1
|
Rai A, Singh A, Gaur R, Verma A, Nikita, Gulati S, Malik R, Dandu H, Kumar A, Tandon R. MALAT1 is important for facilitating HIV-1 latency reversal in latently infected monocytes. Gene 2025; 936:149095. [PMID: 39549778 DOI: 10.1016/j.gene.2024.149095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Long non-coding RNAs (lncRNAs) are long RNA transcripts with length >200 nucleotides that do not encode proteins. They play a crucial role in regulating HIV-1 infection, yet their involvement in myeloid cells remains underexplored. Myeloid cells are susceptible to HIV infection and contribute substantially to the latent HIV reservoir. Therefore, disruption of latency within these reservoirs is crucial for achieving a definite cure. In this study, we aimed to ascertain the role of MALAT1 lncRNA in reversal of HIV-1 latency. Latently HIV-infected cell line, U1 was treated with SAHA, followed by qRT-PCR assays to confirm HIV-1 reactivation, and MALAT1 expression was assessed. The in vitro experiments revealed a significant increase in MALAT1 expression following latency reactivation and HIV-1 infection, while its knockdown using siRNA resulted in suppression of HIV transcription, which implies that MALAT1 play a significant role in facilitating the reversal of HIV-1 latency by promoting HIV transcription. Clinical samples were analysed to measure MALAT1 and pro-inflammatory cytokines expression. The elevated MALAT1 expression in treatment-naïve subjects compared to those on ART and HIV-negative controls suggests its association with HIV replication. Moreover, correlation analysis revealed a positive association between MALAT1 expression and pro-inflammatory cytokines, TNF-α and IP-10. To conclude, MALAT1 lncRNA emerged as a crucial facilitator of HIV-1 latency reversal in latently infected monocytes by inducing the expression of pro-inflammatory factors. These findings highlight that MALAT1 could potentially be explored as the therapeutic intervention to reactivate latent cells in monocytes.
Collapse
Affiliation(s)
- Ankita Rai
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Aradhana Singh
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Anjali Verma
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nikita
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sameer Gulati
- Department of Medicine, Lady Hardinge Medical College, New Delhi, India
| | - Rupali Malik
- Department of Medicine, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Himanshu Dandu
- Department of Medicine, King George's Medical University, Lucknow, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education, Manipal, India; Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
2
|
Chini A, Guha P, Rishi A, Obaid M, Udden SN, Mandal SS. Discovery and functional characterization of LncRNAs associated with inflammation and macrophage activation. Methods 2024; 227:1-16. [PMID: 38703879 DOI: 10.1016/j.ymeth.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
Long noncoding RNAs (lncRNA) are emerging players in regulation of gene expression and cell signaling and their dysregulation has been implicated in a multitude of human diseases. Recent studies from our laboratory revealed that lncRNAs play critical roles in cytokine regulation, inflammation, and metabolism. We demonstrated that lncRNA HOTAIR, which is a well-known regulator of gene silencing, plays critical roles in modulation of cytokines and proinflammatory genes, and glucose metabolism in macrophages during inflammation. In addition, we recently discovered a series of novel lncRNAs that are closely associated with inflammation and macrophage activation. We termed these as long-noncoding inflammation associated RNAs (LinfRNAs). We are currently engaged in the functional characterization of these hLinfRNAs (human LinfRNAs) with a focus on their roles in inflammation, and we are investigating their potential implications in chronic inflammatory human diseases. Here, we have summarized experimental methods that have been utilized for the discovery and functional characterization of lncRNAs in inflammation and macrophage activation.
Collapse
Affiliation(s)
- Avisankar Chini
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Prarthana Guha
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Ashcharya Rishi
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Monira Obaid
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Sm Nashir Udden
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
3
|
Al-Ansari N, Samuel SM, Büsselberg D. Unveiling the Protective Role of Melatonin in Osteosarcoma: Current Knowledge and Limitations. Biomolecules 2024; 14:145. [PMID: 38397382 PMCID: PMC10886489 DOI: 10.3390/biom14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Melatonin, an endogenous neurohormone produced by the pineal gland, has received increased interest due to its potential anti-cancer properties. Apart from its well-known role in the sleep-wake cycle, extensive scientific evidence has shown its role in various physiological and pathological processes, such as inflammation. Additionally, melatonin has demonstrated promising potential as an anti-cancer agent as its function includes inhibition of tumorigenesis, induction of apoptosis, and regulation of anti-tumor immune response. Although a precise pathophysiological mechanism is yet to be established, several pathways related to the regulation of cell cycle progression, DNA repair mechanisms, and antioxidant activity have been implicated in the anti-neoplastic potential of melatonin. In the current manuscript, we focus on the potential anti-cancer properties of melatonin and its use in treating and managing pediatric osteosarcoma. This aggressive bone tumor primarily affects children and adolescents and is treated mainly by surgical and radio-oncological interventions, which has improved survival rates among affected individuals. Significant disadvantages to these interventions include disease recurrence, therapy-related toxicity, and severe/debilitating side effects that the patients have to endure, significantly affecting their quality of life. Melatonin has therapeutic effects when used for treating osteosarcoma, attributed to its ability to halt cancer cell proliferation and trigger apoptotic cell death, thereby enhancing chemotherapeutic efficacy. Furthermore, the antioxidative function of melatonin alleviates harmful side effects of chemotherapy-induced oxidative damage, aiding in decreasing therapeutic toxicities. The review concisely explains the many mechanisms by which melatonin targets osteosarcoma, as evidenced by significant results from several in vitro and animal models. Nevertheless, if further explored, human trials remain a challenge that could shed light and support its utility as an adjunctive therapeutic modality for treating osteosarcoma.
Collapse
Affiliation(s)
- Nojoud Al-Ansari
- Department of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar;
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| |
Collapse
|
4
|
Rahni Z, Hosseini SM, Shahrokh S, Saeedi Niasar M, Shoraka S, Mirjalali H, Nazemalhosseini-Mojarad E, Rostami-Nejad M, Malekpour H, Zali MR, Mohebbi SR. Long non-coding RNAs ANRIL, THRIL, and NEAT1 as potential circulating biomarkers of SARS-CoV-2 infection and disease severity. Virus Res 2023; 336:199214. [PMID: 37657511 PMCID: PMC10502354 DOI: 10.1016/j.virusres.2023.199214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The current outbreak of coronavirus disease 2019 (COVID-19) is a global emergency, as its rapid spread and high mortality rate, which poses a significant threat to public health. Innate immunity plays a crucial role in the primary defense against infections, and recent studies have highlighted the pivotal regulatory function of long non-coding RNAs (lncRNAs) in innate immune responses. This study aims to assess the circulating levels of lncRNAs namely ANRIL, THRIL, NEAT1, and MALAT1 in the blood of moderate and severe SARS-CoV-2 infected patients, in comparison to healthy individuals. Additionally, it aims to explore the potential of these lncRNAs as biomarkers for determining the severity of the disease. The blood samples were collected from a total of 38 moderate and 25 severe COVID-19 patients, along with 30 healthy controls. The total RNA was extracted and qPCR was performed to evaluate the blood levels of the lncRNAs. The results indicate significantly higher expression levels of lncRNAs ANRIL and THRIL in severe patients when compared to moderate patients (P value = 0.0307, P value = 0.0059, respectively). Moreover, the expression levels of lncRNAs ANRIL and THRIL were significantly up-regulated in both moderate and severe patients in comparison to the control group (P value < 0.001, P value < 0.001, P value = 0.001, P value < 0.001, respectively). The expression levels of lncRNA NEAT1 were found to be significantly higher in both moderate and severe COVID-19 patients compared to the healthy group (P value < 0.001, P value < 0.001, respectively), and there was no significant difference in the expression levels of NEAT1 between moderate and severe patients (P value = 0.6979). The expression levels of MALAT1 in moderate and severe patients did not exhibit a significant difference compared to the control group (P value = 0.677, P value = 0.764, respectively). Furthermore, the discriminative power of ANRIL and THRIL was significantly higher in the severe patient group than the moderate group (Area under curve (AUC) = 0.6879; P-value = 0.0122, AUC = 0.6947; P-value = 0.0093, respectively). In conclusion, the expression levels of the lncRNAs ANRIL and THRIL are correlated with the severity of COVID-19 and can be regarded as circulating biomarkers for disease progression.
Collapse
Affiliation(s)
- Zeynab Rahni
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Saeedi Niasar
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrzad Shoraka
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Malekpour
- Research and Development Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Chen X, Zhu X, Yan W, Wang L, Xue D, Zhu S, Pan J, Li Y, Zhao Q, Han D. Serum lncRNA THRIL predicts benign and malignant pulmonary nodules and promotes the progression of pulmonary malignancies. BMC Cancer 2023; 23:755. [PMID: 37582734 PMCID: PMC10426220 DOI: 10.1186/s12885-023-11264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND This project aimed to research the significance of THRIL in the diagnosis of benign and malignant solitary pulmonary nodules (SPNs) and to investigate the role of THRIL/miR-99a in malignant SPNs. METHODS The study groups consisted of 169 patients with SPN and 74 healthy subjects. The differences in THRIL levels were compared between the two groups and the healthy group. The receiver operating characteristic curve (ROC) was utilized to analyze the THRIL's significance in detecting benign and malignant SPN. Pearson correlation and binary regression coefficients represented the association between THRIL and SPN. CCK-8 assay, Transwell assay, and flow cytometry were utilized to detect the regulatory effect of THRIL silencing. The interaction between THRIL, miR-99a, and IGF1R was confirmed by the double luciferase reporter gene. RESULTS There were differences in THRIL expression in the healthy group, benign SPN group, and malignant SPN group. High accuracy of THRIL in the diagnosis of benign SPN and malignant SPN was observed. THRIL was associated with the development of SPN. The expression of THRIL was upregulated and miR-99a was downregulated in lung cancer cells. The double luciferase report experiment confirmed the connections between THRIL/miR-99a/IGF1R. Silencing THRIL could suppress cell proliferation, migration, and invasion and promote cell apoptosis by binding miR-99a. CONCLUSION The detection of THRIL in serum is useful for the assessment of malignant SPN. THRIL can regulate the expression of IGF1R through miR-99a, thereby promoting the growth of lung cancer cells and inhibiting apoptosis.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Xianji Zhu
- Department of Respiratory Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Wenjun Yan
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Luan Wang
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Dongming Xue
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Shouying Zhu
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Jiajun Pan
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Yufeng Li
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Qixiang Zhao
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Dong Han
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China.
| |
Collapse
|
6
|
Liu G, Liu B, Liu B, Tang L, Liu Z, Dai H. Cytokines as Prognostic Biomarkers in Osteosarcoma Patients: A Systematic Review and Meta-analysis. J Interferon Cytokine Res 2023; 43:335-343. [PMID: 37566475 DOI: 10.1089/jir.2023.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Osteosarcoma is the most prevalent type of primary bone malignancy in children and adolescents. The effect of cytokines on osteosarcoma prognosis has been studied and reported. This meta-analysis aimed to assess the prognostic value of cytokines as osteosarcoma biomarkers. Databases including PubMed, Embase, and Cochrane Library were searched for studies on the prognostic value of cytokines in osteosarcoma. From the eligible studies, data on overall survival (OS), disease-free survival, and metastasis-free survival (MFS) were extracted. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated. A total of 11 studies involving 755 patients were included in this analysis. High macrophage migration inhibitory factor (MIF) expression in tumors was significantly associated with shortened OS (HR = 2.01, 95% CI: 1.18-3.42, P = 0.010) and MFS (HR = 2.51, 95% CI: 1.47-4.01, P = 0.001). Elevated T cell immunoglobulin and mucin domain-3 (Tim-3) levels in serum correlated with increased risk of disease progression in patients with osteosarcoma (HR = 3.14, 95% CI: 2.88-3.03, P < 0.001). However, interleukin 6 (IL-6) and tumor necrosis factor were not substantially associated with osteosarcoma prognosis. Owing to a paucity of research, other relevant cytokines [interferon-α/β receptor, tissue factor, macrophage inhibitory cytokine 1 (MIC-1), and IL-23] could not be combined. In conclusion, MIF levels in tumors and Tim-3 levels in serum can be potential biomarkers of poor prognosis in osteosarcoma. To confirm this finding and implement these biomarkers into clinical applications, additional large-scale, high-quality studies are needed.
Collapse
Affiliation(s)
- Gang Liu
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| | - Ben Liu
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| | - BinBin Liu
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| | - Liyuan Tang
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, China
| | - Zhiwei Liu
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| | - Haiyang Dai
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
7
|
Bozgeyik E, Ege B, Erdogmus Z, Bozgeyik I, Koparal M, Bayazit S, Kurt MY. Inflammation-associated long non-coding RNA signature in radicular cyst tissues. Pathol Res Pract 2023; 245:154456. [PMID: 37116367 DOI: 10.1016/j.prp.2023.154456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/30/2023]
Abstract
Radicular cysts are characterized by significant levels of changes in inflammatory biomarkers. Among them, interleukins and growth factors have been reported to be deregulated in radicular cyst tissues. Moreover, long non-coding RNAs are recently discovered non-coding RNA molecules that regulate various intracellular stimuli to keep homeostasis in balance. A growing body of evidence suggests that lncRNAs are significantly involved in the regulation of inflammation by targeting various inflammatory biomarkers. Accordingly, the present study was aimed to investigate the gene expression levels of inflammation-related lncRNAs in radicular cysts and show their possible roles in the development of radicular cysts. For the study, a total of 25 patients with a radiologically and pathologically confirmed radicular cyst were enrolled. For the determination of non-coding RNA expression levels, real-time qPCR was used. As a result of the current study, expression levels of PACER and THRIL were found to be significantly elevated in radicular cyst tissues compared to control tissue samples. However, MALAT1, ANRIL, and NEAT1 expression levels were not significantly altered in radicular cyst tissues compared to control tissue samples. In conclusion, long non-coding RNAs, PACER and THRIL, seem to have significant pathophysiological roles by acquiring molecular changes during inflammation and might be involved in the development and formation of radicular cysts.
Collapse
Affiliation(s)
- Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey.
| | - Bilal Ege
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Adiyaman University, Adiyaman, Turkey
| | - Zozan Erdogmus
- Oral and Maxillofacial Surgery Clinic, Diyarbakir Oral and Dental Health Center, Diyarbakir, Turkey
| | - Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Mahmut Koparal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Adiyaman University, Adiyaman, Turkey
| | - Seyma Bayazit
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Adiyaman University, Adiyaman, Turkey
| | - Muhammed Yusuf Kurt
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
8
|
Long non-coding RNAs and cancer mechanisms: Immune cells and inflammatory cytokines in the tumor microenvironment. Med Oncol 2022; 39:108. [PMID: 35578054 DOI: 10.1007/s12032-022-01680-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/05/2022] [Indexed: 02/06/2023]
Abstract
Chronic inflammation and immune response are two central hallmarks of the tumor microenvironment (TME), teeming with immune cells and inflammatory cytokines that promote tumor progression. Intriguingly, there is mutual regulation between immune cells and cytokines. Indeed, the differentiation and function of immune cells depend on cytokines secreted from tumor cells, whereas immune activation affects the dynamics of cytokines, reshaping the TME together. Long non-coding RNAs (lncRNAs) as a blooming molecule are virtually involved in physiology and pathology events, especially TME. Notably, the regulatory loop between lncRNAs and cytokines or immune activation plays a vital role in tumor growth. Thus, this review concentrates on the interaction between lncRNAs and immune cells. It puts special attention to the intertwist between lncRNAs and cytokines or immune cells, providing a theoretical basis for lncRNAs as a potential biomarker and therapeutic tumor target.
Collapse
|
9
|
Abbasi-Kolli M, Sadri Nahand J, Kiani SJ, Khanaliha K, Khatami A, Taghizadieh M, Torkamani AR, Babakhaniyan K, Bokharaei-Salim F. The expression patterns of MALAT-1, NEAT-1, THRIL, and miR-155-5p in the acute to the post-acute phase of COVID-19 disease. Braz J Infect Dis 2022; 26:102354. [PMID: 35500644 PMCID: PMC9035361 DOI: 10.1016/j.bjid.2022.102354] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Introduction One of the hallmarks of COVID-19 is overwhelming inflammation, which plays a very important role in the pathogenesis of COVID-19. Thus, identification of inflammatory factors that interact with the SARS-CoV-2 can be very important to control and diagnose the severity of COVID-19. The aim of this study was to investigate the expression patterns of inflammation-related non-coding RNAs (ncRNAs) including MALAT-1, NEAT-1, THRIL, and miR-155-5p from the acute phase to the recovery phase of COVID-19. Methods Total RNA was extracted from Peripheral Blood Mononuclear Cell (PBMC) samples of 20 patients with acute COVID-19 infection and 20 healthy individuals and the expression levels of MALAT-1, NEAT-1, THRIL, and miR-155-5p were evaluated by real-time PCR assay. Besides, in order to monitor the expression pattern of selected ncRNAs from the acute phase to the recovery phase of COVID-19 disease, the levels of ncRNAs were re-measured 6‒7 weeks after the acute phase. Result The mean expression levels of MALAT-1, THRIL, and miR-155-5p were significantly increased in the acute phase of COVID-19 compared with a healthy control group. In addition, the expression levels of MALAT-1 and THRIL in the post-acute phase of COVID-19 were significantly lower than in the acute phase of COVID-19. According to the ROC curve analysis, these ncRNAs could be considered useful biomarkers for COVID-19 diagnosis and for discriminating between acute and post-acute phase of COVID-19. Discussion Inflammation-related ncRNAs (MALAT-1, THRIL, and miR-150-5p) can act as hopeful biomarkers for the monitoring and diagnosis of COVID-19 disease.
Collapse
Affiliation(s)
| | - Javid Sadri Nahand
- Tabriz University of Medical Sciences, Infectious and Tropical Diseases Research Center, Tabriz, Iran
| | - Seyed Jalal Kiani
- Iran University of Medical Sciences, School of Medicine, Department of Virology, Tehran, Iran
| | - Khadijeh Khanaliha
- University of Medical Sciences, Institute of Immunology and Infectious Diseases, Research Center of Pediatric Infectious Diseases, Tehran, Iran
| | - AliReza Khatami
- Iran University of Medical Sciences, School of Medicine, Department of Virology, Tehran, Iran
| | - Mohammad Taghizadieh
- Tabriz University of Medical Sciences, Center for Women's Health Research Zahra, School of Medicine, Department of Pathology, Tabriz, Iran
| | - Ali Rajabi Torkamani
- Tehran University of Medical Sciences, School of Medicine, Department of Clinical Biochemistry, Tehran, Iran
| | - Kimiya Babakhaniyan
- Iran University of Medical Sciences, School of Nursing and Midwifery, Department of Medical Surgical Nursing, Tehran, Iran
| | - Farah Bokharaei-Salim
- Iran University of Medical Sciences, School of Medicine, Department of Virology, Tehran, Iran.
| |
Collapse
|
10
|
Ji Q, Han J, Liu J, Lv H, Wang L, Dong Y, Shi L. LncRNA THRIL promotes high glucose-induced proliferation and migration of human retina microvascular endothelial cells through enhancing autophagy. Acta Diabetol 2022; 59:369-380. [PMID: 34718852 DOI: 10.1007/s00592-021-01813-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Abstract
AIMS Diabetes retinopathy (DR) is associated with retinal microvascular system injury induced by high glucose (HG). This study aims to explore the role and mechanism of long non-coding RNA THRIL in regulating cell proliferation and migration of human retina microvascular endothelial cells (hRMECs) under HG condition. METHOD The gene and protein expression were detetced by RT-PCR and western blot, respectively. Cell proliferation and migration of hRMECs were examined using MTT assay and Transwell assay, respectively. The interaction between miR-125b-5p and THRIL or autophagy-related gene 4D (ATG4D) was analyzed using luciferase activity assay. RESULTS THRIL expression was induced by HG in hRMECs. THRIL overexpression enhanced the proliferation and migration of hRMECs induced by HG, whereas THRIL silencing yielded the opposite results. Furthermore, THRIL overexpression induced autophagy activation, and inhibition of autophagy by 3-methyladenine abrogated the promotory effects of THRIL overexpression on cell proliferation and migration of hRMECs. Mechanismly, THRIL inhibited miR-125b-5p to upregulate the expression of ATG4D (an important autophagy-related gene), thereby promoting autophagy. Moreover, miR-125b-5p overexpression or ATG4D silencing alone abolished the promoting effects of THRIL overexpression on HG-induced autophagy, proliferation and migration of hRMECs. CONCLUSIONS THRIL promotes HG-induced cell proliferation and migration of hRMECs through activation of autophagy via the miR-125b-5p/ATG4D axis. THRIL may serve as a potential therapeutic target for DR.
Collapse
Affiliation(s)
- Qingshan Ji
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230001, China
| | - Jing Han
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230001, China
| | - Jiajia Liu
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230001, China
| | - Huayi Lv
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230001, China
| | - Lisong Wang
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230001, China
| | - Yiran Dong
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230001, China
| | - Lei Shi
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230001, China.
| |
Collapse
|
11
|
Zou Y, Shen C, Shen T, Wang J, Zhang X, Zhang Q, Sun R, Dai L, Xu H. LncRNA THRIL is involved in the proliferation, migration, and invasion of rheumatoid fibroblast-like synoviocytes. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1368. [PMID: 34733920 PMCID: PMC8506560 DOI: 10.21037/atm-21-1362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/20/2021] [Indexed: 01/01/2023]
Abstract
Background Fibroblast-like synoviocytes (FLSs), which can migrate and directly invade the cartilage and the bone, are crucial players in joint damage in rheumatoid arthritis (RA). Nevertheless, the detailed mechanisms underlying the aberrant activation of RA FLSs remain unclear. Several studies have attempted to explore the relationship between long non-coding RNAs (lncRNAs) and RA pathology; however, the role of lncRNAs in RA is unknown. The present study aimed to determine the functions of tumor necrosis factor-α and heterogeneous nuclear ribonucleoprotein L-related immunoregulatory lincRNA (THRIL) in RA FLSs migration and invasion. Methods Small interfering RNA targeting THRIL or lentivirus overexpressing THRIL was used to knockdown or overexpress THRIL. Quantitative reverse transcription polymerase chain reaction (PCR) was employed for the detection of RNA expression. The proliferation rate of RA FLSs was measured using a 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. Migration and invasion were detected using a transwell chamber. Downstream targets were identified using a human cell cycle real-time PCR array and a human cell motility real-time PCR array. Results A significant decrease in THRIL expression was found in RA FLSs compared with cells from healthy control (HC)patients. THRIL is mainly localized in the nucleus. Knockdown of THRIL increased the proliferation, migration, and invasion of RA FLSs. In contrast, THRIL overexpression had the opposite effect. THRIL knockdown increased interleukin-1β (IL-1β)-triggered expression of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13. THRIL overexpression led to a significant decrease in MMP-13 expression in response to stimulation with IL-1β. Furthermore, we observed that the expression levels of cyclin-dependent kinase 1 (CDK1) and G2 and S phase-expressed-1 (GTSE1), both of which are associated with cellular mobility and proliferation, were downregulated with THRIL overexpression. Conclusions Reduced expression of lncRNA THRIL represses the proliferation, migration, and invasion of RA FLSs, suggesting that lncRNA THRIL might be a potential target for RA therapy.
Collapse
Affiliation(s)
- Yaoyao Zou
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuyu Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Shen
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingnan Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuepei Zhang
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Zhang
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Runlu Sun
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lie Dai
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Huang Q, Lin Y, Chen C, Lou J, Ren T, Huang Y, Zhang H, Yu Y, Guo Y, Wang W, Wang B, Niu J, Xu J, Guo L, Guo W. Immune-Related LncRNAs Affect the Prognosis of Osteosarcoma, Which Are Related to the Tumor Immune Microenvironment. Front Cell Dev Biol 2021; 9:731311. [PMID: 34692688 PMCID: PMC8529014 DOI: 10.3389/fcell.2021.731311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023] Open
Abstract
Background: Abnormal expression of lncRNA is closely related to the occurrence and metastasis of osteosarcoma. The tumor immune microenvironment (TIM) is considered to be an important factor affecting the prognosis and treatment of osteosarcoma. This study aims to explore the effect of immune-related lncRNAs (IRLs) on the prognosis of osteosarcoma and its relationship with the TIM. Methods: Ninety-five osteosarcoma samples from the TARGET database were included. Iterative LASSO regression and multivariate Cox regression analysis were used to screen the IRLs signature with the optimal AUC. The predict function was used to calculate the risk score and divide osteosarcoma into a high-risk group and low-risk group based on the optimal cut-off value of the risk score. The lncRNAs in IRLs signature that affect metastasis were screened for in vitro validation. Single sample gene set enrichment analysis (ssGSEA) and ESTIMATE algorithms were used to evaluate the role of TIM in the influence of IRLs on osteosarcoma prognosis. Results: Ten IRLs constituted the IRLs signature, with an AUC of 0.96. The recurrence and metastasis rates of osteosarcoma in the high-risk group were higher than those in the low-risk group. In vitro experiments showed that knockdown of lncRNA (AC006033.2) could increase the proliferation, migration, and invasion of osteosarcoma. ssGSEA and ESTIMATE results showed that the immune cell content and immune score in the low-risk group were generally higher than those in the high-risk group. In addition, the expression levels of immune escape-related genes were higher in the high-risk group. Conclusion: The IRLs signature is a reliable biomarker for the prognosis of osteosarcoma, and they alter the prognosis of osteosarcoma. In addition, IRLs signature and patient prognosis may be related to TIM in osteosarcoma. The higher the content of immune cells in the TIM of osteosarcoma, the lower the risk score of patients and the better the prognosis. The higher the expression of immune escape-related genes, the lower the risk score of patients and the better the prognosis.
Collapse
Affiliation(s)
- Qingshan Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Yilin Lin
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China
| | - Chenglong Chen
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Jingbing Lou
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Hongliang Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Yiyang Yu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Yu Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Wei Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Boyang Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Jianfang Niu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Jiuhui Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Lei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| |
Collapse
|
13
|
Kuai F, Zhou L, Zhou J, Sun X, Dong W. Long non-coding RNA THRIL inhibits miRNA-24-3p to upregulate neuropilin-1 to aggravate cerebral ischemia-reperfusion injury through regulating the nuclear factor κB p65 signaling. Aging (Albany NY) 2021; 13:9071-9084. [PMID: 33675584 PMCID: PMC8034910 DOI: 10.18632/aging.202762] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Purpose: The aim of this study was to investigate the role of the tumor necrosis factor and HNRNPL related immunoregulatory long non-coding RNA (THRIL) in cerebral ischemia-reperfusion injury. Methods: A rat middle cerebral artery occlusion/ischemia-reperfusion (MCAO/IR) model and an oxygen glucose deprivation/reoxygenation (OGD/R) cell model were constructed. THRIL was knocked down using siTHRIL. Neurological deficit score was detected based on the criteria of Zea-Longa. Brain region 2,3,5-Triphenyltetrazolium (TTC) staining and quantitative analysis of cerebral infarction volume, RT-qPCR, and fluorescence immunostaining were performed for assessing THRIL expression. MTT assay was used to detect the cell proliferation ability after transfection, TUNEL assay was applied to detect apoptosis, and western blot and ELISA detected related protein expression. A dual luciferase reporter system and RIP assay were used to confirm the target relationship. Results: THRIL was upregulated in both in vitro and in vivo models of brain ischemia-reperfusion injury. Knockdown of THRIL attenuated OGD/R neuronal apoptosis and OGD/R-induced inflammation. THRIL targeted and regulated the expression of miR-24-3p/neuropilin-1 (NRP1) axis. THRIL silencing significantly improved the neurological functioning of rats in the MCAO/R model by miR-24-3p/NRP1/NF-κB p65 signaling pathway. Conclusion: THRIL could aggravate cerebral ischemia-reperfusion injury by competitively binding to miR-24-3p to promote the upregulation of NRP1 and further promoted the activation of the NF-κB p65 signaling pathway.
Collapse
Affiliation(s)
- Feng Kuai
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Geriatrics, The First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yancheng 224001, China
| | - Liang Zhou
- Department of orthopedic, The People's Hospital of Lianshui, Huai'an 223001, China
| | - Jianping Zhou
- Department of Geriatrics, The First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yancheng 224001, China
| | - Xuemei Sun
- Department of Geriatrics, The First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yancheng 224001, China
| | - Wanli Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
14
|
Xue J, Zhang F. LncRNA LINC00511 plays an oncogenic role in lung adenocarcinoma by regulating PKM2 expression via sponging miR-625-5p. Thorac Cancer 2020; 11:2570-2579. [PMID: 32716147 PMCID: PMC7471024 DOI: 10.1111/1759-7714.13576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LAC) is the most prominent histological subtype of non-small cell lung cancer (NSCLC) with a high rate of mortality and metastasis. Accumulating evidence has shown that long non-coding RNAs (lncRNAs) play malfunctioning roles in the development of human tumors. Hence, this study aimed to determine the biological function of LINC00511 in LAC and to provide a novel diagnostic and therapeutic target for it. METHODS LINC00511 expression in LAC tissues and cell lines (H1299 and A549) were detected by real time-polymerase chain reaction (RT-qPCR). Cell counting kit-8 (CCK-8) assay was employed to analyze cell proliferative ability. Cell metastasis change was measured using transwell assay. Moreover, we revealed a novel target gene of LINC00511 and elucidated the underlying competitive endogenous RNA regulatory mechanism in LAC cells. RESULTS Data from our study demonstrated that LINC00511 expression was increased in LAC tissues and cells in comparison to their corresponding controls. Moreover, overexpression of LINC00511 indicated the poor prognosis of LAC patients. Overexpression of LINC00511 promoted proliferation, invasion and migration capacities of LAC cells. Moreover, LINC00511 promoted LAC progression via serving as a sponge of miR-625-5p and regulating PKM2 expression. CONCLUSIONS The present study showed that LINC00511 was involved in LAC progression by targeting miR-625-5p/PKM2, indicating that LINC00511/miR-625-5p/PKM2 may function as promising therapeutic targets for LAC.
Collapse
Affiliation(s)
| | - Fayan Zhang
- Heart Disease DepartmentTianjin Academy of Traditional Chinese Medicine Affiliated HospitalTianjinChina
| |
Collapse
|
15
|
LncRNA MALAT1 facilitates lung metastasis of osteosarcomas through miR-202 sponging. Sci Rep 2020; 10:12757. [PMID: 32728178 PMCID: PMC7391763 DOI: 10.1038/s41598-020-69574-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Lungs are the primary metastatic sites for osteosarcomas responsible for associated mortality. Recent data has documented role of long non-coding RNAs (lncRNAs) in proliferation and growth of osteosarcoma cells. We evaluated a role of lncRNAs in the lung metastasis of osteosarcoma with the goal of identifying a unique signature. Comparison of different lncRNAs in tumor samples from osteosarcoma with and without lung metastasis led to identification of MALAT1 as the most differentially upregulated lncRNA in the osteosarcoma patients with lung metastasis. MALAT1 was also high in osteosarcoma cells KRIB and MALAT1’s targeted downregulation in these cells led to decreased invasive potential and identification of miR-202 as the miRNA that is sponged by MALAT1. In the lung metastasis in vivo model, parental KRIB cells metastasized to lungs and such metastasis was significantly inhibited in KRIB cells with downregulated MALAT1. Ectopic miR-202 expression attenuated KRIB downregulation-mediated effects on lung metastasis. In yet another in vivo model involving parental SAOS-2 and lung-metastatic derivatives SAOS-2-LM, MALAT1 expression was found to be elevated in lung metastatic cells, which also correlated with reduced miR-202. In conclusion, MALAT1-miR-202 represents a potential lncRNA-miRNA signature that affects lung metastasis of osteosarcomas and could potentially be targeted for therapy.
Collapse
|