1
|
Zhang L, Sun Y, Sui X, Zhang J, Zhao J, Zhou R, Xu W, Yin C, He Z, Sun Y, Liu C, Song A, Han F. Hypocapnia is associated with increased in-hospital mortality and 1 year mortality in acute heart failure patients. ESC Heart Fail 2024; 11:2138-2147. [PMID: 38600875 PMCID: PMC11287307 DOI: 10.1002/ehf2.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
AIMS Both hypercapnia and hypocapnia are common in patients with acute heart failure (AHF), but the association between partial pressure of arterial carbon dioxide (PaCO2) and AHF prognosis remains unclear. The objective of this study was to investigate the connection between PaCO2 within 24 h after admission to the intensive care unit (ICU) and mortality during hospitalization and at 1 year in AHF patients. METHODS AND RESULTS AHF patients were enrolled from the Medical Information Mart for Intensive Care IV database. The patients were divided into three groups by PaCO2 values of <35, 35-45, and >45 mmHg. The primary outcome was to investigate the connection between PaCO2 and in-hospital mortality and 1 year mortality in AHF patients. The secondary outcome was to assess the prediction value of PaCO2 in predicting in-hospital mortality and 1 year mortality in AHF patients. A total of 2374 patients were included in this study, including 457 patients in the PaCO2 < 35 mmHg group, 1072 patients in the PaCO2 = 35-45 mmHg group, and 845 patients in the PaCO2 > 45 mmHg group. The in-hospital mortality was 19.5%, and the 1 year mortality was 23.9% in the PaCO2 < 35 mmHg group. Multivariate logistic regression analysis showed that the PaCO2 < 35 mmHg group was associated with an increased risk of in-hospital mortality [hazard ratio (HR) 1.398, 95% confidence interval (CI) 1.039-1.882, P = 0.027] and 1 year mortality (HR 1.327, 95% CI 1.020-1.728, P = 0.035) than the PaCO2 = 35-45 mmHg group. The PaCO2 > 45 mmHg group was associated with an increased risk of in-hospital mortality (HR 1.387, 95% CI 1.050-1.832, P = 0.021); the 1 year mortality showed no significant difference (HR 1.286, 95% CI 0.995-1.662, P = 0.055) compared with the PaCO2 = 35-45 mmHg group. The Kaplan-Meier survival curves showed that the PaCO2 < 35 mmHg group had a significantly lower 1 year survival rate. The area under the receiver operating characteristic curve for predicting in-hospital mortality was 0.591 (95% CI 0.526-0.656), and the 1 year mortality was 0.566 (95% CI 0.505-0.627) in the PaCO2 < 35 mmHg group. CONCLUSIONS In AHF patients, hypocapnia within 24 h after admission to the ICU was associated with increased in-hospital mortality and 1 year mortality. However, the increase in 1 year mortality may be influenced by hospitalization mortality. Hypercapnia was associated with increased in-hospital mortality.
Collapse
Affiliation(s)
- Lei Zhang
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yiwu Sun
- Department of AnesthesiologyDazhou Central HospitalDazhouChina
| | - Xin Sui
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Jian Zhang
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Jingshun Zhao
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Runfeng Zhou
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Wenjia Xu
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Chengke Yin
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Zhaoyi He
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yufei Sun
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Chang Liu
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Ailing Song
- Department of AnesthesiologyShanghai Jiao Tong University First People's Hospital (Shanghai General Hospital)ShanghaiChina
| | - Fei Han
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
2
|
Chung Y, Garden FL, Marks GB, Vedam H. Long-term cohort study of patients presenting with hypercapnic respiratory failure. BMJ Open Respir Res 2024; 11:e002266. [PMID: 39032938 PMCID: PMC11261675 DOI: 10.1136/bmjresp-2023-002266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVE We sought to describe the long-term prognosis for a population-based cohort of people with hypercapnic respiratory failure (HRF) and the associations between underlying diagnoses and the risks of death and rehospitalisation. METHODS We performed a historical cohort study of all persons with HRF in the Liverpool local government area in New South Wales, Australia, in the 3-year period from 2013 to 2015. Cohort members were identified using arterial blood gas results from Liverpool Hospital demonstrating pH ≤7.45 and PaCO2 >45 mm Hg within 24 hours of presentation. Linked health data were obtained from statewide registries with a minimum follow-up period of 6 years. The primary outcomes were time to death from any cause and the standardised mortality ratio (SMR) which compares the observed to the expected number of deaths in the same population. Secondary outcomes were time to rehospitalisation and the associations between death and/or hospitalisation and underlying diagnoses. RESULTS The cohort comprised 590 adults aged between 15 and 101 years. Overall, 415 (70.3%) participants died in the follow-up period. Among those who survived the index admission, the probability of survival at 1, 3 and 5 years was 81%, 59% and 45%, respectively. The overall SMR was 9.2 (95% CI 7.6 to 11.0), indicating a near 10-fold risk of death than otherwise expected for age. Most (91%) survivors experienced rehospitalisation, with median (IQR) time to readmission of 3.9 (1.2-10.6) months. Congestive cardiac failure and neuromuscular disease were associated with an increased risk of death, whereas chronic obstructive pulmonary disease and sleep disordered breathing increased the risk of rehospitalisation. CONCLUSIONS HRF is associated with poor survival and high risk of rehospitalisation in the 5 years following an index event. The underlying disease appears to have some influence on overall survival and subsequent hospitalisations.
Collapse
Affiliation(s)
- Yewon Chung
- School of Clinical Medicine, South Western Sydney Clinical Campuses, Discipline of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Liverpool Hospital, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| | - Frances L Garden
- School of Clinical Medicine, South Western Sydney Clinical Campuses, Discipline of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| | - Guy B Marks
- School of Clinical Medicine, South Western Sydney Clinical Campuses, Discipline of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Liverpool Hospital, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| | - Hima Vedam
- School of Clinical Medicine, South Western Sydney Clinical Campuses, Discipline of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Liverpool Hospital, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Soleimani F, Donker DW, Oppersma E, Duiverman ML. Clinical evidence and technical aspects of innovative technology and monitoring of chronic NIV in COPD: a narrative review. Expert Rev Respir Med 2024; 18:513-526. [PMID: 39138642 DOI: 10.1080/17476348.2024.2384024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/21/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Chronic nocturnal noninvasive ventilation (NIV) improves outcomes in COPD patients with chronic hypercapnic respiratory failure. The aim of chronic NIV in COPD is to control chronic hypercapnic respiratory insufficiency and reduce symptoms of nocturnal hypoventilation, thereby improving quality of life. Chronic NIV care is more and more offered exclusively at home, enabling promising outcomes in terms of patient and caregiver satisfaction, hospital care consumption and cost reduction. Yet, to achieve and maintain optimal ventilation, during adaptation and follow-up, effective feasible (home) monitoring poses a significant challenge. AREAS COVERED Comprehensive monitoring of COPD patients receiving chronic NIV requires integrating data from ventilators and assessment of the patient's status including gas exchange, sleep quality, and patient-reported outcomes. The present article describes the physiological background of monitoring during NIV and aims to provide an overview of existing methods for monitoring, assessing their reliability and clinical relevance. EXPERT OPINION Patients on chronic NIV are 'ideal' candidates for home monitoring; the advantages of transforming hospital to home care are huge for patients and caregivers and for healthcare systems facing increasing patient numbers. Despite the multitude of available monitoring methods, identifying and characterizing the most relevant parameters associated with optimal patient well-being remains unclear.
Collapse
Affiliation(s)
- F Soleimani
- Cardiovascular and Respiratory Physiology, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - D W Donker
- Cardiovascular and Respiratory Physiology, TechMed Centre, University of Twente, Enschede, The Netherlands
- Department of Intensive Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E Oppersma
- Cardiovascular and Respiratory Physiology, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - M L Duiverman
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute of Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Locke BW, Brown JP, Sundar KM. The Role of Obstructive Sleep Apnea in Hypercapnic Respiratory Failure Identified in Critical Care, Inpatient, and Outpatient Settings. Sleep Med Clin 2024; 19:339-356. [PMID: 38692757 PMCID: PMC11068091 DOI: 10.1016/j.jsmc.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
An emerging body of literature describes the prevalence and consequences of hypercapnic respiratory failure. While device qualifications, documentation practices, and previously performed clinical studies often encourage conceptualizing patients as having a single "cause" of hypercapnia, many patients encountered in practice have several contributing conditions. Physiologic and epidemiologic data suggest that sleep-disordered breathing-particularly obstructive sleep apnea (OSA)-often contributes to the development of hypercapnia. In this review, the authors summarize the frequency of contributing conditions to hypercapnic respiratory failure among patients identified in critical care, emergency, and inpatient settings with an aim toward understanding the contribution of OSA to the development of hypercapnia.
Collapse
Affiliation(s)
- Brian W Locke
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Jeanette P Brown
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Krishna M Sundar
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Li M, Han S, Liang F, Hu C, Zhang B, Hou Q, Zhao S. Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study. J Med Internet Res 2024; 26:e51354. [PMID: 38691403 PMCID: PMC11097053 DOI: 10.2196/51354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/23/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Acute kidney disease (AKD) affects more than half of critically ill elderly patients with acute kidney injury (AKI), which leads to worse short-term outcomes. OBJECTIVE We aimed to establish 2 machine learning models to predict the risk and prognosis of AKD in the elderly and to deploy the models as online apps. METHODS Data on elderly patients with AKI (n=3542) and AKD (n=2661) from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database were used to develop 2 models for predicting the AKD risk and in-hospital mortality, respectively. Data collected from Xiangya Hospital of Central South University were for external validation. A bootstrap method was used for internal validation to obtain relatively stable results. We extracted the indicators within 24 hours of the first diagnosis of AKI and the fluctuation range of some indicators, namely delta (day 3 after AKI minus day 1), as features. Six machine learning algorithms were used for modeling; the area under the receiver operating characteristic curve (AUROC), decision curve analysis, and calibration curve for evaluating; Shapley additive explanation (SHAP) analysis for visually interpreting; and the Heroku platform for deploying the best-performing models as web-based apps. RESULTS For the model of predicting the risk of AKD in elderly patients with AKI during hospitalization, the Light Gradient Boosting Machine (LightGBM) showed the best overall performance in the training (AUROC=0.844, 95% CI 0.831-0.857), internal validation (AUROC=0.853, 95% CI 0.841-0.865), and external (AUROC=0.755, 95% CI 0.699-0.811) cohorts. In addition, LightGBM performed well for the AKD prognostic prediction in the training (AUROC=0.861, 95% CI 0.843-0.878), internal validation (AUROC=0.868, 95% CI 0.851-0.885), and external (AUROC=0.746, 95% CI 0.673-0.820) cohorts. The models deployed as online prediction apps allowed users to predict and provide feedback to submit new data for model iteration. In the importance ranking and correlation visualization of the model's top 10 influencing factors conducted based on the SHAP value, partial dependence plots revealed the optimal cutoff of some interventionable indicators. The top 5 factors predicting the risk of AKD were creatinine on day 3, sepsis, delta blood urea nitrogen (BUN), diastolic blood pressure (DBP), and heart rate, while the top 5 factors determining in-hospital mortality were age, BUN on day 1, vasopressor use, BUN on day 3, and partial pressure of carbon dioxide (PaCO2). CONCLUSIONS We developed and validated 2 online apps for predicting the risk of AKD and its prognostic mortality in elderly patients, respectively. The top 10 factors that influenced the AKD risk and mortality during hospitalization were identified and explained visually, which might provide useful applications for intelligent management and suggestions for future prospective research.
Collapse
Affiliation(s)
- Mingxia Li
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, China
- Department of Critical Care Medicine, ZhuJiang Hospital of Southern Medical University, Guangzhou, China
| | - Shuzhe Han
- Department of Obstetrics and Gynecology, 967th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Dalian, China
| | - Fang Liang
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chenghuan Hu
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Buyao Zhang
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Qinlan Hou
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Shuangping Zhao
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Provincial Clinical Research Center of Intensive Care Medicine, Changsha, China
| |
Collapse
|
6
|
Locke BW, Brown J. What Are We Aiming for in Chronic Hypercapnic Respiratory Failure? Respir Care 2023; 68:1775-1778. [PMID: 38007234 PMCID: PMC10676247 DOI: 10.4187/respcare.11573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Affiliation(s)
- Brian W Locke
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine Department of Internal Medicine University of Utah Salt Lake City, Utah
| | - Jeanette Brown
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine Department of Internal Medicine University of Utah Salt Lake City, Utah
| |
Collapse
|
7
|
Jimenez JV, Ackrivo J, Hsu JY, Wilson MW, Labaki WW, Hansen-Flaschen J, Hyzy RC, Choi PJ. Lowering P CO2 With Noninvasive Ventilation Is Associated With Improved Survival in Chronic Hypercapnic Respiratory Failure. Respir Care 2023; 68:1613-1622. [PMID: 37137711 PMCID: PMC10676248 DOI: 10.4187/respcare.10813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/01/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Chronic hypercapnic respiratory failure is associated with high mortality. Although previous work has demonstrated a mortality improvement with high-intensity noninvasive ventilation in COPD, it is unclear whether a PCO2 reduction strategy is associated with improved outcomes in other populations of chronic hypercapnia. METHODS The objective of this study was to investigate the association between PCO2 reduction (by using transcutaneous PCO2 as an estimate for PaCO2 and survival in a broad population of individuals treated with noninvasive ventilation for chronic hypercapnia. We hypothesized that reductions in PCO2 would be associated with improved survival. Therefore, we performed a cohort study of all the subjects evaluated from February 2012 to January 2021 for noninvasive ventilation initiation and/or optimization due to chronic hypercapnia at a home ventilation clinic in an academic center. We used multivariable Cox proportional hazard models with time-varying coefficients and PCO2 as a time-varying covariate to test the association between PCO2 and all-cause mortality and when adjusting for known cofounders. RESULTS The mean ± SD age of 337 subjects was 57 ± 16 years, 37% women, and 85% white. In a univariate analysis, survival probability increased with reductions in PCO2 to < 50 mm Hg after 90 d, and these remained significant after adjusting for age, sex, race, body mass index, diagnosis, Charlson comorbidity index, and baseline PCO2 . In the multivariable analysis, the subjects who had a PaCO2 < 50 mm Hg had a reduced mortality risk of 94% between 90 and 179 d (hazard ratio [HR] 0.06, 95% CI 0.01-0.50), 69% between 180 and 364 d (HR 0.31, 95% CI 0.12-0.79), and 73% for 365-730 d (HR 0.27, 95% CI 0.13-0.56). CONCLUSIONS Reduction in PCO2 from baseline for subjects with chronic hypercapnia treated with noninvasive ventilation was associated with improved survival. Management strategies should target the greatest attainable reductions in PCO2 .
Collapse
Affiliation(s)
- Jose Victor Jimenez
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan. Dr Jimenez is affiliated with the Department of Internal Medicine, Yale New Haven Hospital, New Haven, Connecticut
| | - Jason Ackrivo
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jesse Y Hsu
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mathew W Wilson
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan. Dr Jimenez is affiliated with the Department of Internal Medicine, Yale New Haven Hospital, New Haven, Connecticut
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan. Dr Jimenez is affiliated with the Department of Internal Medicine, Yale New Haven Hospital, New Haven, Connecticut
| | - John Hansen-Flaschen
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan. Dr Jimenez is affiliated with the Department of Internal Medicine, Yale New Haven Hospital, New Haven, Connecticut
| | - Robert C Hyzy
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan. Dr Jimenez is affiliated with the Department of Internal Medicine, Yale New Haven Hospital, New Haven, Connecticut
| | - Philip J Choi
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan. Dr Jimenez is affiliated with the Department of Internal Medicine, Yale New Haven Hospital, New Haven, Connecticut.
| |
Collapse
|
8
|
Chen F, Matsuda A, Budinger GRS, Sporn PHS, Casalino-Matsuda SM. Hypercapnia increases ACE2 expression and pseudo-SARS-CoV-2 entry in bronchial epithelial cells by augmenting cellular cholesterol. Front Immunol 2023; 14:1251120. [PMID: 37901225 PMCID: PMC10600497 DOI: 10.3389/fimmu.2023.1251120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Patients with chronic lung disease, obesity, and other co-morbid conditions are at increased risk of severe illness and death when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hypercapnia, the elevation of CO2 in blood and tissue, commonly occurs in patients with severe acute and chronic lung disease, including those with pulmonary infections, and is also associated with high mortality risk. We previously reported that hypercapnia increases viral replication and mortality of influenza A virus infection in mice. We have also shown that culture in elevated CO2 upregulates expression of cholesterol synthesis genes in primary human bronchial epithelial cells. Interestingly, factors that increase the cholesterol content of lipid rafts and lipid droplets, platforms for viral entry and assembly, enhance SARS-CoV-2 infection. In the current study, we investigated the effects of hypercapnia on ACE2 expression and entry of SARS-CoV-2 pseudovirus (p-SARS-CoV-2) into airway epithelial cells. We found that hypercapnia increased ACE2 expression and p-SARS-CoV-2 uptake by airway epithelium in mice, and in cultured VERO and human bronchial epithelial cells. Hypercapnia also increased total cellular and lipid raft-associated cholesterol in epithelial cells. Moreover, reducing cholesterol synthesis with inhibitors of sterol regulatory element binding protein 2 (SREBP2) or statins, and depletion of cellular cholesterol, each blocked the hypercapnia-induced increases in ACE2 expression and p-SARS-CoV-2 entry into epithelial cells. Cigarette smoke extract (CSE) also increased ACE2 expression, p-SARS-CoV-2 entry and cholesterol accumulation in epithelial cells, an effect not additive to that of hypercapnia, but also inhibited by statins. These findings reveal a mechanism that may account, in part, for poor clinical outcomes of SARS-CoV-2 infection in patients with advanced lung disease and hypercapnia, and in those who smoke cigarettes. Further, our results suggest the possibility that cholesterol-lowering therapies may be of particular benefit in patients with hypercapnia when exposed to or infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Fei Chen
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Aiko Matsuda
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - G. R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Research Service, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Peter H. S. Sporn
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Research Service, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - S. Marina Casalino-Matsuda
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
9
|
Chung Y, Garden FL, Marks GB, Vedam H. Causes of hypercapnic respiratory failure: a population-based case-control study. BMC Pulm Med 2023; 23:347. [PMID: 37710243 PMCID: PMC10503117 DOI: 10.1186/s12890-023-02639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
OBJECTIVE There are no population-based data on the relative importance of specific causes of hypercapnic respiratory failure (HRF). We sought to quantify the associations between hospitalisation with HRF and potential antecedent causes including chronic obstructive pulmonary disease (COPD), obstructive sleep apnea, and congestive cardiac failure. We used data on the prevalence of these conditions to estimate the population attributable fraction for each cause. METHODS A case-control study was conducted among residents aged ≥ 40 years from the Liverpool local government area in Sydney, Australia. Cases were identified from hospital records based on PaCO2 > 45 mmHg. Controls were randomly selected from the study population using a cluster sampling design. We collected self-reported data on medication use and performed spirometry, limited-channel sleep studies, venous sampling for N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, and sniff nasal inspiratory pressure (SNIP) measurements. Logistic regression analyses were performed using directed acyclic graphs to identify covariates. RESULTS We recruited 42 cases and 105 controls. HRF was strongly associated with post-bronchodilator airflow obstruction, elevated NT-proBNP levels, reduced SNIP measurements and self-reported opioid medication use. There were no differences in the apnoea-hypopnea index or oxygen desaturation index between groups. COPD had the highest population attributable fraction (42%, 95% confidence interval 18% to 59%). CONCLUSIONS COPD, congestive cardiac failure, and self-reported use of opioid medications, but not obstructive sleep apnea, are important causes of HRF among adults over 40 years old. No single cause accounts for the majority of cases based on the population attributable fraction.
Collapse
Affiliation(s)
- Yewon Chung
- School of Clinical Medicine, South Western Sydney Clinical Campuses, Discipline of Medicine, UNSW Sydney, Sydney, Australia.
- Department of Respiratory and Sleep Medicine, Liverpool Hospital, Locked Bag 7103 Liverpool, Liverpool, Sydney, NSW, BC 1871, Australia.
- Ingham Institute for Applied Medical Research, Liverpool, Sydney, Australia.
| | - Frances L Garden
- School of Clinical Medicine, South Western Sydney Clinical Campuses, Discipline of Medicine, UNSW Sydney, Sydney, Australia
- Ingham Institute for Applied Medical Research, Liverpool, Sydney, Australia
| | - Guy B Marks
- School of Clinical Medicine, South Western Sydney Clinical Campuses, Discipline of Medicine, UNSW Sydney, Sydney, Australia
- Department of Respiratory and Sleep Medicine, Liverpool Hospital, Locked Bag 7103 Liverpool, Liverpool, Sydney, NSW, BC 1871, Australia
- Ingham Institute for Applied Medical Research, Liverpool, Sydney, Australia
| | - Hima Vedam
- School of Clinical Medicine, South Western Sydney Clinical Campuses, Discipline of Medicine, UNSW Sydney, Sydney, Australia
- Department of Respiratory and Sleep Medicine, Liverpool Hospital, Locked Bag 7103 Liverpool, Liverpool, Sydney, NSW, BC 1871, Australia
- Ingham Institute for Applied Medical Research, Liverpool, Sydney, Australia
| |
Collapse
|
10
|
Tang WJ, Xie BK, Liang W, Zhou YZ, Kuang WL, Chen F, Wang M, Yu M. Hypocapnia is an independent predictor of in-hospital mortality in acute heart failure. ESC Heart Fail 2023; 10:1385-1400. [PMID: 36747311 PMCID: PMC10053155 DOI: 10.1002/ehf2.14306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
AIMS Acute heart failure (AHF) poses a major threat to hospitalized patients for its high mortality rate and serious complications. The aim of this study is to determine whether hypocapnia [defined as the partial pressure of arterial carbon dioxide (PaCO2 ) below 35 mmHg] on admission could be associated with in-hospital all-cause mortality in AHF. METHODS AND RESULTS A total of 676 patients treated in the coronary care unit for AHF were retrospectively analysed, and the study endpoint was in-hospital all-cause mortality. The 1:1 propensity score matching (PSM) analysis, Kaplan-Meier curve, and Cox regression model were used to explore the association between hypocapnia and in-hospital all-cause mortality in AHF. Receiver operating characteristic (ROC) curve and Delong's test were used to assess the performance of hypocapnia in predicting in-hospital all-cause mortality in AHF. The study cohort included 464 (68.6%) males and 212 (31.4%) females, and the median age was 66 years (interquartile range 56-74 years). Ninety-eight (14.5%) patients died during hospitalization and presented more hypocapnia than survivors (76.5% vs. 45.5%, P < 0.001). A 1:1 PSM was performed between hypocapnic and non-hypocapnic patients, with 264 individuals in each of the two groups after matching. Compared with non-hypocapnic patients, in-hospital mortality was significantly higher in hypocapnic patients both before (22.2% vs. 6.8%, P < 0.001) and after (20.8% vs. 8.7%, P < 0.001) PSM. Kaplan-Meier curve showed a significantly higher probability of in-hospital death in patients with hypocapnia before and after PSM (both P < 0.001 for the log-rank test). Multivariate Cox regression analysis showed that hypocapnia was an independent predictor of AHF mortality both before [hazard ratio (HR) 2.22; 95% confidence interval (CI) 1.23-3.98; P = 0.008] and after (HR 2.19; 95% CI 1.18-4.07; P = 0.013) PSM. Delong's test showed that the area under the ROC curve was improved after adding hypocapnia into the model (0.872, 95% CI 0.839-0.901 vs. 0.855, 95% CI 0.820-0.886, P = 0.028). PaCO2 was correlated with the estimated glomerular filtration rate (r = 0.20, P = 0.001), left ventricular ejection fraction (r = 0.13, P < 0.001), B-type natriuretic peptide (r = -0.28, P < 0.001), and lactate (r = -0.15, P < 0.001). Kaplan-Meier curve of PaCO2 tertiles and multivariate Cox regression analysis showed that the lowest PaCO2 tertile was associated with increased risk of in-hospital mortality in AHF (all P < 0.05). CONCLUSIONS Hypocapnia is an independent predictor of in-hospital mortality for AHF.
Collapse
Affiliation(s)
- Wen-Jing Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Bai-Kang Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Wei Liang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yan-Zhao Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Wen-Long Kuang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Min Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Miao Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| |
Collapse
|
11
|
Krishnan V. Holding our breath: Exploring the causes of hypercapnic respiratory failure resulting in mortality. Respirology 2023; 28:97-98. [PMID: 36437527 DOI: 10.1111/resp.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Vidya Krishnan
- Pulmonary, Critical Care, and Sleep Medicine, MetroHealth Medical Center, Cleveland, Ohio, USA.,School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Chung Y, Garden FL, Marks GB, Vedam H. Causes of hypercapnic respiratory failure and associated in-hospital mortality. Respirology 2023; 28:176-182. [PMID: 36210347 PMCID: PMC10092076 DOI: 10.1111/resp.14388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/19/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Hypercapnic respiratory failure (HRF) can occur due to severe respiratory disease but also because of multiple coexistent causes. There are few data on the prevalence of antecedent causes for HRF and the effect of these causes on prognosis, especially where study inclusion has not been biased with respect to primary diagnosis, interventions received or clinical outcome. We sought to determine the prevalence of pre-specified conditions among patients with HRF and to determine the effect of these causes on in-hospital mortality. METHODS Cross-sectional study of patients with HRF from 2013 to 2017. Inclusion criteria were PaCO2 >45 mm Hg and pH ≤7.45. Causes of interest were identified using diagnosis codes from hospital records. We used directed acyclic graphs to inform logistic regression models for the outcome of in-hospital death. RESULTS We identified 873 persons with HRF in the study period. Mean (SD) age was 69 years and 50.4% were males. Acidosis (pH <7.35) was present in 488 (55%) cases. Most (83%) had one or more of the following: obstructive lung disease, lower respiratory tract infection, congestive cardiac failure, sleep disordered breathing, neuromuscular disease, opioid or benzodiazepine use. In-hospital mortality was 12.8%. Obstructive lung disease and cardiac failure were associated with a lower risk of death, whereas respiratory tract infection and neuromuscular disease were associated with increased risk of death. CONCLUSION HRF is associated with a range of potentially causative conditions, which significantly impact hospital survival. Systematic evaluation of patients with HRF may increase detection of treatable comorbidities.
Collapse
Affiliation(s)
- Yewon Chung
- South Western Sydney Clinical School, UNSW Medicine, Sydney, New South Wales, Australia.,Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Frances L Garden
- South Western Sydney Clinical School, UNSW Medicine, Sydney, New South Wales, Australia.,Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Guy B Marks
- South Western Sydney Clinical School, UNSW Medicine, Sydney, New South Wales, Australia.,Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Hima Vedam
- South Western Sydney Clinical School, UNSW Medicine, Sydney, New South Wales, Australia.,Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, Liverpool Hospital, Liverpool, New South Wales, Australia
| |
Collapse
|
13
|
Buchholz KJ, Neumueller SE, Burgraff NJ, Hodges MR, Pan L, Forster HV. Chronic moderate hypercapnia suppresses ventilatory responses to acute CO<sub>2</sub> challenges. J Appl Physiol (1985) 2022; 133:1106-1118. [PMID: 36135953 PMCID: PMC9621709 DOI: 10.1152/japplphysiol.00407.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic hypercapnia (CH) is a hallmark of chronic lung disease, and CH increases the risk for acute-on-chronic exacerbations leading to greater hypoxemia/hypercapnia and poor health outcomes. However, the role of hypercapnia per se (duration and severity) in determining an individual's ability to tolerate further hypercapnic exacerbations is unknown. Our primary objective herein was to test the hypothesis that mild-to-moderate CH (arterial [Formula: see text] ∼50-70 mmHg) increases susceptibility to pathophysiological responses to severe acute CO<sub>2</sub> challenges. Three groups (GR) of adult female goats were studied during 14 days of exposure to room air (<i>GR 1</i>; control) or 6% inspired CO<sub>2</sub> (<i>GR 2</i>; mild CH), or 7 days of 6% inspired CO<sub>2</sub> followed by 7 days of 8% inspired CO<sub>2</sub> (<i>GR 3</i>; moderate CH). Consistent with previous reports, there were no changes in physiological parameters in <i>GR 1</i> (RA control), but mild CH (<i>GR 2</i>) increased steady-state ventilation and transiently suppressed CO<sub>2</sub>/[H<sup>+</sup>] chemosensitivity. Further increasing InCO<sub>2</sub> from 6% to 8% (<i>GR 3</i>) transiently increased ventilation and arterial [H<sup>+</sup>]. Similar to mild CH, moderate CH increased ventilation to levels greater than predicted. However, in contrast to mild CH, acute ventilatory chemosensitivity was suppressed throughout the duration of moderate CH, and the arterial - mixed expired CO<sub>2</sub> gradient became negative. These data suggest that moderate CH limits physiological responses to acute severe exacerbations and provide evidence of recruitment of extrapulmonary systems (i.e., gastric CO<sub>2</sub> elimination) during times of moderate-severe hypercapnia.<b>NEW & NOTEWORTHY</b> Moderate levels of chronic hypercapnia (CH; ∼70 mmHg) in healthy adult female goats elicited similar steady-state physiological adaptations compared with mild CH (∼55 mmHg). However, unlike mild CH, moderate CH chronically suppressed acute CO<sub>2</sub>/[H<sup>+</sup>] chemosensitivity and reversed the arterial to mixed expired CO<sub>2</sub> gradient. These findings suggest that moderate CH suppresses vital mechanisms of ventilatory control and recruits additional physiological systems (i.e., gastric CO<sub>2</sub> release) to help buffer excess CO<sub>2</sub>.
Collapse
Affiliation(s)
- Kirstyn J Buchholz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Nicholas J Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lawrence Pan
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| | - Hubert V Forster
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
14
|
Tiruvoipati R, Serpa Neto A, Young M, Marhoon N, Wilson J, Gupta S, Pilcher D, Bailey M, Bellomo R. An Exploratory Analysis of the Association between Hypercapnia and Hospital Mortality in Critically Ill Patients with Sepsis. Ann Am Thorac Soc 2022; 19:245-254. [PMID: 34380007 DOI: 10.1513/annalsats.202102-104oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rationale: Hypercapnia may affect the outcome of sepsis. Very few clinical studies conducted in noncritically ill patients have investigated the effects of hypercapnia and hypercapnic acidemia in the context of sepsis. The effect of hypercapnia in critically ill patients with sepsis remains inadequately studied. Objectives: To investigate the association of hypercapnia with hospital mortality in critically ill patients with sepsis. Methods: This is a retrospective study conducted in three tertiary public hospitals. Critically ill patients with sepsis from three intensive care units between January 2011 and May 2019 were included. Five cohorts (exposure of at least 24, 48, 72, 120, and 168 hours) were created to account for immortal time bias and informative censoring. The association between hypercapnia exposure and hospital mortality was assessed with multivariable models. Subgroup analyses compared ventilated versus nonventilated and pulmonary versus nonpulmonary sepsis patients. Results: We analyzed 84,819 arterial carbon dioxide pressure measurements in 3,153 patients (57.6% male; median age was 62.5 years). After adjustment for key confounders, both in mechanically ventilated and nonventilated patients and in patients with pulmonary or nonpulmonary sepsis, there was no independent association of hypercapnia with hospital mortality. In contrast, in ventilated patients, the presence of prolonged exposure to both hypercapnia and acidemia was associated with increased mortality (highest odds ratio of 16.5 for ⩾120 hours of potential exposure; P = 0.007). Conclusions: After adjustment, isolated hypercapnia was not associated with increased mortality in patients with sepsis, whereas prolonged hypercapnic acidemia was associated with increased risk of mortality. These hypothesis-generating observations suggest that as hypercapnia is not an independent risk factor for mortality, trials of permissive hypercapnia avoiding or minimizing acidemia in sepsis may be safe.
Collapse
Affiliation(s)
- Ravindranath Tiruvoipati
- Department of Intensive Care Medicine, Peninsula Health, Melbourne, Victoria, Australia
- Australian and New Zealand Intensive Care Research Centre, Peninsula Clinical School, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ary Serpa Neto
- Australian and New Zealand Intensive Care Research Centre, Peninsula Clinical School, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Marcus Young
- Department of Intensive Care, Austin Health, Heidelberg, Victoria, Australia
| | - Nada Marhoon
- Department of Intensive Care, Austin Health, Heidelberg, Victoria, Australia
| | - John Wilson
- Peninsula Health Informatics, Frankston Hospital, Melbourne, Victoria, Australia
| | - Sachin Gupta
- Department of Intensive Care Medicine, Peninsula Health, Melbourne, Victoria, Australia
- Australian and New Zealand Intensive Care Research Centre, Peninsula Clinical School, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - David Pilcher
- Australian and New Zealand Intensive Care Research Centre, Peninsula Clinical School, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Intensive Care Medicine, The Alfred Hospital, Melbourne, Victoria, Australia; and
| | - Michael Bailey
- Australian and New Zealand Intensive Care Research Centre, Peninsula Clinical School, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Data Analytics Research and Evaluation, the University of Melbourne and Austin Hospital, Melbourne, Victoria, Australia
| | - Rinaldo Bellomo
- Australian and New Zealand Intensive Care Research Centre, Peninsula Clinical School, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Intensive Care, Austin Health, Heidelberg, Victoria, Australia
- Data Analytics Research and Evaluation, the University of Melbourne and Austin Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Genzor S, Mizera J, Kiml J, Jakubec P, Sova M. Chronic lung diseases and sleep. VNITRNI LEKARSTVI 2022; 68:398-401. [PMID: 36316202 DOI: 10.36290/vnl.2022.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sleep is vitally important part of our life. Its quality and quantity influence all physiological processes in our organism. The relationship between the lung diseases and sleep is bidirectional - the lack of quality sleep worsens the compensation and the course of the diseases and in the same time chronic lung diseases are negatively affecting sleep quality. The coexistence of the sleep disordered breathing and lung disorders is another important issue to discuss. In case of chronic obstructive pulmonary disease the overlap with sleep disordered breathing is characterized by higher prevalence of hypercapnia and overall worse prognosis. Moreover, there is a growing body of evidence about possible links of sleep disordered breathing to lung fibrosis and tumors. The complex healthcare in patients with respiratory diseases should not omit sleep examination.
Collapse
|
16
|
Gottlieb J, Capetian P, Hamsen U, Janssens U, Karagiannidis C, Kluge S, Nothacker M, Roiter S, Volk T, Worth H, Fühner T. German S3 Guideline: Oxygen Therapy in the Acute Care of Adult Patients. Respiration 2021; 101:214-252. [PMID: 34933311 DOI: 10.1159/000520294] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Oxygen (O2) is a drug with specific biochemical and physiological properties, a range of effective doses and may have side effects. In 2015, 14% of over 55,000 hospital patients in the UK were using oxygen. 42% of patients received this supplemental oxygen without a valid prescription. Health care professionals are frequently uncertain about the relevance of hypoxemia and have low awareness about the risks of hyperoxemia. Numerous randomized controlled trials about targets of oxygen therapy have been published in recent years. A national guideline is urgently needed. METHODS A national S3 guideline was developed and published within the Program for National Disease Management Guidelines (AWMF) with participation of 10 medical associations. A literature search was performed until February 1, 2021, to answer 10 key questions. The Oxford Centre for Evidence-Based Medicine (CEBM) System ("The Oxford 2011 Levels of Evidence") was used to classify types of studies in terms of validity. Grading of Recommendations, Assessment, Development and Evaluation (GRADE) was used for assessing the quality of evidence and for grading guideline recommendation, and a formal consensus-building process was performed. RESULTS The guideline includes 34 evidence-based recommendations about indications, prescription, monitoring and discontinuation of oxygen therapy in acute care. The main indication for O2 therapy is hypoxemia. In acute care both hypoxemia and hyperoxemia should be avoided. Hyperoxemia also seems to be associated with increased mortality, especially in patients with hypercapnia. The guideline provides recommended target oxygen saturation for acute medicine without differentiating between diagnoses. Target ranges for oxygen saturation are based depending on ventilation status risk for hypercapnia. The guideline provides an overview of available oxygen delivery systems and includes recommendations for their selection based on patient safety and comfort. CONCLUSION This is the first national guideline on the use of oxygen in acute care. It addresses health care professionals using oxygen in acute out-of-hospital and in-hospital settings.
Collapse
Affiliation(s)
- Jens Gottlieb
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Philipp Capetian
- Department of Neurology, University Hospital Würzburg, Wuerzburg, Germany
| | - Uwe Hamsen
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Uwe Janssens
- Medical Clinic and Medical Intensive Care Medicine, St. Antonius Hospital, Eschweiler, Germany
| | - Christian Karagiannidis
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken der Stadt Köln, Witten/Herdecke University Hospital, Cologne, Germany
| | - Stefan Kluge
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Monika Nothacker
- AWMF-Institute for Medical Knowledge Management, Marburg, Germany
| | - Sabrina Roiter
- Intensive Care Unit, Israelite Hospital Hamburg, Hamburg, Germany
| | - Thomas Volk
- Department of Anesthesiology, University Hospital of Saarland, Saarland University, Homburg, Germany
| | | | - Thomas Fühner
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Department of Respiratory Medicine, Siloah Hospital, Hannover, Germany
| |
Collapse
|
17
|
Gottlieb J, Capetian P, Hamsen U, Janssens U, Karagiannidis C, Kluge S, König M, Markewitz A, Nothacker M, Roiter S, Unverzagt S, Veit W, Volk T, Witt C, Wildenauer R, Worth H, Fühner T. [German S3 Guideline - Oxygen Therapy in the Acute Care of Adult Patients]. Pneumologie 2021; 76:159-216. [PMID: 34474487 DOI: 10.1055/a-1554-2625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Oxygen (O2) is a drug with specific biochemical and physiologic properties, a range of effective doses and may have side effects. In 2015, 14 % of over 55 000 hospital patients in the UK were using oxygen. 42 % of patients received this supplemental oxygen without a valid prescription. Healthcare professionals are frequently uncertain about the relevance of hypoxemia and have low awareness about the risks of hyperoxemia. Numerous randomized controlled trials about targets of oxygen therapy have been published in recent years. A national guideline is urgently needed. METHODS A S3-guideline was developed and published within the Program for National Disease Management Guidelines (AWMF) with participation of 10 medical associations. Literature search was performed until Feb 1st 2021 to answer 10 key questions. The Oxford Centre for Evidence-Based Medicine (CEBM) System ("The Oxford 2011 Levels of Evidence") was used to classify types of studies in terms of validity. Grading of Recommendations, Assessment, Development and Evaluation (GRADE) was used and for assessing the quality of evidence and for grading guideline recommendation and a formal consensus-building process was performed. RESULTS The guideline includes 34 evidence-based recommendations about indications, prescription, monitoring and discontinuation of oxygen therapy in acute care. The main indication for O2 therapy is hypoxemia. In acute care both hypoxemia and hyperoxemia should be avoided. Hyperoxemia also seems to be associated with increased mortality, especially in patients with hypercapnia. The guideline provides recommended target oxygen saturation for acute medicine without differentiating between diagnoses. Target ranges for oxygen saturation are depending on ventilation status risk for hypercapnia. The guideline provides an overview of available oxygen delivery systems and includes recommendations for their selection based on patient safety and comfort. CONCLUSION This is the first national guideline on the use of oxygen in acute care. It addresses healthcare professionals using oxygen in acute out-of-hospital and in-hospital settings. The guideline will be valid for 3 years until June 30, 2024.
Collapse
Affiliation(s)
- Jens Gottlieb
- Klinik für Pneumologie, Medizinische Hochschule Hannover.,Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH) im Deutschen Zentrum für Lungenforschung (DZL)
| | - Philipp Capetian
- Klinik für Neurologie, Neurologische Intensivstation, Universitätsklinikum Würzburg
| | - Uwe Hamsen
- Fachbereich für Unfallchirurgie und Orthopädie, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Bochum
| | - Uwe Janssens
- Innere Medizin und internistische Intensivmedizin, Sankt Antonius Hospital GmbH, Eschweiler
| | - Christian Karagiannidis
- Abteilung für Pneumologie und Beatmungsmedizin, ARDS/ECMO Zentrum, Lungenklinik Köln-Merheim
| | - Stefan Kluge
- Klinik für Intensivmedizin, Universitätsklinikum Eppendorf, Hamburg
| | - Marco König
- Deutscher Berufsverband Rettungsdienst e. V., Lübeck
| | - Andreas Markewitz
- ehem. Klinik für Herz- und Gefäßchirurgie Bundeswehrzentralkrankenhaus Koblenz
| | - Monika Nothacker
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V., Marburg
| | | | | | - Wolfgang Veit
- Bundesverband der Organtransplantierten e. V., Marne
| | - Thomas Volk
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum des Saarlandes, Homburg/Saar
| | - Christian Witt
- Seniorprofessor Innere Medizin und Pneumologie, Charité Berlin
| | | | | | - Thomas Fühner
- Krankenhaus Siloah, Klinik für Pneumologie und Beatmungsmedizin, Klinikum Region Hannover.,Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH) im Deutschen Zentrum für Lungenforschung (DZL)
| |
Collapse
|
18
|
Abstract
RATIONALE Acute hypercapnic respiratory failure has been shown to be associated with worse outcomes for various disease states, but less is known about patients with compensated hypercapnic respiratory failure. Although these patients have a normal pH, it remains unknown whether chronically elevated partial pressures of carbon dioxide (PaCO2), irrespective of etiology, put patients at risk of adverse events. OBJECTIVES To understand the burden of and clinical factors associated with morbidity and mortality in patients with compensated hypercapnic respiratory failure. METHODS We performed a query of the electronic medical record (EMR) to identify patients hospitalized at the University of Michigan from January 1 - December 31, 2018 who had compensated hypercapnia, using a PaCO2 ≥ 50 mmHg and pH 7.35 - 7.45 on arterial blood gas (ABG). We obtained demographic and clinical data from the EMR. Survival probabilities for PaCO2 subgroups (50.0-54.9; 55.0-64.9; ≥65.0 mmHg) were determined using the Kaplan-Meier product limit estimator. Cox proportional hazard models were constructed to test the association between PaCO2 and all-cause mortality. RESULTS We identified 491 patients with compensated hypercapnia. The mean age was 60.5 ± 16.2. Patients were 57.4% male and 86.2% white. The mean pH and PaCO2 were 7.38 ± 0.03 and 58.8 ± 9.7 mmHg respectively. There were a total of 1,030 hospitalizations, with 44.4% of patients having 2 or more admissions. The median numbers of cumulative hospital and ICU days were 21.0 (IQR 11.0-38.0) and 7.0 (IQR 3.0-14.0) respectively. 217 patients (44.2%) died over a median of 592 days. In univariate analysis, every 5-mmHg increase in PaCO2 was associated with a higher risk of all-cause death (HR 1.09; 95% CI 1.03-1.16; p=0.004). This association was maintained after adjusting for age, sex, BMI, and the Charlson comorbidity index (HR 1.09 for every 5-mmHg increase in PaCO2; 95% CI 1.02-1.16; p=0.009). There was a statistically significant interaction between PaCO2 and BMI on mortality (p= 0.01 for the interaction term). CONCLUSIONS Patients with compensated hypercapnic respiratory failure have high mortality and healthcare utilization with higher PaCO2 associated with worse survival. Obese hypercapnic patients have higher risk of death with increases in PaCO2.
Collapse
|