We highlight three critical aspects of eating disorders: 1) the increasingly common yet potentially life-threatening nature of eating disorders, with an onset usually during adolescence; 2) the challenges and costs to treating eating disorders, with a discussion of current hospital-related costs across Canada; and 3) the glaring discrepancy between the money spent on eating disorder diagnoses/treatment and the funding dollars granted for eating disorder research in Canada (i.e. only $0.70 per affected Canadian in 2018). Research funding per affected individual for other psychiatric and neurodevelopmental conditions are used as comparisons (e.g. $50.17 per affected Canadian with schizophrenia). We suggest that it is time to revolutionize treatment for individuals with eating disorders and use our resources in a more efficient and effective manner, using current neuroimaging and neuromodulation methods as promising examples. We conclude by emphasizing the need for increased research funding in the field of eating disorders in Canada, as the current research-related investments hinder progress in developing neuroscientifically-sound treatments for these populations.
Collapse
Affiliation(s)
- Kayla D Stone
- Departments of Psychiatry and Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Gina Dimitropoulos
- Faculty of Social Work, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research & Education, Calgary, Alberta, Canada
| | - Frank P MacMaster
- Departments of Psychiatry and Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research & Education, Calgary, Alberta, Canada
- Provincial Addiction and Mental Health Portfolio, Alberta, Canada
| |
Collapse
|
27
|
Acevedo N, Bosanac P, Pikoos T, Rossell S, Castle D. Therapeutic Neurostimulation in Obsessive-Compulsive and Related Disorders: A Systematic Review. Brain Sci 2021; 11:brainsci11070948. [PMID: 34356182 PMCID: PMC8307974 DOI: 10.3390/brainsci11070948] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 01/16/2023] Open
Abstract
Invasive and noninvasive neurostimulation therapies for obsessive-compulsive and related disorders (OCRD) were systematically reviewed with the aim of assessing clinical characteristics, methodologies, neuroanatomical substrates, and varied stimulation parameters. Previous reviews have focused on a narrow scope, statistical rather than clinical significance, grouped together heterogenous protocols, and proposed inconclusive outcomes and directions. Herein, a comprehensive and transdiagnostic evaluation of all clinically relevant determinants is presented with translational clinical recommendations and novel response rates. Electroconvulsive therapy (ECT) studies were limited in number and quality but demonstrated greater efficacy than previously identified. Targeting the pre-SMA/SMA is recommended for transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS). TMS yielded superior outcomes, although polarity findings were conflicting, and refinement of frontal/cognitive control protocols may optimize outcomes. For both techniques, standardization of polarity, more treatment sessions (>20), and targeting multiple structures are encouraged. A deep brain stimulation (DBS) 'sweet spot' of the striatum for OCD was proposed, and CBT is strongly encouraged. Tourette's patients showed less variance and reliance on treatment optimization. Several DBS targets achieved consistent, rapid, and sustained clinical response. Analysis of fiber connectivity, as opposed to precise neural regions, should be implemented for target selection. Standardization of protocols is necessary to achieve translational outcomes.
Collapse
Affiliation(s)
- Nicola Acevedo
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
- Correspondence:
| | - Peter Bosanac
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
- Department of Psychiatry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Toni Pikoos
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
| | - David Castle
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
- Department of Psychiatry, University of Melbourne, Melbourne, VIC 3010, Australia
- Centre for Addiction and Mental Health, 252 College Street, Toronto, ON M5T 1R7, Canada
| |
Collapse
|
28
|
Liang K, Li H, Bu X, Li X, Cao L, Liu J, Gao Y, Li B, Qiu C, Bao W, Zhang S, Hu X, Xing H, Gong Q, Huang X. Efficacy and tolerability of repetitive transcranial magnetic stimulation for the treatment of obsessive-compulsive disorder in adults: a systematic review and network meta-analysis. Transl Psychiatry 2021; 11:332. [PMID: 34050130 PMCID: PMC8163761 DOI: 10.1038/s41398-021-01453-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been widely used as an alternative treatment for obsessive-compulsive disorder (OCD). However, the most effective rTMS parameters, such as the targets and stimulation frequencies, remain controversial. Therefore, we aimed to compare and rank the efficacy and tolerability of different rTMS strategies for OCD treatment. We searched five electronic databases from the date of their inception to March 25, 2020. Pairwise meta-analyses and network meta-analyses were performed to synthesize data. We assessed the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework. Twenty-two eligible randomized controlled trials (RCTs) were included. For efficacy, low-frequency (LF) rTMS over the dorsolateral prefrontal cortex (DLPFC; mean difference (MD) 6.34, 95% credible interval (CrI) 2.12-10.42) and supplementary motor area (MD 4.18, 95% CrI 0.83-7.62), and high-frequency rTMS over the DLPFC (MD 3.75, 95% CrI 1.04-6.81) were more effective than sham rTMS. Regarding tolerability, all rTMS treatment strategies were similar to the sham rTMS. The estimated ranking probabilities of treatments showed that LF-rTMS over the DLPFC might be the most effective intervention among all rTMS strategies. However, the quality of evidence regarding efficacy was evaluated as very low. Current evidence suggested a marginal advantage for LF-rTMS over the DLPFC on OCD treatment. High-quality RCTs with low selection and performance bias are needed to further verify the efficacy of specific rTMS strategies for the OCD treatment.
Collapse
Affiliation(s)
- Kaili Liang
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Hailong Li
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Xuan Bu
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Xue Li
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581School of Physical Science and Technology, Sichuan University, Chengdu, People’s Republic of China
| | - Lingxiao Cao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Jing Liu
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Yingxue Gao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Bin Li
- grid.412901.f0000 0004 1770 1022Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Changjian Qiu
- grid.412901.f0000 0004 1770 1022Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Weijie Bao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Suming Zhang
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Xinyu Hu
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Haoyang Xing
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581School of Physical Science and Technology, Sichuan University, Chengdu, People’s Republic of China
| | - Qiyong Gong
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China. .,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
29
|
Mantovani A, Neri F, D'Urso G, Mencarelli L, Tatti E, Momi D, Menardi A, Sprugnoli G, Santarnecchi E, Rossi S. Functional connectivity changes and symptoms improvement after personalized, double-daily dosing, repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: A pilot study. J Psychiatr Res 2021; 136:560-570. [PMID: 33158554 DOI: 10.1016/j.jpsychires.2020.10.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND intrusive thoughts and compulsive behaviors that characterize obsessive compulsive disorder (OCD) are associated to aberrant resting state functional connectivity (rsFC) patterns within the cortico-striatal-thalamo-cortical (CSTC) circuits. A high percentage of OCD patients do not respond to conventional pharmacological treatments or psychotherapy. In these patients, inhibitory repetitive transcranial magnetic stimulation (rTMS) of the Supplementary Motor Area (SMA) resulted in a significant clinical benefit. METHODS In the current study, we applied a novel protocol of 1-week MRI-guided individualized double-daily sessions of rTMS treatment (1-Hz; 110% of resting Motor Threshold/7200 pulses/day), to bilateral SMA in 9 OCD patients. We tested its (i) feasibility-safety, (ii) clinical efficacy and (iii) rsFC related changes. RESULTS Patients reported no side effects during and after rTMS. Personalized rTMS treatment led to a significant improvement of OCD symptoms (average 25%; p = .005) and persistence of benefit up to 3-month follow-up. rsFC analysis revealed a significant reduction of connectivity patterns between bilateral SMA and subcortical regions, specifically in the basal ganglia and thalamus. Additional analysis showed that OCD symptoms severity correlates with a higher connectivity pattern between bilateral SMA and subcortical regions. CONCLUSIONS rTMS double-daily sessions are safe, feasible and effective in OCD. The clinical outcomes, that are consistent with those found in our previous RCT, are linked to a decreased connectivity between SMA and subcortical brain areas implicated in control over obsessions and maladaptive compulsive behavior.
Collapse
Affiliation(s)
- Antonio Mantovani
- Department of Molecular, Cellular and Biomedical Sciences, CUNY, School of Medicine, New York, USA
| | - Francesco Neri
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy.
| | - Giordano D'Urso
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Lucia Mencarelli
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy; Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Elisa Tatti
- Department of Molecular, Cellular and Biomedical Sciences, CUNY, School of Medicine, New York, USA
| | - Davide Momi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy; Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Arianna Menardi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy; Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Giulia Sprugnoli
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Emiliano Santarnecchi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy; Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy; Department of Medicine, Surgery and Neuroscience, University of Siena School of Medicine, Siena, Italy
| |
Collapse
|
30
|
Castle D, Beilharz F, Phillips KA, Brakoulias V, Drummond LM, Hollander E, Ioannidis K, Pallanti S, Chamberlain SR, Rossell SL, Veale D, Wilhelm S, Van Ameringen M, Dell’Osso B, Menchon JM, Fineberg NA. Body dysmorphic disorder: a treatment synthesis and consensus on behalf of the International College of Obsessive-Compulsive Spectrum Disorders and the Obsessive Compulsive and Related Disorders Network of the European College of Neuropsychopharmacology. Int Clin Psychopharmacol 2021; 36:61-75. [PMID: 33230025 PMCID: PMC7846290 DOI: 10.1097/yic.0000000000000342] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022]
Abstract
Body dysmorphic disorder (BDD) is characterized by a preoccupation with a perceived appearance flaw or flaws that are not observable to others. BDD is associated with distress and impairment of functioning. Psychiatric comorbidities, including depression, social anxiety, and obsessive-compulsive disorder are common and impact treatment. Treatment should encompass psychoeducation, particularly addressing the dangers associated with cosmetic procedures, and may require high doses of selective serotonin reuptake inhibitors* (SSRI*) and protracted periods to establish full benefit. If there is an inadequate response to SSRIs, various adjunctive medications can be employed including atypical antipsychotics*, anxiolytics*, and the anticonvulsant levetiracetam*. However, large-scale randomized controlled trials are lacking and BDD is not an approved indication for these medications. Oxytocin* may have a potential role in treating BDD, but this requires further exploration. Cognitive-behavioural therapy has good evidence for efficacy for BDD, and on-line and telephone-assisted forms of therapy are showing promise. CBT for BDD should be customized to address such issues as mirror use, perturbations of gaze, and misinterpretation of others' emotions, as well as overvalued ideas about how others view the individual.
Collapse
Affiliation(s)
- David Castle
- Department of Psychiatry, University of Melbourne and St Vincent’s Hospital
| | | | - Katharine A. Phillips
- New York-Presbyterian Hospital and Professor of Psychiatry, Weill Cornell Medical College, New York, New York, USA
| | - Vlasios Brakoulias
- School of Medicine, Western Sydney University and Western Sydney Local Health District, Sydney, Australia
| | - Lynne M. Drummond
- National Services for OCD/BDD, SW London and St George’s NHS Trust, London, UK
| | - Eric Hollander
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Konstantinos Ioannidis
- Department of Psychiatry, University of Cambridge, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Stefano Pallanti
- Albert Einstein College of Medicine, Bronx, New York, USA
- Istituto di Neuroscienze University of Florence, Florence, Italy
| | - Samuel R. Chamberlain
- Department of Psychiatry, University of Southampton
- Southern Health NHS Foundation Trust, Southampton
- Department of Psychiatry, University of Cambridge
- Department of Psychiatry, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Susan L. Rossell
- Centre for Mental Health, Swinburne University and St Vincent’s Hospital, Melbourne, Australia
| | - David Veale
- Department of Psychology, King’s College London and the South London and Maudsley NHS Foundation Trust, London, UK
| | - Sabine Wilhelm
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Michael Van Ameringen
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Bernardo Dell’Osso
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Luigi Sacco Hospital, Milan, Italy
| | - Jose M. Menchon
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, University of Barcelona, Cibersam, Barcelona, Spain
| | - Naomi A. Fineberg
- Department of Clinical and Pharmaceutical Sciences, University of Hertfordshire and Hertfordshire Partnership University NHS Foundation Trust, Hatfield, UK
| |
Collapse
|
31
|
Tang VM, Blumberger DM, Weissman CR, Dimitrova J, Throop A, McClintock SM, Voineskos D, Rajji TK, Downar J, Knyahnytska Y, Mulsant BH, Fitzgerald PB, Daskalakis ZJ. A pilot study of magnetic seizure therapy for treatment-resistant obsessive-compulsive disorder. Depress Anxiety 2021; 38:161-171. [PMID: 32949052 DOI: 10.1002/da.23097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/07/2020] [Accepted: 09/09/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND There is growing interest in the potential of neuromodulation options in treatment-resistant obsessive-compulsive disorder (OCD). Magnetic seizure therapy (MST), is a new treatment intervention in which generalized seizures are induced with transcranial magnetic stimulation. We conducted a pilot study to assess the efficacy and cognitive effects of MST in patients with treatment-resistant OCD. METHODS In an open-label pilot study, participants with treatment-resistant OCD and a baseline Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) scores of ≥16 were treated with up to 24 acute treatments. The primary clinical outcomes were clinical response (Y-BOCS score reduction ≥30%) and remission (final Y-BOCS score ≤8). A neurocognitive battery, the Quick Inventory for Depressive Symptoms-Self Report (QIDS-SR), the Beck Scale for Suicidal Ideation (SSI), and the Quality of Life Enjoyment and Satisfaction Questionnaire-Short Form (Q-LES-Q-SF) were also completed as secondary measures. RESULTS Ten participants with OCD who had not responded to medications or psychotherapy enrolled in the study and seven completed an adequate trial (defined as ≥8 treatments). MST was associated with minimal cognitive effects except for some decrease in autobiographical memory and no serious adverse effects. Only one participant met the predefined criteria for response, and none for remission. The baseline and endpoint Y-BOCS scores were not statistically different. CONCLUSION Overall, MST was not beneficial in a small group of patients with treatment-resistant OCD. At this time, other studies of MST for OCD are not warranted until different coil placements targeting other brain circuits can be proposed.
Collapse
Affiliation(s)
- Victor M Tang
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Cory R Weissman
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Julia Dimitrova
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Alanah Throop
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Shawn M McClintock
- Neurocognitive Research Laboratory, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Daphne Voineskos
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K Rajji
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Downar
- Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Mental Health and Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yuliya Knyahnytska
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Benoit H Mulsant
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Paul B Fitzgerald
- Department of Psychiatry, Epworth Centre for Innovation in Mental Health, Epworth Healthcare, Monash University, Camberwell, Victoria, Australia
| | - Zafiris J Daskalakis
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, UC San Diego Health, La Jolla, California
| |
Collapse
|
32
|
Huang J, Jiang S, Wagoner R, Yang H, Currier G, Jiang H. Three-dimensional optical imaging of brain activation during transcranial magnetic stimulation. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2021; 29:891-902. [PMID: 34397443 DOI: 10.3233/xst-210900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) of the brain is an effective clinical treatment for psychiatric disorders. Noninvasive neuroimaging during rTMS allows visualization of cortical brain activations and responses, and it is a potential tool for investigating the neurophysiological response occurring actively during stimulation. In this paper, we present a fast diffuse optical tomography (DOT) approach for three-dimensional brain mapping of hemodynamics during rTMS. Eight healthy subjects were enrolled in the study. These subjects received 10 Hz stimulation with 80%and 100%of resting motor threshold (rMT), respectively, for 4 seconds for each stimulation. Significant hemodynamic activation was observed in all cases with the strongest response when 100%rMT stimulation was applied. This work demonstrates that fast DOT has the potential to become a powerful tool for noninvasive three-dimensional imaging of the brain during rTMS.
Collapse
Affiliation(s)
- Jingyu Huang
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Shixie Jiang
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, Florida, USA
| | - Ryan Wagoner
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, Florida, USA
| | - Hao Yang
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Glenn Currier
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, Florida, USA
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
33
|
Abstract
It becomes increasingly clear that (non-)invasive neurostimulation is an effective treatment for obsessive-compulsive disorder (OCD). In this chapter we review the available evidence on techniques and targets, clinical results including a meta-analysis, mechanisms of action, and animal research. We focus on deep brain stimulation (DBS), but also cover non-invasive neurostimulation including transcranial magnetic stimulation (TMS). Data shows that most DBS studies target the ventral capsule/ventral striatum (VC/VS), with an overall 76% response rate in treatment-refractory OCD. Also TMS holds clinical promise. Increased insight in the normalizing effects of neurostimulation on cortico-striatal-thalamic-cortical (CSTC) loops - through neuroimaging and animal research - provides novel opportunities to further optimize treatment strategies. Advancing clinical implementation of neurostimulation techniques is essential to ameliorate the lives of the many treatment-refractory OCD patients.
Collapse
|
34
|
Neural primacy of the dorsolateral prefrontal cortex in patients with obsessive-compulsive disorder. NEUROIMAGE-CLINICAL 2020; 28:102432. [PMID: 32987298 PMCID: PMC7522851 DOI: 10.1016/j.nicl.2020.102432] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 02/08/2023]
Abstract
The dorsolateral prefrontal cortex (DLPFC), a key structure in the executive system, has consistently emerged as a crucial element in the pathophysiology of obsessive-compulsive disorder (OCD). However, the neural primacy of the DLPFC remains elusive in this disorder. We investigated the causal interaction (measured by effective connectivity) between the DLPFC and the remaining brain areas using bivariate Granger causality analysis of resting-state fMRI collected from 88 medication-free OCD patients and 88 matched healthy controls. Additionally, we conducted seed-based functional connectivity (FC) analyses to identify network-level neural functional alterations using the bilateral DLPFC as seeds. OCD patients demonstrated reduced FC between the right DLPFC and right orbitofrontal cortex (OFC), and activity in the right OFC had an inhibitory effect on the right DLPFC. Additionally, we observed alterations in both feedforward and reciprocal influences between the inferior temporal gyrus (ITG) and the DLPFC in patients. Furthermore, activity in the cerebellum had an excitatory influence on the right DLPFC in OCD patients. These findings may help to elucidate the psychopathology of OCD by detailing the directional connectivity between the DLPFC and the rest of the brain, ultimately helping to identify regions that could serve as treatment targets in OCD.
Collapse
|
35
|
Affiliation(s)
- Reilly R. Kayser
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY,Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY
| |
Collapse
|
36
|
McCathern AG, Mathai DS, Cho RY, Goodman WK, Storch EA. Deep transcranial magnetic stimulation for obsessive compulsive disorder. Expert Rev Neurother 2020; 20:1029-1036. [PMID: 32684005 DOI: 10.1080/14737175.2020.1798232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Obsessive-compulsive disorder (OCD) is a common psychiatric disorder that can be chronic and debilitating if not properly treated. Current first-line treatments for OCD include cognitive-behavioral therapy with exposure and response prevention and serotonin uptake inhibitor medications; however, these therapies are not effective for all individuals. AREAS COVERED Deep transcranial magnetic stimulation (dTMS) has been hypothesized to be an effective alternative for individuals with treatment-resistant OCD. dTMS has thought to be favorable due to its low side effect profile and its minimally invasive nature. EXPERT OPINION This review evaluates the current research on effectiveness of dTMS therapy for individuals with treatment-resistant OCD. This review also investigates shortcomings in current dTMS research and the hypothesized future of dTMS therapy.
Collapse
Affiliation(s)
- Alexis G McCathern
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine , Houston, TX, USA
| | - David S Mathai
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine , Houston, TX, USA
| | - Raymond Y Cho
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine , Houston, TX, USA
| | - Wayne K Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine , Houston, TX, USA
| | - Eric A Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine , Houston, TX, USA
| |
Collapse
|
37
|
Non-invasive Brain Stimulation Effects on the Perceptual and Cognitive Processes Underlying Decision-making: a Mini Review. JOURNAL OF COGNITIVE ENHANCEMENT 2020. [DOI: 10.1007/s41465-020-00186-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Fineberg NA, Hollander E, Pallanti S, Walitza S, Grünblatt E, Dell’Osso BM, Albert U, Geller DA, Brakoulias V, Janardhan Reddy Y, Arumugham SS, Shavitt RG, Drummond L, Grancini B, De Carlo V, Cinosi E, Chamberlain SR, Ioannidis K, Rodriguez CI, Garg K, Castle D, Van Ameringen M, Stein DJ, Carmi L, Zohar J, Menchon JM. Clinical advances in obsessive-compulsive disorder: a position statement by the International College of Obsessive-Compulsive Spectrum Disorders. Int Clin Psychopharmacol 2020; 35:173-193. [PMID: 32433254 PMCID: PMC7255490 DOI: 10.1097/yic.0000000000000314] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/16/2020] [Indexed: 11/25/2022]
Abstract
In this position statement, developed by The International College of Obsessive-Compulsive Spectrum Disorders, a group of international experts responds to recent developments in the evidence-based management of obsessive-compulsive disorder (OCD). The article presents those selected therapeutic advances judged to be of utmost relevance to the treatment of OCD, based on new and emerging evidence from clinical and translational science. Areas covered include refinement in the methods of clinical assessment, the importance of early intervention based on new staging models and the need to provide sustained well-being involving effective relapse prevention. The relative benefits of psychological, pharmacological and somatic treatments are reviewed and novel treatment strategies for difficult to treat OCD, including neurostimulation, as well as new areas for research such as problematic internet use, novel digital interventions, immunological therapies, pharmacogenetics and novel forms of psychotherapy are discussed.
Collapse
Affiliation(s)
- Naomi A. Fineberg
- University of Hertfordshire, Hatfield
- Hertfordshire Partnership University NHS Foundation Trust, Welwyn Garden City, Hertfordshire
- University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Eric Hollander
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Stefano Pallanti
- Istituto di Neuroscienze, University of Florence, Firenze, Italy
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich
- Neuroscience Center Zurich, University of Zurich and ETH Zurich
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich
- Neuroscience Center Zurich, University of Zurich and ETH Zurich
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Bernardo Maria Dell’Osso
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Ospedale Sacco-Polo Universitario, ASST Fatebenefratelli-Sacco, Milan, Italy
- Department of Psychiatry and Behavioural Sciences, Stanford University, California, USA
- CRC ‘Aldo Ravelli’ for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford
| | - Umberto Albert
- Department of Medicine, Surgery and Health Sciences, UCO Clinica Psichiatrica, University of Trieste, Trieste, Italy
| | - Daniel A. Geller
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vlasios Brakoulias
- Western Sydney Obsessive-Compulsive and Related Disorders Service, Western Sydney Local Health District, Blacktown Hospital, Blacktown, New South Wales
- Translational Research Health Institute (THRI), Clinical and Health Psychology Research Initiative (CaHPRI) and School of Medicine, Western Sydney University, Sydney, Australia
| | - Y.C. Janardhan Reddy
- OCD Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Shyam Sundar Arumugham
- OCD Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Roseli G. Shavitt
- OCD Spectrum Disorders Program, Institute and Department of Psychiatry, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo-SP, Brazil
| | - Lynne Drummond
- Consultant Psychiatrist, SW London and St George’s NHS Trust and St George’s, University of London, London
| | - Benedetta Grancini
- Hertfordshire Partnership University NHS Foundation Trust, Welwyn Garden City, Hertfordshire
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Ospedale Sacco-Polo Universitario, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Vera De Carlo
- Hertfordshire Partnership University NHS Foundation Trust, Welwyn Garden City, Hertfordshire
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Ospedale Sacco-Polo Universitario, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Eduardo Cinosi
- University of Hertfordshire, Hatfield
- Hertfordshire Partnership University NHS Foundation Trust, Welwyn Garden City, Hertfordshire
| | - Samuel R. Chamberlain
- Department of Psychiatry, University of Cambridge, Cambridge
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Konstantinos Ioannidis
- Department of Psychiatry, University of Cambridge, Cambridge
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Carolyn I. Rodriguez
- Department of Psychiatry and Behavioural Sciences, Stanford University, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Kabir Garg
- Hertfordshire Partnership University NHS Foundation Trust, Welwyn Garden City, Hertfordshire
| | - David Castle
- St. Vincent’s Hospital Melbourne and The University of Melbourne, Melbourne, Australia
| | - Michael Van Ameringen
- Department of Psychiatry and Behavioural Neurosciences, McMaster University
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Dan J. Stein
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Lior Carmi
- The Post Trauma Center, Chaim Sheba Medical Center, Ramat Gan
- The Data Science Institution, The Interdisciplinary Center, Herzliya
| | - Joseph Zohar
- The Post Trauma Center, Chaim Sheba Medical Center, Ramat Gan
- Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Jose M. Menchon
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, University of Barcelona, Cibersam, Barcelona, Spain
| |
Collapse
|
39
|
Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, Bremner JD, Badran BW, Napadow V, Clark VP, Bikson M. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul 2020; 13:717-750. [PMID: 32289703 PMCID: PMC7196013 DOI: 10.1016/j.brs.2020.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The cranial nerves are the pathways through which environmental information (sensation) is directly communicated to the brain, leading to perception, and giving rise to higher cognition. Because cranial nerves determine and modulate brain function, invasive and non-invasive cranial nerve electrical stimulation methods have applications in the clinical, behavioral, and cognitive domains. Among other neuromodulation approaches such as peripheral, transcranial and deep brain stimulation, cranial nerve stimulation is unique in allowing axon pathway-specific engagement of brain circuits, including thalamo-cortical networks. In this review we amalgamate relevant knowledge of 1) cranial nerve anatomy and biophysics; 2) evidence of the modulatory effects of cranial nerves on cognition; 3) clinical and behavioral outcomes of cranial nerve stimulation; and 4) biomarkers of nerve target engagement including physiology, electroencephalography, neuroimaging, and behavioral metrics. Existing non-invasive stimulation methods cannot feasibly activate the axons of only individual cranial nerves. Even with invasive stimulation methods, selective targeting of one nerve fiber type requires nuance since each nerve is composed of functionally distinct axon-types that differentially branch and can anastomose onto other nerves. None-the-less, precisely controlling stimulation parameters can aid in affecting distinct sets of axons, thus supporting specific actions on cognition and behavior. To this end, a rubric for reproducible dose-response stimulation parameters is defined here. Given that afferent cranial nerve axons project directly to the brain, targeting structures (e.g. thalamus, cortex) that are critical nodes in higher order brain networks, potent effects on cognition are plausible. We propose an intervention design framework based on driving cranial nerve pathways in targeted brain circuits, which are in turn linked to specific higher cognitive processes. State-of-the-art current flow models that are used to explain and design cranial-nerve-activating stimulation technology require multi-scale detail that includes: gross anatomy; skull foramina and superficial tissue layers; and precise nerve morphology. Detailed simulations also predict that some non-invasive electrical or magnetic stimulation approaches that do not intend to modulate cranial nerves per se, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), may also modulate activity of specific cranial nerves. Much prior cranial nerve stimulation work was conceptually limited to the production of sensory perception, with individual titration of intensity based on the level of perception and tolerability. However, disregarding sensory emulation allows consideration of temporal stimulation patterns (axon recruitment) that modulate the tone of cortical networks independent of sensory cortices, without necessarily titrating perception. For example, leveraging the role of the thalamus as a gatekeeper for information to the cerebral cortex, preventing or enhancing the passage of specific information depending on the behavioral state. We show that properly parameterized computational models at multiple scales are needed to rationally optimize neuromodulation that target sets of cranial nerves, determining which and how specific brain circuitries are modulated, which can in turn influence cognition in a designed manner.
Collapse
Affiliation(s)
- Devin Adair
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Dennis Truong
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| | - Nigel Gebodh
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Helen Borges
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Libby Ho
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard medical school, Boston, MA, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; The Mind Research Network of the Lovelace Biomedical Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| |
Collapse
|
40
|
Graat I, van Rooijen G, Mocking R, Vulink N, de Koning P, Schuurman R, Denys D. Is deep brain stimulation effective and safe for patients with obsessive compulsive disorder and comorbid bipolar disorder? J Affect Disord 2020; 264:69-75. [PMID: 31846903 DOI: 10.1016/j.jad.2019.11.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/07/2019] [Accepted: 11/30/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) is an effective treatment for refractory obsessive-compulsive disorder (OCD). Bipolar disorder (BD) is generally considered a contra-indication for DBS due to frequently reported transient impulsivity or (hypo)mania. OBJECTIVE The present study is the first study to examine effectiveness and safety of DBS for patients with OCD and BD. METHODS Five consecutive patients suffering from treatment-refractory OCD with comorbid BD (I or II) underwent DBS of the ventral anterior limb of the internal capsule (vALIC). We examined effectiveness of DBS on symptoms of OCD and depression, using the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) and Hamilton Depression Rating Scale (HAM-D). We monitored side-effects, in particular DBS-induced (hypo)manic symptoms, using the Young mania rating scale (YMRS). RESULTS Follow-up time ranged between 15 and 68 months. vALIC-DBS led to a significant improvement of OCD and depressive symptoms. Mean Y-BOCS score decreased from 36.8 (SD 2.4) to 22.4 (SD 9.4). Mean HAM-D score dropped from 24.2 (SD 8.6) to 16.5 (SD 11.3). Transient hypomanic symptoms were observed in 4 out of 5 patients and in 1 patient, hypomanic symptoms resolved by adjusting stimulation and medication. Changes in YMRS scores were not significant. Hypomanic symptoms did not result in admission or lasting adverse consequences. CONCLUSION DBS effectively alleviates symptoms of OCD and depression in patients with OCD and BD but there is a large risk of developing transient hypomanic symptoms. Altogether, comorbid BD should not be considered as an absolute contra-indication for DBS in OCD patients with comorbid BD, but patients should be monitored carefully during optimization and follow-up of DBS.
Collapse
Affiliation(s)
- Ilse Graat
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam, the Netherlands.
| | - Geeske van Rooijen
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam, the Netherlands
| | - Roel Mocking
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam, the Netherlands
| | - Nienke Vulink
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam, the Netherlands
| | - Pelle de Koning
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam, the Netherlands
| | - Rick Schuurman
- Department of Neurosurgery, Academic Medical Centre (Amsterdam UMC), Amsterdam, the Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam, the Netherlands
| |
Collapse
|
41
|
Transcranial direct current stimulation in patients with obsessive
compulsive disorder: A randomized controlled trial. Eur Psychiatry 2020; 62:38-44. [DOI: 10.1016/j.eurpsy.2019.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/13/2019] [Accepted: 08/26/2019] [Indexed: 01/27/2023] Open
Abstract
Abstract
Background:
Obsessive-compulsive disorder (OCD) is a severe mental disorder with
poor response to the available treatments. Neuroimaging studies have
identified dysfunctions within the
orbito-fronto-striato-pallido-thalamic network in patients with OCD.
Here, we assessed the efficacy and safety of transcranial direct current
stimulation (tDCS) applied with the cathode over the orbitofrontal
cortex (OFC) and the anode over the right cerebellum to decrease OCD
symptoms in patients with treatment-resistant OCD.
Methods:
In a randomized sham-controlled double-blind study, 21 patients with
OCD were assigned to receive ten 20-min sessions (two sessions per day)
of either active (2 mA) or sham tDCS. The clinical symptoms were
measured using the Yale-Brown Obsessive and Compulsive Scale (YBOCS).
Acute effects on the symptoms were measured from baseline to immediately
after the 10 tDCS sessions. Long-lasting effects were measured 1 and 3
months after the 10th tDCS session.
Results:
Compared with the sham tDCS, active tDCS significantly decreased OCD
symptoms immediately after the 10th tDCS session
(F(1,19) = 5.26, p = 0.03). However, no
significant differences were observed between the active and sham groups
in terms of changes in YBOCS score or the number of responders one and 3
months after tDCS.
Conclusion:
Despite significant acute effects, tDCS with the cathode placed over
the left OFC and the anode placed over the right cerebellum was not
significantly effective in inducing a long-lasting reduction of symptoms
in patients with treatment-resistant OCD.
Collapse
|
42
|
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, Jääskeläinen SK, Langguth B, Leocani L, Londero A, Nardone R, Nguyen JP, Nyffeler T, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quartarone A, Rachid F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol 2020; 131:474-528. [PMID: 31901449 DOI: 10.1016/j.clinph.2019.11.002] [Citation(s) in RCA: 1007] [Impact Index Per Article: 251.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
Abstract
A group of European experts reappraised the guidelines on the therapeutic efficacy of repetitive transcranial magnetic stimulation (rTMS) previously published in 2014 [Lefaucheur et al., Clin Neurophysiol 2014;125:2150-206]. These updated recommendations take into account all rTMS publications, including data prior to 2014, as well as currently reviewed literature until the end of 2018. Level A evidence (definite efficacy) was reached for: high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the painful side for neuropathic pain; HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) using a figure-of-8 or a H1-coil for depression; low-frequency (LF) rTMS of contralesional M1 for hand motor recovery in the post-acute stage of stroke. Level B evidence (probable efficacy) was reached for: HF-rTMS of the left M1 or DLPFC for improving quality of life or pain, respectively, in fibromyalgia; HF-rTMS of bilateral M1 regions or the left DLPFC for improving motor impairment or depression, respectively, in Parkinson's disease; HF-rTMS of ipsilesional M1 for promoting motor recovery at the post-acute stage of stroke; intermittent theta burst stimulation targeted to the leg motor cortex for lower limb spasticity in multiple sclerosis; HF-rTMS of the right DLPFC in posttraumatic stress disorder; LF-rTMS of the right inferior frontal gyrus in chronic post-stroke non-fluent aphasia; LF-rTMS of the right DLPFC in depression; and bihemispheric stimulation of the DLPFC combining right-sided LF-rTMS (or continuous theta burst stimulation) and left-sided HF-rTMS (or intermittent theta burst stimulation) in depression. Level A/B evidence is not reached concerning efficacy of rTMS in any other condition. The current recommendations are based on the differences reached in therapeutic efficacy of real vs. sham rTMS protocols, replicated in a sufficient number of independent studies. This does not mean that the benefit produced by rTMS inevitably reaches a level of clinical relevance.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France.
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jérôme Brunelin
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Saša R Filipović
- Department of Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany; Institute of Neurosciences and Medicine (INM3), Jülich Research Centre, Jülich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Friedhelm C Hummel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Swiss Federal Institute of Technology (EPFL) Valais and Clinique Romande de Réadaptation, Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Letizia Leocani
- Department of Neurorehabilitation and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Alain Londero
- Department of Otorhinolaryngology - Head and Neck Surgery, Université Paris Descartes Sorbonne Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Jean-Paul Nguyen
- Multidisciplinary Pain Center, Clinique Bretéché, ELSAN, Nantes, France; Multidisciplinary Pain, Palliative and Supportive Care Center, UIC22-CAT2-EA3826, University Hospital, CHU Nord-Laënnec, Nantes, France
| | - Thomas Nyffeler
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Neurology, University of Bern, Bern, Switzerland; Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal; NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Medical Park Chiemseeblick, Bernau, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Emmanuel Poulet
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France; Department of Emergency Psychiatry, Edouard Herriot Hospital, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Si-BIN Lab Human Physiology Section, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Hanna Sahlsten
- ENT Clinic, Mehiläinen and University of Turku, Turku, Finland
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - David Szekely
- Department of Psychiatry, Princess Grace Hospital, Monaco
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
43
|
Carmi L, Tendler A, Bystritsky A, Hollander E, Blumberger DM, Daskalakis J, Ward H, Lapidus K, Goodman W, Casuto L, Feifel D, Barnea-Ygael N, Roth Y, Zangen A, Zohar J. Efficacy and Safety of Deep Transcranial Magnetic Stimulation for Obsessive-Compulsive Disorder: A Prospective Multicenter Randomized Double-Blind Placebo-Controlled Trial. Am J Psychiatry 2019; 176:931-938. [PMID: 31109199 DOI: 10.1176/appi.ajp.2019.18101180] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Obsessive-compulsive disorder (OCD) is a chronic and disabling condition that often responds unsatisfactorily to pharmacological and psychological treatments. Converging evidence suggests a dysfunction of the cortical-striatal-thalamic-cortical circuit in OCD, and a previous feasibility study indicated beneficial effects of deep transcranial magnetic stimulation (dTMS) targeting the medial prefrontal cortex and the anterior cingulate cortex. The authors examined the therapeutic effect of dTMS in a multicenter double-blind sham-controlled study. METHODS At 11 centers, 99 OCD patients were randomly allocated to treatment with either high-frequency (20 Hz) or sham dTMS and received daily treatments following individualized symptom provocation, for 6 weeks. Clinical response to treatment was determined using the Yale-Brown Obsessive Compulsive Scale (YBOCS), and the primary efficacy endpoint was the change in score from baseline to posttreatment assessment. Additional measures were response rates (defined as a reduction of ≥30% in YBOCS score) at the posttreatment assessment and after another month of follow-up. RESULTS Eighty-nine percent of the active treatment group and 96% of the sham treatment group completed the study. The reduction in YBOCS score among patients who received active dTMS treatment was significantly greater than among patients who received sham treatment (reductions of 6.0 points and 3.3 points, respectively), with response rates of 38.1% and 11.1%, respectively. At the 1-month follow-up, the response rates were 45.2% in the active treatment group and 17.8% in the sham treatment group. Significant differences between the groups were maintained at follow-up. CONCLUSIONS High-frequency dTMS over the medial prefrontal cortex and anterior cingulate cortex significantly improved OCD symptoms and may be considered as a potential intervention for patients who do not respond adequately to pharmacological and psychological interventions.
Collapse
Affiliation(s)
- Lior Carmi
- The School of Psychological Science, Tel Aviv University, Tel Aviv, Israel (Carmi); the Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Carmi, Barnea-Ygael, Roth, Zangen); Advanced Mental Health Care, Inc., Palm Beach, Fla. (Tendler); the Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles (Bystritsky); the Spectrum Neuroscience and Treatment Center, New York (Hollander); the Temerty Centre for Therapeutic Brain Intervention and the Campbell Family Research Institute, Centre for Addiction and Mental Health, and the Department of Psychiatry, University of Toronto, Ontario (Blumberger, Daskalakis); the Department of Psychiatry, University of Florida, Gainesville (Ward); the Department of Psychiatry, Northwell Health, New York (Lapidus); the Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York (Goodman); the Lindner Center of HOPE, Mason, Ohio (Casuto); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati (Casuto); the Department of Psychiatry, University of California San Diego, La Jolla (Feifel); the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Zohar)
| | - Aron Tendler
- The School of Psychological Science, Tel Aviv University, Tel Aviv, Israel (Carmi); the Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Carmi, Barnea-Ygael, Roth, Zangen); Advanced Mental Health Care, Inc., Palm Beach, Fla. (Tendler); the Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles (Bystritsky); the Spectrum Neuroscience and Treatment Center, New York (Hollander); the Temerty Centre for Therapeutic Brain Intervention and the Campbell Family Research Institute, Centre for Addiction and Mental Health, and the Department of Psychiatry, University of Toronto, Ontario (Blumberger, Daskalakis); the Department of Psychiatry, University of Florida, Gainesville (Ward); the Department of Psychiatry, Northwell Health, New York (Lapidus); the Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York (Goodman); the Lindner Center of HOPE, Mason, Ohio (Casuto); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati (Casuto); the Department of Psychiatry, University of California San Diego, La Jolla (Feifel); the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Zohar)
| | - Alexander Bystritsky
- The School of Psychological Science, Tel Aviv University, Tel Aviv, Israel (Carmi); the Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Carmi, Barnea-Ygael, Roth, Zangen); Advanced Mental Health Care, Inc., Palm Beach, Fla. (Tendler); the Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles (Bystritsky); the Spectrum Neuroscience and Treatment Center, New York (Hollander); the Temerty Centre for Therapeutic Brain Intervention and the Campbell Family Research Institute, Centre for Addiction and Mental Health, and the Department of Psychiatry, University of Toronto, Ontario (Blumberger, Daskalakis); the Department of Psychiatry, University of Florida, Gainesville (Ward); the Department of Psychiatry, Northwell Health, New York (Lapidus); the Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York (Goodman); the Lindner Center of HOPE, Mason, Ohio (Casuto); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati (Casuto); the Department of Psychiatry, University of California San Diego, La Jolla (Feifel); the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Zohar)
| | - Eric Hollander
- The School of Psychological Science, Tel Aviv University, Tel Aviv, Israel (Carmi); the Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Carmi, Barnea-Ygael, Roth, Zangen); Advanced Mental Health Care, Inc., Palm Beach, Fla. (Tendler); the Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles (Bystritsky); the Spectrum Neuroscience and Treatment Center, New York (Hollander); the Temerty Centre for Therapeutic Brain Intervention and the Campbell Family Research Institute, Centre for Addiction and Mental Health, and the Department of Psychiatry, University of Toronto, Ontario (Blumberger, Daskalakis); the Department of Psychiatry, University of Florida, Gainesville (Ward); the Department of Psychiatry, Northwell Health, New York (Lapidus); the Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York (Goodman); the Lindner Center of HOPE, Mason, Ohio (Casuto); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati (Casuto); the Department of Psychiatry, University of California San Diego, La Jolla (Feifel); the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Zohar)
| | - Daniel M Blumberger
- The School of Psychological Science, Tel Aviv University, Tel Aviv, Israel (Carmi); the Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Carmi, Barnea-Ygael, Roth, Zangen); Advanced Mental Health Care, Inc., Palm Beach, Fla. (Tendler); the Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles (Bystritsky); the Spectrum Neuroscience and Treatment Center, New York (Hollander); the Temerty Centre for Therapeutic Brain Intervention and the Campbell Family Research Institute, Centre for Addiction and Mental Health, and the Department of Psychiatry, University of Toronto, Ontario (Blumberger, Daskalakis); the Department of Psychiatry, University of Florida, Gainesville (Ward); the Department of Psychiatry, Northwell Health, New York (Lapidus); the Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York (Goodman); the Lindner Center of HOPE, Mason, Ohio (Casuto); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati (Casuto); the Department of Psychiatry, University of California San Diego, La Jolla (Feifel); the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Zohar)
| | - Jeff Daskalakis
- The School of Psychological Science, Tel Aviv University, Tel Aviv, Israel (Carmi); the Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Carmi, Barnea-Ygael, Roth, Zangen); Advanced Mental Health Care, Inc., Palm Beach, Fla. (Tendler); the Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles (Bystritsky); the Spectrum Neuroscience and Treatment Center, New York (Hollander); the Temerty Centre for Therapeutic Brain Intervention and the Campbell Family Research Institute, Centre for Addiction and Mental Health, and the Department of Psychiatry, University of Toronto, Ontario (Blumberger, Daskalakis); the Department of Psychiatry, University of Florida, Gainesville (Ward); the Department of Psychiatry, Northwell Health, New York (Lapidus); the Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York (Goodman); the Lindner Center of HOPE, Mason, Ohio (Casuto); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati (Casuto); the Department of Psychiatry, University of California San Diego, La Jolla (Feifel); the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Zohar)
| | - Herbert Ward
- The School of Psychological Science, Tel Aviv University, Tel Aviv, Israel (Carmi); the Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Carmi, Barnea-Ygael, Roth, Zangen); Advanced Mental Health Care, Inc., Palm Beach, Fla. (Tendler); the Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles (Bystritsky); the Spectrum Neuroscience and Treatment Center, New York (Hollander); the Temerty Centre for Therapeutic Brain Intervention and the Campbell Family Research Institute, Centre for Addiction and Mental Health, and the Department of Psychiatry, University of Toronto, Ontario (Blumberger, Daskalakis); the Department of Psychiatry, University of Florida, Gainesville (Ward); the Department of Psychiatry, Northwell Health, New York (Lapidus); the Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York (Goodman); the Lindner Center of HOPE, Mason, Ohio (Casuto); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati (Casuto); the Department of Psychiatry, University of California San Diego, La Jolla (Feifel); the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Zohar)
| | - Kyle Lapidus
- The School of Psychological Science, Tel Aviv University, Tel Aviv, Israel (Carmi); the Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Carmi, Barnea-Ygael, Roth, Zangen); Advanced Mental Health Care, Inc., Palm Beach, Fla. (Tendler); the Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles (Bystritsky); the Spectrum Neuroscience and Treatment Center, New York (Hollander); the Temerty Centre for Therapeutic Brain Intervention and the Campbell Family Research Institute, Centre for Addiction and Mental Health, and the Department of Psychiatry, University of Toronto, Ontario (Blumberger, Daskalakis); the Department of Psychiatry, University of Florida, Gainesville (Ward); the Department of Psychiatry, Northwell Health, New York (Lapidus); the Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York (Goodman); the Lindner Center of HOPE, Mason, Ohio (Casuto); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati (Casuto); the Department of Psychiatry, University of California San Diego, La Jolla (Feifel); the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Zohar)
| | - Wayne Goodman
- The School of Psychological Science, Tel Aviv University, Tel Aviv, Israel (Carmi); the Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Carmi, Barnea-Ygael, Roth, Zangen); Advanced Mental Health Care, Inc., Palm Beach, Fla. (Tendler); the Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles (Bystritsky); the Spectrum Neuroscience and Treatment Center, New York (Hollander); the Temerty Centre for Therapeutic Brain Intervention and the Campbell Family Research Institute, Centre for Addiction and Mental Health, and the Department of Psychiatry, University of Toronto, Ontario (Blumberger, Daskalakis); the Department of Psychiatry, University of Florida, Gainesville (Ward); the Department of Psychiatry, Northwell Health, New York (Lapidus); the Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York (Goodman); the Lindner Center of HOPE, Mason, Ohio (Casuto); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati (Casuto); the Department of Psychiatry, University of California San Diego, La Jolla (Feifel); the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Zohar)
| | - Leah Casuto
- The School of Psychological Science, Tel Aviv University, Tel Aviv, Israel (Carmi); the Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Carmi, Barnea-Ygael, Roth, Zangen); Advanced Mental Health Care, Inc., Palm Beach, Fla. (Tendler); the Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles (Bystritsky); the Spectrum Neuroscience and Treatment Center, New York (Hollander); the Temerty Centre for Therapeutic Brain Intervention and the Campbell Family Research Institute, Centre for Addiction and Mental Health, and the Department of Psychiatry, University of Toronto, Ontario (Blumberger, Daskalakis); the Department of Psychiatry, University of Florida, Gainesville (Ward); the Department of Psychiatry, Northwell Health, New York (Lapidus); the Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York (Goodman); the Lindner Center of HOPE, Mason, Ohio (Casuto); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati (Casuto); the Department of Psychiatry, University of California San Diego, La Jolla (Feifel); the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Zohar)
| | - David Feifel
- The School of Psychological Science, Tel Aviv University, Tel Aviv, Israel (Carmi); the Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Carmi, Barnea-Ygael, Roth, Zangen); Advanced Mental Health Care, Inc., Palm Beach, Fla. (Tendler); the Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles (Bystritsky); the Spectrum Neuroscience and Treatment Center, New York (Hollander); the Temerty Centre for Therapeutic Brain Intervention and the Campbell Family Research Institute, Centre for Addiction and Mental Health, and the Department of Psychiatry, University of Toronto, Ontario (Blumberger, Daskalakis); the Department of Psychiatry, University of Florida, Gainesville (Ward); the Department of Psychiatry, Northwell Health, New York (Lapidus); the Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York (Goodman); the Lindner Center of HOPE, Mason, Ohio (Casuto); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati (Casuto); the Department of Psychiatry, University of California San Diego, La Jolla (Feifel); the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Zohar)
| | - Noam Barnea-Ygael
- The School of Psychological Science, Tel Aviv University, Tel Aviv, Israel (Carmi); the Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Carmi, Barnea-Ygael, Roth, Zangen); Advanced Mental Health Care, Inc., Palm Beach, Fla. (Tendler); the Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles (Bystritsky); the Spectrum Neuroscience and Treatment Center, New York (Hollander); the Temerty Centre for Therapeutic Brain Intervention and the Campbell Family Research Institute, Centre for Addiction and Mental Health, and the Department of Psychiatry, University of Toronto, Ontario (Blumberger, Daskalakis); the Department of Psychiatry, University of Florida, Gainesville (Ward); the Department of Psychiatry, Northwell Health, New York (Lapidus); the Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York (Goodman); the Lindner Center of HOPE, Mason, Ohio (Casuto); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati (Casuto); the Department of Psychiatry, University of California San Diego, La Jolla (Feifel); the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Zohar)
| | - Yiftach Roth
- The School of Psychological Science, Tel Aviv University, Tel Aviv, Israel (Carmi); the Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Carmi, Barnea-Ygael, Roth, Zangen); Advanced Mental Health Care, Inc., Palm Beach, Fla. (Tendler); the Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles (Bystritsky); the Spectrum Neuroscience and Treatment Center, New York (Hollander); the Temerty Centre for Therapeutic Brain Intervention and the Campbell Family Research Institute, Centre for Addiction and Mental Health, and the Department of Psychiatry, University of Toronto, Ontario (Blumberger, Daskalakis); the Department of Psychiatry, University of Florida, Gainesville (Ward); the Department of Psychiatry, Northwell Health, New York (Lapidus); the Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York (Goodman); the Lindner Center of HOPE, Mason, Ohio (Casuto); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati (Casuto); the Department of Psychiatry, University of California San Diego, La Jolla (Feifel); the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Zohar)
| | - Abraham Zangen
- The School of Psychological Science, Tel Aviv University, Tel Aviv, Israel (Carmi); the Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Carmi, Barnea-Ygael, Roth, Zangen); Advanced Mental Health Care, Inc., Palm Beach, Fla. (Tendler); the Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles (Bystritsky); the Spectrum Neuroscience and Treatment Center, New York (Hollander); the Temerty Centre for Therapeutic Brain Intervention and the Campbell Family Research Institute, Centre for Addiction and Mental Health, and the Department of Psychiatry, University of Toronto, Ontario (Blumberger, Daskalakis); the Department of Psychiatry, University of Florida, Gainesville (Ward); the Department of Psychiatry, Northwell Health, New York (Lapidus); the Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York (Goodman); the Lindner Center of HOPE, Mason, Ohio (Casuto); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati (Casuto); the Department of Psychiatry, University of California San Diego, La Jolla (Feifel); the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Zohar)
| | - Joseph Zohar
- The School of Psychological Science, Tel Aviv University, Tel Aviv, Israel (Carmi); the Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Carmi, Barnea-Ygael, Roth, Zangen); Advanced Mental Health Care, Inc., Palm Beach, Fla. (Tendler); the Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles (Bystritsky); the Spectrum Neuroscience and Treatment Center, New York (Hollander); the Temerty Centre for Therapeutic Brain Intervention and the Campbell Family Research Institute, Centre for Addiction and Mental Health, and the Department of Psychiatry, University of Toronto, Ontario (Blumberger, Daskalakis); the Department of Psychiatry, University of Florida, Gainesville (Ward); the Department of Psychiatry, Northwell Health, New York (Lapidus); the Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York (Goodman); the Lindner Center of HOPE, Mason, Ohio (Casuto); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati (Casuto); the Department of Psychiatry, University of California San Diego, La Jolla (Feifel); the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Zohar)
| |
Collapse
|
44
|
Naro A, Billeri L, Cannavò A, De Luca R, Portaro S, Bramanti P, Calabrò RS. Theta burst stimulation for the treatment of obsessive–compulsive disorder: a pilot study. J Neural Transm (Vienna) 2019; 126:1667-1677. [DOI: 10.1007/s00702-019-02098-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/16/2019] [Indexed: 01/23/2023]
|
45
|
Relevance of extended protocol and maintenance TMS in obsessive-compulsive disorder: A case report. Asian J Psychiatr 2019; 42:32-33. [PMID: 30951930 DOI: 10.1016/j.ajp.2019.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 11/23/2022]
|
46
|
Brakoulias V, Starcevic V, Albert U, Arumugham SS, Bailey BE, Belloch A, Borda T, Dell'Osso L, Elias JA, Falkenstein MJ, Ferrao YA, Fontenelle LF, Jelinek L, Kalogeraki L, Kay B, Laurito LD, Lochner C, Maina G, Marazziti D, Martin A, Matsunaga H, Miguel EC, Morgado P, Mourikis I, Pasquini M, Perez Rivera R, Potluri S, Reddy JYC, Riemann BC, do Rosario MC, Shavitt RG, Stein DJ, Viswasam K, Wang Z, Fineberg NA. Treatments used for obsessive-compulsive disorder-An international perspective. Hum Psychopharmacol 2019; 34:e2686. [PMID: 30628745 DOI: 10.1002/hup.2686] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The objective of this study was to characterise international trends in the use of psychotropic medication, psychological therapies, and novel therapies used to treat obsessive-compulsive disorder (OCD). METHODS Researchers in the field of OCD were invited to contribute summary statistics on the characteristics of their samples. Consistency of summary statistics across countries was evaluated. RESULTS The study surveyed 19 expert centres from 15 countries (Argentina, Australia, Brazil, China, Germany, Greece, India, Italy, Japan, Mexico, Portugal, South Africa, Spain, the United Kingdom, and the United States) providing a total sample of 7,340 participants. Fluoxetine (n = 972; 13.2%) and fluvoxamine (n = 913; 12.4%) were the most commonly used selective serotonin reuptake inhibitor medications. Risperidone (n = 428; 7.3%) and aripiprazole (n = 415; 7.1%) were the most commonly used antipsychotic agents. Neurostimulation techniques such as transcranial magnetic stimulation, deep brain stimulation, gamma knife surgery, and psychosurgery were used in less than 1% of the sample. There was significant variation in the use and accessibility of exposure and response prevention for OCD. CONCLUSIONS The variation between countries in treatments used for OCD needs further evaluation. Exposure and response prevention is not used as frequently as guidelines suggest and appears difficult to access in most countries. Updated treatment guidelines are recommended.
Collapse
Affiliation(s)
- Vlasios Brakoulias
- Department of Psychiatry, Nepean Hospital, Sydney Medical School, The University of Sydney, Penrith, NSW, Australia
| | - Vladan Starcevic
- Department of Psychiatry, Nepean Hospital, Sydney Medical School, The University of Sydney, Penrith, NSW, Australia
| | - Umberto Albert
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy.,Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Shyam Sundar Arumugham
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Brenda E Bailey
- Department of Psychiatry, Rogers Memorial Hospital, Oconomowoc, Wisconsin
| | - Amparo Belloch
- Department of Personality Psychology, Research Unit for Obsessive-Compulsive and Related Disorders, I'TOC, Faculty of Psychology, Universidad de Valencia, Valencia, Spain
| | - Tania Borda
- Department of Psychiatry, Bio-Behavioral Institute BA, Buenos Aires, Argentina.,Department of Psychology, Argentinian Catholic University (UCA), Buenos Aires, Argentina
| | - Liliana Dell'Osso
- Dipartimento di Medicina Clinica e Sperimentale, Section of Psychiatry, Dipartmento di Farmacia, University of Pisa, Pisa, Italy
| | - Jason A Elias
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| | - Martha J Falkenstein
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| | - Ygor A Ferrao
- Department of Psychiatry, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Leonardo F Fontenelle
- Department of Psychiatry and Legal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Psychiatry, D'Or Institute for Research and Education, Rio de Janeiro, Brazil.,Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Victoria
| | - Lena Jelinek
- Department of Psychology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Leto Kalogeraki
- Behavioral Therapy Department/Outpatient Clinic for OCD and Related Disorders, Division of Psychiatry I, National and Kapodistrian University of Athens, Athens, Greece
| | - Brian Kay
- Department of Psychiatry, Rogers Memorial Hospital, Oconomowoc, Wisconsin
| | - Luana D Laurito
- Department of Psychiatry and Legal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Psychiatry, D'Or Institute for Research and Education, Rio de Janeiro, Brazil.,Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Victoria
| | - Christine Lochner
- MRC Unit on Anxiety Disorders, Department of Psychiatry, University of Stellenbosch, Cape Town, South Africa
| | - Giuseppe Maina
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Donatella Marazziti
- Dipartimento di Medicina Clinica e Sperimentale, Section of Psychiatry, Dipartmento di Farmacia, University of Pisa, Pisa, Italy
| | - Andrew Martin
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia
| | - Hisato Matsunaga
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Japan
| | - Euripedes C Miguel
- Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,Department of Psychiatry, ICVS-3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Department of Psychiatry, Hospital de Braga, Braga, Portugal
| | - Irakis Mourikis
- Behavioral Therapy Department/Outpatient Clinic for OCD and Related Disorders, Division of Psychiatry I, National and Kapodistrian University of Athens, Athens, Greece
| | - Massimo Pasquini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Sriramya Potluri
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| | - Janardhan Y C Reddy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Brian C Riemann
- Department of Psychiatry, Rogers Memorial Hospital, Oconomowoc, Wisconsin
| | | | - Roseli G Shavitt
- Department of Psychiatry, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Dan J Stein
- MRC Unit on Anxiety Disorders, Department of Psychiatry, University of Stellenbosch, Cape Town, South Africa
| | - Kirupumani Viswasam
- Department of Psychiatry, Nepean Hospital, Sydney Medical School, The University of Sydney, Penrith, NSW, Australia
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Psychiatry, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Naomi A Fineberg
- Department of Psychiatry, Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire, Hatfield, UK
| |
Collapse
|